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The quasi-one-dimensional cobalt oxide Sr6Co5O15 is studied using first-principles electronic-structure

calculations and Boltzmann transport theory. We have been able to describe the electronic structure,

characterized by the structural one-dimensionality and a particular type of charge ordering, with

unexpected electronic structure of the different Co atoms. The origin of the large unquenched

misaligned orbital angular momenta comes out naturally from a correct description of the different

crystal-field environments. The evolution with the on-site Coulomb repulsion (U) of the electronic

structure and the transport properties is discussed, with a best agreement with experiment found for

the smallest value of U that allows to converge the correct in-chain ferrimagnetic ground state. VC 2011
American Institute of Physics. [doi:10.1063/1.3536796]

I. INTRODUCTION

To build models for correlated electron behavior in sol-

ids, many studies have focused on one-dimensional (1D) sys-

tems since they are the easiest to analyze. Among them, there

has been much interest in the cobalt oxides family Anþ2 B0 Bn

O3nþ3 (A¼Ca, Sr, Ba; B0 and B commonly corresponding to

Co cations in a trigonal prismatic (TP) and octahedral (OH)

position, respectively, and n � [1, 1)), being CoO3 the 1D

chain. The series has attracted much attention for the rather

unique properties that its members exhibit such as an Ising

type behavior,1,2 large magnetocrystalline anisotropy,2 mag-

netization plateaus,3 magnetic phase separation,4,5 or

enhanced thermoelectric properties.6 An important question is

to understand the role of the electron correlations in these sys-

tems.1,2 For that end, we analyzed the electronic structure and

transport properties of the n¼ 4 member of the series,

Sr6Co5O15, by ab initio techniques. We have performed

LDAþU (local density approximation plus Hubbard U) calcu-

lations to predict its properties correctly, taking into account

the strongly correlated nature of the material. We have studied

the evolution with U of the ground state electronic structure

and the thermopower dependence with the temperature.

The electronic structure calculations were performed

with the WIEN2K7 software based on density functional

theory utilizing the augmented plane wave plus local orbitals

method (APWþlo). For the calculations of the transport prop-

erties we used the BoltzTraP code8 based on the Boltzmann

transport theory that employs the energy bands obtained using

the WIEN2K software. The electronic interactions are

described within the LDAþU formalism, using different U

values, taking J¼ 0.7 eV for all of them. The calculations

were fully converged with respect to the k-mesh and Rmt

Kmax, using a 6� 6� 6 sampling of the full Brillouin zone for

electronic structure calculations, 21� 21� 21 for the trans-

port properties and Rmt Kmax¼ 6.0. Muffin tin radii chosen

were: 1.82 a.u. for Co, 2.28 a.u. for Sr, and 1.61 a.u. for O.

II. RESULTS

Sr6Co5O15 was found9,10 to be isostructural with Ba6

Ni5O15, phase reported by Campá et al.11 The crystal struc-

ture consists of isolated, 1D infinite chains of CoO6 polyhe-

dra sharing faces along the c-axis that form an hexagonal

lattice in the ab plane. The in-plane distance between Co

chains is significantly larger than the Co-Co in-chain dis-

tance, leading to the structural quasi-one-dimensionality.

The unit cell is formed by 5 Co atoms, 4 of them are situated

in distorted OH and one is in a TP environment as can be

seen in Fig. 1(a).

To understand how our system is influenced by the on-

site Coulomb repulsion, Table I shows the magnetic

moments (MM) of each cation in the structure at different U

values in a range from 4.8 to 6.4 eV for the magnetic ground

state solution. Smaller values of U do not stabilize a ferri-

magnetic (FiM) insulating solution, underestimating the cor-

relation effects. In such an insulating solution, Co1 is a Co4þ

: d5 cation with a MM of � 1 lB. Co2 is also a Co4þ : d5 cat-

ion and Co3 is close to a Co3þ : d6 configuration. The details

of the Co2 and Co3 MM dependency with U can be under-

stood looking at the magnetic interactions in the chain [see

Fig. 1(a)]. The coupling between Co1 and Co2 is mediateda)Electronic mail: antia.sanchez@usc.es.
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by a nonmagnetic Co3. The overlap between Co3 and Co2

d-orbitals motivates a charge transfer which is higher as U

decreases. An effective magnetic moment of 6.9 lB per for-

mula unit is found experimentally for the compound.12 This

value is larger than the spin-only one, according to the MM

shown in Table I, but it is consistent with large unquenched

noncollinear orbital angular momenta, as found in Ref. 12.

Both Co3þ (Co3) atoms in the unit cell are nonmagnetic (in a

low spin state, with S¼ 0) and located in OH. The Co4þ cati-

ons are also in a low spin state (S¼ 1=2) inside both OH

(Co2) and TP (Co1) environments. The nature of the hole in

the Co4þ d-levels depends on several factors: the different

crystal field environment of each magnetic Co, the Co

in-chain interaction and the crystal field distortion.

In order to interpret the electronic structure of the com-

pound, we can consider a three-dimensional representation of

the spin density. Figure 1(b) shows such representation for

U¼ 4.8 eV (this particular choice of U will be discussed

below). The spin density for Co atoms within a TP environment

is clearly different from the OH one. For analyzing the spin

density, we have to consider the proper coordinate system for

the Co ions. The Co1 spin density can be interpreted according

to the prismatic crystal field splitting, taking the z axis along

the Co-chains (c-axis). The electronic structure of a Co4þ : d5

cation in such environment is depicted in Fig. 2(a) with the

hole occupying the dxy=dx2�y2 level in agreement with the spin

density seen in Fig. 1(b) for Co1. For the OH Co atoms (Co2

and Co3), the trigonal distortion has to be taken into account2

[see Fig. 2(b)]. The eg orbitals are not affected by the trigonal

distortion. The t2g levels split into a higher-lying singlet a1g and

a lower-lying e�g doublet. The a1g singlet spatial shape is that of

a dz2 orbital along the trigonal c-axis. The spin density shown

in Fig. 1(b) for Co2 (and also for Co3 due to hybridization) cor-

responds to one hole in the singlet. In this case, the a1g orbital is

the higher-lying one since the OH Co4þ : d5 are surrounded not

only by Co4þ but also by Co3þ cations and the Co4þ � Co3þ

distance is smaller than the Co4þ�Co4þ one. The orbital angu-

lar momenta found12 ab initio come from a non-negligible con-

tribution from the occupied e�g doublet.

To better understand the changes in the electronic struc-

ture of the compound as U increases, Fig. 3 shows the den-

sity of states (DOS) plots of the Co atoms in the unit cell for

the two extremal U values shown in Table I (U¼ 4.8 eV and

U¼ 6.4 eV). The material is an insulator for this range of U

values, with a d-d gap that increases from 0.5 eV to 1 eV as

U does. For Co1 (Co4þ : d5) we can see the spin split dxz=dyz

bands (by about 1 eV for U¼ 4.8 eV and 1.5 eV for U¼ 6.4

eV). For U¼ 4.8 eV, the unoccupied dxy=dx2�y2 orbital for

Co1 is shifted respect to the dxz=dyz one at about 2 eV above

the Fermi level. For U¼ 6.4 eV, such a shift does not appear

and the hole is at about 2.5 eV. For Co2 ( Co4þ : d5), we can

see a spin splitting of the eg bands (by less than 1 eV for

U¼ 4.8 eV and 1 eV for U¼ 6.4 eV). The hole in the a1g sin-

glet of Co2 presents a double peak structure at about 1 eV

above the Fermi level for the lower U value and at 1.5 eV for

the higher one. For Co3, we can observe an approximate d6

DOS plot. Due to the hybridization between Co3 and Co2

d-orbitals a double peak structure arises (at the same energy

than for Co2), showing a small density of unoccupied t2g

states for Co3. As the overlap diminishes with increasing U

values, this density is reduced for U¼ 6.4 eV. The eg bands

for Co3 present a small spin-splitting for U¼ 4.8 eV, negli-

gible for the higher U value. The evolution with U of the

FIG. 1. (Color online) (a) Schematic picture of the structure of the CoO3

chains in Sr6Co5O15 obtained using VESTA (Ref. 13). OH environments for

both Co2 and Co3 atoms as well as the TP one for Co1 are shown. We also

show the ferromagnetic (FM) coupling (JFM) between neighbor Co2 atoms and

the antiferromagnetic (AF) one between Co2 and Co1 mediated by a nonmag-

netic Co3 (JAF). (b) Three-dimensional plot of the spin density in the FiM

ground state, isosurface at 0.1 e=Å3 obtained using XCrysDen (Ref. 14). Spin-

up density corresponds to Co1 and spin-down density corresponds to both Co2

and Co3.

TABLE I. Projection of the spin MM inside the muffin tin spheres of Co

atoms in the Sr6Co5O15 ground state for different U values

Atom MM for different U values in lB units

6.4 eV 5.8 eV 5.4 eV 5.2 eV 4.8 eV

Co1 1.24 1.17 1.12 1.09 1.05

Co2 �1.01 �0.95 �0.90 �0.87 �0.81

Co3 �0.06 �0.08 �0.10 �0.13 �0.17

FIG. 2. Level scheme representing (a) the prismatic crystal field levels for a

Co4þ cation and (b) the electronic structure for a Co4þ cation in a trigonally

distorted OH environment. The splitting of the t2g levels caused by this dis-

tortion can be observed.

FIG. 3. (Color online) Partial spin-polarized DOS of Co1, Co2, and Co3

atoms for U¼ 4.8 eV and U¼ 6.4 eV. Fermi energy is represented by the solid

vertical line at zero. Upper (lower) panels show the spin-up (down) channels.
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MM for Co3 can be observed: its value rises from 0 as U

decreases, while it lowers from 1 lB for Co2. An ionic pic-

ture works in explaining the electronic structure of this insu-

lating compound, characterized by very narrow bands. This

is more evidently so for larger values of U.

We also have calculated the temperature dependence of

the thermoelectric power for the FiM ground state shown in

Fig. 1(a) at different U values to further analyze the system

properties and its evolution with U. Using the conductivity (r)

and Seebeck coefficient (S) calculated for both spin channels,

the total thermopower has been obtained according to the two-

current model expression16 in the constant scattering time

approximation. Figure 4 shows the data calculated at U¼ 4.8,

5.2, and 5.8 eV together with the experimental S values taken

from Ref. 15. The results for the FiM solution at U¼ 4.8 eV fit

better the experimental values, both in the order of magnitude

of the thermopower and also on the observed non-activated

evolution with temperature. With increasing U values, the curve

profile does not change but it goes to higher Seebeck values,

just reflecting a rigid shift of the bands (the simplest approxima-

tion to the LDAþU method) and an increase of the bandgap. A

better agreement with the experimental Seebeck coefficient is

found for the smaller U value that has been used in the past to

analyze the magnetic properties of the compound;12 this is due

to the small experimental value of the bandgap.14

To summarize, we have used density-functional calcula-

tions within the LDAþU approach and Boltzmann transport

theory, to study the changes with the U value in the electronic

structure and related thermoelectric power of the quasi-1D ox-

ide Sr6Co5O15. Its unit cell contains 3 magnetic Co4þ cations

(one within a TP environment and two within an OH one) and

two nonmagnetic Co3þ ones (octahedrally coordinated). The

nature of the hole in the Co4þ : d5 cations has been studied by

means of a three dimensional representation of the spin den-

sity and the study of the different crystal field environments.

For the TP Co, due to the small trigonal distortion, an undis-

torted picture of the crystal field splitting is enough to under-

stand that the hole lies in the planar degenerate xy=x2� y2

levels. For the OH ones, the trigonal distortion has to be con-

sidered, with the hole lying in the a1g singlet. The calculated

Seebeck coefficient curve profile agrees with experiment but

it goes to higher Seebeck values as U increases, just reflecting

the rigid shift that the bands experiment due to the LDAþU

method. For the smaller U values, a better agreement with

experiment is found due to the relatively small bandgap

observed experimentally in this compound.
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