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1. Introduction

The study of geometrodynamics was introduced by Wheeler in the 50s decade in order to describe particle as geometrical topological 
defects in a relativistic framework [1], and, in the last years has becoming a very intensive subject of research [2]. In the last decades Loop 
Quantum Gravity (LQG) has provided a picture of the quantum geometry of space, thanks in part to the theory of spin networks [3]. The 
concept of spin foam is intended to serve as a similar picture for the quantum geometry of spacetime. LQG is a theory that attempts to 
describe the quantum properties of the universe and gravity. In LQG the space can be viewed as an extremely fine factory of finite loops. 
These networks of loops are called spin networks. The evolution of a spin network over time is called a spin foam. The more traditional 
approach to LQG is the canonical LQG, and there is a newer approach called covariant LQG, more commonly called spin foam theory. 
However, at the present time, it is not possible to realize a consistent quantum gravity theory which leads to the unification of gravitation 
with the other forces. One of the problems relies in the impossibility of constructing a non-perturbative gauge-invariant formalism which 
can describe intense quantized gravitational fields. This will be the subject of this letter, but using a new kind of connections that do 
not preserve the norm of the vectors. Therefore, we shall call these manifolds as Weylian-like. Other remarkable characteristic of these 
manifolds is, as in Weylian manifolds, that the variation of the tensor metric is nonzero. To do it we shall define a geometrical scalar field 
σ that drives a geometrical displacement from a Riemannian manifold (on which we define the background), to a Weylian-like manifold 
where we represent the dynamics of the quantum geometry.

In the following issues of this section we shall revise the procedure for the minimization of the EH action, without making emphasis 
on the structure of the manifolds, but in the gauge transformations of vector and tensor fields. In Sect. 2 we shall construct a quantum 
description for spacetime in a new Weylian-like manifold, here introduced. In Sect. 3, we shall study the example of a Reissner–Nordström 
black-hole, and we shall made some remarks on the quantum geometrical structure of a Schwarzschild black-hole. Finally, in Sect. 4 we 
shall include some remarks.

1.1. Variation of EH action

It is known that in the event that a manifold has a boundary ∂M, the action should be supplemented by a boundary term so 
that the variational principle to be well-defined [4,5]. However, this is not the only manner to study this problem. As was recently 
demonstrated [6], there is another way to include the flux around a hypersurface that encloses a physical source without the inclusion of 
another term in the Einstein–Hilbert (EH) action, but by making a constraint on the first variation of the EH action. In that paper it was
demonstrated that the non-zero flux of the vector metric fluctuations through the closed 3D Gaussian-like hypersurface, is responsible for 
the gauge-invariance of gravitational waves.
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To see it, we consider the problem of an EH action I , which describes gravitation and matter

I =
∫
V

d4x
√−g

[
R

2κ
+Lm

]
. (1)

The first term in (1) is the Einstein–Hilbert action and κ = 8πG . Here, g is the determinant of the covariant background tensor metric gμν , 
R = gμν Rμν is the scalar curvature, Rα

μνα = Rμν is the covariant Ricci tensor and Lm is an arbitrary Lagrangian density which describes 
matter. If we deal with an orthogonal base, the curvature tensor will be written in terms of the connections: Rα

βγ δ = �α
βδ,γ − �α

βγ ,δ +
�ε

βδ�
α

εγ − �ε
βγ �α

εδ .
The first variation of the action is

δI =
∫

d4x
√−g

[
δgαβ

(
Gαβ + κTαβ

)+ gαβδRαβ

]
, (2)

with gαβδRαβ = ∇αδW α , where δW α = δ�α
βγ gβγ −δ�ε

βε gβα = gβγ ∇αδβγ [8]. When we deal with a manifold M which has a boundary 
∂M, the action (1) should be supplemented by a boundary term in order to the variational principle to be well-defined. This additional 
term is known as the York–Gibbons–Hawking action [4,5].

1.2. Gauge transformations

We shall propose other solution for this problem. Our strategy will be to preserve the Einstein–Hilbert action as in (1) and see what 
are the consequences of it. In order to make δI = 0 in (2), we must consider the condition: Gαβ + κTαβ = � gαβ , where � is the 
cosmological constant. Additionally, we must require that gαβδRαβ = ∇αδW α = δ�, so that we obtain the constraint gαβ δ� = � δgαβ , 
where we have used: gαβδgαβ = −gαβδgαβ . Then, we propose the existence of a tensor field δαβ , such that δRαβ ≡ ∇βδWα − δ� gαβ ≡�δαβ − δ� gαβ = −κ δSαβ ,1 and hence δW α = gβγ ∇αδβγ , with ∇αδβγ = δ�α

βγ − δα
γ δ�ε

βε . Notice that the fields ¯δW α and ¯δαβ are 
gauge-invariant under transformations:

¯δW α = δWα − ∇αδ�, ¯δαβ = δαβ − δ� gαβ, (3)

where δ� complies �δ� = 0. This means that there exists a family of vector and tensor fields described by (3), that are related to the 
Einstein tensor transformations

Ḡαβ = Gαβ − � gαβ, (4)

and leave invariant the action. The transformed Einstein equations with the equation of motion for the transformed gravitational waves, 
hold

Ḡαβ = −κ Tαβ, (5)

� ¯δαβ = −κ δSαβ, (6)

with �δ�(xα) = 0 and2

δ�(xα) = �

4
gαβ δgαβ. (7)

The eq. (5) provides us the Einstein equations with cosmological constant included, and (6) describes the exact equation of motion for 
gravitational waves with an arbitrary physical source δSαβ inside a Gaussian-like hypersurface. A very important fact is that the scalar 
field δ�(xα) appears as a scalar flux of the tetra-vector with components δW α through the closed hypersurface ∂M. This arbitrary 
hypersurface encloses the manifold by down and must be viewed as a 3D Gaussian-like hypersurface situated in any region of space–time. 
This scalar flux is a gravitodynamic potential related to the gauge-invariance of δW α and the gravitational waves ¯δαβ . These waves 
appear by varying the Ricci tensor, as in the case of a flat background. However, in our case this variation is exact and was done in 
an arbitrary background. Other important fact is that since δ�(xα) = �

4 gαβδgαβ , the existence of the Hubble horizon is related to the 
existence of the Gaussian-like hypersurface with an inner source. The variation of the metric tensor must be done in a Weylian-like 
integrable manifold [6] using an auxiliary geometrical scalar field θ , in order to the Einstein tensor (and the Einstein equations) can be 
represented on a Weyl-like manifold, in agreement with the gauge-invariant transformations (3).

In this letter we shall explore the possibility that the variation of the tensor metric must be done in a Weylian-like integrable manifold 
(defined in the next section) using an auxiliary geometrical scalar field σ , in order to the Einstein tensor (and the Einstein equations) can 
be represented on a Weyl manifold, in agreement with the gauge-invariant transformations (3). We shall study the relativistic quantum 
dynamics of σ by using the fact that � is a relativistic invariant. Finally, to illustrate the formalism, we shall work with an example of a 
Reissner–Nordström (RN) black-hole in order to obtain the dynamic equation for gravitational waves.

1 We have introduced the tensor Sαβ = Tαβ − 1
2 T gαβ , which takes into account matter as a source of the Ricci tensor Rαβ .

2 This expression is equivalent to � δgαβ = gαβ δ�.
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2. Weylian-like representation of the Einstein tensor

In the sense of the Riemannian geometry, the covariant derivative is null, so that �gαβ = gαβ;γ dxγ = 0, where we denote with ; the 
Riemann-covariant derivative. The Weyl geometry [7] is a generalization of the Riemannian geometry. In this letter we shall consider an 
alternative proposal to the Weyl covariant derivative, in which the metric tensor is also nonzero: gαβ|γ = φ,γ gαβ . Here, the “|γ ” denotes 
the new Weyl-like covariant derivative with respect to the Weyl-like [9] connections �α

βγ , given by3,4

�α
βγ =

{
α

β γ

}
+ gβγ σα. (8)

These connections are very similar to the Weyl ones. In both cases the non-metricity is nonzero. The variation of the metric tensor in the 
sense of (8)5: δgαβ , will be6

δgαβ = gαβ|γ dxγ = − [σβ gαγ + σα gβγ

]
dxγ , (9)

where7

dxα |B〉 = ÛαdS |B〉 = δx̌α(xβ) |B〉 (10)

is the eigenvalue that results when we apply the operator δx̌α(xβ) on a background quantum state |B〉, defined on the Riemannian 
manifold.8 We shall denote with a “hat” the quantities represented on the Riemannian background manifold. The Weylian-like line element 
is given by

dS2 δB B ′ =
(

Ûα Ûα
)

dS2 δB B ′ = 〈
B
∣∣δx̌αδx̌α

∣∣ B ′〉 . (11)

Hence, the differential Weylian-like line element dS provides the displacement of the quantum trajectories with respect to the “classical” 
(Riemannian) ones. When we displace with parallelism some vector vα on the Weylian-like manifold, we obtain

δvα = σα gβγ vβdxγ → δvα

δS
= σα vβ gβγ Ûγ , (12)

where we have taken into account that the variation of vα on the Riemannian manifold is zero: �vα = 0. Hence, the norm of the vector 
on the Weylian-like manifold is not conserved: δvα

δS
δvα
δS = − 

(
σα Ûα

)(
vγ Ûγ

)(
σν vν

) 	= 0. From the action’s point of view, the scalar field 
σ(xα) drives a geometrical displacement from a Riemannian manifold to a Weylian-like one, that leaves the action invariant

I =
∫

d4x
√

−ĝ

[
R̂

2κ
+ L̂

]
=
∫

d4x
[√

−ĝe−2σ
] {[ R̂

2κ
+ L̂

]
e2σ

}
. (13)

If we require that δI = 0, we obtain

−δV

V
=

δ
[

R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δσ , (14)

where δσ = σμdxμ is an exact differential and V =√−ĝ is the volume of the Riemannian manifold. Of course, all the variations are in 
the Weylian-like geometrical representation, and assure us gauge invariance because δI = 0.

2.1. Gauge-invariant relativistic dynamics on a Weylian-like manifold

The Ricci tensor in the Weylian-like and Riemann representations can be related by

R̄αβ = R̂αβ + σα;β + σασβ − gαβ

[(
σμ
)
;μ + σμσμ

]
, (15)

so that both representations of the scalar curvature are related by

R̄ = R̂ − 3
[(

σμ
)
;μ + σμσμ

]
. (16)

3 To simplify the notation we shall denote σα ≡ σ,α .
4 The connections (8) could be generalized to other in which the torsion to be nonzero, but this issue will be studied in a future work.
5 In what follows we shall denote with a � variations on the Riemann manifold, and with a δ variations on a Weylian-like manifold.
6 The reader can see using the constraint (7) and (8) that δ� = − �

2 dσ .
7 We can define the operator

x̌α(t, 
x) = 1

(2π)3/2

∫
d3k ěα

[
bk x̌k(t, 
x) + b†

k x̌∗
k (t, 
x)

]
,

such that b†
k and bk are the creation and destruction operators of space–time, such that 

〈
B
∣∣∣[bk,b†

k′
]∣∣∣ B

〉
= δ(3)(
k − 
k′) and ěα = εα

βγ δ ěβ ěγ ěδ .
8 In our case the background quantum state can be represented in an ordinary Fock space in contrast with LQG, where operator is qualitatively different from the standard 

quantization of gauge fields.
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The Einstein tensor can be written as

Ḡαβ = Ĝμν + σα;β + σασβ + 1

2
gαβ

[(
σμ
)
;μ + σμσμ

]
, (17)

where we have made use of the fact that the connections are symmetric.

2.2. Weylian action and quantum algebra

Now we consider the expression (4), from which we obtain the invariant �. From the point of view of the Riemann manifold � is a 
constant, but from the point of view of the Weylian-like manifold: � ≡ �(σ , σα) can be considered a functional given by

�(σ ,σα) = −3

4

[
σασα + �̂σ

]
. (18)

Therefore, we can define a geometrical quantum action on the Weylian-like manifold with (18)

W =
∫

d4x
√−g �(σ ,σα), (19)

such that the dynamics of the geometrical field is given by the Euler–Lagrange equations, after imposing δW = 0:

δ�

δσ
− ∇̂α

(
δ�

δσα

)
= 0, (20)

where the variations are defined on the Weylian-like manifold. This means that δ� 	= 0, but �� = 0. Furthermore, �α = δ�
δσα

= − 3
4 σα is 

the geometrical momentum and the dynamics of σ describes a free scalar field

�̂σ = 0, (21)

so that the momentum components �α comply with the equation

∇̂α�α = 0. (22)

If we define the scalar invariant �2 = �α�α , we obtain that[
σ ,�2

]
= 9

16

{
σα

[
σ ,σα

]+ [σ ,σα]σα
}= 0, (23)

where we have used that σαUα = Uασα , and

[
σ(x),σα(y)

]= −i�α δ(4)(x − y), [σ(x),σα(y)] = i�α δ(4)(x − y), (24)

with �α = h̄ Ûα . Therefore we can define the relativistic invariant �2 = �α�α = h̄2Ûα Ûα , where Ûα are the components of the Rieman-
nian velocities. Additionally, it is possible to define the Hamiltonian operator

H =
(

δ�

δσα

)
σα − �(σ ,σα), (25)

such that the eigenvalues of “quantum energy” become from H |B〉 = E |B〉. It can be demonstrated that δH = 0, so that the quantum 
energy E is a Weylian-like invariant.

2.3. Gravitational waves with Weylian-like variations

Now we consider the Weylian-like variation of the Ricci tensor: δRαβ . This is given by

�̂δαβ = −κ δ
(

L̂αβ

)
, (26)

where �̂δβγ ≡ ∇̂α∇̂αδβγ = ∇̂α

(
δ�α

βγ − δα
γ δ�ε

βε

)
, δ L̂αβ = δ

(
δL̂

δgαβ

)
, such that L̂ = gαβ L̂αβ , and we have considered that δ I = 0 [6]. 

On Riemannian hypersurfaces all the field solutions are background solutions, so that we can consider that � 
(

L̂αβ

)
= 0. In this case we 

obtain

�̂δαβ = 2κ σ θ L̂θβ dxα, (27)

where dxα = ÛαdS , such that if we rename χαβ = δαβ

δS , we finally obtain

�̂χαβ = 2κ σ θ L̂θβ Ûα, (28)
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which describes the Riemannian dynamics of gravitational waves on a Weylian-like hypersurface.9 Notice that the source depends on how 
the relativistic observer is moving on the Riemannian hypersurface, which is determined by Ûα . A very important fact is that the source 
in the equation (28) depends on the field σ θ . The existence of this field in the source is intrinsically related to the existence of the scalar 
flux �, and the cosmological constant �. This can be seen by noting that

δσ

δS
= σγ Ûγ = − 2

�

δ�

δS
, (29)

where we have used the constraint δgαβ� = δ� gαβ and (9). In the next section we shall consider the example of an RN black-hole to 
obtain gravitational waves.

3. An example: RN black hole

We consider an RN black-hole, with mass M̄ = 2GM , and squared electric charge Q 2, such that the line element is given by

dS2 = f (r)dt2 − 1

f (r)
dr2 − r2 d�2, (30)

where d�2 = sin2 θ dφ2 + dθ2 is the square differential of solid angle and f (r) = 1 − M̄
r + Q 2

r2 , such that M̄ = 2GM (M is the mass of the 
charged black-hole), M̄2 ≥ (2Q )2 and Q = q

4πε0
. The horizon radius is given by

rh = M̄

2

⎡
⎣1 −

(
1 −

(
4Q

M̄

)2
)1/2

⎤
⎦ . (31)

In this case the Lagrangian density is given by [10]

L̂ = 1

2 f (r)

[
E.
E − 
∇φ(r). 
∇φ(r)
]

= 1

2r2 (r2 − rM̄ + Q 2)

[
Q 2 − M̄2

4

]
, (32)

where |
E|2 = Q 2

r4 is the electric field due to the charge Q and φ(r) = − M̄
2r the gravitational potential due to the mass M̄ of the black hole 

described by the line element (30). Therefore, the tensor density L̂αβ is given by

L̂αβ = 1

4 f (r)
gαβ

[
E.
E − 
∇φ(r). 
∇φ(r)
]
, (33)

so that the equation for gravitational waves holds

�̂χαβ = κ

2 f (r)
σ ε gεβ

[
E.
E − 
∇φ(r). 
∇φ(r)
]

Ûα. (34)

By multiplying with gαβ , we obtain

�̂χ = κ

2 [ f (r)]3/2
σ0

[
|
E|2 − | 
∇φ|2

]
= 4

d�

dS
, (35)

where[
|
E|2 − | 
∇φ|2

]
= 1

r4

[
Q 2 − M̄2

4

]
. (36)

In order to solve the equation (21), we can make separation of variables: σklm ∼ Tk(t) Ylm(θ, φ) Rkl(r). After making ω = k c (we use 
c = 1),10 we obtain the solutions

Tk(t) = e±ik c t, (37)

Ylm(θ,φ) =
√

(2l + 1)(l − m)

4π(l + m)
eimφ Plm(cos θ), (38)

Rkl(r) = eikr

r

{
C1

(
2r − M̄ −

√
M̄2 − 4Q 2

)A (
M̄ − 2r −

√
M̄2 − 4Q 2

)B

×HC

[
2ik
√

M̄2 − 4Q 2,α1, β1,2M̄k2
√

M̄2 − 4Q 2, γ1,
2r − M̄ +

√
M̄2 − 4Q 2

2
√

M̄2 − 4Q 2

]

9 It is possible to show that there exists a Weylian-like dynamics of σ given by the Euler–Lagrange equation δ�
δσ − ∇α

(
δ�
δσα

)
= 0, such that ∇α denotes the Weylian-like 

covariant derivative. It can be demonstrated that the solutions of σ in the Weylian-like gauge can be expressed in terms of a Fourier expansion of traveling waves that moves 
with light velocity. This means that the solution of χαβ(xα) must be written as a superposition of traveling waves in the Weylian-like manifold.
10 Here, ω and k are respectively the frequency and the wavenumber in the coordinated system.
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+ C2

(
r − M̄

2
−
√

M̄2 − 4Q 2

2

)B (
2r − M̄ +

√
M̄2 − 4Q 2

)C

× HC

[
2ik
√

M̄2 − 4Q 2,−α1, β1,2M̄k2
√

M̄2 − 4Q 2, γ1,
2r − M̄ +

√
M̄2 − 4Q 2

2
√

M̄2 − 4Q 2

]}
(39)

where HC are the confluent Heun functions, (C1, C2) are constants and

A =

√
M̄2 − 4Q 2 +

[
4Q 2k2M̄2

(
2 − Q 2

M̄2 −
√

1 − 4 Q 2

M̄2

)
− 2M̄4k2 +

√
M̄2 − 4Q 2M̄3k2 + M̄2 − 4Q 2

]1/2

2
√

M̄2 − 4Q 2
, (40)

B =
4Q 2 − M̄2 +

√
M̄2 − 4Q 2

[
4Q 2k2M̄2

(
2 − Q 2

M̄2 −
√

1 − 4 Q 2

M̄2

)
− 2M̄4k2 −

√
M̄2 − 4Q 2M̄3k2 + M̄2 − 4Q 2

]1/2

2(4Q 2 − M̄2)
, (41)

C =
4Q 2 − M̄2 +

√
M̄2 − 4Q 2

[
4Q 2k2M̄2

(
2 − Q 2

M̄2 +
√

1 − 4 Q 2

M̄2

)
− 2M̄4k2 −

√
M̄2 − 4Q 2M̄3k2 + M̄2 − 4Q 2

]1/2

2(4Q 2 − M̄2)
, (42)

α1 =

[
4Q 2k2M̄2

(
2 − Q 2

M̄2 +
√

1 − 4 Q 2

M̄2

)
− 2M̄4k2 −

√
M̄2 − 4Q 2M̄3k2 + M̄2 − 4Q 2

]1/2

√
M̄2 − 4Q 2

, (43)

β1 = −

[
4Q 2k2M̄2

(
2 − Q 2

M̄2 +
√

1 − 4 Q 2

M̄2

)
− 2M̄4k2

(
1 −

√
1 − 4 Q 2

M̄2

)
+ M̄2 − 4Q 2

]1/2

√
M̄2 − 4Q 2

, (44)

γ1 = −

[
M̄2 − 4Q 2 − 4Q 2k2M̄2

(
3 − 3 Q 2

M̄2 − 2
√

1 − 4 Q 2

M̄2

)
+ 2M̄4k2

(
1 −

√
1 − 4 Q 2

M̄2

)
+ 8Q 2l(l + 1) − 2M̄2l(l + 1)

]
2(M̄2 − 4Q 2)

. (45)

Therefore, the radial function Rkl(r) can be written as Rkl(r) = ei k r

r R̄kl(r).
We can make the Fourier expansion of the geometric scalar field, σ , in spherical coordinates

σ(
r, t) =
∞∫

0

dk
∑
lm

[
Aklmσklm(
r, t) + A†

klmσ̄ ∗
klm(
r, t)

]
, (46)

where 
∑

lm ≡∑∞
l=0

∑l
m=−l , k, l and m are respectively the wave-numbers related to the coordinates r, θ and φ, and

σklm(
r, t) = k2 Rkl (r) Ylm(θ,φ) eik c t . (47)

Here, Ylm(θ, φ) are the spherical harmonics and Plm(cos θ) are the Legendre polynomial. Furthermore, the annihilation and creation oper-
ators obey the algebra

[
Aklm, A†

k′l′m′
]

= δ(3)(
k − 
k′)δll′δmm′ , [Aklm, Ak′l′m′ ] =
[

A†
klm, A†

k′l′m′
]

= 0. (48)

In this example we shall consider that Uα ≡
(

1√
f (r)

,0,0,0

)
, so that from eq. (24), we obtain that at equal times

[
σ(t,
r), ∂0σ(t,
r′)

]
= −ih̄ Û 0 δ(3)(
r −
r′), (49)

so that we obtain that Aklm = 1
(2 k)3/2

√
(2l+1)(l−m)

4π(l+m)
, and hence ∂0σklm = σ̇klm

cf (r) = i k
f (r) σklm(
r, t). Hence, in order the commutator (49) to be 

fulfilled, we must require that

R̄kl(r)R̄∗
kl(r

′) + R̄kl(r
′)R̄∗

kl(r) = c h̄. (50)

The expression (50) give us the normalization condition for the modes of the Fourier expansion in any charged black-hole. The case where 
the charge Q is null, describes a Schwarzschild black-hole as a particular solution of the case studied here.
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3.1. Schwarzschild black-hole’s change of entropy

A particular case of interest is that of Q = 0. Making use of the fact that δW = 0, we can obtain the relationship between the scalar 
flux and the change of area δA of the black-hole

δ�

δS
= 3

4
ln

[
δA
Ā

+ 1

]
, (51)

where δA
Ā = 2 rs

r̄2
s
δrs , AA =

(
rs
r̄s

)2 = e
2
9 �S2 ≥ 0, and the square of the radius between the final rs and the initial Schwarzschild radius r̄s is 

related with the change of area and the scalar flux �, and the change of the mass’s black hole: δA = 4
T δM by the Bekenstein–Hawking’s 

law [11]. Moreover, using the fact that δW = 0, and dσ = − 4
�

d�, we obtain that the change of volume of the Weylian-like manifold (the 
black-hole’s increase of volume), with respect to the Riemannian one 

√−ĝ , is

V = V̂ e
4
�

∫
d� = V̂ e

�S2
3 , (52)

where �S2 > 0. This means that V ≥√−ĝ , for S2 ≥ 0, � > 0 and σ < 0. Therefore, we require a metric’s signature (−, +, +, +) in order 
for the cosmological constant to be positive and a metric’s signature (+, −, −, −) in order to have � ≤ 0.

4. Final comments

We have introduced Relativistic Quantum Geometry, which is a different approach to study the relativistic quantum structure of space-
time. In some way our approach is in the spirit of the Isham–Butterfield’s one [12], but we have incorporated the relativistic invariants in 
the quantum aspects of the theory. The dynamics of quantum spacetime is described by σ . This is a scalar field that drives a geometrical 
displacement from a Riemannian manifold to a Weylian-like one, that leaves the action invariant. Furthermore, σ always can be quantized 
because it is a free scalar field. Other important fact is that the quantum algebra of [σ(x),σμ(y)] = −i �μδ(4)(x − y) is relativistic in 
nature, because �μ�μ = h̄2ÛμÛμ is a relativistic invariant. Due to this fact the commutators depend on how the relativistic observer is 
moving. In the example here studied, the observer is static with respect to the RN black-hole, so that Û0 = 1/

√
f (r), and therefore one 

obtains 
[
σ(x),σ 0(y)

]= −i h̄√
f (r)

δ(4)(x − y). However, if one were studied some example where the observer is moving with respect to the 
source, the commutation relationship have been different. Furthermore, we have obtained the expression (52) that describes how changes 
the volume of the quantum manifold due to the scalar flux �. This result can be applied to cosmology to obtain a justification for the 
decrease of � with the expansion of the universe. It is important to notice that � is a Riemannian constant (�� = 0), but variate in the 
Weylian-like manifold (δ� 	= 0).
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