
HAL Id: hal-01502326
https://hal.inria.fr/hal-01502326

Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Binary64 and Binary128 Arithmetic with
GNU MPFR

Vincent Lefèvre, Paul Zimmermann

To cite this version:
Vincent Lefèvre, Paul Zimmermann. Optimized Binary64 and Binary128 Arithmetic with GNU
MPFR. 24th IEEE Symposium on Computer Arithmetic (ARITH 24), Jul 2017, London, United
Kingdom. pp.18-26, �10.1109/ARITH.2017.28�. �hal-01502326�

https://hal.inria.fr/hal-01502326
https://hal.archives-ouvertes.fr

1

Optimized Binary64 and Binary128 Arithmetic with GNU MPFR
Vincent Lefèvre and Paul Zimmermann

Abstract—We describe algorithms used to optimize the GNU
MPFR library when the operands fit into one or two words.
On modern processors, a correctly rounded addition of two
quadruple precision numbers is now performed in 22 cycles, a
subtraction in 24 cycles, a multiplication in 32 cycles, a division in
64 cycles, and a square root in 69 cycles. We also introduce a new
faithful rounding mode, which enables even faster computations.
Those optimizations will be available in version 4 of MPFR.

Keywords: floating point, correct rounding, faithful rounding,
binary64, binary128, GNU MPFR.

I. INTRODUCTION

The IEEE 754-2008 standard [6] defines — among others
— the binary floating-point formats binary64 and binary128.
They provide respectively a precision of 53 and 113 bits. Those
standard formats are used in many applications, therefore it is
very important to provide fast arithmetic for them, either in
hardware or in software.

GNU MPFR [3] (MPFR for short) is a reference software
implementation of the IEEE 754-2008 standard in arbitrary
precision. MPFR guarantees correct rounding for all its op-
erations, including elementary and special functions [6, Table
9.1]. It provides mixed-precision operations, i.e., the precision
of the input operand(s) and the result may differ.

Since 2000, several authors have cited MPFR, either to use
it for a particular application, or to compare their own library
to MPFR [2], [4], [7], [8]. Most of those comparisons are in
the case when all operands have the same precision, which is
usually one of the standard binary64 or binary128 formats.

Since its 4.3.0 release, GCC uses MPFR in its middle-
end to generate correctly rounded compile-time results re-
gardless of the math library implementation or floating-point
precision of the host platform. Several interval arithmetic
libraries depend on MPFR: MPFI [12], GNU Octave interval
package1, libieeep17882, Moore [10]. The Sage computer
algebra system3 uses MPFR with a default precision of 53
bits for its numerical computations.

The contributions of this article are: (i) a description of
new algorithms for basic floating-point arithmetic in one- or
two-word precision, (ii) an implementation in MPFR of those
algorithms with corresponding timings for basic arithmetic
and mathematical functions, (iii) a description of a new
faithful rounding mode, with corresponding implementation
and timings in MPFR.

Notations: We use p to denote the precision in bits. A limb,
following GMP terminology [5], is an unsigned integer that
fits in a machine word, and is assumed to have 64 bits here.
Some algorithms are also valid when the radix is not 264, we

1https://octave.sourceforge.io/interval/
2https://github.com/nehmeier/libieeep1788
3http://www.sagemath.org

then denote β the radix, assumed to be a power of two. We call
left shift (resp. right shift) a shift towards the most (resp. least)
significant bits. We use a few shorthands: HIGHBIT denotes
the limb 263; ONE denotes the limb 1; GMP_NUMB_BITS,
which is the number of bits in a limb, is replaced by 64.
In the source code, a0 and emin are written a0 and emin
respectively.

II. BASIC ARITHMETIC

A. The MPFR Internal Format

Internally, a MPFR number is represented by a precision p,
a sign s, an exponent e, denoted by EXP(·), and a significand
m. The significand is a multiple-precision natural integer
represented by an array of n = dp/64e limbs: we denote by
m[0] the least significant limb, and by m[n − 1] the most
significant one. For a regular number — neither NaN, nor
±∞, nor ±0 — the most significant bit of m[n− 1] must be
set, i.e., the number is always normalized4. The corresponding
number is:

(−1)s · (m · 2−64n) · 2e,

i.e., the rational significand m/264n lies in [1/2, 1[.
When the precision p is not an exact multiple of 64, the

least sh = 64n − p bits of m[0] are not used. By convention
they must always be zero, like the 3 bits below (drawing the
most significant limbs and bits on the left):

1xxxxxxxxxxx︸ ︷︷ ︸
m[n−1]

xxxxxxxxxxxx︸ ︷︷ ︸
m[n−2]

· · · xxxxxxxxx000︸ ︷︷ ︸
m[0]

In the description of the algorithms below, those sh trailing
bits will be represented by 3 zeros.

In this section, we describe basic algorithms used to perform
arithmetic on 1 or 2 limbs (addition and subtraction, multi-
plication, division and square root) for regular inputs, after
non-regular inputs have been dealt with. Those algorithms
assume the number sh of unused bits is non-zero. As a
consequence, on a 64-bit processor, if efficiency is required,
it is recommended to use precision p = 63 or p = 127 instead
of p = 64 or p = 128, whenever possible. In the following,
we assume that all input and output arguments have the same
precision p. Note that MPFR functions have to take into
account that input and output variables can be the same, for
example mpfr_sub (a, b, a, rnd_mode) will round
b− a and store the result in a.

In addition to correct rounding, all MPFR functions return a
ternary value, giving the sign of the rounding error: 0 indicates
that the computed correctly rounded result y exactly equals the
infinite precision value f(x) (no rounding error did occur);

4MPFR does not have subnormals, but provides a function to emulate them
for IEEE 754 support.

2

a positive value indicates that y > f(x), and a negative
value indicates that y < f(x). Determining that ternary value
is sometimes more expensive than determining the correct
rounding: for example if two high-precision numbers x and
1 − x are added with a low target precision, the rounding
error will usually be less than 1

2ulp, thus we can easily decide
that the correctly rounded result to nearest is 1, but more work
is needed to determine the ternary value.

B. Addition

We describe here the internal mpfr_add1sp1 function for
0 < p < 64. Let b and c be the input operands, and a the
result. By “addition”, we mean that b and c have same sign.
Their significands consist of one limb only: bp[0] and cp[0],
and their exponents are bx and cx. Since b and c are regular
numbers, we have 263 ≤ bp[0], cp[0] < 264. If bx = cx, the
addition of the significands always produces a carry: 264 ≤
bp[0] + cp[0] < 265:

bp[0]︷ ︸︸ ︷
1xxxxxxxx000
1yyyyyyyy000︸ ︷︷ ︸

cp[0]

We thus simply add the two shifted significands — since p <
64, we lose no bits in doing this — and increase bx by 1 (this
will be the result exponent):

a0 = (bp[0] >> 1) + (cp[0] >> 1);
bx ++;

Since sh = 64 − p is the number of unused bits of a0, the
round bit is bit sh − 1 from a0, which we set to 0 before
storing in memory, and the sticky bit is always 0 in this case:

rb = a0 & (ONE << (sh - 1));
ap[0] = a0 ^ rb;
sb = 0;

The case bx > cx is treated similarly: we have to shift cp[0]
by d = bx − cx bits to the right. We distinguish three cases:
d < sh where the shifted cp[0] fully overlaps with ap[0], sh ≤
d < 64, where the shifted cp[0] partly overlaps with ap[0], and
d ≥ 64, where the shifted cp[0] does not overlap with ap[0]. In
the last case bx < cx, we simply swap the inputs and reduce
to the bx > cx case.

Now consider the rounding. All rounding modes are first
converted to nearest, toward zero or away from zero. At this
point, ap[0] contains the current significand, bx the exponent,
rb the round bit and sb the sticky bit. No underflow is possible
in the addition, since the inputs have same sign: |b + c| ≥
min(|b|, |c|). An overflow occurs when bx > emax. Otherwise
we set the exponent of a to bx. If rb = sb = 0, we return 0
as ternary value, which means the result is exact, whatever the
rounding mode. If rounding to nearest, we let ap[0] unchanged
when either rb = 0, or rb 6= 0 and sb = 0 and bit sh of ap[0]
is 0 (even rule); otherwise we add one ulp, i.e., 2sh to ap[0]. If
rounding toward zero, ap[0] is unchanged, and we return the
opposite of the sign of a as ternary value, which means that
the computed value is less than b+c when b, c > 0 (remember
the exact case rb = sb = 0 was treated before). If rounding

away from zero, we add one ulp to ap[0]; while doing this,
we might have a carry, which might in turn give an overflow.

C. Subtraction

We detail here the mpfr_sub1sp2 function, in the case
where the exponent difference d = bx− cx satisfies 0 < d <
64. In that case, the significand of c overlaps with the upper
word of the significand of b. We align c on b, giving 3 limbs
cp[1] >> d, t and sb:

bp[1]︷ ︸︸ ︷
1xxxxxxxxxxx

bp[0]︷ ︸︸ ︷
xxxxxxxxx000

← d bits→ 1yyyyyyyyyyy︸ ︷︷ ︸
cp[1]

yyyyyyyyy000︸ ︷︷ ︸
cp[0]

yyyyyyyyyyyy︸ ︷︷ ︸
cp[1] >> d

yyyyyyyyyyyy︸ ︷︷ ︸
t

yyyyyy000000︸ ︷︷ ︸
sb

The goal is to subtract these 3 limbs from b, word by
word. While this 3-word subtraction could be done with only
3 instructions on a typical processor, we need to write a
portable C code, which is more complex to express the borrow
propagation in C (and unfortunately, compilers are not yet able
to detect patterns to generate only these 3 instructions):

t = (cp[1] << (64 - d)) | (cp[0] >> d);
a0 = bp[0] - t;
a1 = bp[1] - (cp[1] >> d) - (bp[0] < t);
sb = cp[0] << (64 - d);
if (sb) {

a1 -= (a0 == 0);
a0 --;
sb = -sb; /* 2^64 - sb */ }

At this point the exact subtraction corresponds to a1 +
2−64a0 + 2−128sb, where a1 and a0 cannot be both zero: if
d ≥ 2 then a1 ≥ 262; if d = 1, since bit 0 of cp[0] is 0
because p < 128, necessarily sb = 0. However we can have
a1 = 0, in which case we shift a by one word to the left, and
decrease the exponent by 64 (this can only occur for d = 1,
in which case sb = 0):

if (a1 == 0) {
a1 = a0;
a0 = 0;
bx -= 64; }

Now a1 6= 0, and we shift a to the left by the number of
leading zeros of a1:

count_leading_zeros (cnt, a1);
if (cnt) {

ap[1] = (a1 << cnt) | (a0 >> (64-cnt));
a0 = (a0 << cnt) | (sb >> (64-cnt));
sb <<= cnt;
bx -= cnt; }

else
ap[1] = a1;

We now compute the round and sticky bit, and set to zero the
last sh bits of a0 before storing it in memory, where mask =
2sh − 1:

rb = a0 & (ONE << (sh - 1));
sb |= (a0 & mask) ^ rb;
ap[0] = a0 & ~mask;

The rounding is done exactly like for the addition, except
in the subtraction we cannot have any overflow since here

3

all arguments have the same precision, but we can have an
underflow.

D. Multiplication
The multiplication is easy to implement with the internal

format chosen for MPFR. We detail here the mpfr_mul_1
function, for 0 < p < 64. We first add the two exponents
and multiply the two input significands bp[0] and cp[0] us-
ing GMP’s umul_ppmm macro, which multiplies two 64-bit
words, and stores the upper and lower words in a0 and sb
here:

ax = EXP(b) + EXP(c);
umul_ppmm (a0, sb, bp[0], cp[0]);

Since 263 ≤ bp[0], cp[0] < 264, we have 2126 ≤ bp[0]cp[0] =
a0 · 264 + sb < 2128. The upper word a0 therefore satisfies
262 ≤ a0 < 264, and in case 262 ≤ a0 < 263, we have to
shift a0 and sb by one bit to the left and decrease the output
exponent:

if (a0 < HIGHBIT) {
ax --;
a0 = (a0 << 1) | (sb >> 63);
sb = sb << 1; }

The round and sticky bits are computed exactly like in the
2-limb subtraction, and the sign of the result is set:

rb = a0 & (ONE << (sh - 1));
sb |= (a0 & mask) ^ rb;
ap[0] = a0 & ~mask;
SIGN(a) = MULT_SIGN (SIGN (b), SIGN (c));

For the multiplication, both overflow and underflow can
happen. Overflow is easy to handle. For underflow, MPFR
signals underflow after rounding: this means that underflow
occurs when the rounded result — with an unbounded ex-
ponent range — has an exponent smaller that emin. Thus
for example, when ax = emin − 1, rb or sb is non-zero,
ap[0] = 111...111000 and we round away from zero, there
is no underflow. Apart from this special case, the rounding
is the same as for the subtraction. (This special case where
ax = emin − 1 and nevertheless no underflow occurs cannot
happen in the subtraction, since b and c are multiples of
2emin−p, likewise for b − c; thus if the exponent ax of the
difference is smaller than emin, the difference b − c is exact,
and rb = sb = 0.)

In the mpfr_mul_2 function, which multiplies b1 ·264+b0
by c1 · 264 + c0, the product b0c0 of the low limbs contributes
to less than 1 to the second most significant limb of the
full 4-limb product (before a potential left shift by 1 bit to
get a normalized result). Thus we only perform 3 calls to
umul_ppmm, to compute b1c1, b1c0 and b0c1. Moreover, we
ignore the lower limbs of b1c0 and b0c1, which yields a 127-
or 128-bit approximate product with error less than 3.

E. Division

The division code for 1 or 2 limbs first computes an
approximation of the quotient, and if this approximation is not
sufficient to determine the correct rounding, an exact quotient
and remainder are computed, starting from that approximation.
The algorithms use GMP’s invert_limb function (cur-
rently re-implemented in MPFR since it is not yet in GMP’s
public interface). Given a limb v such that β/2 ≤ v < β,

invert_limb returns the limb b(β2 − 1)/vc − β, which is
called the reciprocal of v.

All division functions first check whether the dividend
significand u is larger or equal to the divisor significand v,
where βn/2 ≤ u, v < βn. If that occurs, v is subtracted from
u, which generates an extra leading quotient bit. After that
subtraction, we get u− v < v since u < βn ≤ 2v. Therefore
in the following we assume u < v.

We detail in Algorithm DivApprox1 how we compute an
approximate quotient q for the mpfr_div_1 function, which
divides two one-limb significands. For β = 264, the approx-

Algorithm 1 DivApprox1
Input: integers u, v with 0 ≤ u < v and β/2 ≤ v < β
Output: integer q approximating uβ/v

1: compute an approximate reciprocal i of v, satisfying

i ≤ b(β2 − 1)/vc − β ≤ i+ 1 (1)

2: q = biu/βc+ u

imate reciprocal i in step 1 is obtained using the variable
v3 from Algorithm 2 (RECIPROCAL_WORD) in [11]; indeed
Theorem 1 from [11] proves that — with our notation —
0 < β2 − (β + v3)v < 2v, from which the inequalities (1)
follow.

Theorem 1: The approximate quotient returned by Algo-
rithm DivApprox1 satisfies

q ≤ buβ
v
c ≤ q + 2.

Proof. Step 2 of DivApprox1 is simply step 1 of Algorithm 1
(DIV2BY1) from [11]. If i is the exact reciprocal i0 := b(β2−
1)/vc−β, and q0 := bi0u/βc+u is the corresponding quotient,
it is proven in [11] that the corresponding remainder r0 =
βu− q0v satisfies 0 ≤ r0 < 4v. However the upper bound 4v
includes 2v coming from a lower dividend term which is zero
here, thus we have r0 < 2v.

In the case i = i0−1, then q ≤ q0 ≤ q+1, thus r = βu−qv
satisfies r < 3v.

As a consequence of Theorem 1, we can decide the correct
rounding except when the last sh−1 bits from q are 000...000,
111...111, or 111...110, which occurs with probability less
than 0.15% for the binary64 format. If the rare cases where we
cannot decide the correct rounding, we compute r = βu− qv,
subtract v and increment q at most two times until r < v, and
deduce the round and sticky bits from the updated quotient q
and remainder r.

The upper bound q + 2 is tight: it is attained for (u, v) =
(10, 12) in radix β = 18, and for (u, v) = (21, 24) in power-
of-two radix β = 32, taking i = i0 − 1 in step 1.

For the 2-limb division, we use a similar algorithm (Div-
Approx2), which approximates the integer quotient of the
significands. Since this algorithm is not specific to radix 264,
we describe it for a general radix β.

Algorithm DivApprox2 first computes a lower approxima-
tion q1 of the upper quotient word, from the upper word u1 of
the dividend and the approximate reciprocal of the upper word

4

Algorithm 2 DivApprox2
Input: integers u, v with 0 ≤ u < v and β2/2 ≤ v < β2

Output: approximate quotient q of uβ2/v
1: write u = u1β+u0 and v = v1β+v0 with 0 ≤ ui, vi < β
2: compute x satisfying

x ≤ bβ2/(v1 + 1)c ≤ x+ 1

3: q1 = bu1x/βc
4: r = u− dq1v/βe (equals b(uβ − q1v)/βc)
5: q0 = brx/βc
6: return q = q1β + q0

v1 of the divisor. The end of Algorithm DivApprox2 can be
seen as an integer version of Karp-Markstein’s algorithm for
the division [9], or more simply, once the remainder has been
approximated by r, we use the reciprocal again to approach
the lower quotient word.

In step 2, x can be computed as follows: if v1 + 1 = β,
take x = β, otherwise (assuming β is a power of two) v1 +1
cannot divide β2 exactly, thus bβ2/(v1+1)c = b(β2−1)/(v1+
1)c, and we can take the same approximate reciprocal as in
Algorithm DivApprox1 (with v1+1 instead of v).5 Write r =
r1β+r0 with 0 ≤ r0 < β. As we will see later, the upper word
satisfies r1 ≤ 4. Step 6 becomes q = q1β + r1x + br0x/βc,
where the computation of r1x is done using a few additions
instead of a multiplication.

Theorem 2: For β ≥ 5, the approximate quotient returned
by Algorithm DivApprox2 satisfies

q ≤ buβ
2

v
c ≤ q + 21.

Proof. The input condition u < v implies u1 ≤ v1, thus since
x ≤ β2/(v1+1), it follows q1 ≤ u1β/(v1+1) < β, thus q1 fits
in one limb. We have β2 = (v1+1)x+κ with 0 ≤ κ ≤ 2v1+1.
Step 3 gives u1x = q1β + t, with 0 ≤ t < β. Then

uβ − q1v = uβ − q1(v1β + v0)

= uβ − q1(v1 + 1)β + q1(β − v0)
= uβ − (v1 + 1)(u1x− t) + q1(β − v0)
= uβ − (β2 − κ)u1 + (v1 + 1)t+ q1(β − v0)
= u0β + κu1 + (v1 + 1)t+ q1(β − v0).

Write v1 = αβ with 1/2 ≤ α < 1. Thus

uβ − q1v ≤ (β − 1)β + (2αβ + 1)(αβ)

+(αβ + 1)(β − 1) + (β − 1)β

< β2(2 + α+ 2α2).

This proves that r < 5β at step 4.
From r < β(2+α+2α2) it follows q0 ≤ rx/β < (2+α+

2α2)x, thus since x ≤ β2/(v1 + 1) < β/α, q0 < (2/α+ 1 +

5In practice, like in Algorithm DivApprox1, x = β + x′ is split between
one implicit upper bit β and a lower part x′, that for simplicity we do not
distinguish here. In the real code, step 3 therefore becomes q1 = u1 +
bu1x′/βc, and step 5 becomes q0 = r + brx′/βc.

2α)β (note that q0 might exceed β). Let rx = q0β + δq , and
uβ − q1v = βr + δr, with 0 ≤ δq, δr < β. Then

uβ2 − qv = β(βr + δr)− q0v
= β2r + βδr − q0(v1 + 1)β + q0(β − v0)
= β2r + βδr − (rx− δq)(v1 + 1) + q0(β − v0)
= β2r + βδr − r(β2 − κ) + δq(v1 + 1) + q0(β − v0)
= βδr + rκ+ δq(v1 + 1) + q0(β − v0).

Bounding βδr by β2 − β, rκ by β(2 + α + 2α2)(2αβ + 1),
δq(v1+1) by (β− 1)(αβ+1), and q0(β− v0) by (2/α+1+
2α)β2, it follows:

0 ≤ uβ2 − qv < β2(
2

α
+2+ 7α+2α2 +4α3) + β(2 + 2α2).

Dividing by v ≥ αβ2 we get:

0 ≤ uβ2

v
− q < 2

α2
+

2

α
+7+ 2α+4α2 +

1

β
(
2

α
+2α). (2)

The right-hand side is bounded by 21+5/β for 1/2 ≤ α < 1,
thus for β ≥ 5 we have q ≤ uβ2/v < q + 22.

The largest error we could find is 20, for example for β =
4096, u = 8298491, v = 8474666.6 With β = 264, on 107

random inputs, the proportion of inputs for which r1 = 0
is 29%, r1 = 1 is 59%, r1 = 2 is 12%, r1 = 3 is 0.2%,
and r1 = 4 is 0%; and the average difference between q and
buβ2/vc is 2.8.

F. Square Root

Like for the division, we first compute an approximate
result for the square root, and if we are not able to get the
correctly rounded result, we compute an exact square root with
remainder from that approximation. We first outline the exact
algorithm for 1 limb. In case the input exponent is odd, we
shift the input significand u0 by one bit to the right (this is
possible without any bit lost because p < 64). Then given the
(possibly shifted) limb u0, one computes an integer square
root:

u0 · 264 = r20 + s, 0 ≤ s ≤ 2r0.

Since 262 ≤ u0 < 264, we have 2126 ≤ u0 · 264 < 2128, thus
263 ≤ r0 < 264: r0 has exactly 64 significant bits. The round
and sticky bits are then computed from the 64− p bits of r0
and from the remainder s.

The expensive part is the computation of the (approximate
or exact) integer square root. Since MPFR has to be inde-
pendent of the machine floating-point hardware, we should
use integer operations only. GMP’s mpn_sqrtrem function
implements the algorithm described in [13], which relies on
integer division. We can do better by first computing an
approximate reciprocal square root.

1) Approximate Reciprocal Square Root: Algorithm 3 uses
an integer variant of Newton’s iteration for the reciprocal
square root: v0 is a 11-bit value such that x0 := v0/2

10

approximates the root of a0 := d10/2
10, v1 is a 22-bit

6If β2 + 1 has no divisors in [β/2 + 1, β], as for β = 232 and β = 264,
then we cannot have κ = 2v1 + 1, the 1/β term disappears in Eq. (2), and
the bound becomes uβ2/v < q + 21.

5

Algorithm 3 RecSqrtApprox1
Input: integer d with 262 ≤ d < 264

Output: integer v3 approximating s = b296/
√
dc

1: d10 = b2−54dc+ 1
2: v0 = b

√
230/d10c (table lookup)

3: d37 = b2−27dc+ 1
4: e0 = 257 − v20d37
5: v1 = 211v0 + b2−47v0e0c
6: e1 = 279 − v21d37
7: v2 = 210v1 + b2−70v1e1c
8: e2 = 2126 − v22d
9: v3 = 233v2 + b2−94v2e2c

value such that x1 := v1/2
21 approximates the root of

a1 := d37/2
37, v2 is a 32-bit value such that x2 := v2/2

31

approximates the root of a2 := d37/2
37, and v3 is a 65-

bit value such that x3 := v3/2
64 approximates the root of

a3 := d/264.
Theorem 3: The value v3 returned by Algorithm 3 differs

by at most 8 from the reciprocal square root:

v3 ≤ s := b296/
√
dc ≤ v3 + 8.

Lemma 1: Assume positive real numbers x0, x1, ..., xn are
computed using the following recurrence, with x0 ≤ a−1/20 :

xk+1 = xk +
xk
2
(1− ak+1x

2
k), (3)

where a0 ≥ a1 ≥ · · · ≥ an ≥ a > 0, then:

x1 ≤ x2 ≤ · · · ≤ xn ≤ a−1/2.

Proof. It follows from [1, Lemma 3.14] that xk+1 ≤ a
−1/2
k+1 .

Together with x0 ≤ a−1/20 , this gives 1− akx2k ≥ 0 for all k.
Since ak+1 ≤ ak, it follows that 1−ak+1x

2
k ≥ 1−akx2k ≥ 0.

Put into (3) this proves xk+1 ≥ xk, and thus the lemma since
xk+1 ≤ a−1/2k+1 and ak+1 ≥ a imply xk+1 ≤ a−1/2.

This lemma remains true when the correction term xk

2 (1 −
ak+1x

2
k) in Eq. (3) — which is thus non-negative — is

rounded down towards zero. By applying this result to x0 =
v0/2

10, x1 = v1/2
21, x2 = v2/2

31, x3 = v3/2
64, with

a0 = d10/2
10 ≥ a1 = d37/2

37 = a2 ≥ a3 = d/264, it follows
1 ≤ v0/2

10 ≤ v1/2
21 ≤ v2/2

31 ≤ v3/2
64 ≤ 232/

√
d ≤ 2,

thus 210 ≤ v0 < 211, 221 ≤ v1 < 222, 231 ≤ v2 < 232,
264 ≤ v3 < 265 (the right bounds are strict because in the only
case where 232/

√
d = 2, i.e., d = 262, we have v3 = 265−3).

Proof of Theorem 3. The construction of the lookup table
ensures that v0 < 211 and e0 ≥ 0 at step 4 of the algorithm.
By exhaustive search on all possible d10 values, we get:

0 ≤ e0 < 249.263.

Thus at step 4, we can compute 257 − v20d37 in 64-bit
arithmetic, which will result in a number of at most 50 bits,
and step 5 can be done in 64-bit arithmetic, since the product
v0e0 will have at most 61 bits.

Let δ1 be the truncation error in step 5, with 0 ≤ δ1 < 1:

2−47v0e0 = b2−47v0e0c+ δ1.

Then:

e1 = 279 − v21d37 = 279 − d37((v1 + δ1)− δ1)2

= 279 − d37(v1 + δ1)
2 + d37δ1(2v1 + δ1).

Since v21d37 ≤ 279 — because e1 ≥ 0 —, then v1d37 ≤
279/v1 ≤ 258 because 221 ≤ v1. It follows that γ1 :=
d37δ1(2v1 + δ1) satisfies 0 ≤ γ1 < 259 + 237, and:

e1 − γ1 = 279 − d37(v1 + δ1)
2

= 279 − d37(211v0 + 2−47v0e0)
2

= 279 − d37v20(211 + 2−47e0)
2.

Now, using v20d37 = 257 − e0:

e1 − γ1 = 279 − (257 − e0)(211 + 2−47e0)
2

= 279 − (257 − e0)(222 + 2−35e0 + 2−94e20)

= 279 − (279 − 2−35e20 + 2−37e20 − 2−94e30)

= 2−35e20(3/4 + 2−59e0).

Since e0 < 249.263 we deduce 3/4 + 2−59e0 < 2−0.412 and

0 ≤ e1 < 2−35298.5262−0.412 + 259 + 237 < 263.196.

Therefore e1 < 264 and e1 can be computed using integer
arithmetic modulo 264. Since d10 = b2−27(d37 − 1)c + 1, e1
only depends on d37, so that we can perform an exhaustive
search on the 237− 235 possible values of d37. By doing this,
we find that the largest value of e1 is obtained for d37 =
33 · 230 +1, which corresponds to d10 = 265; this gives e1 =
10263103231123743388 < 263.155.

Let δ2 be the truncation error in step 7, 0 ≤ δ2 < 1:

2−70v1e1 = b2−70v1e1c+ δ2.

Then:

e2 = 2126 − v22d = 2126 − d((v2 + δ2)− δ2)2

= 2126 − d(v2 + δ2)
2 + dδ2(2v2 + δ2).

Since v2 ≥ 231 and v22d ≤ 2126, v2d ≤ 295, thus dδ2(2v2 +
δ2) < 296 + 264.

e2 − (296 + 264) ≤ 2126 − d(v2 + δ2)
2

= 2126 − d(210v1 + 2−70v1e1)
2

= 2126 − dv21(210 + 2−70e1)
2.

Now writing d = 227d37−ρ with 0 < ρ ≤ 227, using d37v21 =
279 − e1, and writing ε = 296 + 264 + ρv21(2

10 + 2−70e1)
2:

e2 − ε ≤ 2126 − 227(279 − e1)(210 + 2−70e1)
2

= 2126 − (279 − e1)(247 + 2−32e1 + 2−113e21)

= 2126 − (2126 − 2−32e21 + 2−34e21 − 2−113e31)

= 2−32e21(3/4 + 2−81e1).

Since e1 < 263.155 we deduce 3/4 + 2−81e1 < 2−0.415, and:

ρv21(2
10 + 2−70e1)

2 ≤ 271(220 + 25 + 2−12).

Thus ε ≤ 296 + 264 + 291 + 276 + 259 and:

0 ≤ e2 < 2−322126.312−0.415 + ε < 296.338. (4)

6

Here again, an exhaustive search is possible, since for a
given value of d37, e2 is maximal when d = 227(d37 −
1): the largest value of e2 is obtained for d37 =
132607222902, corresponding to d10 = 989, with e2 =
81611919949651931475229016064 < 296.043.

The final error is estimated using the truncation error δ3 in
step 9:

2−94v2e2 = b2−94v2e2c+ δ3

e3 = 2192 − v23d = 2192 − d((v3 + δ3)− δ3)2

= 2192 − d(v3 + δ3)
2 + dδ3(2v3 + δ3).

Since v23d ≤ 2192, and v3 ≥ 264, it follows v3d ≤ 2128, thus
γ3 := dδ3(2v3 + δ3) < 2129 + 264.

e3 − γ3 = 2192 − d(v3 + δ3)
2

= 2192 − d(233v2 + 2−94v2e2)
2

= 2192 − dv22(233 + 2−94e2)
2.

Now since dv22 = 2126 − e2:

e3 − γ3 ≤ 2192 − (2126 − e2)(233 + 2−94e2)
2

= 2192 − (2126 − e2)(266 + 2−60e2 + 2−188e22)

= 2192 − (2192 − 2−60e22 + 2−62e22 − 2−188e32)

= 2−60e22(3/4 + 2−128e2).

Since e2 < 296.043 we deduce 3/4 + 2−128e2 < 2−0.415:

0 ≤ e3 < 2−602192.0862−0.415 + 2129 + 264 < 2131.882.

Again by exhaustive search, restricted on the values of d37
that give a sufficient large value of e2, we found the maximal
value of e3 satisfies e3 < 2131.878.

Now, given v3 returned by Algorithm 3, let c ≥ 0
be the real number such that (v3 + c)2d = 2192. Since
2192 − v23d < 2131.878, it follows 2v3cd < 2131.878, thus
c < 2131.878/(2v3d). Since v23d = 2192 − e3, and v3 < 265,
we have v3d ≥ (2192 − 2131.878)/265 > 2126.999. Therefore
c < 23.879 < 15.

By doing again this error analysis for a given value of d37,
we get a tighter bound involving the δi truncation errors. For
example we can bound d37δ1(2v1 + δ1) by d37(2v1,max + 1),
where v1,max =

√
279/d37. This yields a finer bound. By

exhaustive search on all possible d37 values, we found the
maximal error is at most 8.

The bound of 8 is optimal, since it is attained for d =
4755801239923458105.

Remark 1: one can replace b2−94v2e2c in step 9 by
b2−29v2e′2c, where e′2 = b2−65e2c has at most 32 bits, like
v2, and thus the product v2e′2 can be computed with a low
64-bit product, which is faster than a full product giving both
the low and high words. If we write e2 = 265e′2 + r with
0 ≤ r < 265, then:

2−94v2e2 − 2−29v2e
′
2 = 2−94v2r < 23.

This increases the maximal error from 8 to 15, since for the
only value d37 = 35433480442 that can yield c ≥ 8 with the
original step 9, we have c < 8.006 and v2 = 4229391409,
thus c+ 2−94v2r < 15.9.

2) The mpfr_sqrt1 function: The mpfr_sqrt1 func-
tion computes the square root of a 1-limb number n using
Algorithm 4 (SqrtApprox1). In step 1, it computes a 32-bit
approximation of 263/

√
n using the value v2 of Algorithm 3

(called with d = n), then uses this approximation to deduce the
exact integer square root y of n (step 2) and the corresponding
remainder z (step 3), and finally uses again x to approximate
the correction term t (step 4) to form the approximation s in
step 5. Steps 2 and 3 can be implemented as follows. First
compute an initial y = b2−32xb2−31ncc and the correspond-
ing remainder z = n − y2. Then as long as z ≥ 2y + 1,
subtract 2y + 1 to z and increment y by one. Note that since
x2n < 2126, xn/231 < 295/n ≤ 232, thus xb2−31nc fits on
64 bits.

Algorithm 4 SqrtApprox1
Input: integer n with 262 ≤ n < 264

Output: integer s approximating
√
264n

1: compute an integer x approximating 263/
√
n with

x ≤ 263/
√
n

2: y = b
√
nc (using the approximation x)

3: z = n− y2
4: t = b2−32xzc
5: s = y · 232 + t

Theorem 4: If the approximation x in step 1 is the value
v2 of Algorithm 3, then Algorithm SqrtApprox1 returns s
satisfying

s ≤ b
√
264nc ≤ s+ 7.

Proof Write n = α264 with 1/4 ≤ α < 1, x = 263/
√
n− δx,

y =
√
n− δy and t = 2−32xz− δt with 0 ≤ δy, δt < 1. Since

x2n > 2126−296.338 from Eq. (4), x
√
n > 263−232.339, thus

263 − x
√
n = δx

√
n < 233.339:

264n− s2 = 264n− (y · 232 + t)2

= 264(n− y2)− 233yt− t2

= 264z − 233yt− t2. (5)

We first bound 264n−s2 by above, assuming it is non-negative:

233yt = 2xyz − 233δty

= (264/
√
n− 2δx)(

√
n− δy)z − 233δty (6)

thus since δx
√
n < 233.339 and δy, δt < 1:

264z − 233yt ≤ (2δx
√
n+ 264/

√
n)z + 233y

= 232z(22.339
√
α+ 1/

√
α) + 265

√
α,

where we used y ≤
√
n = 232

√
α. Also:

z = n− (
√
n− δy)2 ≤ 2

√
nδy ≤ 233α1/2.

Substituting this in the bound for 264n− s2 gives:

264n− s2 ≤ 264z − 233yt ≤ 265f(α),

with
f(α) = 22.339α+ 1 + α1/2.

7

Let c ≥ 0 such that 264n = (s+c)2. Then 264n−s2 = 2sc+c2,
which implies 2sc < 265f(α), thus

c < 264f(α)/s. (7)

Since s ≥ 263, and the maximum of f(α) for 1/4 ≤ α ≤ 1
is less than 7.06 (attained at α = 1), we get c < 14.12.
Now this gives s >

√
264n − 15 >

√
α264/1.01, therefore

c < 1.01 · f(α)/
√
α. Now the function f(α)/

√
α is bounded

by 7.06 for 1/4 ≤ α ≤ 1, the maximum still attained at
α = 1. Therefore c < 1.01 · 7.06 < 7.14, which proves the
upper bound 7.

Now assume 264n − s2 < 0. Since 264z − 233yt ≥ 0 by
Eq. (6), we have 264n − s2 ≥ −t2 by Eq. (5). Since x ≤
263/
√
n and z ≤ 233

√
α:

t ≤ 2−32xz < 232.

(The last inequality is strict because we can have t = 232 only
when x = 263/

√
n, which can only happen when n = 262,

but in that case z = 0.) This proves that the product xz at step
4 can be computed modulo 264. Now write 264n = (s − c)2
with c > 0:

264n− s2 ≥ −t2 > −264

(s− c)2 − s2 > −264

2sc < 264 + c2.

This inequality has no solutions for 263 ≤ s − c < 264.
Indeed, since we assumed 264n − s2 < 0, this implies s >
263, because for s = 263 we have s2 ≤ 264n. But then if
s = 263+u with u ≥ 1 we would need 264c+2uc < 264+c2,
which we can rewrite as 2u < 264/c+c−264. For 1 ≤ c ≤ 264,
the expression 264/c+ c is bounded by 264 +1, which yields
2u < 1, having no integer solutions u ≥ 1.

3) The mpfr_sqrt2 function: The mpfr_sqrt2 func-
tion first computes a 128-bit approximation of the square root
using Algorithm 5, where in step 1 we can use Algorithm 3,
with the variant of Remark 3, achieving the bound δ = 16. Al-

Algorithm 5 SqrtApprox2
Input: integer n = n1 · 264 + n0 with 262 ≤ n1 < 264 and

0 ≤ n0 < 264

Output: integer s approximating
√
2128n

1: compute an integer x approximating 296/
√
n1 with

0 ≤ 296/
√
n1 − x < δ := 16

2: y = b232√n1c (using the approximation x)
3: z = n− y2
4: t = bxz/265c
5: s = y · 264 + t

gorithm SqrtApprox2 is an integer version of Karp-Markstein’s
algorithm for the square root [9], which incorporates n/2128

in Newton’s iteration for the reciprocal square root.
Theorem 5: Algorithm SqrtApprox2 returns s satisfying

s− 4 ≤ b
√
2128nc ≤ s+ 26.

By construction, we have x ≤ 296/
√
n1 + 1 < 2128/

√
n,

therefore y ≤ n1x/2
64 ≤ nx/2128 <

√
n. As a consequence,

we have z > 0 at step 3.
The proof of Theorem 5 is very similar to that of Theorem 4,

and can be found in the appendix.
The largest difference we found is 24, for example with n =

264 · 18355027010654859995 − 1, taking x = b296/√n1c −
15, whereas the actual code might use a larger value. The
smallest difference we found is −1, for example with n =
264 · 5462010773357419421− 1, taking x = b296/√n1c.

III. FAITHFUL ROUNDING

In addition to the usual rounding modes, faithful rounding
(MPFR_RNDF) will be supported in MPFR 4 by the most basic
operations. We say that an operation is faithfully rounded if
its result is correctly rounded toward −∞ or toward +∞. The
actual rounding direction is indeterminate: it may depend on
the argument, on the platform, etc. (except when the true result
is exactly representable, because in this case, this representable
value is always returned, whatever the rounding mode). From
this definition, the error on the operation is bounded by 1 ulp,
like in the directed rounding modes. Moreover, the ternary
value is unspecified for MPFR_RNDF.

The advantage of faithful rounding is that it can be com-
puted more quickly than the usual roundings: computing a
good approximation (say, with an error less than 1/2 ulp) and
rounding it to the nearest is sufficient. So, the main goal of
MPFR_RNDF is to speed up the rounding process in internal
computations. Indeed, we often do not need correct rounding
at this level, just a good approximation and an error bound.

In particular, MPFR_RNDF allows us to completely avoid
the Table Maker’s Dilemma (TMD), either for the rounding
or for the ternary value.

MPFR provides a function mpfr_can_round taking in
entry: an approximation to some real, unknown value; a
corresponding error bound (possibly with some given direc-
tion); a target rounding mode; a target precision. The goal
of this function is to tell the caller whether rounding this
approximation to the given target precision with the target
rounding mode necessarily provides the correct rounding of
the unknown value. For correctness, it is important that if
the function returns true, then correct rounding is guaranteed
(no false positives). Rare false negatives could be accept-
able, but for reproducibility, it was chosen to never return a
false negative with the usual rounding modes. When faithful
rounding was introduced, a new semantic had to be chosen
for the MPFR_RNDF rounding mode argument: true means
that rounding the approximation in an adequate rounding
mode can guarantee a faithful rounding of the unknown
value. Reproducibility was no longer important as in general
with faithful rounding. One reason to possibly accept false
negatives here was to avoid the equivalent of the TMD for
this function. However, a false negative would often mean a
useless recomputation in a higher precision. Since it is better to
spend a bit more time (at most linear) to avoid a false negative
than getting a very costly reiteration in a higher precision, it
was chosen to exclude false negatives entirely, like with the
other rounding modes.

8

MPFR 3.1.5 MPFR 4.0-dev
precision 53 113 53 113
mpfr_add 42 43 18 22
mpfr_sub 42 43 20 24
mpfr_mul 42 56 22 32
mpfr_sqr 61 66 17 29
mpfr_div 115 127 45 64
mpfr_sqrt 149 236 43 69

TABLE I
AVERAGE NUMBER OF CYCLES FOR BASIC OPERATIONS.

T-RNDN F-RNDN F-RNDF
mpfr_add 17.6 17.7 17.6
mpfr_sub 19.6 20.7 20.7
mpfr_mul 21.7 24.7 15.1
mpfr_sqr 16.9 19.4 13.2
mpfr_div 47.3 47.5 45.4
mpfr_sqrt 50.2 50.5 47.8

TABLE II
AVERAGE NUMBER OF CYCLES FOR BASIC OPERATIONS IN 53 BITS WITH

ROUNDING TO NEAREST IN THE TRUNK (T-RNDN), ROUNDING TO
NEAREST IN THE FAITHFUL BRANCH (F-RNDN), AND FAITHFUL

ROUNDING IN THE FAITHFUL BRANCH (F-RNDF).

IV. EXPERIMENTAL RESULTS

We used a 3.2Ghz Intel Core i5-6500 for our experiments
(Skylake microarchitecture), with only one core enabled to
decrease turbo-boost effects, and revision 11249 of MPFR (aka
MPFR 4.0-dev), and GCC 6.2.1 under Debian GNU/Linux
testing (stretch). MPFR was configured with GMP 6.1.2
[5] and --disable-shared. The number of cycles were
measured with the tools/mbench utility distributed with
MPFR. To get stable results, we called the mbench binary
with numactl --physcpubind=0, that binds it to cpu
0, and we ensured no other processes were running on the
machine.

Table I compares the number of cycles for basic arithmetic
operations — with rounding to nearest — between MPFR 3
and the upcoming version 4, with 53 and 113 bits of pre-
cision, corresponding to the binary64 and binary128 formats
respectively. The speedup goes from a factor 1.7 (for the 113-
bit division) to a factor 3.6 (for the 53-bit squaring). This
improvement of basic arithmetic automatically speeds up the
computation of mathematical functions, as demonstrated in Ta-
ble IV (still for rounding to nearest). Indeed, the computation
of a mathematical function reduces to basic arithmetic for the
argument reduction or reconstruction, for the computation of
Taylor series or asymptotic series, ... Here the speedup goes
from 15% (for the 113-bit arc-tangent) to a factor 2.2 (for the
53-bit power).

Timings for the mpfr_sum function in the faithful branch7

are done with a special test (misc/sum-timings) because
the input type, an array of MPFR numbers, is specific to this
function, and we need to test various kinds of inputs. The
inputs are chosen randomly with fixed parameters, correspond-
ing to the first 5 columns8 of Table III: the size of the array
(number of input MPFR numbers), the number of cancellation
terms in the test (0 means no probable cancellation, 1 means

7branches/faithful revision 11121.
8These are the arguments of position 2 to 6 of sum-timings.

Parameters RND* RNDF

101 0 107 101 1 411 399
103 0 101 105 108 27216 20366
103 1 101 105 108 39639 32898
103 2 101 105 108 44025 35276
105 0 101 101 108 1656988 1034802
105 0 101 103 108 1393447 833711

TABLE III
NUMBER OF CYCLES FOR MPFR_SUM WITH THE USUAL ROUNDING

MODES AND MPFR_RNDF.

MPFR 3.1.5 MPFR 4.0-dev
precision 53 113 53 113
mpfr_exp 3996 6787 2352 4253
mpfr_sin 3746 4907 2684 3838
mpfr_cos 2853 3553 1872 2819
mpfr_log 4473 7086 2325 5993
mpfr_atan 13937 20182 7175 11385
mpfr_pow 12915 18393 5704 11222

TABLE IV
NUMBER OF CYCLES FOR MATHEMATICAL FUNCTIONS.

some cancellation, 2 even more cancellation), the precision of
the input numbers (here, all of them have the same precision),
the precision of the result, and an exponent range e (1 means
that the input numbers have the same order of magnitude, and
a large value means that the magnitudes are very different:
from 1 to 2e−1). A test consists in several timings on the
same data, and we consider the average, the minimum and the
maximum, and if the difference between the maximum and the
minimum is too large, the result is ignored. Due to differences
in timings between invocations, 4 tests have been run. On some
parameters, MPFR_RNDF is faster than the other rounding
modes (its maximum timing is less than the minimum timing
for the usual rounding modes): for a small array size, small
output precision and no cancellation (first line of Table III),
there is a small gain; when the input precision is small and
the range is large (so that the input values do not overlap in
general, meaning that the TMD occurs in the usual rounding
modes), we can typically notice a 25% to 40% gain when
there is no cancellation (lines 2, 5 and 6), and a bit less when
a cancellation occurs (lines 3 and 4). MPFR_RNDF is never
slower. Note that the kind of inputs have a great influence
on a possible gain, which could be much larger than the one
observed here (these tests have not been specifically designed
to trigger the TMD).

V. CONCLUSION

This article presents algorithms for fast floating-point arith-
metic with correct rounding on small precision numbers. The
implementation of those algorithms in version 4 of MPFR
gives a speedup of up to 3.6 with respect to MPFR 3. As
a consequence, the computation of mathematical functions is
greatly improved.
ACKNOWLEDGEMENTS The authors thank Patrick Pélissier
who designed the mbench utility, which was very useful in
comparing different algorithms and measuring their relative
efficiency.

9

REFERENCES

[1] BRENT, R. P., AND ZIMMERMANN, P. Modern Computer Arithmetic.
No. 18 in Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 2010. Electronic version
freely available at http://www.loria.fr/~zimmerma/mca/pub226.html.

[2] DE DINECHIN, F., ERSHOV, A. V., AND GAST, N. Towards the post-
ultimate libm. In Proceedings of the 17th IEEE Symposium on Computer
Arithmetic (Washington, DC, USA, 2005), ARITH’17, IEEE Computer
Society, pp. 288–295.

[3] FOUSSE, L., HANROT, G., LEFÈVRE, V., PÉLISSIER, P., AND ZIMMER-
MANN, P. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33, 2 (2007), article 13.

[4] GRAILLAT, S., AND MÉNISSIER-MORAIN, V. Accurate summation, dot
product and polynomial evaluation in complex floating point arithmetic.
Information and Computation 216 (2012), 57 – 71. Special Issue: 8th
Conference on Real Numbers and Computers.

[5] GRANLUND, T., AND THE GMP DEVELOPMENT TEAM. GNU MP:
The GNU Multiple Precision Arithmetic Library, 6.1.2 ed., 2016. http:
//gmplib.org/.

[6] IEEE standard for floating-point arithmetic, 2008. Revision of ANSI-
IEEE Standard 754-1985, approved June 12, 2008: IEEE Standards
Board.

[7] JOHANSSON, F. Efficient implementation of elementary functions in the
medium-precision range. In Proceedings of the 22nd IEEE Symposium
on Computer Arithmetic (Washington, DC, USA, 2015), ARITH’22,
IEEE Computer Society, pp. 83–89.

[8] JOHANSSON, F. Arb: Efficient arbitrary-precision midpoint-radius
interval arithmetic. https://arxiv.org/abs/1611.02831, 2016. 12 pages.

[9] KARP, A. H., AND MARKSTEIN, P. High-precision division and square
root. ACM Trans. Math. Softw. 23, 4 (Dec. 1997), 561–589.

[10] MASCARENHAS, W. Moore: Interval arithmetic in modern C++. https:
//arxiv.org/pdf/1611.09567.pdf, 2016. 8 pages.

[11] MÖLLER, N., AND GRANLUND, T. Improved division by invariant
integers. IEEE Trans. Comput. 60, 2 (2011), 165–175.

[12] REVOL, N., AND ROUILLIER, F. Motivations for an arbitrary precision
interval arithmetic and the MPFI library. In Reliable Computing (2002),
pp. 23–25.

[13] ZIMMERMANN, P. Karatsuba square root. Research Report 3805,
INRIA, 1999. http://hal.inria.fr/inria-00072854.

APPENDIX

Proof of Theorem 5. Write n1 = α264 with 1/4 ≤ α < 1.
Write x = 296/

√
n1−δx, y = 232

√
n1−δy and t = xz/265−

δt with 0 ≤ δx < δ, and 0 ≤ δy, δt < 1.

2128n− s2 = 2128n− (y · 264 + t)2

= 2128(n− y2)− 265yt− t2

= 2128z − 265yt− t2. (8)

We first bound 2128n−s2 by above, assuming 2128n−s2 ≥ 0:

265yt = xyz − δt265y

= (
296
√
n1
− δx)(232

√
n1 − δy)z − δt265y, (9)

thus

2128z − 265yt ≤ (232
√
n1δx + 296/

√
n1δy)z + 265y

= 264z(
√
αδx + δy/

√
α) + 265y

≤ 264z(δ
√
α+ 1/

√
α) + 2129

√
α, (10)

where we used y ≤ 232
√
n1 =

√
α264. Now

z = 264n1 + n0 − (232
√
n1 − δy)2

≤ n0 + 233
√
n1δy

< 264(1 + 2
√
αδy)

≤ 264(1 + 2
√
α). (11)

Substituting Eq. (11) in Eq. (10) yields:

2128z − 265yt ≤ 2129f(α),

with

f(α) =
1

2
(1 + 2α1/2)(δα1/2 + 1/α1/2) + α1/2.

Substituting in Eq. (8) gives

2128n− s2 < 2129f(α).

Let c be the real number such that 2128n = (s + c)2. Then
since 2128n − s2 = (s + c)2 − s2 = 2sc + c2, which implies
2sc < 2129f(α), thus

c < 2128f(α)/s. (12)

Since s ≥ 2127, and the maximum of f(α) for 1/4 ≤ α ≤ 1
is 26.5 (attained at α = 1), we get c < 53. Now this gives
s >
√
2128n− 53 >

√
2128n/1.01 ≥

√
α2128/1.01, therefore

Eq. (12) becomes c < 1.01 · f(α)/
√
α. Now the function

f(α)/
√
α is bounded by 26.5 for 1/4 ≤ α ≤ 1, the maximum

still attained at α = 1. Therefore c < 1.01·26.5 < 26.8, which
proves the upper bound 26.

Now assume 2128n − s2 < 0. It follows from Eq. (9) that
2128z−265yt ≥ 0. Eq. (8) therefore yields 2128n− s2 ≥ −t2,
and we have to bound t2. Using x ≤ 296/

√
n1, Eq. (11) and

n1 = α264:

t2 ≤ x2z2

2130
≤ 262z2

n1
≤ 2128

(1 + 2
√
α)2

4α
.

Writing 2128n = (s− c)2 with c > 0 yields:

(s− c)2 − s2 > −2128 (1 + 2
√
α)2

4α
,

2sc− c2 < 2128
(1 + 2

√
α)2

4α
.

Now s2 > 2128n implies s > 264
√
n ≥ 2128

√
α, thus:

c <
c2

2129
√
α
+

1

8

(1 + 2
√
α)2

α3/2
. (13)

This implies for all 1/4 ≤ α < 1:

c <
c2

2128
+ 4,

which proves c < 4.01, thus the lower bound is s− 4.

