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ABSTRACT: As long as only first-neighbour interactions are considered,
equilibrium island size distributions of monoatomic islands in one dimension
follow an exponential law regardless of the strength and the repulsive or
attractive character of the adsorbate–adsorbate interactions. However, one-
dimensional atomic wires obtained via nucleation at the step edges have a
monomodal island size distribution. In this paper, we present a simple one-
dimensional Monte Carlo model that shows how the monomodal distribution
observed experimentally can be obtained by including surface defects that only
suppress the interaction between two successive adsorbates.

1. INTRODUCTION

Sub-monolayer growth is usually two-dimensional, but in some cases it can be effectively one-
dimensional. Indeed, step structures at metal and semiconductor surfaces are employed in
molecular beam epitaxy as deposition templates to produce one-dimensional atomic wires (Owen
et al. 2006). Due to the increase in binding energy at step sites, adatoms deposited on vicinal
surfaces can self-assemble chain-like structures at steps (Iguain et al. 1998; Chen and Boland 2004;
Albao et al. 2005). The size and separation of atomic wires can be controlled by adjusting the
average step edge separation and adatom coverage. These self-assembled nanostructures are of
outstanding importance for the fabrication of microelectronic devices (Meixner et al. 2005). Due
to its technological relevance, investigations of such systems have become an active research field
involving the theory of nucleation in one dimension, atomistic diffusion and epitaxial growth.

In many cases, island formation can be explained using energetic principles and equilibrium
thermodynamics (Daruka and Barabási 1997; Barabási 1999). Germanium grown on a Si(001)
substrate is a good example. As the system is annealed, the island size distribution approaches a
saturation value corresponding to the equilibrium configuration. Although partially annealed
configurations show rather strong non-equilibrium features, once they are fully annealed, the size
distribution of the islands is in excellent agreement with the predictions of equilibrium theory
(Kamins et al. 1997; Mereiros-Ribeiro et al. 1998; Ross et al. 1998).

In other cases, island formation clearly exhibits non-equilibrium features and then dynamical models
must be invoked. In molecular beam epitaxy (MBE) at low temperature, island formation and evolution
in the sub-monolayer regime regularly involves deposition, diffusion, nucleation, aggregation and
coalescence of islands — processes that proceed irreversibly (Amar et al. 1994a,b, 2001; Jensen et
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al. 1994). In this paper, we will focus on one-dimensional systems under equilibrium conditions
and, in particular, on the consequences of defects on the island size distributions.

Exact solutions of equilibrium island size distributions, when only first-neighbour interactions
between adsorbates are included, have been derived by determining all possible configurations of
the system (Yilmaz and Zimmermann 2005; Vavro 2001). Also an approach based on mass action
law was successful in reproducing the size distribution at the low-coverage limit (Priester and
Lannoo 1995). Using a thermodynamic approach, Gambardella et al. (2006) derived an analytical
expression for the island size distribution, calculating the island free energy as a function of the
island step energy, the adsorption energy, the chemical potential and the configurational entropy.
More recently, we presented an alternative derivation of the theoretical equilibrium island size
distribution, by resorting to the detailed balance principle (Mirabella and Aldao 2011) which
reproduces the results obtained previously (Priester and Lannoo 1995; Gambardella et al. 2006).
In this approach, the island size distributions can be easily derived from transition rates between
islands of different sizes, these rates being determined by particle interaction energies and the
geometric constraints imposed by the transition.

The steps are not completely straight experimentally, but they usually present kinks that act as
defects altering the adsorbate–adsorbate interactions. In this paper, we extend the Monte Carlo
simulation recently presented to understand how step defects can modify the island size distribution
(Mirabella and Aldao 2011). We have found that including surface defects in our simulation
changes the behaviour of the island size distribution from an exponential to a monomodal shape
when first-neighbour interactions between adsorbates are present, without resorting to more
complicated mechanisms such as repulsive far-distant neighbour interactions due to surface stress
(Mirabella and Aldao 2011; Tokar and Dreyssé 2003, 2007). Kinetic effects can also lead to a
monomodal form of the island size distribution in a system out of equilibrium (Amar et al. 1994;
Jensen et al. 1994). However, it is our goal to show that a monomodal form can be obtained in a
system under equilibrium conditions without resorting to long-distance interactions. 

In order to check the validity of our model, we have derived an analytical model to calculate
island size distributions for non-interacting adsorbates, with and without defects, to compare with
MC simulations. Also, we present an analytical model when adsorbate–adsorbate interactions are
included and defects are periodically distributed. We found that this model reproduces the Monte
Carlo outcomes.

2. EQUILIBRIUM ISLAND SIZE DISTRIBUTION FOR NON-INTERACTING
PARTICLES IN A SUBSTRATE WITH AND WITHOUT DEFECTS

In this section, we develop a simple analytical approach to obtain the island size distribution including
substrate defects. We start by considering a set of particles distributed at random on the defect-free
substrate. In this model, the probability of finding a single-particle island as a function of coverage
is given by θ(1 � θ)2. Similarly, the probability of an island being formed by two particles is
θ2(1 � θ)2. Following this argument, it is possible to derive an expression for the island
concentration of size n, cn , as:

(1)

Kinks along steps have been taken into account in our model by suppressing the interaction
between two successive adsorbates as shown in Figure 1 overleaf. In the present calculation, in

c cn
n n= − = −θ θ θ( )1 2

1
1
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which inter-adsorbate interactions are not present, defects simply break the space in a set of boxes
(independent sub-systems) limiting the island size that can be formed.

Following the same argument as in the zero-defect model [equation (1)], the probability of
finding a single-particle island in the presence of defects can be determined straightforwardly. To
do this, we define the density of defects D as the ratio between the number of defects and the
number of lattice sites, N/L. Consistently, D can be interpreted as the probability of having a defect
between two neighbouring particles. In the presence of defects, the probability of finding a single-
particle island can be calculated by considering the different possible alternatives of having a single
occupied site close to two empty sites, an occupied site close to an empty site and a neighbour site
occupied with a defect in between, and finally an occupied site with occupied neighbours and
defects in between. Then, the resulting single island concentration is

(2)

The extra term (θD) in equation (2), in comparison with equation (1), accounts for the fact that
island ends are not only established by empty sites but also by defects between neighbouring
adsorbates.

Extending this reasoning, we can calculate the n-particle island concentration as a function of
the adsorbate coverage θ and defect concentration D as:

(3)c D D c Dn
n n n= − − + = −− −θ θ θ θ( ) ( ) [ ( )]1 1 11 2

1
1

c D D D1
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Figure 1. Schematic describing the interactions considered in modelling adsorbates at step edges and the influence of
defects. Squares represent substrate particles and circles represent adsorbate particles. The upper drawing shows islands
formed by neighbouring adsorbate particles. Note that a kink at the step nulls the interaction between neighbouring
adsorbate particles. The lower drawing shows the one-dimensional mapping of the step edge. Note that the effect of kinks
is maintained by not including interactions between neighbouring adsorbate particles. Neighbouring adsorbate particles
are not considered to form part of the same island if a kink is in between.



As can be seen in equation (3), substrate defects alter island size distributions by breaking large
islands into small ones, which affects the exponential shape of the distributions by only changing
their slopes. In Figure 2, we show the effects of a defect concentration D � 0.1 on island size
distributions for three different coverages, and in Figure 3 the consequence of an increasing
density of defects for a constant coverage θ � 0.3. The results obtained by means of equation (3)
were tested with Monte Carlo simulations.

3. EQUILIBRIUM ISLAND SIZE DISTRIBUTION FOR NEAREST-NEIGHBOUR
INTERACTING PARTICLES WITHOUT DEFECTS

The statistical distribution of interacting particles for a 1D substrate can be derived using
thermodynamic arguments. Under thermal equilibrium, the general reaction can be expressed as

(4)

This equation accounts for the formation of an island of size n when a single particle attaches to
a cluster of size n � 1. In particular, assuming an attractive interaction ε between first-neighbour
particles, resorting to the mass action law we can write:

(5)
c

c c
kTn

n −

=
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Figure 2. Island size distributions for non-interacting particles with a defect density D � 0 and 0.1 and coverages
θ � 0.1, 0.3 and 0.5. Symbols correspond to Monte Carlo results and fitted lines correspond to equation (3) for D � 0.1.
Dotted lines correspond to distributions for a step without defects, D � 0. Defects reduce the island average size but
the distributions maintain their exponential character. For example, for θ � 0.5, the average island size becomes ca.
9.1% smaller.



This expression is similar to the one obtained by Priester and Lannoo (1995) using the law of mass
action and is valid in the low-coverage limit. Equation (5) can be easily re-written to obtain an
expression for the island density that depends only on ε and c1:

(6)

Equation (6) is a decreasing geometric series of the type From this expression,
the density of islands k and the coverage θ can be determined without difficulty as:

(7)

(8)

Thus, x � (θ � k)/θ and c1 � k2/θ, and the island size distribution can be written as:

(9)

Substituting cn � Nn/N, k � K/N and θ � M/N, equation (9) can be re-written as:

(10)

where the island size distribution is expressed in terms of the number of adsorbed particles M and
the number of islands K — equation (12) in Gambardella et al. (2006) — allowing for a direct
comparison with experiment.

Equations (6) and (9) are decreasing geometric series, independent of the coverage and energy
strengths, even when attractive inter-particle interactions are considered. At first sight, this
analytical result is counter-intuitive because, for large attractive interactions, larger energetically
more stable islands would form at the expense of small ones. As the energy increases and the
number of small islands is reduced, the entropy is still responsible for maintaining the
monotonically decreasing character of the island distribution. On the other hand, experimental
observations have shown that the resulting island size distributions are monomodal. In the next
section, we discuss the possibility of obtaining equilibrium monomodal distributions by including
surface defects in the simulation.

4. RESULTS AND DISCUSSION

Monte Carlo simulations were carried out using an array of 104 sites that simulated the support on
which the particles are deposited, i.e. the step. Particles were initially distributed at random
and periodic boundary conditions were used to avoid edge effects. The equilibrium configuration
for the system was obtained following the standard method of Metropolis. Thus, two sites,
i (occupied) and j (unoccupied), are selected at random. The energy of the configuration is
calculated. A virtual transfer of a substrate particle i to site j is considered and the energy for the
new configuration is calculated and compared with the energy of the initial configuration. If the
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system gains energy, the exchange is carried out. Otherwise, the exchange is performed with a
probability exp(�∆E/kT), where ∆E is now the loss of energy (∆E > 0). The system evolves with
successive jumps until it approaches the equilibrium configuration. We ensured that the system
attained equilibrium by monitoring the island size distribution. The Monte Carlo results presented
here were averaged over 100 samples.

In Figure 2, we compare, for ε � 0 and a defect density D � 0.1, the island size distribution
given by the exact solution of equation (2) and Monte Carlo simulation outcomes. The results
show that simulation and theory are in good agreement, and that defects change the slope of the
distribution but not the exponential shape. As the coverage increases, it is expected that larger
islands would form. However, defects act as an island-breaking mechanism, reducing the number
of larger islands and increasing the number of the small ones. Figure 3 shows the effect of
increasing the defect density keeping the coverage constant. Again, as expected, the slope
increases with the defect density since islands are more likely to be split.

Figure 4 overleaf presents the island size distributions for interacting particles (ε � 7kT) and
defects distributed at random. As can be easily seen, when interactions are present defects can
change the exponential shape of the distribution (for D � 0) to a monomodal one. The stronger the
energy involved, the smaller the density of defects needed to produce this change. The monomodal
shape arises as a consequence of the competition between defects, which limit the island-growing
process, and attractive interaction which favours particle aggregation. It is interesting to note that
in the absence of surface defects, changing the shape of the distribution may be achieved by
including more distant interactions of a repulsive character between particle island members
(Mirabella and Aldao 2011; Tokar and Dreyssé 2003, 2007). These interactions can arise from the
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Figure 3. Island size distributions for non-interacting particles for a coverage θ � 0.3 and defect density D � 0, 0.1, 0.3
and 0.5. Symbols correspond to Monte Carlo results. Full lines correspond to equation (3) while the dotted line
corresponds to the distribution for a step without defects. Defects reduce the island average size but the distributions
maintain their exponential character. For D � 0.5, the average island size decreases by ca. 18%.



strain resulting from the mismatch between the islands and the substrate. Indeed, hetero-epitaxial
growth of strained structures offers the possibility of fabricating nano-scale islands with a very
narrow size distribution. Here, we show that this type of interaction is not the only possible cause
for having a monomodal island size distribution under equilibrium; this type of distribution can be
due to the presence of defects.

A simple model for periodically distributed defects is developed below in order to gain
an insight into the consequences of having defects on island distributions. To calculate the
finite size confinement effects produced by defects, we proceed by re-writing equation (5)
as follows:

(11)

Equation (11) models the process of formation of an island of size n due to attaching a single
particle to an island of size n � 1 and the reverse of this process, see equation (4). We restrict our
analysis to the low-density limit where the probability of having more than one island between
defects is negligible. The factor α on the left-hand side of equation (11) must take into account
that not all particles detaching from islands find empty sites to form single-particle islands. On the
other hand, the factor β on the right-hand side of equation (11) must take into account the fact that
when a particle sticks to an island of size n � 1, an island of size n is not always formed (due to
the presence of a defect). Here, we will consider that α equals 2 since there are two ends where
the particle can be removed and, within the low-density limit, there are no restrictions to the
formation of a single-particle island.

α β εc c c kT
n n

=
− 1 1

exp( / )
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Figure 4. Island size distributions including interactions between first neighbours for θ � 0.3, ε � 7 kT and D � 0, 0.1
and 0.2. Note that, without resorting to other mechanisms, defects can change the exponential distribution into a
monomodal one.



The factor β on the right-hand side of equation (11) is a correction that takes into account the
presence of defects. This factor can be deduced by considering that, within a window of size ω
(ω-sites), an island of size n � 1 has ω � n � 2 possible positions. In two of these positions, an
island has only one side where a particle can attach because there is a defect on the other side. In
the rest of the possible positions, there are two sites where a particle can attach to make an island
of size n. Then, the average number of sites where a particle can be incorporated into an existing
island of size n � 1 is:

(12)

Thus, the island size distribution for low coverages takes the following form:

(13)

Figure 5(a) shows the results for the model, equation (13) and Monte Carlo simulation for three
different interaction energies, inter-defect distance ω � 20 and θ � 0.3. It is interesting to note
that, as the attractive interaction energy increases, the island size distribution changes from an
exponential shape to one having a maximum. This is a consequence of the competition between
confinement due to the inter-defect distance and the inter-particle attractive energy. The island
size distributions shown in Figure 5(b) exhibit a maximum that shifts to the right as the attractive
inter-particle interaction increases, since it favours the formation of large islands at the expense
of small ones.
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Figure 5. Island size distributions including interactions between first neighbours for θ � 0.3 and D � 0.05 with defects
uniformly distributed, implying a constant distance between defects of ω � 20. Symbols correspond to Monte Carlo results
while fitted lines correspond to equation (11). (a) ε � 0, 4 kT and 8 kT: as the attractive interaction energy increases, the
island size distribution changes from an exponential shape to one that has a maximum. (b) ε � 7 kT and 8 kT. For the
chosen parameters, distributions are monomodal and their maximum position depends on the particle interaction.



5. CONCLUSIONS

In this work, we have presented a Monte Carlo model that successfully reproduces the equilibrium
island size distribution obtained for any coverage and nearest-neighbour interacting particles in 1D
for a substrate with and without defects. It was found that, when defects were introduced into the
model, a monomodal island size distribution, which was observed experimentally, could be
obtained without resorting to more complicated mechanisms such as repulsive far-distant
neighbour interactions due to surface stress. Using a simple model calculation for defects
periodically arranged, we have shown how competition between defects and inter-particle
interactions give raise to a monomodal distribution. Again, our findings reproduce the results
obtained using Monte Carlo simulations.
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