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1 Introduction

A first-order electroweak phase transition may explain the observed baryon asymmetry of
the universe (BAU). Indeed, such a phase transition would provide all the Sakharov condi-
tions, namely, baryon number violation, C and CP violation, and a departure from thermal
equilibrium. For a quantitatively successful electroweak baryogenesis (EWB) an extension
of the Standard Model (SM) is needed, such that there is enough CP violation as well
as a sufficiently strong first-order phase transition. In the standard mechanism for EWB
(see [1] for a recent review), the departure from equilibrium acts in two different ways.
On the one hand, the expansion of bubbles of the broken-symmetry phase builds up non-
equilibrium particle densities in front of the bubble walls. These densities are asymmetric for
left handed particles and their antiparticles due to CP violating interactions with the wall.
This asymmetry is transported to the unbroken-symmetry phase, where it biases the weak
sphaleron processes which violate baryon number. The generated baryon asymmetry reenters
the broken-symmetry phase. As a result, the bubble walls leave behind a net baryon number
density. On the other hand, before this baryon number density recovers the equilibrium,
the baryon number violating processes should be turned off. Otherwise the generated BAU
would be washed out. Such a suppression of the sphaleron processes indeed occurs inside the
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bubble, as long as the Higgs background field φb in the broken-symmetry phase satisfies the
well known condition

φb/T & 1, (1.1)

where T is the temperature. The ratio φb/T plays the role of an order parameter, and
the condition (1.1) expresses the baryogenesis requirement of a strongly first-order phase
transition.

Although for a Higgs mass as large as 125GeV the electroweak phase transition is a
smooth crossover, many extensions of the SM give strongly first-order phase transitions. Most
investigations of EWB concentrate in the value of the order parameter φb/T and the sources
of CP violation for specific models. Since the computation of the velocity vw of bubble walls
is too involved, a specific value is often assumed (typically vw = 0.1) to obtain a result for
the BAU.1 However, the generated BAU has also an important dependence on vw. Indeed,
for very small velocities thermal equilibrium is restored and a small baryon asymmetry is
generated. On the other hand, if the wall velocity is too large the diffusion of left-handed
density perturbations is not efficient, and the resulting baryon number density is again small.
In other words, a departure from equilibrium is needed, but such a departure should not be
too strong. As a consequence, the generated baryon asymmetry has a maximum for a certain
wall velocity vw = vpeak. The value of vpeak depends on the time scales associated to particle
diffusion and baryon number violation, and is in general in the range 10−2 < vpeak < 10−1

(see, e.g., [3–5]). A sizeable BAU is more easily obtained if vw is close to vpeak. Moreover, any
model which gives supersonic velocities is in conflict with the standard EWB mechanism [6].

Subsonic wall velocities are possible due to the friction with the plasma, which generally
causes the walls to reach a terminal velocity. This velocity is given by the balance between the
driving force, which depends on the pressure in the two phases, and the friction force, which
depends on the microscopic interactions of the bubble wall with plasma particles. The driving
force is very sensitive to hydrodynamics. As a consequence of non-linear hydrodynamics,
there are different kinds of stationary solutions for the propagation of the wall [7]. The
solutions which can be realized in a cosmological phase transition (see, e.g., [8–14]) are weak

deflagrations, which are subsonic, Jouguet deflagrations, which are supersonic, and Jouguet

or weak detonations, which are supersonic too. Hence, the case of interest for baryogenesis
is that of weak deflagrations.

It is well known that the stationary propagation of a weak deflagration front may be
unstable [7]. For the case of a relativistic equation of state, the stability of deflagrations
was first studied in ref. [15]. The result was that deflagrations are always unstable under
perturbations above a certain wavelength. This analysis was improved in ref. [16]. The
main improvement was to take into account the dependence of the stationary velocity on the
temperature. The main result of ref. [16] was that the deflagration is stable for wall velocities
above a certain critical value vcrit. Numerical simulations [17] agree with such a stabilization.
In ref. [18], the results of [16] were improved by taking into account temperature fluctuations
on both sides of the wall, as well as the fact that the reheating due to the release of latent
heat depends on the wall velocity. For small amounts of supercooling, the results of ref. [18]
agree with those of ref. [16].

In ref. [16], the stability analysis was applied to the electroweak phase transition for
the minimal Standard Model with unrealistic values of the Higgs mass, which gives a strong

1It is worth mentioning that, in contrast, for the generation of gravitational waves higher velocities are
preferable, since the collisions of faster walls produce gravitational waves of higher intensity (see, e.g., [2]).
As a consequence, a supersonic wall velocity is generally assumed.
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enough phase transition for EWB. For Higgs masses higher than mH = 40GeV, the critical
velocity below which deflagrations are unstable was found to be vcrit . 0.07. This result was
compared with the wall velocity calculations [19, 20], which gave vw & 0.1. Therefore, the
result of ref. [16] indicated that the electroweak deflagration is stable. However, both vw and
vcrit depend on the model and should be recalculated for each extension of the SM.

The calculation of vw is more involved than that of vcrit and depends on more details
of the model. Indeed, the value of the critical velocity depends only on thermodynamical
parameters which can be derived from the free energy density. In contrast, the actual value of
the stationary velocity depends (besides thermodynamics and hydrodynamics) on the friction
of the wall with the plasma. The computation of the friction force involves considering
Boltzmann equations for the out-of-equilibrium particle densities in front of the wall. For
the SM, a thorough calculation (including reheating effects) [21] gave wall velocities in the
range 0.36 < vw < 0.44 (for 0 < mH < 90GeV). A similar calculation for the Minimal
Supersymmetric Standard Model (MSSM) [22] gave smaller velocities, vw = (5–10) × 10−2,
due to the larger particle content of this model (essentially, due to the contribution of top
squarks). To our knowledge, these two results constitute the only detailed microphysics
calculations for specific models. The reason for this is the difficulty of computing the collision
terms for the Boltzmann equations. In spite of this, many investigations of the friction were
performed. In particular, a study of the overdamped evolution of gauge fields [23] showed
that infrared boson excitations generally increase the friction and, consequently, cause smaller
wall velocities than previous studies. In particular, for the SM the estimated wall velocity
was vw . 0.01 for mH ≃ 80GeV and vw ≃ 0.1 for mH ≃ 45GeV.

In this paper we shall investigate the possible instability of the electroweak wall velocity
for several extensions of the SM. The main motivation for this is the fact that the deflagration
instability may affect the baryogenesis scenario. Indeed, notice that the value of vcrit obtained
in ref. [16] lies within the optimal range for EWB. Moreover, given the general uncertainties
and large errors in the estimations of vw, the value of vcrit, which is much easier to calculate,
provides a lower bound for vw which may be important to constrain baryogenesis. It is
worth mentioning also that an instability of the stationary wall propagation may have several
cosmological consequences, such as the generation of magnetic fields [24] or gravitational
waves [18].

The plan of the paper is the following. In section 2 we review the hydrodynamics of a wall
which propagates as a deflagration and we discuss the stability of such a stationary solution
as a function of thermodynamic parameters. In section 3 we calculate the critical velocity
below which the wall becomes unstable. We consider the electroweak phase transition for
several extensions of the Standard Model. We also estimate the wall velocity for each model
in order to study the stability as a function of the parameters. In section 4 we discuss on the
possible consequences of the instability. Finally, in section 5 we summarize our conclusions.
Details of the calculation of the phase transition dynamics are contained in appendix A.
Further discussion on the critical velocity as well as a fit can be found in appendix B.

2 Stationary wall propagation and hydrodynamic stability

2.1 First-order electroweak phase transition

The relevant quantity describing the phase transition is the free energy density or finite-
temperature effective potential2 F(φ, T ). At a given temperature T , the minima of F give

2In this work we shall only consider models which can be described (at least, approximately) by a single
Higgs field φ.
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the possible thermal expectation values of the Higgs field φ, which determine the different
phases. For the electroweak theory, we have a phase transition from the symmetric phase to
the broken-symmetry phase at a critical temperature Tc ∼ 100GeV. In the minimal SM, the
electroweak phase transition is just a smooth crossover. In section 3 we shall consider several
extensions of the SM for which the electroweak phase transition is first-order.

For a first-order phase transition, there is a range of temperatures around Tc for which
the effective potential has two minima separated by a barrier. For T > Tc the symmetric
minimum φ = 0 is the absolute minimum of F(φ, T ), while for T < Tc the absolute minimum
has a nonvanishing value φb(T ). We shall use subindexes u and b for the unbroken- and
broken-symmetry phase, respectively. These phases are thus characterized by the free energy
densities Fu(T ) = F(0, T ) and Fb(T ) = F(φb(T ), T ). The critical temperature is given by
the equation Fu(Tc) = Fb(Tc). The energy density and pressure for each phase are obtained
from the free energy density through ρ(T ) = F(T )− TF ′(T ), p(T ) = −F(T ), where a prime
indicates a derivative with respect to the temperature.

A first-order phase transition occurs via the nucleation and expansion of bubbles. As we
shall see, the relevant parameters for our calculation will be the latent heat L defined as L ≡
ρu (Tc)− ρb (Tc), the enthalpy density before the phase transition, wu(Tc) = ρu(Tc) + pu(Tc),
and the nucleation temperature Tn. The latter is the temperature at which bubbles effectively
begin to nucleate. We describe its calculation in appendix A. The enthalpy density and latent
heat are given by

wu(Tc) = −TcF ′
u(Tc), (2.1)

L = Tc

[

F ′
b(Tc)−F ′

u(Tc)
]

. (2.2)

After nucleating, bubbles expand due to the higher pressure of the stable phase. In most
cases, the bubble walls quickly reach a terminal velocity due to the friction with the plasma.
We shall concentrate in such a case. From the time a bubble nucleates to the time their
walls collide with other bubbles, the temperature of the plasma varies due to the adiabatic
expansion of the universe and due to the release of latent heat. As a consequence, the wall
velocity will vary too. We shall use T = Tn as a representative value for the temperature of
the phase transition.

2.2 Microphysics and hydrodynamics

The motion of a bubble wall can be derived from the equation for the Higgs field in the
plasma (see, e.g., [19–23, 25–28]),

∂µ∂
µφ+

∂F(φ, T )

∂φ
+
∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
δfi = 0, (2.3)

with Ei =
√

p2 +m2
i , where mi are the φ-dependent particle masses, δfi are the deviations

of particle densities from equilibrium, and the sum runs over all particle species. The last
term gives the friction with the plasma. In order to transform eq. (2.3) into an equation
for the bubble wall, the general procedure is to use some approximation or ansatz for the
field profile (which is static in the reference frame of the wall) and integrate across the wall.
Since the deviations δfi depend on the wall velocity, the last term in (2.3) gives the friction
force Ffr, while the second term gives the driving force Fdr. Thus, the steady state velocity
of a bubble wall is given by the force balance Fdr = Ffr (for a more detailed explanation,
see e.g. [29]).
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The driving force is relatively easy to calculate. In particular, if the temperature remains
constant across the wall, we have Fdr = pb(T ) − pu(T ). On the other hand, the friction is
proportional to the departure of the plasma particles from their equilibrium distributions.
This departure from equilibrium depends not only on the interaction of the particles with the
Higgs field at the wall, but also on the interactions of plasma particles away from the wall.
Thus, the calculation involves solving a system of Boltzmann equations for the population
densities of the relevant species. The Boltzmann equations include collision terms which
must be computed by calculating the scattering rates for all the relevant processes. Such a
calculation is often referred to as the microphysics calculation.

As already mentioned in section 1, the microphysics calculation is very difficult. In
particular, the computation of the collision terms was carried out only for a couple of models
and in the non-relativistic (NR) case [21–23]. The result is a friction force of the form
Ffr = ηNRvw. The friction coefficient ηNR is very model dependent, and its calculation
involves the use of several approximations. The ultra-relativistic (UR) limit has also been
considered [30]. It turns out that this limit is even simpler than the NR case. The result is that
the friction saturates for vw → 1, i.e., the friction force reaches a velocity-independent value
Ffr = ηUR. Intermediate cases are much more difficult to treat. In a recent treatment [31],
the friction was considered beyond the small wall velocity regime. However, the deviations
from equilibrium were still considered to be small. In particular, the friction force calculated
in ref. [31] does not match the UR results of ref. [30].

In order to overcome the difficulties of the microphysics calculation, a phenomenological
approach has often been used, which consists in replacing the last term in eq. (2.3) with an
effective damping term of the form uµ∂µφ, where uµ = (γ, γv) is the four velocity of the
fluid (see, e.g., [12, 32, 33]). If we ignore hydrodynamics, this approach gives a friction force
of the form Ffr = ηvw in the NR limit, where the coefficient η is a free parameter coming
from the phenomenological damping term. Hence, setting η to the value ηNR from the
microphysics calculation gives the correct friction force in this limit. This phenomenological
model extrapolates the NR behavior ηvw to a force of the form ηγv for relativistic velocities,
where v is the velocity of the fluid relative to the wall (which will vary across the wall, see
below). However, this simple model does not give the friction saturation in the UR limit.
In order to reproduce the saturating behavior, in ref. [34] a phenomenological model which
gives a friction force of the form ηv was considered. However, such a model with a single
free parameter η can hardly match both the NR and UR forces ηNRv and ηUR. In ref. [29] a
phenomenological interpolation between the two regimes was considered.

For the subsonic velocities we are interested in, the exact dependence of the friction
on the velocity does not introduce significant effects [29]. Therefore, we shall use the phe-
nomenological scaling ηvγ, which will allow us to use the results of the stability analysis [18].
We shall discuss the implications of this choice in section 4. In order to estimate the wall
velocity for specific models, in section 3 we shall set the parameter η to the value ηNR coming
from microphysics calculations.

Using this phenomenological approach to the friction, it is not difficult to include the
hydrodynamics, i.e., to take into account the change of fluid variables across the wall. The
fluid variables in each phase are related by matching conditions at the phase discontinuity.
In the rest frame of the wall, we have [7]

wuγ
2
uvu = wbγ

2
b vb,

wuγ
2
uv

2
u + pu = wbγ

2
b v

2
b + pb, (2.4)

v⊥
u = v⊥

b ,
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where v is the component of the fluid velocity along the wall motion, v⊥ is the velocity in
the transverse direction, and γ = 1/

√
1− v2. By symmetry, we set v⊥ = 0 for the stationary

motion, but this component must be taken into account in the stability analysis. Further-
more, we define the incoming and outgoing flow velocities by −vu and −vb, respectively, so
that we deal with positive values of the variables vu, vb. Using suitable approximations (see
appendix A), one obtains a friction force

Ffr = η 〈γv〉 , (2.5)

where 〈f〉 = 1
2(fb + fu) for a quantity f defined on each side of the wall.

The thermodynamical quantities w(T ), p(T ) in eqs. (2.4) are related by the equation of
state. The treatment of hydrodynamics is considerably simplified by considering a simple
approximation for the equation of state. This is particularly important for the stability
analysis. In order to use the analytical results of ref. [18], we shall consider the bag EOS.
This is the simplest EOS which can describe a phase transition.3 Due to the difficulty
of the stability analysis, it is not trivial to generalize the results of ref. [18] beyond these
approximations. With these approximations, the driving force becomes

Fdr =
L

4

(

1− T 2
uT

2
b

T 4
c

)

. (2.6)

Several of the quantities in eqs. (2.5)–(2.6) are related through eqs. (2.4) and boundary
conditions (see appendix A). As a result, the wall velocity vw depends only on the temperature
Tu, the coefficient η, and the parameter

L̄ ≡ L/wu(Tc). (2.7)

Notice that in general the driving force does not coincide with the pressure difference pb−pu,
as one might expect, since it is nontrivially affected by hydrodynamics. Nevertheless, the
fact that the pressure difference changes sign at T = Tc is reflected in Fdr, which is very
sensitive to the departure from the critical temperature. In particular, the reheating of the
fluid causes a decrease of Fdr, acting as an effective friction [33, 36].

There are in general several solutions for vw. The only solution for which the wall
velocity is subsonic is the weak deflagration, and we shall only be interested in this case.
Thus, in the bag approximation, we have vw < 1/

√
3. The deflagration solution exists for

large enough friction and small enough supercooling. For a deflagration, the fluid is reheated
in front of the wall. Therefore, the temperature Tu is higher than the nucleation temperature
Tn. The relation between Tu and Tn introduces an equation to solve together with that
corresponding to the equilibrium of the forces (2.5)–(2.6). We write down all these equations
in appendix A.

2.3 Stability of the deflagration

The possible hydrodynamic instabilities of cosmological phase-transition fronts have been
investigated in refs. [15–18, 37–39]. The linear stability analysis of the wall-fluid configuration
consists of considering small perturbations of the fluid variables on both sides of the wall,
together with small deformations of the planar and infinitely thin wall. Below we briefly

3One limitation of this model is the fact that it gives a constant speed of sound cs = 1/
√
3 in both phases,

while the actual value of cs may depart from this value [35].
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sketch the generalities of the calculation for the deflagration case. For detailed and more
general analysis, see [18, 39].

There are in principle seven variables, namely, the wall deformation ζ, the pressure fluc-
tuations δpu, δpb, the variations of the fluid velocity along the propagation direction δvu, δvb,
and the transverse velocities v⊥u , v

⊥
b . These perturbations depend on space and time. The

three fluid fluctuations on a given side of the wall are related by the fluid equations. Lineariz-
ing these equations and looking for solutions of the form exp(ik · x⊥ + qz +Ωt), one obtains
dispersion relations for q(k,Ω), as well as algebraic equations relating the amplitudes of the
different fluctuations. For the stability analysis one is interested in the unstable modes, which
correspond to Ω > 0 and qz < 0 [7]. For weak deflagrations, we have one unstable mode in
front of the wall and two unstable modes behind it. We are thus left with four unknowns,
namely, the amplitudes of the three unstable fluid modes and that of the wall perturbation.
Finally, the fluid perturbations on the two sides of the wall are related by junction condi-
tions at the wall, which are the counterparts of eqs. (2.4). There is also an equation for
the perturbations of the surface, which is the counterpart of the equation Fdr = Ffr. As a
consequence, one obtains a system of four algebraic equations for the four unknowns. The
weak deflagration is linearly unstable if a nontrivial solution exists for this system.

Looking for linear instability is thus equivalent to demanding a 4 × 4 determinant to
vanish. This gives an equation for the growth rate Ω as a function of the perturbation
wavenumber k ≡ |k|. For a complete treatment and analytic expressions we refer the reader
to ref. [18]. The general result is that the deflagration is unstable for wavenumbers below
a certain value kc which depends on the thermodynamic parameters and the wall velocity.
Nevertheless, depending on the parameters the critical wavenumber kc may become negative,
in which case all wavenumbers are stable. Demanding this to be the case (i.e., kc ≤ 0) one
obtains a condition for the wall velocity, namely, vw ≥ vcrit for stability of the deflagration.
The critical velocity vcrit corresponds to kc = 0, which is equivalent to the equation4

∆v
[

γ2sbγb(1− βb)−
γb
2

]

+
vu
γ2b

〈

γ2sγ(1− β)
〉

= 0, (2.8)

where γ2s = 1− v2/c2s, ∆v = vb − vu. For the bag model, the quantity β is given by

βu,b =
4〈γv〉vu,b

γu,b

(

T 4
c

T 2
uT

2
b

− 1
) . (2.9)

For vw < vcrit, perturbations with wavenumbers 0 < k < kc grow exponentially. As discussed
in section 4 below, for the electroweak phase transition the characteristic time for the de-
velopment of the instabilities is generally much shorter than the time scales associated to
bubble growth, even if vw is very close to vcrit.

It is worth remarking that the critical value of the wall velocity does not depend on the
friction coefficient η. The parameter η determines the actual value of vw. The critical velocity
vcrit can thus be associated to a critical friction ηcrit (which could then be compared with
the actual value of η in order to determine the stability). However, the form of the friction
force (2.5) is implicit in the equations above. This is because, in the stability analysis,
the coefficient η is eliminated by writing it as a function of the velocity and the driving
force [16, 18].

4There are some sign differences with respect to ref. [18] because we have defined v ≡ |v| for the fluid
velocity in the wall frame.

– 7 –



J
C
A
P
0
3
(
2
0
1
5
)
0
5
1

10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

 0.577 
 0.4 

 0.2 

 0.1 

 0.05 

 

 

(T
c - 

T n 
) /

 T
c

L / wu( T c )

 0.01 

Figure 1. Curves of constant vcrit (solid black lines) in the plane of the parameters L̄ and 1−Tn/Tc.
Blue curves correspond to extensions of the SM considered below. Solid line: strongly coupled bosons
(2 d.o.f.). Dashed line: strongly coupled bosons (12 d.o.f.). Dash-dotted line: strongly coupled
fermions. Dotted line: dimension-six operator.

The critical velocity depends only on the dimensionless parameters L̄ and Tn/Tc. Both
parameters range between 0 and 1 and quantify the amounts of latent heat and supercooling,
respectively. In figure 1 we show the curves of constant vcrit in the space of these two
parameters [we considered the parameter (Tc − Tn)/Tc since in many physical cases the
temperature is very close to Tc]. These curves are model independent. We also show the
points in this plane corresponding to some of the specific models considered below (those
which span larger regions of the plane). The limit L̄ → 0, Tc − Tn → 0 corresponds to a
second-order phase transition. The critical velocity increases with the amount of supercooling
but is rather insensitive to the latent heat. The curves of constant vcrit accumulate at the
weak deflagration limit vcrit = cs ≃ 0.577. For values of the parameters above this curve,
there is no critical velocity and any subsonic velocity is unstable. In appendix B we consider
in more detail the dependence of vcrit on these parameters and we give a simple fit for
vcrit(L̄, Tn/Tc).

In figure 1 it seems that, for physical models, none of the two parameters L̄ or (Tc −
Tn)/Tc can reach the upper value 1. In fact, the supercooling parameter may in principle take
values arbitrarily close to 1, since the nucleation temperature Tn can be very small for models
with barriers in the zero-temperature effective potential. The upper limits of (Tc−Tn)/Tc in
these curves are due to the break-down of our calculations for such strong phase transitions.
On the other hand, it is true that the latent heat tends to take relatively small values L̄ . 0.1
for physical models, as seen in the figure. This is because, in general, the entropy released
in the phase transition is only a fraction of the total entropy. This fraction is proportional
to the fraction of degrees of freedom (d.o.f.) which are strongly coupled to the Higgs.

As can be seen in figure 1, the wide range of possible amounts of supercooling implies
a wide range of possible values of the critical velocity vcrit. On the other hand, the actual
value of the wall velocity, vw, also grows with the amount of supercooling, and it is not easy
to guess, without specific calculations, in which cases the deflagration will be unstable. We
perform such calculations in the next section.
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3 Electroweak phase transition models

Several extensions of the SM have been considered in the literature in order to increase
the strength of the phase transition and obtain a sizeable electroweak baryogenesis. Con-
straints from the recent LHC results threaten the viability of baryogenesis in some models
(see, e.g., [40–42]). Since our aim is a general investigation of the possible instability, we
shall not discuss the implications of experimental constraints. Our results will give in prin-
ciple an additional constraint for the baryogenesis scenario. Furthermore, we shall not limit
ourselves to the case of strongly first-order phase transitions, since the instability of the
stationary wall propagation may have cosmological consequences even for weakly first-order
phase transitions.

A classification of models for the electroweak phase transition was recently given in
ref. [40]. Besides these model classes, we shall consider a model with TeV fermions introduced
in ref. [43] as well as two-loop effects. For simplicity, we shall consider a single background
field φ. For several extensions of the SM, φ corresponds to the SM Higgs, 〈H0〉 ≡ φ/

√
2.

In extensions in which more than one scalar develop a vacuum expectation value (VEV), it
is sometimes a good approximation to consider a single field φ, corresponding to a certain
trajectory in field space.

3.1 Free energy and friction

We shall consider the one-loop finite-temperature effective potential given by

F(φ, T ) = V0(φ) + V1(φ) + F1(φ, T ), (3.1)

where V0 is the tree-level potential and V1, F1 are the zero-temperature and finite-temperature
parts of the one-loop correction. These corrections receive contributions from the SM particles
and from beyond-SM particles. We shall consider a spontaneous symmetry-breaking potential
of the form

V0(φ) = −m2φ2 +
λ

4
φ4 +

λ

4
v4 (3.2)

as well as some tree-level modifications. Here, the parameters m and λ are related to the
Higgs mass and VEV by v =

√

2/λm = 246GeV, mH =
√
2λv2 = 125GeV, and the constant

term in eq. (3.2) was added so that the potential vanishes at the minimum, i.e., V (v) = 0.
We shall assume Higgs-dependent masses of the form

m2
i (φ) = h2iφ

2 + µ2
i , (3.3)

and we shall consider the renormalized one-loop zero-temperature correction

V1(φ) =
∑

i

±gi
64π2

[

m4
i (φ)

(

log
m2

i (φ)

m2
i (v)

− 3

2

)

+ 2m2
i (φ)m

2
i (v)−

m4
i (v)

2

]

, (3.4)

where the upper and lower signs correspond to bosons and fermions, respectively, and gi is
the number of d.o.f. of particle species i. This expression corresponds to the renormalization
conditions that the tree-level values of the minimum and Higgs mass are not shifted by
radiative corrections, i.e., V ′

1(v) = 0, V ′′
1 (v) = 0 (where a prime indicates a derivative with

respect to φ). We have added a term m4
i (v)/2 to the well known expression, so that the true

vacuum energy density is not shifted either, i.e., V1(v) = 0. Thus, in the symmetric phase
we will have a false vacuum energy density given by ρvac = V0 (0) + V1(0), which contributes
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to the Hubble rate during the phase transition. Finally, the one-loop finite-temperature
correction, including the resummed daisy diagrams, is given by [44]

F1(φ, T ) =
∑

i

±giT
4

2π2

∫ ∞

0
dxx2 log

[

1∓ exp

(

−
√

x2 +m2
i (φ)/T

2

)]

+
∑

bosons

giT

12π

[

m3
i (φ)−M3

i (φ)
]

. (3.5)

The last term in eq. (3.5) receives contributions from all the bosonic species. We have
M2

i (φ) = m2
i (φ) + Πi(T ), where Πi(T ) are the thermal masses. For the transverse polariza-

tions of the gauge bosons we have Π(T ) = 0 and the last term in (3.5) vanishes.
In general, eqs. (3.1)–(3.5) give a phase transition at a certain temperature Tc from

the high-temperature symmetric phase to the low-temperature broken-symmetry phase. The
dynamics of the phase transition depends mostly on the difference

VT (φ) ≡ F(φ, T )−F(0, T ). (3.6)

Depending on the particle content of the model, the phase transition may be first order, i.e.,
the effective potential may have two minima separated by a barrier. This is better appreciated
in the high-temperature approximation, i.e., when eq. (3.5) admits an expansion in a power
series of m/T . For masses of the form (3.3) we obtain the well known simple form [45]

VT (φ) = D
(

T 2 − T 2
0

)

φ2 − ETφ3 +
λT

4
φ4, (3.7)

with coefficients given approximately by

D =
∑

i

c̃i
gih

2
i

24
, T 2

0 =
1

D

m2
h

4
, E =

∑

t.g.b.

gih
3
i

12π
, λT = λ, (3.8)

with c̃i = 1 for bosons and 1/2 for fermions.5 We have neglected for simplicity corrections to
these coefficients which are suppressed by factors of order gi/(32π

2). The terms m4 logm2

in (3.4) cancel out with similar terms in the expansion of the thermal integrals in eq. (3.5),
and only a dependence of the form φ4 log T 2 remains. This gives a soft dependence of the
coefficient λT on T , which was neglected in the approximation (3.8). For the coefficient E
the sum runs only over transverse gauge bosons. Indeed, only the bosonic thermal integral
has a cubic term ∼ (m/T )3 in its power expansion. The last term in eq. (3.5) replaces m3

with M3 and we actually have

− gT

12π

[

h2φ2 + µ2 +Π(T )
]3/2

. (3.9)

For gauge bosons we have µ = 0, and for their transverse polarizations we also have Π = 0.
Hence, only in this case we obtain a contribution to the term −ETφ3.

It is well known that, for an effective potential of the form (3.7), it is precisely the cubic
term the one which allows a first-order phase transition, while for E = 0 the transition is
second order. Indeed, the value of the order parameter at the critical temperature is given

5Besides, we have F(0, T ) ≃ ρvac − π
2

90
g∗T

4, where g∗ =
∑

i
cigi, with ci = 1 for bosons and 7/8 for

fermions. For the SM, we have g∗ ≃ 107.
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by φb(Tc)/Tc = 2E/λTc
. For the minimal SM, the constant E is very small and eq. (3.7)

gives a very weakly first-order phase transition.6 The relevant SM contributions to the one-
loop effective potential come from the Z and W bosons, the top quark, and the Higgs and
Goldstone bosons. The Higgs sector is usually ignored in the one-loop radiative corrections.
This should be a good approximation in extensions of the SM which include particles with
strong couplings to φ. We shall use this simplification. Therefore, the φ-dependent masses
are of the form hiφ, with hi = mi/v, where mi are the physical masses at zero temperature.
Thus, in the case of the SM we have

DSM =
(

2h2W + h2Z + 2h2t
)

/8, ESM =
(

2h3W + h3Z
)

/6π. (3.10)

Since only bosons contribute to the parameter E, extensions of the SM containing extra
bosons are often considered in the literature. However, a cubic term in the effective potential
is difficult to obtain due to the thermal mass Π ∼ h2T 2 in eq. (3.9). This has lead to
the investigation of scenarios in which a negative squared mass cancels the thermal mass,
µ2 ≃ −Π(T ). For high values of the couplings hi the expansion (3.7) breaks down. In
this case, the one-loop terms φ4 log φ in the zero-temperature effective potential (3.4) may
strengthen the phase transition by causing a barrier at T = 0. Two loop contributions and
tree-level modifications to the effective potential have also been considered in order to increase
the strength of the electroweak phase transition. In the present paper we shall consider all
these extensions of the SM.

A simple approximation for the general dependence of the friction coefficient η on the
parameters of the model was derived in refs. [46, 47]. We shall use this approximation to
estimate the wall velocity (for a different approach see [48]). In this approximation, η receives
contributions from particles which obey the Boltzmann equation as well as from infrared
excitations of bosonic fields, which are treated classically. The contribution of Boltzmann
particles is given by

ηB =
∑

i

gih
4
i

Γ̄/T
T

∫ φc

0
[c1(mi/T )]

2 (φ/T )2
√

2VT dφ, (3.11)

where φc = φb(Tc), the function c1 is given by

c1(x) =
1

2π2

∫ ∞

x
dy
√

y2 − x2
ey

(ey ∓ 1)2
, (3.12)

and Γ̄ is an average interaction rate arising from the collision terms of the Boltzmann equa-
tions. The friction decreases with this parameter since the deviations from the equilibrium
distributions in front of the wall will be smaller if the processes are quicker. For the elec-
troweak phase transition, Γ̄ is typically ∼ 10−2T . The infrared bosons contribution is given by

ηir =
∑

bosons

gih
4
iπm

2
D

8T 2
T

∫ φc

φ0

b(mi/T ) (φ/T )
2
√

2VT dφ, (3.13)

where mD is the Debye mass, given by m2
D = (11/6)g2T 2 for the W and Z bosons of the SM,

and m2
D = h2T 2/3 for a scalar singlet. The integral in (3.13) has an infrared cut-off φ0 for

6Moreover, the small value of φb/T causes perturbation theory to break down and only non-perturbative
calculations become reliable.
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small µi, given by φ0 =
√

L−2
w − µ2

i /hi for µi < L−1
w , and φ0 = 0 for µi > L−1

w , where Lw is the

wall width. In the thin wall approximation, Lw can be estimated as Lw ≈
∫ 0.9φc

0.1φc
dφ/

√
2VT .

The function b is given by

b(x) =
1

2π2

∫ ∞

x

dy

y3
ey

(ey − 1)2
. (3.14)

The two contributions dominate in different parameter regions, and we have η = ηB + ηir.
Depending on the model, we shall use either the full one-loop effective potential (3.4)–

(3.5) or its high-temperature expansion (3.7). In the former case, we shall use the friction
coefficients (3.11) and (3.13), while in the latter case we shall use a similar high-temperature
approximation for the friction coefficients,

ηB =
∑ gih

4
i

Γ̄/T

(

logχi

2π2

)2 φ2σ

T
, (3.15)

ηir =
∑

bosons

gim
2
DT

32πLw
log (mi(φ)Lw) , (3.16)

and Lw ≈ φ2/σ. Here, χi = 2 for fermions and χi = mi (φ) /T for bosons, and σ is the
surface tension of the bubble wall.

3.2 The SM with a low Higgs mass

For comparison with previous results, we consider first the unrealistic case of the SM with a
light Higgs. We also consider larger Higgs masses (although for large mH the perturbative
expansion breaks down) in order to analyze the dependence of the velocity on the strength of
the phase transition. For this model we use the approximation (3.7) for the effective potential
as well as the approximations (3.15)–(3.16) for the friction. The result is shown in figure 2.

The critical velocity for this model (solid line) agrees in order of magnitude, but not
exactly, with ref. [16]. For instance, for mH = 60GeV, they obtain vcrit ≃ 0.035, while we
obtain vcrit ≃ 0.022. As already mentioned, as a function of the thermodynamic parameters,
our result for vcrit is in good agreement with ref. [16]. The present discrepancy is due to the
rough estimation of the temperature Tu for this model in ref. [16].

The dotted line in figure 2 corresponds to the wall velocity obtained from the calculation
of the friction using only the Boltzmann equations. We remark that our approximation
contains a single, effective rate Γ̄ instead of the several collision-term parameters coming from
the different interactions. Setting Γ̄ = 10−2T , the values of vw, as well as the dependence on
mH , agree with the results of ref. [21] (and are also close to those of [31]). We stress that the
calculations of refs. [21, 31] omit the contribution of infrared boson excitations to the friction,
which can make the wall velocity significantly smaller [23]. In the case of the SM, the infrared
term receives contributions from the gauge bosons. The result for the complete friction is
shown in a dashed line in figure 2. This result agrees with the estimations of ref. [23].

We see that the infrared contribution to the friction dominates for weakly first-order
phase transitions, and causes the deflagration to become unstable (i.e., vw < vcrit).

3.3 Negative squared mass (thermal cubic term)

The simplest extension of the SM consists of adding one or more gauge-singlet scalars Si

(see, e.g., [49, 50]). In many models, these bosons constitute a hidden sector which couples
only to the SM Higgs doublet through the so called Higgs portal operator h2sH

†H
∑

S2
i
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Figure 2. The critical velocity vcrit and the wall velocity vw for the SM with a low Higgs mass.

(assuming, for simplicity, real fields and universal couplings hi = hs). The scalars may have
SU(2)× U(1)-invariant mass terms µ2

sS
2 as well as quartic terms λsS

4. For the moment we
shall not consider the possibility that S develops a VEV.

If hsφb(T )/T is not too large, the free energy is of the form (3.7), with the cubic term
replaced by the term (3.9). The latter is not as effective as a cubic term in strengthening the
phase transition. The thermal mass is given by Π = (h2s + λs)T

2/3 [50]. A negative value of
µ2
s may enhance the strength of the phase transition, since for µ2

s ≃ −Π(T ) the term (3.9) is
effectively of the form −Tφ3. This fact is exploited in the case of the MSSM in the light-stop
scenario [51]. Notice that negative values of µ2

s may induce a nonvanishing expectation value
of the extra scalar. For the case of top squarks, this introduces the danger of color breaking
minima. We shall not take into account this issue here. For the moment we will just consider
the SM plus gs extra bosonic degrees of freedom. We thus have an effective potential of
the form

VT (φ) = D
(

T 2 − T 2
0

)

φ2 − TEφ3 − gsT

12π

[

h2sφ
2 +

h2s + λs

3
T 2 + µ2

s

]3/2

+
λ

4
φ4, (3.17)

with D = DSM + gsh
2
s/24, E = ESM, T 2

0 = (m2
h/4)/D, and λ = m2

H/(2v2).

For definiteness, we consider the case gs = 6 and λs = 0.5 (below we consider a different
value of λs). In figure 3 we show the wall velocity and the critical velocity for a couple of
values of the coupling hs, namely, hs = 0.7 (left panel) and hs = 0.8 (right panel). We let µ2

s

vary in the range [−Π(T0),Π(T0)] (we have Tc ≃ T0). The dotted curves indicate the value
of the order parameter φb(T )/T at T = Tc (lower curve) and at T = Tn (upper curve). Since
the plasma is reheated during the expansion and collisions of bubbles, it is not clear which
one is the appropriate value for the baryogenesis condition (1.1). The conservative bound
is φb(Tc)/Tc. Only for µ2

s close to −Π(T ) the contribution of the boson gives a cubic term.
Thus, the strength of the phase transition reaches a maximum at this end. Nevertheless, the
strength of the phase transition is also enhanced as gs or hs are increased. For hs = 0.7 the
value φb/T = 1 is not reached even in the limit µ2

s ≃ −Π(T ), while for hs = 0.8 we have
φb/T & 1 for µ2 < 0.
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Figure 3. The critical velocity vcrit, the wall velocity vw, and the order parameter for an extension
of the SM with 6 singlet scalars, for λs = 0.5 and hs = 0.7 (left panel) and hs = 0.8 (right panel).

We have checked that for different values of gs or hs the behavior of the various curves
is qualitatively similar. For weakly first-order phase transitions with small values of φb/T
we have a small vw as well as a small vcrit, while for more strongly first-order transitions
both vw and vcrit are higher. On the other hand, their values generally cross at a certain
point (as can be appreciated in the left panel of figure 3). Thus, we have vw < vcrit for
weak enough phase transitions (φb/T < 0.5) and vw > vcrit for stronger phase transitions.
In particular, for φb/T ≥ 1 we obtain stable deflagrations. Notice, however, that the curves
of vw and vcrit begin to approach each other again as the strength of the phase transition
continues increasing. As we shall see below, for very strong phase transitions we will have
vw < vcrit again.

For gs = 6 and hs ≃ 0.7 this model can be regarded as a toy model for the light stop
scenario of the MSSM, consisting of the SM plus the light right-handed top squark (stop). At
the one-loop order and disregarding the possibility that the extra scalar develops a VEV, the
main quantitative difference with the realistic case appears in the resummed daisy diagrams.
The main contribution to the thermal mass of the stop is of the form 4g2strT

2/9, where gstr
is the strong gauge coupling [51]. In our numerical calculation, we obtain the same effect
by setting the parameter λs in eq. (3.17) to the value 4g2str/3. This increases considerably
the value of Π(T ) and, hence, the value of the negative squared mass needed to compensate
this thermal mass. The collision terms in the Boltzmann equations are also different due to
a different particle content. This effect may be relevant if the wall velocity is close to the
critical value. For the MSSM we can choose the value of our effective rate Γ̄ in order to match
the result of the detailed microphysics calculation [22]. Turning off the infrared contribution
to the friction and setting7 mH = 110GeV as in [22], the wall velocity should vary around
vw = 0.1 (the friction is higher than in the SM due to the coupling of the extra boson with
the Higgs). We obtain the correct vw for Γ̄ = 5× 10−3T .

The lower, blue curves of figure 4 show the estimated wall velocity (including the infrared
part of the friction) together with the critical value for this case. The result is plotted as a
function of µ2

s as well as of the mass of the extra scalar, which is given by ms =
√

h2sv
2 + µ2

s.
We considered values of µ2

s from −Π(T0). For this value of µ2
s, the infrared contribution to

7In fact, the value of mH does not affect significantly the Boltzmann result, as observed in the dotted curve
of figure 2.
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Figure 4. The critical velocity (solid lines) and the wall velocity (dashed lines) for the case of the SM
plus a light stop. The two lower (blue) lines correspond to considering only the 1-loop potential. The
upper (black) lines correspond to including the 2-loop correction. The dash-dotted line corresponds
to turning off the contribution of infrared fields. The dotted line corresponds to increasing the value
of the parameter Γ̄ by a factor of 2.

the friction lowers the wall velocity from vw ≃ 0.1 to vw ≃ 0.05, and the effect is stronger for
weaker phase transitions (dashed blue curve).

We see that we have vw < vcrit, except for µ2
s very close to −Π(T0). In any case, we

obtained values of φb(Tc)/Tc smaller than 0.7 even in this limit. Indeed, in this scenario
a phase transition which is strong enough for baryogenesis is obtained only for unrealistic
values of the Higgs mass. The situation improves when two-loop corrections are considered.

3.4 Two-loop effects (the MSSM)

Although the light stop scenario does not give a strong enough phase transition at one-loop
order, two-loop corrections can make the phase transition strongly first-order even with-
out requiring negative µ2

s [52, 53]. The most important two-loop corrections are of the
form φ2 log φ,

V2 (φ, T ) ≈ C
T 2φ2

32π2
log

(

φ

T

)

. (3.18)

We consider such a contribution by adding to the potential (3.17) a term of the form (3.18),
with a coefficient C = 6h4s − 8g2strongh

2
s coming from the MSSM stop and gluon loops.

The results for the wall and critical velocities with this modification are shown in figure 4
(upper, black curves). We obtain a higher critical velocity vcrit ≃ 0.1-0.15 (black solid line)
as well as a higher wall velocity vw ≃ 0.1 (black dashed line), but we have vw < vcrit. Notice
that the strength of the phase transition is essentially due to the presence of the term (3.18)
in the effective potential. As a consequence, the result has a very soft dependence on ms.
The significant increase of the wall velocity with respect to the one-loop value is due to the
fact that the two-loop term does not change the particle content of the model (hence the
friction cannot increase significantly) but does increase the strength of the phase transition.
In this approximation we obtain φb/T & 1 for all the range of µ2

s considered.
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Since the wall velocity is so close to the critical value, the uncertainties in the calculation
of vw become relevant. In this case the Boltzmann part of the friction dominates. This can be
seen by turning off the infrared contribution, which results in the dash-dotted curve of figure 4.
Since the friction is dominated by the Boltzmann term, the O(1) errors in the estimation of
collision terms are consequential for the stability of the deflagration. To see the sensitivity to
the parameter Γ̄, let us consider again the SM-like value Γ̄ = 10−2T instead of the MSSM-like
value Γ̄ = 5× 10−3T . This gives the dotted curve,8 which is safe from the instability. On the
other hand, a different approximation for the friction [48] (which gives similar values for the
one- and two-loop effective potentials) gives vw ∼ 0.05. Such deflagrations would be clearly
unstable, since the velocity is a factor of 2 below the critical value.

Therefore, a more accurate determination of vw would be important for this model. It is
also important to remark that in baryogenesis calculations the wall velocity is often assumed
to be vw . 0.1, which is just below the lower bound vcrit for this model. Moreover, this
model is severely constrained by experimental data (see, e.g., [54]). We stress that we have
considered a simplified version of the light stop scenario, which has several parameters we
just have not taken into account. In spite of this, we do not expect a significant difference
for the critical velocity in the realistic case, although we do expect O(1) factors in the wall
velocity, as already discussed.

3.5 Tree-level effects

Real gauge-singlets allow cubic terms of the form S3 or H†HS. Such corrections to the
Lagrangian arise in extensions of the SM with a singlet (see, e.g., [55–60]) as well as in
extensions of the MSSM (see,e.g., [61–64]). The presence of cubic terms in the tree-level
potential makes it easier to get a strongly first-order electroweak phase transition. Indeed,
the strength of the transition is dominated by such cubic terms, which provide a barrier
already at zero temperature. In order to study this effect, one should consider the effective
potential for the condensates of the two fields H and S. However, our numerical computation
of the nucleation temperature is based on a single-variable potential. In order to incorporate
this kind of model into our generic analysis, we shall assume that the thermal tunneling
occurs through a trajectory in configuration space which can be parameterized with a single
field φ(x), and that along this trajectory the zero-temperature effective potential has a cubic
term [40]. This is equivalent to considering a toy model which consists of adding a term −Aφ3

to the tree-level potential (3.2), where A is a free parameter with mass dimensions [47]. In
this model the parameters of the potential are related to the physical Higgs VEV and mass
by 2m2 = λv2 − 3Av, m2

H = 2λv2 − 3Av.
We thus consider the high-temperature effective potential (3.17) plus a term −Aφ3.

We consider values of the parameters as in the left panel of figure 3 (gs = 6, hs = 0.7,
λs = 0.5, Γ̄/T = 0.01) with µs = 0. We show the result in the left panel of figure 5. We
have considered values of the parameter A for which hsφb(Tn)/Tn . 1, so that the high-
temperature expansion is valid. The strength of the phase transition grows quickly with A,
and values φb/T > 1 are reached for values of A which are much smaller than the scale v. In
this parameter range we obtain subsonic velocities. These deflagrations are stable on almost
the entire considered range.

Another possible tree-level modification is the introduction of non-renormalizable op-
erators. In particular, a dimension-six term of the form (H†H − v2/2)3/Λ2 gives a negative

8In ref. [47] an even higher value Γ̄ = 5× 10−2 was used for this model, obtaining as a consequence higher
values of the wall velocity (vw ≃ 0.4-0.45).
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Figure 5. Left panel: the SM plus a singlet, with a cubic term in the scalar sector. Right panel:
the SM plus a sextic operator. The horizontal line indicates the speed of sound.

quartic coupling if the cutoff is low enough [65–69]. We thus consider the SM plus a term of

this form, which gives a term
(

φ2 − v2
)3

/(8Λ2) in the effective potential. Adding this term
to the tree-level potential (3.2) does not shift the value of the minimum nor the Higgs mass,
i.e., we have v2 = 2m2/λ, m2

H = 2λv2. The sextic operator introduces the terms

+
3v4

8Λ2
φ2 − 3v2

2Λ2

φ4

4
, (3.19)

which modify the quadratic and quartic terms of the effective potential and, in particular,
may change their sign. Thus, for Λ <

√

3/2v2/mH ≃ 600GeV the quadratic term becomes
positive (already at zero temperature). Nevertheless, for Λ <

√
3v2/mH ≃ 840GeV the

quartic term becomes negative, causing a barrier in the zero-temperature effective potential,
which is stabilized by the term +φ6/(8Λ2). For this calculation we use the full one-loop
correction (3.5) instead of its high-temperature approximation.

The results for this model are shown in the right panel of figure 5 as functions of the
cutoff. Below Λ ≃ 850GeV we have φb(T )/T > 1. Since the particle content is the same as
in the SM, we set again Γ̄ = 0.01. The values of the wall velocity (dashed line) are in good
agreement with those of ref. [31] for stronger phase transitions (for instance, for Λ = 700GeV
we obtain vw = 0.45 while in [31] the result is vw = 0.46). For weaker phase transitions we
obtain smaller values of vw (e.g., vw ≃ 0.17 for Λ = 900GeV, in contrast to vw = 0.27 in [31]).
This is to be expected since, for weaker phase transitions, the infrared part of the friction
becomes noticeable. Notice that vw is subsonic in all the range of Λ we considered, but it
approaches the speed of sound for Λ ≃ 600GeV. Therefore, an O(1) variation of the friction
coefficient may give supersonic solutions. To illustrate this we consider the value Γ̄/T = 0.02
(dash-dotted line). In this case, detonation solutions appear below Λ ≃ 675GeV. Notice
also that the curves for the two values of Γ̄ coincide for weaker phase transitions, where the
infrared contribution dominates the friction.

Regarding the stability, we see that the wall velocity becomes smaller than the critical
value (solid line) only for weak phase transitions with φb/T < 0.3, corresponding to wall
velocities vw . 0.015.
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Figure 6. The critical velocity, the wall velocity, and the order parameter as functions of the coupling
of the extra particles to the Higgs. Left panel: 12 real scalars (in black) and 2 real scalars (in blue).
Right panel: 12 fermionic d.o.f.

3.6 Strong coupling

Let us consider again the extension of the SM with a singlet scalar. This time however,
instead of considering a negative µ2

s in order to change the strength of the phase transition,
we shall set µs = 0 and vary the coupling to the Higgs. Therefore, the φ-dependent mass is
given by m2

s(φ) = h2sφ
2. Besides the cubic term, for high enough hs, the zero-temperature

term m4
s logm

2
s in eq. (3.4) becomes relevant. A barrier in the effective potential appears at

zero temperature, and the size of this barrier grows as hs is increased. This increases the
strength of the phase transition and, as a consequence, the φ4 log φ term becomes even more
important. In this case we may have large values of the order parameter φb/T [47, 70, 71],
and we shall not use the high-temperature expansion.

For simplicity, we consider λs = 0. The results are qualitatively similar in the general
case (we have checked this) since λs only affects the value of the thermal mass. We show
the values of the velocity and the order parameter in the left panel of figure 6 as functions
of hs for gs = 2 bosonic degrees of freedom (lower, blue curves) and gs = 12 (upper, black
curves). The results are qualitatively very similar for the two cases, only that for smaller
d.o.f. a higher coupling is needed to increase the strength of the transition. In both cases the
deflagration is unstable for weak phase transitions (φb/T . 0.4), there is a range of stable
deflagrations, and for stronger phase transitions (φb/T & 1.3) the velocity is again smaller
than vcrit. This tendency is already seen in previous cases. There is also a range of values
of hs for which we have both φb/T > 1 and stable deflagrations. In this range we have wall
velocities vw ≃ 0.05-0.1, which is good for baryogenesis. We obtained subsonic velocities, but
varying the friction by an O(1) factor detonations may appear (see, e.g., ref. [72]).

Extra fermions strongly coupled to the Higgs field can also make the phase transition
strongly first-order [43]. However, strongly coupled fermions may make the vacuum unstable
due to the minus sign in front of the term m4

f logm
2
f in (3.4). This problem can be solved by

adding heavy bosons with the same couplings but with a large φ-independent mass term, so
that they are decoupled from the dynamics at T ∼ 100GeV. A particular model, considered
in ref. [43], consists in a realization of split supersymmetry, where the standard relations
between the Yukawa and gauge couplings are not fulfilled. In the simplest case, only gf =
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12 d.o.f. are coupled to the SM Higgs, with degenerate eigenvalues of the form m2
f (φ) =

µ2
f + h2fφ

2. Here we consider for simplicity only the case µf = 0. Perturbativity requires
hf . 3.5. The bosonic stabilizing fields have the same number of d.o.f., and a dispersion
relation m2

b (φ) = µ2
b + h2bφ

2, with hb = hf and

µ2
b =

[

exp

(

m2
H8π2

gfh
4
fv

2

)

− 1

]

h2fv
2, (3.20)

which is the maximum value consistent with stability. For simplicity, Πb = 0 is assumed.
In the right panel of figure 6 we show the results for this model as a function of the

coupling hf . The velocities, as well as the order parameter, are smaller than in the case of
extra scalars. However, the behavior is qualitatively similar. In particular, there is a range
of values of hf for which the deflagration is stable (i.e., vw > vcrit). In this range we have
vw ∼ 10−2. Values of the order parameter φb/T ≃ 1 occur at the upper limit of this range
and, thus, may be compatible with stability.

4 Consequences of the instability

So far we have only calculated the critical velocity below which the deflagration is unstable,
and compared it with the actual value of the wall velocity. We now wish to discuss the
possible consequences of the case vw < vcrit.

Before doing so, it is worth discussing on the use of the phenomenological form ηvγ
for the friction, explicit in the calculation of vw and implicit in the calculation of vcrit (or,
equivalently, of ηcrit). Important deviations from this scaling may occur [31]. In particular,
the friction should saturate in the ultra-relativistic regime [30], while this model grows un-
boundedly as vw → 1 due to the γ factor. We thus may expect significant errors for wall
velocities close to the speed of sound or higher. Nevertheless, for small wall velocities (par-
ticularly those of interest for baryogenesis) our phenomenological model should give a good
description. Indeed, notice that for the two models which admit a direct comparison with
the results of [31] (namely, the SM with a low Higgs mass and the SM with a low cutoff, for
which the particle content is that of the SM), our results for vw (before taking into account
the infrared part of the friction) are in good agreement with those of [31]. In any case, since
the scaling ηvγ generally overestimates the friction force, we may expect both vw and vcrit
to be actually higher than our estimations. Therefore, since deflagrations with vw < vcrit are
unstable, our estimation of vcrit gives a conservative lower bound for the velocity of a stable
deflagration.

Let us now assume that we are in the case vw < vcrit. Then, perturbations of the
wall-fluid system in a range of wavenumbers 0 < k < kc are unstable. In the first place, it
is important to determine whether these instabilities will grow in a time comparable to the
duration of the phase transition. There is a characteristic scale in the problem (see [18] for
details), which is given by d = σ/Fdr, where σ is the surface tension and Fdr is the driving
force. Thus, the deflagration wall is unstable for wavelengths λ which are higher than a
critical value λc ∝ d. The instabilities develop once the bubble reaches a size Rb ∼ λc. The
quantity d is generally of the order of the initial bubble size. In contrast, the final bubble
size Rf is in general much higher than d. As a consequence, there will be instabilities in the
range λc < λ < Rf .

To be more precise, in the limit of small supercooling, small latent heat, and small
velocity we have λc ∼ d/[L̄ (1− vw/vcrit)]. Therefore, unless vw is very close to vcrit, we have
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λc ∼ d/L̄. Although L̄ may be quite small and, hence, λc may be a few orders of magnitude
larger than d, the final bubble size Rf will still be many orders of magnitude larger [18]. This
is because Rf is related to the cosmological time H−1 (where H is the Hubble rate), while d
is given by thermodynamical variables. Roughly, we have Rf/d ∼ MP /T , where MP is the
Planck mass. For the electroweak phase transition we have MP /T ∼ 1017.

Hence, the instabilities generally begin to grow when bubbles are still very small. On
the other hand, the instabilities need time to develop. The growth rate Ω in the linear regime
is proportional to λ − λc and to 1 − vw/vcrit. A simple dynamical analysis shows that (in
the approximation Tn/Tc ≃ 1, L̄ ≪ 1, vw ≪ 1) the instabilities become important when the
bubble size reaches the value Rinst

b ∼ [L̄ (1− vw/vcrit)]
−2d [18]. Again, even though L̄ may

be quite small we will have Rinst
b ≪ Rf unless vw is extremely close to vcrit. Therefore, the

instabilities become important very early in the development of the phase transition.

As already discussed, the instability of the deflagration may spoil the mechanism of
electroweak baryogenesis if the wall accelerates and reaches supersonic velocities. In fact, the
linear stability analysis breaks down as the perturbations grow. Therefore, Ω only indicates
the initial acceleration rate of the unstable wall. It is in principle possible that nonlinear
effects stabilize the propagation of the phase transition front. In such a case, one may
expect that the wall reaches a new stationary regime, perhaps with a higher velocity. Notice,
however, that this new regime will not correspond to a stable weak deflagration, unless
the conditions which determine vw change. All other known stationary solutions (namely,
Jouguet deflagrations and weak detonations) are supersonic.

There are (at least) two possible alternatives to this situation. Since the instabilities
corrugate the wall, the growth of the bubble may be of dendritic type [73]. The hydrody-
namics in this case may differ significantly from the case of planar (or spherical) walls, and
there may be new stationary propagation modes. Another possibility is that, by the time the
instabilities begin to become noticeable, the shock fronts coming from other bubbles already
hit the wall. This may happen for small enough vw, since the shock velocity is supersonic. In
such a case, the plasma outside the bubble will be reheated from the initial temperature Tn

to a higher temperature Tr. This reheating will tend to decrease both vw and vcrit, but the
overall effect may be stabilizing. Indeed, the release of latent heat may reheat the plasma up
to Tc. In such a case the phase transition necessarily slows down [74–76]. The effects of such
a reheating on electroweak baryogenesis have been investigated in refs. [77–79].

Leaving aside these possibilities, the critical velocity sets a lower bound for the velocity
of stationary phase transition fronts. This lower bound for the wall velocity may be used
to constrain models of EWB in two ways. On the one hand, if the wall velocity for a given
model is calculated and turns out to be below vcrit, then in principle the wall will accelerate
to velocities which are too high for EWB. This would rule out this model as a baryogenesis
scenario. On the other hand, since an accurate calculation of vw is too difficult and model-
dependent, using the value of vcrit as a lower bound may be useful. This lower bound may
constrain the baryogenesis mechanism if vcrit turns out to be too large.

Interestingly, besides the potentially negative consequences for baryogenesis, the insta-
bility of slow walls may give rise to new cosmological consequences for weak phase transitions.
Indeed, the instabilities lead to acceleration of the walls, anisotropic growth of bubbles and
turbulence of the plasma. These effects may give origin to magnetic fields [24] or gravitational
waves [18].
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5 Conclusions

It is known that the stationary motion of phase transition fronts may be unstable for subsonic
velocities. Specifically, the deflagration front is hydrodynamically unstable below a critical
velocity vcrit. In order to discuss the implications of this fact for the electroweak phase
transition, we have computed both the wall velocity and the critical velocity for several
extensions of the Standard Model. We have considered a significant variety of models and a
wide range of parameters, including those which are favorable for baryogenesis.

The general result is that the deflagration tends to be unstable for very weak or very
strong phase transitions, while for phase transitions with an order parameter φb/T ≈ 1 the
deflagrations are generally stable. In general, for any model there is a range of parameters
for which we have stable deflagrations.

The stability condition vw > vcrit constitutes in principle a restriction for electroweak
baryogenesis (assuming that, if it is not fulfilled, the wall will accelerate to supersonic ve-
locities). This condition, combined with that of avoiding the washout of the generated BAU
(i.e., φb/T & 1), the requirement of enough CP violation, and experimental bounds, may
restrict significantly some models. We remark that, even if we have a subsonic wall with
vw > vcrit, a departure of the wall velocity from the range 10−2 < vw < 10−1, where the BAU
has its maximum, may also prevent a quantitatively successful EWB. In all the models we
considered we found a region of parameter space for which the deflagration is stable and the
above conditions for φb/T and vw are fulfilled.

We stress that the friction is very model-dependent, and current calculations have large
errors which propagate to the wall velocity. For velocities close to the speed of sound, such
O(1) factors may determine whether the wall propagates as a deflagration or a detonation.
Similarly, for wall velocities close to the critical value, O(1) variations of the friction will
determine the stability or instability of the deflagration. The calculation of the critical
velocity is not easy either. We have used the analytic results of ref. [18], which were obtained
using several approximations, such as the bag EOS and the assumption of planar walls.
Nevertheless, the value of vcrit is less dependent on details of the specific model (i.e., it
depends only on thermodynamical parameters). In the appendix we give a simple fit for vcrit
as a function of the parameters L/w+(Tc) and Tn/Tc.

We also remark that we have used for our calculations a simple phenomenological model
for the friction force. We have argued that this approximation should be good at least for the
case of small wall velocities which are required for baryogenesis. The actual value of vcrit is
possibly higher than our result. Hence, our calculation gives only a conservative lower bound
for the velocity of a stable deflagration.
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A Phase transition dynamics

A.1 Bubble nucleation and expansion

The bubble nucleation probability per unit volume per unit time is given by [80–82]

Γn (T ) = A (T ) e−S3(T )/T , (A.1)
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where A (T ) = [S3 (T ) /(2πT )]
3/2 and S3(T ) is obtained by extremizing the three-dimensional

instanton action

S3[φ] = 4π

∫ ∞

0
r2dr

[

1

2

(

dφ

dr

)2

+ VT (φ (r))

]

, (A.2)

where VT (φ) is defined in eq. (3.6). The variation of S3[φ] gives an equation for the configura-
tion of the nucleated bubble. The latter is assumed to be spherically symmetric, and its radial
configuration φn(r) satisfies the boundary conditions dφn/dr|r=0 = 0, limr→∞ φn (r) = 0.
We solve the equation for φn(r) iteratively by the overshoot-undershoot method (see ref. [76]
for details).

The nucleation rate vanishes at T = Tc and grows rapidly as T descends below Tc. At
a temperature T < Tc, the probability of finding a bubble in a causal volume Vc ∼ (2/H)3 is
given by

P (T ) =

∫ T

Tc

Γn(T )Vc
dt

dT
dT. (A.3)

The time-temperature relation is given by dT/dt = −HT , where the expansion rate is given
by H =

√

8πGρu(T )/3, with G the Newton’s constant. We define as usual the nucleation
temperature Tn at which nucleation effectively begins by the condition P (Tn) = 1. We
compute Tn numerically from eqs. (A.1 -A.3).

A.2 Hydrodynamics

The equation for the wall can be obtained from the phenomenological equation for φ, which
is similar to eq. (2.3), with the last term replaced by a phenomenological term proportional
to uµ∂µφ. The usual procedure is to consider the equation in the reference frame of the
planar wall, multiply by ∂φ/∂z, where z is the coordinate perpendicular to the wall, and
then integrate across the wall, taking into account the variation of the fluid variables. To
perform the integration, either an ansatz for the wall profile is used or some approximations
are needed. We shall use the result of [18], which uses linear approximations for the variations
of quantities inside the wall. We have

pu(Tu)− pb(Tb)−
〈

dp

dT 2

〉

(

T 2
u − T 2

b

)

− η 〈γv〉 = 0. (A.4)

We also use the bag EOS,

pu (T ) =
a

3
T 4 − L

4
, pb (T ) =

(

a

3
− L

4T 4
c

)

T 4, (A.5)

where L is the latent heat and a is an effective radiation constant depending on the number
of relativistic d.o.f. For the bag EOS, eq. (A.4) becomes

L

4

(

1− T 2
uT

2
b

T 4
c

)

= η 〈γv〉 . (A.6)

The temperature Tb behind the wall is related to the temperature Tu in front of it through
the equations for the discontinuity, eqs. (2.4). For the bag EOS we have

T 4
b =

vuγ
2
u

vbγ
2
b (1− L̄)

T 4
u , (A.7)
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where L̄ = L/(4aT 4
c /3) = L/wu(Tc). The velocities vu and vb are related by [83]

vu =
1

1 + αu





1

6vb
+

vb
2

±

√

(

1

6vb
+

vb
2

)2

+ α2
u +

2

3
αu − 1

3



 , (A.8)

with αu = L/
(

4aT 4
u

)

= (L̄/3)(Tc/Tu)
4.

We see that we have two kinds of solutions. Indeed, the + sign in front of the square
root in eq. (A.8) corresponds to detonations while the − sign corresponds to deflagrations.
For detonations we have vb < vu while for deflagrations we have vb > vu. These solutions
are further classified into weak, strong or Jouguet, depending on the relation of the outgoing
velocity vb with the speed of sound cs = 1/

√
3. For weak deflagrations we have vb < cs.

The fluid profiles away from the wall are quite simple for a planar interface. For a
weak deflagration we can only have constant fluid velocities. In the reference frame of the
bubble center, the velocity profile is the following. Inside the bubble the fluid is at rest (in
the reference frame of the wall, this gives the condition vb = vw). In front of the wall we
have a constant fluid velocity ṽu > 0 (in the wall frame, this inequality transforms into the
deflagration relation vu < vb). The boundary condition of an unperturbed fluid far in front
of the wall is fulfilled by a jump of the fluid velocity from ṽu to 0 at a certain point. Such a
discontinuity in the fluid profile is called a shock front.

The shock discontinuity is also determined by applying eqs. (2.4) to the shock front,
where the EOS is now the same in both sides of the interface. It turns out that the shock front
moves supersonically. The region between the bubble wall and the shock front is reheated,
i.e., the temperature Tu is higher than the nucleation temperature Tn. We have

√
3
(

T 4
u − T 4

n

)

√

(3T 4
u + T 4

n) (3T
4
n + T 4

u )
=

vb − vu
1− vuvb

. (A.9)

Using the relations (A.7)–(A.8), the two equations (A.6) and (A.9) can be readily solved to
obtain vw as a function of η and Tn.

B The critical velocity

Using the relations (A.7)–(A.9) in eq. (2.8), we obtain the equation for the critical velocity
vcrit as a function of Tn/Tc and L̄. The solution for vcrit is plotted in figure 7 (solid lines) as
a function of L̄ for different values of Tn/Tc. Technically, solving eq. (2.8) becomes difficult
in some cases due to the divergence of the quantity β as the product TuTb approaches T 2

c .
This happens for instance for high values of the latent heat, since the reheating in front of
the wall may cause Tu to exceed Tc. As can be seen from eq. (A.6), the exact limit cannot be
reached and we always have TuTb < T 2

c . As a consequence, there is always a critical velocity.

In the case of small supercooling and small latent heat, the wall velocity is generally
small, since we have ηvw ≃ L(1 − Tu/Tc). In this limit we also have Tb ≃ Tu and vb ≃ vu,
and we have a simple expression for vcrit as a function of Tu [18],

v2crit ≃ (1 + L̄)

(

1− Tu

Tc

)

. (B.1)
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Figure 7. The critical velocity (solid lines) and the fit (dashed lines) as functions of the parameter
L̄ for several amounts of supercooling. From bottom to top we have Tn/Tc = 0.999, 0.98, 0.95, 0.9,
0.85, 0.8 and 0.75. The horizontal line indicates the value cs = 1/

√
3.

On the other hand, the temperature Tu of the reheated plasma in front of the wall depends on
vw. In the present approximation we have Tu/Tc ≃ Tn/Tc + (L̄/

√
3vw). Hence, for vw = vcrit

eq. (B.1) gives a quadratic equation. The solution is

vcrit ≃
L̄(1 + L̄)

2
√
3

[
√

1 +
12

L̄2(1 + L̄)

(

1− Tn

Tc

)

− 1

]

. (B.2)

This simple approximation underestimates the value of the critical velocity. It becomes exact
in the limit Tn → Tc, but only gives a good estimation for small amounts of supercooling.
For instance, for Tn/Tc > 0.98 the error is less than a 5%, while for Tn/Tc = 0.9 the actual
value of the critical velocity is about a 15% higher than the approximation (B.2).

Nevertheless, a slight modification of eq. (B.2) provides a good fit,

vcrit ≃
L̄(1 + L̄)

2
√
3

[
√

1 +
12

L̄2+ε(1 + aL̄)

(

1− Tn

Tc

)

− 1

]

, (B.3)

with ε = 0.5(1− Tn/Tc) and a = 1− 2.7(1− Tn/Tc). The error of this approximation is less
than a 5% for 0.75 < Tn/Tc < 1 and in all the range 0 < L̄ < 1 (see figure 7).
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[76] A. Mégevand and A.D. Sánchez, Supercooling and phase coexistence in cosmological phase

transitions, Phys. Rev. D 77 (2008) 063519 [arXiv:0712.1031] [INSPIRE].

[77] A.F. Heckler, The Effects of electroweak phase transition dynamics on baryogenesis and

primordial nucleosynthesis, Phys. Rev. D 51 (1995) 405 [astro-ph/9407064] [INSPIRE].
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