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  Abstract
  The epigenome is regulated by a large number of macromolecular machines that are dynam-
ically involved in various processes, including DNA methylation, histone modification and 
non-coding RNA signals, all of them working together to regulate the proper expression of 
the genome. Thus, in contrast with the genome, whose sequence is carefully conserved dur-
ing cell life, the epigenome is highly dynamic. The epigenomic modifications are acquired 
during normal cell differentiation, replicated during mitosis and passed to daughter cells. A 
fundamental epigenetic attribute is that this plasticity occurs in response to environmental 
signals. It is therefore now accepted that the environment influences modifications in the cel-
lular transcriptome through the epigenome. In developmental and evolutionary terms, the 
regulation of gene expression through epigenomic modifications is an advantageous short-
cut and a highly conserved mechanism. However, it implies an increased risk for misregulation, 
as, for example, aberrant epigenomic modifications associate with the development of differ-
ent human diseases, i.e. lupus, asthma, neurological diseases and cancer. Although epigen-
etic alterations in breast cancer have been deeply studied and discussed in the last decades, 
apparently contradictory results are yet often observed. Consequently, in this review, we will 
briefly discuss the latest findings of aberrant DNA methylation in breast tumorigenesis. Em-
phasis will be given to the discussion of the idea that different environments could explain 
paradoxical biological and pathobiological behaviors in individual patients and thus should 
be taken into consideration for the design and implementation of diagnosis, prognosis and 
predictive biomarkers.   © 2013 S. Karger AG, Basel
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  Introduction

  Aberrant DNA Methylation in Breast Cancer
  Breast cancer is still the most common malignancy among women in western countries 

 [1] . During the development of breast cancer, a variety of genetic alterations occur, including 
point mutations, copy number variations, chromosomal rearrangements and aneuploidies. 
An explosion of data has revealed that these genetic alterations are accompanied by epigenetic 
changes, which cooperate specially in either the silencing or activation of cell cycle regulatory 
genes. Global hypomethylation of DNA as well as gene-specific hypermethylation leads grad-
ually to the acquirement of the cancer cell hallmarks well defined by Hanahan and Weinberg 
 [2] . Although aberrant methylation is a common feature across many types of cancers and the 
last mentioned hallmarks are shared by almost all solid tumors, there seem to exist epigenet -
 ic marks most often found in distinct types of tumors, e.g. the hypermethylation of RASSF1A 
in breast cancer  [3] , Rb in retinoblastoma  [4] , p16 in melanoma  [5] , VHL in renal carcinoma 
 [6]  and APC in colon cancer  [7] . These observations have led investigators to propose subsets 
of aberrant methylated genomic regions as epigenetic tumor markers. Prognostic markers for 
breast cancer are of high interest because of the wide variety in outcome of the disease. 
Aberrant methylation of specific genes has been associated with prognosis  [8] , response to 
treatment  [9] , survival  [10] , lymph node affection  [11]  and general outcome  [12]  in breast 
cancer. Based on this observation, many efforts have been made over the last few years to 
establish prognostic, predictive and monitoring markers for breast cancer, including the 
detection of epigenetically marked, circulating tumor DNA  [13, 14] . The aberrant methylation 
of RASSF1 could help to define patients’ outcomes  [8]  and to detect the early stages of the 
disease in patients’ serum  [15, 16] . Thus, the prediction that methylation changes would 
become a powerful diagnostic tool is becoming a reality  [17] .

  Why Is There Controversial Information about DNA Methylation in Cancer?

  DNA hypermethylation is a frequent alteration in cancer cells, which is known to induce 
silencing of cell cycle regulator genes  [18] . An enormous number of studies in the last decade 
have reported how aberrantly methylated genes are associated with different tumorigenic 
processes  [15, 19, 20] . However, some controversial observations have appeared regarding 
the observed methylation frequencies in distinct genes and their transcriptional impact. 
When considering breast cancer, for example, some authors report methylation  [11, 21]  with 
reduced expression of WT1  [21] , while others communicate overexpression of this gene in 
the same tumor types  [22] . Interestingly, some publications indicate methylation frequencies 
in this gene, which are highly different from those communicated by authors in other 
geographical regions  [23] . Likely, various reasons may explain these apparent controversies, 
some of which we would like to subsequently consider. First, not all CpG islands have an 
impact on gene expression. Although most transcriptional regulatory regions are located 
around the transcription start sites, many times, the crucial regions within a CpG island are 
localized down or upstream of the transcription start sites  [17] . Therefore, it is fundamental 
to consider the  topology  of the genomic region on which experimental measurements have 
been performed. Second, tumors are highly heterogeneous. The tumorigenic process starts 
with a single cell, but during progression, diverse cell populations arise, carrying genetic and 
epigenetic differences on which selection acts in a similar manner as in evolutionary processes 
 [24] . So, when a tumor sample is epigenetically studied, the information could be biased by 
the portion of tissue under study, a phenomenon commonly known as tumor sampling bias. 
Finally, not many authors take the impact of their patients’ environment on their epigenetic 
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tumor profiles into consideration. Moelans et al.  [25]  found in breast cancer invasive ductal 
carcinomas of Dutch patients that MSH6 was the most frequently methylated gene. By using 
the same methodology and studying the same CpG islands on invasive ductal carcinomas of 
Argentinian patients, our group detected WT1 as the most frequently methylated gene  [11] . 
Thus, in epigenetic studies, the environments (i.e. diet, ethnicity and lifestyle) of populations 
should be recognized as likely differential contributors to the epigenetic differences that give 
rise to variant molecular, cellular and functional phenotypic features.

  Role of Environment in DNA Methylation

  The incidence of breast cancers is rising among premenopausal women, presenting more 
aggressive tumor types and worse response  [26] . The World Health Organization (WHO) has 
identified factors that could explain the differences in breast cancer incidence in different 
countries, some of them interestingly related to nutrition (e.g. obesity, alcohol consumption, 
birth weight and height)  [26] . The biological fundament of these environmental influences 
relays on two concepts: (1) transcriptional responses to particular nutrients are known to 
differ from one individual to another, depending on the cellular epigenomic profile, and (2) 
diverse nutrients can induce the writing, reading and erasing of different epigenetic marks, 
which consequently generate alternative transcriptomes  [27, 28] . Besides nutrition, an 
increasing number of studies have been revealing the influence of stress  [28] , exercise  [29]  
and air pollution  [30]  on an individual’s epigenome and transcriptome. Research on epigenetics 
of monozygotic twins shows how time increases the differences between their methylation 
profiles  [31] , supporting the concept that epigenetics act as an interface between environment 
and the individual phenotype. The proposal which challenges the classical Darwinian para-
digms of inheritance and evolution is that these changes could be inherited in a transgenera-
tional manner  [32] . On the other hand, the evidence supports Jean-Baptiste Lamarck’s 
paradigm, which proposes that changes acquired during the life of an organism are trans-
mitted to the offspring. This theory was proposed contemporaneously to Darwin’s postulates 
on evolution but did not reach strong widespread popularity until the birth of modern 
epigenetics. Therefore, environmental events that impact on the transcriptome of an indi-
vidual could be transferred to the offspring, who are no longer exposed to the external factor. 

  Role of DNA Methylation in Breast Cancer Heterogeneity

  Human breast cancer is considered a heterogeneous disease, with different outcomes 
and individual responses to treatments likely due to variations in gene expression profiles 
 [33] . There are evident differences among the incidence rates of these cancers in distinct 
continents, with an apparent increase in incidence in high-income countries  [34, 35] . In 
addition, within patient subgroups that share the same tumor type, one finds differences in 
morbidity and mortality. It has been proposed that each tumor presents a unique epigenetic 
signature  [11] . Thus, the differences are not only restricted to occur between populations of 
different geographic regions, but also among individuals of the same population, which 
supports the validity of the new paradigm of individualized medicine. These observations 
urge both researchers and practitioners to consider whether candidate methylation markers 
for breast cancer diagnosis, prognosis and/or treatment response prediction, found in indi-
vidual studies or distinct patient series, could be extrapolated as a general feature to all breast 
cancer patients and how they can be validated in specific populations.

D
ow

nl
oa

de
d 

by
: 

19
0.

22
0.

13
0.

14
 -

 1
1/

26
/2

01
3 

2:
52

:5
1 

P
M

http://dx.doi.org/10.1159%2F000355616


91Med Epigenet 2013;1:88–92

 DOI: 10.1159/000355616 

 Campoy et al.: Aberrant DNA Methylation in Breast Cancer Cells  

www.karger.com/mee
© 2013 S. Karger AG, Basel

  Concluding Remarks

  Breast cancer is a heterogeneous disease, which has a better outcome upon early diag-
nosis and when specific therapeutic targets are identified. An increasing number of studies 
are contributing candidate epigenetic markers for diagnosis, prognosis and prediction of 
disease outcome. However, emerging evidence also proposes an important role of the external 
environment in influencing the epigenomic landscape of individual breast tumors. This could 
explain the broad variation observed in incidence rates, survival outcome, aggressiveness 
and response to treatments. Thus, association of methylation marks with clinicopathological 
features should be evaluated with caution. In particular, it is critical to define which CpG 
islands are under study and if these marks have a real impact on the tumor transcriptome. 
Otherwise, wrong associations can contribute to the misinterpretation of epigenetic differ-
ences. Furthermore, when epigenetic markers are proposed, it becomes important to also 
define the patient population on which the studies were performed, since, in the highly 
diverse world we live in in the 21st century, most large-scale research datasets mainly orig-
inate from studies performed in high-income countries and may not be extrapolated to other 
nations with different ethnic and economic backgrounds. Additional misinterpretations could 
also be generated if those observations are extrapolated to the general breast cancer popu-
lation rather than considering their application in a setting of individualized diagnostics and 
therapeutics. Thus, as the field of epigenetics continues fueling studies in breast and other 
cancers, emphasis on these variations will be key to its success as a useful tool toward under-
standing and treating this disease.
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