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Abstract. In this paper we investigate the diffusion of particles inside a chain of asymmetric
cavities. We are considering particles that interact through a hard–core potential and are driven
by an external force. We show that the difference in the current when the force is applied to
the left and to the right strongly depends on the concentration inside the cavity. We found
that, when the concentration is high enough, the hard–core interaction vanishes and inverts the
asymmetric effect of the cavity. We also introduce a new equation, a modification to the Fick–
Jacobs equation, to describe this system analytically. Finally, we used numerical simulations to
verify the analytic results, finding a good agreement between theory and simulations.

1. Introduction
The diffusion of particles is a subject that has been studied extensively in many different
contexts (see [1] and cites within). One of this contexts is the diffusion of particles inside
narrow channels [2, 3, 4, 5, 6]. However, the diffusion of interacting particles inside a confined
environment has received much less attention, even when there are numerous examples in nature
[7, 8, 9, 10, 11, 12].

In this paper we studied the transport of Brownian particles in a channel of variable transverse
width. On the one hand, we studied how the current of particles that cross an asymmetric cavity
is modified by increasing the concentration, considering particles that interact through a hard-
core potential. On the other hand, we introduced a modified Fick–Jacobs equation to describe
this process. This equation has been solved using numerical methods for the case of asymmetric
cavities. We mainly studied how the particles arrange inside the cavity, when a small force is
applied. Numerical simulations with the method of Monte Carlo where carried out. The results
obtained with the equation are in complete agreement with the numerical simulations.

This paper is organized as follows. In Sec. 2, we analyze the current of particles in a triangular
cavity as a function of the concentration and we expose some of the characteristics of the
numerical simulations. In Sec. 3, we explain the most important steps to derive the non–linear
Fick–Jacobs equation. In Sec. 4, we show how the theoretical solution matches with the results
obtained with the numerical simulations. Some final remarks are stated in Sec. 5.
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Figure 1: Asymmetric cavity used in simulations. The white region represents the allowed sites
where the particles can diffuse. Distances are expressed in terms of the lattice constant, a.
Lx = 120;Ly = 128; b = 8.

2. Current of particles
In the first part of this work we analyzed the diffusion of hard–core interacting particles inside a
triangular cavity. To perform the numerical simulations we depicted the triangular cavity inside
a regular square lattice of Lx × Ly sites, as seen in Fig. 1. The distance between neighboring
sites is a (a value a = 1 was considered). There is a small exit of size b on each side. Periodic
boundary conditions were set in those exits to simulate a long chain of identical cavities. Each
site inside the cavity can be either occupied by a particle or empty. The hard–core interaction
is realized by allowing only one particle on each site of the lattice.

We define the mean concentration c = N/S, where S is the total number of sites inside the
cavity and N is the number of particles. At the beginning of the simulation, the particles are
distributed randomly inside the cavity. The size of a particle is exactly one site, and they move
by jumping to one nearest neighbor site. They are allowed to jump freely inside the cavity,
except when the new site is occupied with another particle. In this case the particle remains on
its site. We say that one Monte Carlo step occurs when, in average, every particle has had the
opportunity to jump once.

The particles are driven by a dimensionless external force, δ = βFa where β−1 = kBT . At
any given time, a particle has four possible directions to move. One of the them has a a higher
jump rate, due to the effect of the external force applied. The other three have the same (lower)
jump rate. Thus, if the force is applied to the right, the jump rates in different directions are

p↑ = p↓ = p← = P

p→ = P (1 + δ),
(1)

where P = D/a2, and D is the diffusion coefficient. In the same way, if the force is applied to
the left p← = P (1 + δ), and p→ = P . In the first part of this paper we will analyze the difference
in the current of particles of a system when the force is applied first to the right, and then to
the left. We let the system evolve to the stationary state, and then we start to measure the
relevant quantities, like the distribution of the particles inside the cavity, the distance covered
by each one or the mean velocity, among others.
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Figure 2: Difference in the current, ∆j a a function of the mean concentration c in the cavity of
Fig. 1. The values of the force are: δ = 0.05(•); δ = 0.10(�); δ = 0.15(�); δ = 0.20(N). Average
over 106 samples.

Here we are interested in the total current of particles that cross the cavity, j. If there were
no interaction between particles, the current will be higher as the concentration or the force
becomes higher. But that is not necessarily true for interacting particles. Also, because of
the particular shape of the cavity, the current will not be the same when the external force is
applied to the right, j+, or to the left, j−. Since this asymmetric effect depends on the size of
the particles, it has been proposed by Reguera et al.[13] as a possible way to separate a mixture
of different size particles.

In Fig. 2 we show the difference of currents of particles, ∆j = |j+| − |j−| as a function of
the concentration for a wide range of forces. There are a few things that we can notice from
this plot. Around c = 0.1 we can see there is a maximum value in the difference of the current
∆j. There is a value of the mean concentration, c, for each value of the force, δ, for which
the difference in the current is maximum. Increasing the concentration after this point, will
only decrease the asymmetric effect of the cavity. Particularly, if the mean concentration is
c = 0.5 the asymmetric effect vanishes, and the current of particles is the same when the force
is applied to the left or to the right, i.e. ∆j = 0, independently of its magnitude. Finally, if
the concentration is higher than 0.5, we found that the current of particles when the force is
applied to the left is always higher than the current of particles when the force is applied to the
right. This is specially interesting because the asymmetry in the cavity is designed to favor the
diffusion to the right. After this we can conclude that the hard–core interaction, whose influence
increases as c is increased, is the cause of an inversion of the asymmetry effect.

3. Fick-Jacobs Equation
The Fick-Jacobs equation describes the diffusion of non–interacting particles inside a channel of
variable width. It has been used to describe the diffusion of not–interacting particles or in the low
concentrations regime [14, 15]. In this work we have extended this equation to include the case
of diffusion of particles with hard–core interaction. With this we mean that two particles can
not occupy the same space. The excluded volume effect of the other particles has a considerable
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influence on the diffusion of a tagged particle. This equation allows us to describe a rather
complex system, of many interacting particles inside a two– or three–dimensional environment,
with a simple uni-dimensional equation.

To derive the modified Fick–Jacobs equation, let us consider a set of hard–core interacting
particles in a one–dimensional discretized system, the so called single file diffusion [16, 17, 18].
In a given configuration, the current of particles between the sites i and i+ 1 is given by,

Jo
i = noiPi,i+1 − noi+1Pi+1,i

= P (1− β∆Ui)n
o
i (1− noi+1)− P noi+1 (1− noi ),

(2)

where noi = 0 or 1 is the occupation number of site i, ∆Ui = Ui+1 − Ui is the variation of the
external potential and β−1 = kBT . P is the jumping rate, P = D/a2 where D is the diffusion
constant and a = 1 is the length of the jump. We are assuming that β|∆Ui| � 1. The terms
(1− noi+1) and (1− noi ) take into account the hard–core interaction.

Averaging over configurations one has ni = 〈noi 〉 and Ji = 〈Jo
i 〉. In the continuous limit

ni → n(xi), Ui → U(xi) and Ji → J(xi), where xi = i. Assuming the decorrelation
〈noinoi+1〉 ' n(xi)n(xi+1) and small variation of n(x) we obtain

J = −D
[
∂n

∂x
+ β

dU

dx
n(1− n)

]
. (3)

Let us now consider a two–dimensional channel composed by a chain of cavities (as the one
shown in Fig. 3b) where the external potential U(x) is independent of the transverse direction,
y. Assuming local equilibrium, the site concentration m(x, y) does not depend on the transverse
direction either. That is, m(x, y) = n(x). Then, the total current is j = JA, where A(x) is the
transverse width of the channel and from Eq. (3) one obtains

− j

D
= A

[
∂n

∂x
− βFn(1− n)

]
, (4)

where F = −dU/dx is the external force. Now from the continuity equation ∂m
∂t + ∂j

∂x = 0 we get

∂m

∂t
= D

∂

∂x

[
∂m

∂x
− dA

dx

m

A
− βFm

(
1− m

A

)]
, (5)

which corresponds to our extension of the Fick-Jacobs equation where the hard-core interaction
is taken into account. For non–interacting particles (1−m

A )→ 1 and the well known Fick–Jacobs
equation is recovered.

4. Results and Discussion
To test how accurate Eq. (4) is, we solved it for a particular case using a smoother asymmetric
cavity than the one shown in Fig. 1, see Fig. 3b.

In Fig. 3a we show the stationary state of site concentration along the direction of the channel
in an asymmetric cavity, for different values of the force. In the three curves the force is applied
to the right. However, as a consequence of the analogy in the definition of a particle and a
vacancy, they also represent the system behavior when the force is applied to the left. For every
particle that move to the right there is a vacancy that moves to the left. All we have to do is to
change n → 1 − n (then c → 1 − c), δ → −δ and j → −j. Note that in Eq. (4) this symmetry
holds, see also Fig. 2. Further details on this matter may be found in [19, 20, 21].

The results show that the agreement between theory and simulations is very good almost
everywhere. However, it can be noticed that, in some regions the agreement is better than
others. This is due to the fact that we assumed m to be constant along the y axis. When this
condition is not fulfilled, the theoretical curves slightly differs from simulations (see Fig. 3).
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Figure 3: (a) Concentration along the x–axis, n(x). Comparison between analytic solution to
Eq. (4) and simulations for c = 0.5. In each case, the force is applied to the right and the
following values were used: δ = 0.1 (blue triangles), δ = 0.2 (black squares) and δ = 0.5 (red
circles). Dots were obtained with numerical simulations (105 samples between t = 104 and
t = 107 Monte Carlo time-steps). (b) Site concentration inside the cavity. Corresponds to the
case c = 0.5 and δ = 0.5 (red circles in (a)).

5. Conclusion
In this paper we studied how the diffusion of interacting particles is modified by increasing the
concentration. We showed that the interaction between particles plays a fundamental role in
this kind of systems. One reason is the formation of clogs where the available space is limited.

Apart from that, we were able to obtain a non–linear Fick-Jacobs equation to describe
the transport of hard–core particles inside a cavity with variable cross section. This equation
correctly predicts the steady state of the concentration of particles along the direction of the
channel.

The agreement of theory and simulations confirms that the modified equation of Fick–Jacobs
here introduced is a useful tool to describe the transport of particles when the interactions
between them can not be neglected.
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