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A paradigm shift in oxygen sensing with a twist in the tale! 

 

Ken D. O’Halloran 

 

Abstract 

AMP-activated protein kinase (AMPK) is pivotal to metabolic homeostasis in eukaryotes, 

serving as a critical energy sensor. Increased AMPK activity during oxygen deprivation 

(hypoxia) protects against potentially catastrophic deficits in ATP supply. Whilst the nervous 

system circuitry for elaboration of the complex cardiorespiratory response to hypoxia has been 

understood in some detail for many decades, there is continued and considerable interest in the 

molecular machinery underpinning the mechanism(s) of oxygen sensing. In this issue of the 

Biochemical Journal, Evans et al. (2016) review their recent work, which points to a pivotal 

role for AMPK in the transduction of cellular hypoxic stress to integrated ventilatory 

behaviour, critical in the defence of whole-body oxygen homeostasis. Of great surprise, there 

is profound blunting of the hyperventilatory response to hypoxic stress in AMPK deficient 

mice, with resultant dysregulated breathing arising in spite of normal peripheral oxygen sensing 

and appropriate sensory input to the brain! Their pointedly provocative review challenges 

current dogma, and in doing so raises intriguing questions that probe fundamental aspects of 

our understanding of the mammalian ventilatory response to hypoxic stress. The engaging 

review by Evans et al. (2016) is an interesting read that is sure to encourage colourful debate. 

 

 

 



Commentary 

AMP-activated protein kinase (AMPK) is pivotal to energy homeostasis in eukaryotic cells 

(Carling and Viollet, 2015; Hardie et al., 2016). During metabolic stress, such as oxygen 

deprivation (hypoxia), AMPK activity is increased serving to drive catabolic signalling that 

helps to buffer potentially catastrophic deficits in ATP supply from hypoxia-dependent 

depression of mitochondrial oxidative phosphorylation. As such, AMPK functions as a crucial 

cellular ‘energy-stat’. This fundamental gatekeeper role, coupled with observations of 

polymorphisms in the gene for AMPK-1 in hypoxic-adapted high altitude natives, has led to 

speculation that AMPK is perhaps perfectly poised to coordinate integrative responses to 

oxygen deficiency.    

The physiological response to whole-body hypoxic stress, observed for example at altitude, in 

pulmonary diseases, and in respiratory control disorders that commonly present during sleep, 

includes the archetypal reflex cardiorespiratory adjustments of increased ventilation (serving 

to better oxygenate the pulmonary blood), increased cardiac output (improving oxygen delivery 

to the systemic circuit), and systemic vasodilatation (enhancing local delivery and uptake of 

oxygen into peripheral tissues) that together protect against profound oxygen deficiency in the 

face of global hypoxic stress (Teppema and Dahan, 2010; Prabhakar and Semenza, 2012). 

Whilst the integral neural circuitry for elaboration of the cardiorespiratory response to hypoxia 

has been understood in some detail for many decades, there remains considerable interest and 

controversy in respect of the precise molecular mechanisms underpinning the peculiar 

particulars of oxygen sensing by chemoreceptors (Lopez-Barneo et al., 2016; Prabhakar and 

Peers, 2014). Beyond that, there is curiosity and debate too in the potential for hypoxic sensing 

in structures other than the carotid bodiesthe primary blood oxygen sensors found bilaterally 

at the bifurcation of the common carotid arteries in the neck (Kumar and Prabhakar, 2012). In 

this issue of the Biochemical Journal, Evans et al. (2016) review their recent exciting 



contribution to this important dynamic field. Their engaging and entertaining thesis posits a 

new perspective on pivotal pieces in the oxygen sensing puzzle. 

The original work of Mahmoud et al. (2016) examined whole-body ventilatory responses to 

acute hypoxic challenge in wild-type mice, and mice engineered with conditional deletion of 

the AMPK-α1 and/or AMPK-α2 genes in catecholaminergic (tyrosine hydroxylase expressing) 

cells of the hypoxia-responsive respiratory network, which extend from the carotid body, the 

peripheral (traditionally-viewed) primary oxygen sensor, to the brainstem respiratory networks 

that shape the rhythm and pattern of breathing. Under baseline conditions breathing room air, 

ventilatory parameters were similar in wild-type and AMPK knockout mice. However, upon 

exposure to hypoxic gas challenge, AMPK knockout mice presented with a profound blunting 

of the classic hyperventilatory response, and instead were seen to express respiratory 

depression and instability culminating in protracted pauses in respiration termed apnoeas—

ventilatory dysfunction that was proportional to the severity of the hypoxic stimulus. This 

aberrant ventilatory response to hypoxia was further exacerbated under anaesthesia, which 

removes volitional control of breathing and perhaps better reveals the extraordinary extent of 

inappropriate brainstem neural activation during whole-body hypoxic stress; exposure to 

severe hypoxia in anaesthetised AMPK deficient mice resulted in respiratory failure! Selectivity 

for the loss of oxygen sensing per se was illustrated by way of preserved ventilatory 

responsiveness to hypercapnia (elevated carbon dioxide), which restored regular breathing 

patterns and responses in AMPK knockout mice. On the face of it, the data strongly argue in 

favour of a pivotal role for AMPK in the transduction of hypoxic stress to an integrated 

ventilatory response, critical in the defence of whole organism oxygen homeostasis. The 

preservation of ventilatory drive during hypercapnic hypoxia in AMPK knockout mice is an 

important observation, in that it highlights that AMPK deletion is not associated with a generic 

disruption of neuronal activation or synaptic transmission in catecholaminergic neurons per se, 



which are known to be CO2/pH sensitive. Rather, there appears to be a specific failure within 

the neural network to transduce hypoxic stress, culminating in a dramatic unaroused global 

response to the insidious stimulus of oxygen lack. Consistent with this proposal, functional 

magnetic resonance imaging revealed an attenuated activation of caudal brainstem nuclei 

during hypoxia in AMPK knockout mice, with further corroboration of a restrained central 

neural response provided by evidence of decreased cfos activation during hypoxia in 

catecholaminergic cells in critical sites of the brainstem respiratory network, with no apparent 

change in the number and distribution of such cells and no obvious structural abnormalities. 

One would be forgiven for assuming that these observations point to a single unifying feature, 

namely aberrant oxygen sensing at the level of the peripheral oxygen sensor—the carotid body. 

The simplest basis for the authors’ observations ought to have been that hypoxic-dependent 

excitation of carotid body afferent (sensory) input to the brainstem in AMPK knockout mice 

was profoundly blunted. In this way, a reduced sensory cue would expectedly translate to 

blunted and ineffective efferent (motor) responses that would be consistent with the atypical 

ventilatory responses to hypoxia in AMPK knockout mice. Unexpectedly, chemo-afferent 

responses to hypoxia were shown to be perfectly normal in AMPK-deficient carotid bodies. 

Thus, inactivation of central neural networks and grossly perturbed breathing responses during 

hypoxic challenge in AMPK knockout mice occur in spite of the normal increased chemo-

afferent input from the carotid body during hypoxia, and not because of an absence of it! Of 

interest, the observation definitively, if surprisingly, excludes an obligatory role for AMPK in 

the mechanism of oxygen sensing by the dominant peripheral oxygen chemosensor. More than 

that however, the findings challenge fundamental aspects of our understanding of the 

mechanisms of CNS responsiveness to hypoxic stress, and in doing so potentially rock the 

foundations of our hitherto appreciation of the integrated ventilatory response to hypoxia. 

 



The deliberately provocative, but always well-spirited review by Evans et al. (2016) expands 

on the authors’ original research paper (Mahmoud et al., 2016) drawing from the historical 

literature (including comparative studies in amphibians), further informed by contemporary 

observations of their own and by those of others employing global or conditional knockout 

mice, to present a coherent argument that concludes that the hypoxic ventilatory response must 

be determined by the coordinated action of the carotid body and a hypoxia-responsive circuit 

within the brainstem. The authors delight in the revelation that this is not an entirely new 

concept, rather one that has been overshadowed by the intense interest (and evidence) in the 

dominant role of the carotid body in determining the hypoxic ventilatory response. Somewhat 

tongue-in-cheek, the authors propose the existence of (an elusive) nucleus or node of oxygen-

sensitive neurons, or perhaps multi-nodal circuit that serves as true gatekeeper of the hypoxic 

ventilatory response, the authors emphasizing the pivotal role for AMPK ordinarily within this 

network in protecting against hypoventilation and apnoea (dysregulated breathing) during 

hypoxia by way of normal robust ventilatory activation.   

The fly in the ointment of this fine work, lies not in those measurements made by the 

investigators, but rather in one arguably key parameter that is notably missing from the studies 

to date. Measurements of metabolism during hypoxia could prove especially important in 

unravelling the mystery of aberrant ventilatory responsiveness to hypoxia in AMPK knockout 

mice. Small rodents, particularly mice, express quite short-lived (minutes) ventilatory 

responses to hypoxia, adopting instead a useful hypometabolic strategy, electing to decrease 

considerably oxygen demand in the face of oxygen deprivation, different to the strategy 

adopted by larger animals including humans characterised by increased physiological work 

subserving persistent cardiorespiratory strategies aimed at improving oxygen supply (Mortola 

and Maskrey, 2011). Whilst one cannot readily challenge the authors’ observation of a 

significant blunting of the peak hypoxic ventilatory response in AMPK knockout mice (with 



presumed normal carotid body activation), it is tempting to consider that perhaps a component 

of the response thereafter relates to different metabolic (and hence ventilatory) strategies 

between wild-type and knockout mice in response to hypoxia. The striking behavioural 

response of AMPK knockout mice in hypoxia, adopting as the authors put it, a torpor-like state, 

illustrates that minimizing oxygen utilization is clearly a determined outcome in knockout 

animals upon exposure to hypoxia. The question that arises is whether this contributes to or is 

exclusively a consequence of the abnormal ventilatory phenotype. Did the profoundly 

abnormal ventilatory response to hypoxia trigger the behavioural phenotype or did a 

profoundly abnormal metabolic response to hypoxia contribute in some way to dysregulated 

breathing? Admittedly, it is more likely that the typical hypometabolic strategy of the mouse 

has consequence for hypoxic challenges of time domains much longer than that utilized by the 

authors in their study, but nevertheless assessment of metabolism, and the relationship of 

ventilation to metabolism during hypoxia would be a useful addition for consideration in future 

investigations.  

Evans et al. (2016) also provide a short but informative review of the evidence supporting a 

potentially critical role for AMPK signalling in the physiology of oxygen delivery in the lungs 

and placenta by way of regulation of smooth muscle tone. The emerging evidence excitedly 

points to a primary role for AMPK in maintaining oxygen homeostasis in these tissues. 

Moreover, aberrant signalling might underpin pathophysiological traits in these critical gas 

exchange organs and as such an increased understanding of basic mechanisms in model 

systems might help reveal potential therapeutic strategies in disease states into the future. 

There is a rich history of exploration of the familiar facets of the ventilatory response to hypoxia 

over various time domains of relevance to health and disease. Evans et al. (2016) provide a 

thought-provoking and thoroughly engaging review of their important contribution to this 

exciting and evolving field. Contemporary sophisticated experimental tools are revealing 



nature’s long-held secret strategies, but in doing so they are also providing us with new 

questions more enigmatic than the answers that we find! 
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