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The regulated synthesis of specific
proteins at the synapse is impor-

tant for neuron plasticity, and several
localized mRNAs are translated upon
specific stimulus. Repression of mRNA
translation is linked to the formation
of mRNA-silencing foci, including
Processing Bodies (PBs) and Stress
Granules (SGs), which are macromole-
cular aggregates that harbor silenced
messengers and associated proteins. In a
recent work, we identified a kind of
mRNA-silencing foci unique to neurons,
termed S-foci, that contain the post-
transcriptional regulator Smaug1/
SAMD4. Upon specific synaptic stimu-
lation, the S-foci dissolve and release
mRNAs to allow their translation,
paralleling the cycling of mRNAs
between PBs and polysomes in other
cellular contexts. Smaug 1 and other
proteins involved in mRNA regulation
in neurons contain aggregation domains
distinct from their RNA binding motifs,
and we speculate that self-aggregation
helps silencing and transport. In addition
to S-foci and PBs, other foci formed by
distinct RNA binding proteins, such as
TDP-43 and FMRP among others,
respond dynamically to specific synaptic
stimuli. We propose the collective name
of synaptic activity-regulated mRNA
silencing (SyAS) foci for these RNP
aggregates that selectively respond to
distinct stimulation patterns and contri-
bute to the fine-tuning of local protein
synthesis at the synapse.

Local translation at the synapse is key for
neuronal activity. Hundreds of mRNAs
encoding highly diverse proteins involved

in distinct structures and processes are
transported from the cell soma to the
dendrites and synapses with distinct
localization patterns. Adding significance
to this exquisite spatial distribution, the
translation of these transcripts is regulated
by synaptic activity, thereby providing a
precision mechanism for the local produc-
tion of specific proteins in response to
local changes. Dendritically localized
mRNA molecules may remain silent most
of the time, and become active upon
specific stimulus.1 An emerging concept is
that mRNA repression is linked to the
formation of mRNA-silencing foci. Pro-
cessing Bodies (PBs) and Stress Granules
(SGs) are the founding members of this
novel family of cellular structures, which
are cytoplasmic supramolecular aggregates
of repressed RNA and inhibitory proteins.
PBs are ubiquitous and SGs are specific of
the stress response. SGs are rapidly
assembled during the global translational
silencing triggered by cell stress. Both PBs
and SGs are dynamic and dissolve when
the associated mRNAs engage in trans-
lation according to cellular needs.2-4

Recently, we identified a mRNA-silen-
cing foci specific of neurons. These foci
contain Smaug1/SAMD4, a translational
repressor initially identified in the
Drosophila embryo, and that we found
expressed in the mammalian CNS.5,6

Smaug proteins are novel mRNA regula-
tors and they recognize their targets by a
unique strategy, involving a SAM domain
that binds a number of related motifs
collectively termed SRE (Smaug
Recognition Element).7 Smaug1 foci are
distinct from PBs and other neuronal
RNA granules hitherto described, and
were named S-foci. Both in neurons as
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well as in transfected cell lines, the
integrity of the S-foci inversely correlates
with that of polysomes, as expected for
mRNA-silencing foci. The S-foci dissolve
when mRNAs are trapped into polysomes.
Conversely, S-foci formation is enhanced
when mRNAs are released from poly-
somes. Drosophila Smaug also forms
mRNA silencing foci when expressed in
mammalian cells.5,6

The S-foci are present at dendrites and
remarkably associated to the post-synapses.
Up to 60% of the dendritic spines of
mature hippocampal neurons contain

S-foci. An important finding is that these
neuron-specific mRNA silencing foci
respond to synaptic activation. The S-foci
dissolve and release target mRNAs to allow
their translation upon stimulation of the
N-Methyl D-aspartate (NMDA) receptor.
The response is rapid and maximal
dissolution occurs between 1 to 5 min
after stimulation. The effect is transient
and after massive dissolution the S-foci
begin to reassemble, provided that poly-
somes are allowed to disengage after
the translation pulse. These observations
suggest that mRNAs cycle between S-foci

and polysomes, thus paralleling the cycling
of mRNAs between PBs and polysomes in
other cellular contexts (Fig. 1A and B).6

The S-foci apparently do not respond
to a-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) receptor
stimulation. The S-foci enter a round of
relaxation and re-assembly upon stimu-
lation of metabotropic glutamate receptors
(mGlutR), with a distinctive time-course,
thus allowing the transient release of
mRNAs followed by translation
(Luchelli and Boccaccio, unpublished)
(Fig. 1C andD).6 Both NMDAR and

Figure 1. SyAS-foci and translational regulation at the synapse. (A) Several mRNA-silencing foci, including S-foci, PBs and FMRP granules, among others,
are present in dendrites and dendritic spines. S-foci are different from FMRP granules and PBs. The three kind of SyAS-foci may coexist in a single
dendritic spine. (B-D) Distinct SyAS-foci respond to specific stimuli, dissolving and releasing specific mRNAs. Stimulation of NMDAR or mGlutR affect S-foci
and FMRP granules, and activates the translation of CamKIIa, among others.6 About half of synapse-localized CamKIIa mRNA is associated to S-foci under
resting conditions and is released upon NMDA stimulation and S-foci dissolution.6 In addition, CamKIIa mRNA is as well regulated by FMRP and PBs,30

opening the possibility of multiple regulation by distinct pathways. NMDAR stimulation provokes a global silencing, and the translation of a number
of transcripts, including Kv1.1 mRNA among others, is repressed.6,36
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mGlutR activation trigger the local syn-
thesis of a number of proteins involved in
synapse remodelling, including CamKIIa,
a key signaling molecule.8 Current evi-
dence indicates that the mRNA encoding
CamKIIa is associated to S-foci and
released upon NMDAR activation.
Molecular abrogation of Smaug1 by
RNAi strategies leads to a dramatic
alteration of dendritic spine morphology
and excitability. Deregulation of CamKIIa
mRNA undoubtedly contributes to these
defects.6 In addition, we speculate that
Smaug1 regulates other mRNAs.
Supporting this notion, the Drosophila
molecule controls the stability and trans-
lation of hundreds of maternal mRNAs
during early development, and the SAM
domain accommodates a number of varia-
tions on the cognate RNA motif.7,9-13 A
profound remodelling of the transcriptome
occurs during neuron development and
synapse formation. A large number of
neuronal mRNAs encoding different cell
functions and that are expressed early
during neuron maturation show a decrease
after the onset of synaptogenesis.14 Thus,
paralleling the role of Drosophila Smaug as
a major determinant of the maternal-to-
zygotic transition, we speculate that mam-
malian Smaug1 is a major mRNA regu-
lator during synaptogenesis, a stage when
Smaug1 expression is maximal.6 Among
other candidates, nanos 1—homologous
to Drosophila nanos, which is the best
characterized Smaug target in the fly—is
likely to be regulated by mammalian
Smaug1. Drosophila nanos is under
Smaug control in the embryo and in
peripheral neurons, where it affects the
dendritic arbour.15-17 Nanos is also a
translational repressor, and is recruited to
mRNAs by its partner Pumilio. Both in
mammalian and fly neurons, Pumilio
affects dendritogenesis and/or synapto-
genesis.15,16,18-21 Thus, the relevance of
the Smaug -Nanos/Pumilio post-transcrip-
tional regulatory pathway is likely to be
conserved from the insect to the mam-
malian CNS.

The molecular mechanism for mRNA
repression by mammalian Smaug1 is
unknown, but is expected to be similar
to that of Drosophila Smaug, which
operates at several levels. Drosophila
Smaug blocks translation initiation and

induces mRNA decay by triggering dead-
enylation.10-12,22 Both mechanisms are
likely to occur in the mammalian counter-
part. Deadenylation is frequent in neuro-
nal mRNAs, and the mRNA encoding
CamKIIa, which is repressed in S-foci, is
activated by cytoplasmic polyadenylation.

Whether aggregation of Smaug1 in
discrete structures is required for efficient
mRNA repression is unknown. Several
proteins involved in general mRNA silen-
cing have distinct oligomerization
domains.2-4 Among others motifs, regions
enriched in glutamine (Q) and asparagine
(N), which have a propensity to assemble
into ordered aggregates, are frequent in PB
components.2-4 None of these oligo-
merization domains are present in
Smaug1. We found that Smaug1 aggrega-
tion is independent of RNA binding and
of the presence of PBs.6 All this indicates
that S-foci formation is not a consequence
of mRNA repression, and allows the
speculation that aggregation is important
for Smaug1 function. Supporting this,
granule formation is conserved in
Drosophila Smaug. Like Smaug1 in hip-
pocampal neurons, the fly molecule is
found in foci in the embryo22 and in large
RNP complexes that can be isolated
biochemically.23 In addition, Drosophila
Smaug forms foci when expressed in
mammalian cells.5 Self-aggregation is a
common theme in several RNA binding
proteins relevant to RNA regulation in
neurons. Drosophila FMRP has a Q/N
rich domain that mediates protein-protein
interaction and that is important for the
establishment of short-term memory.24

The active form of Cytoplasmic
Polyadenilation Element Binding protein
(CPEB) from Aplysia forms small aggre-
gates that bind CPE-containing mRNAs,
thus stimulating their cytoplasmic poly-
adenylation.25 Orb2, the Drosophila
homolog, forms amyloid-like oligomers
and neurons with Orb2 oligomers are the
site for long-term memory storage.26

RNG105, a post-transcriptional repressor
found in dendritic RNA granules bears a
coiled-coil region that is necessary for both
translational repression and aggregation.
Loss of RNG105 results in aberrant
synapse formation and degeneration of
neuronal networks.27 Mammalian Pumilio
forms granules in both neurons and cell

lines,19 and Drosophila Pumilio and its
nematode ortolog PUF-9 localize to
microscopically visible aggregates when
expressed in yeast cells.21 Pumilio bears a
Q/N rich segment at the N-terminus. This
prion-like region is important for recruit-
ment of mammalian Pumilio 2 to SGs19

and regulates postsynaptic Pumilio func-
tion in the fly.21 Messenger RNAs trans-
lated at the synapses travel long distances
from the cell soma, and they move
packaged in granules. We speculate that
self-aggregation of Smaug1 and other
translational repressors may facilitate the
transport of their target mRNAs.

Simultaneously with the activation of
mRNAs stored in the S-foci, we and others
have shown that NMDAR stimulation
triggers a global translational silencing.1,6

Using the FUNCAT strategy,28 we found
that in a few minutes, the protein synthesis
rate in the surroundings of the stimulated
synapses is reduced to half of the normal
values (Fig. 1A and B). This rapid trans-
lation shut down is akin to the acute
translation repression upon cellular stress,
and whether it involves the assembly of
specific mRNA silencing foci remains to be
investigated. SGs form in neurons imme-
diately upon stress induction, but not
upon NMDAR stimulation6 (Luchelli and
Boccaccio, unpublished), leaving the point
unanswered.

In addition to the S-foci, which are
exclusive of mature neurons, PBs also
appears to play a role in translation
regulation upon synaptic activity.
Neuronal PBs diverge from those present
in cell lines, and PB components that
usually colocalize in a single kind of foci in
cell lines are found in separate foci in
dendrites.29-31 Synaptic activity affects the
dynamics and integrity of dendritic
PBs,31-33 and the speculation is made that
this allows the release of mRNAs and their
incorporation into polysomes. PBs and
several neuronal RNA granules containing
FMRP (FragileX Mental Retardation
Protein), FUS/TLS (fused in sarcoma/
translated in liposarcoma), TDP43 (TAR
DNA-binding protein 43), Staufen,
Pumilio, ZBP1 (zip code-binding protein
1) and others, are motile and believed to
contribute to RNA transport. We anti-
cipate that many of them will behave as
mRNA-silencing foci and will respond to
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synaptic stimulation with enhanced assem-
bly or dissolution to control the availability
of specific transcripts. We propose the
name of synaptic-activity regulated mRNA
silencing foci (SyAS-foci) to these struc-
tures. Supporting these speculations, in
addition to S-foci and PBs, the dynamics
of a number of RNA granules is affected
by neuronal activity. FMRP forms
granules that dissolve upon AMPAR
stimulation, which does not affect the
integrity of the S-foci.6,34 Depolarization
enhances TDP43 granules in dendrites.35

RNG105 granules shrink and DCP1a-
containing PBs are enhanced upon BDNF
exposure.32 All this suggests that local
translation upon stimulation by specific

neurotransmitters or neurotrofins involves
the concerted regulation of distinct SyAS-
foci (Fig. 1A–D).

Our recent results show that Smaug1
knockdown severely disrupts spine mor-
phology and neuron excitability, thus
resembling the phenotype associated to
Fragil X Mental Retardation Syndrome, a
serious neurological disease provoked by
altered expression of FMRP. Deregulation
of Pumilio, Staufen or RNG105 provokes
similar effects.2,18,27 S-foci are distinct from
the RNA granules containing these mole-
cules, suggesting that Smaug1 and these
non-related RNA binding proteins act in
parallel pathways. Collectively, these
observations emphasize the relevance of

translation regulation by a plethora of
SyAS-foci in neuron development and
homeostasis.
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