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ABSTRACT 
 An index to compare supercomputers is proposed in the study. This index is based on the concept of technical 
efficiency and is developed adopting a non-parametric technique, e.g. Data Envelopment Analysis. The index is used to 
calculate the technical efficiency of 500 high-performing computing systems listed in the TOP500 supercomputers 
database. Finally, statistical analysis is performed to assess the weight that some supercomputers characteristics have on 
their efficiency. 
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INTRODUCTION 

Over the last 20 years, the global high-
performance computing landscape has evolved rapidly. 
The USA, Japan and China have driven the supercomputer 
technology development over time in order to satisfy the 
need of computationally intensive tasks in science, 
engineering and business fields [1]. The history of 
supercomputers dates back to the 1960s, when Seymour 
Cray designed the Atlas at the University of Manchester 
and, later, a series of computers at Control Data 
Corporation (CDC). These systems were defined as 
“supercomputers” because of the innovative design and 
parallelism used by Cray to achieve superior 
computational peak performance. In 1972 Cray left CDC 
to form his own company, Cray Research. In 1976 he 
introduced the Cray-1 supercomputer into the market and 
later, in 1985 Cray-2. The latter was the world's fastest 
supercomputer until 1990. After the 1990s, faster 
supercomputer systems were designed in the USA and 
Japan by using thousands of processors and, as a result, 
new computational performance records were set. China 
emerged later on the scene, developing high performing 
computers and contributing substantially to the progress of 
microelectronics and the computing technology. The 
advancement of supercomputers can be tracked by looking 
at the lists drawn up for the TOP500 supercomputer 
project, which was launched at the University of 
Mannheim (Germany) in 1993. Since then, two TOP500 
lists have been published every year providing a computer 
ranking based on their performance [2-3]. Today, the 
TOP500 supercomputer lists show that the United States 
are still the clear leader of the market with  46% of the top 
supercomputer systems, followed by China (12%) and 
Japan (6%).  

One of the main aspects linked to the 
computational task of supercomputers is their architecture. 
Supercomputers are not designed according to the Von 
Neumann’s architecture used by standard computers. 
Instead they use alternative architectures, such as 
massively parallel processing (MPP) and cluster 
computing, which allow a small number of operations on a 
large number of data to be performed more efficiently [4]. 
The MPP architecture has multiple processors running in 

parallel and linked with the motherboard. In other words a 
MPP is a single computer with many networked 
processors. Cluster computing, on the other hand, consists 
of a set of connected computers that work together as a 
single system [5]. With regard to the architectures of 
supercomputers, the TOP500 list from 2008 to 2014 shows 
that 85% of the total number of supercomputers uses 
clusters while only 15% uses MPP.  

The evolution of the architecture of 
supercomputers has affected performance capabilities, 
such as the number of floating point operations per second 
(FLOPS). In the 1960s, when the first supercomputers 
were introduced, they were characterized by one million 
FLOPS (megaflops). By increasing the number of 
processors, the number of FLOPS increased too. By the 
end of the 20th century, MPP systems achieved computing 
teraflop ranges with trillions of operations and, later, with 
the introduction of cluster computing, the first 
supercomputers characterized by a quadrillion floating 
point calculations per second (petaflops) had been 
introduced [6-7]. If the progress of supercomputers 
continues at this rate, by 2020 the first exascale machines 
will appear with speed performance at least 30 times faster 
[8]. The number of FLOPS depends on the total number of 
cores and the processor speed (in MHz) which are both 
given in the TOP500. It must be noted that the faster the 
clock speed (in Hertz) the processor has and the more 
cores there are, the more flops the processor will perform. 
In order to describe system performance, the TOP500 
provides other measures such as the maximal achieved 
performance (Rmax) and the theoretical peak performance 
(Rpeak) scores of supercomputers. Rpeak is a measure of 
the theoretical maximum number of floating point 
operations that the system can perform, and Rmax is the 
maximal rate at which the system can run the Linpack 
benchmark by solving a dense system of linear equation 
[2-4]. Both Rmax and Rpeak are measured in FLOPS. 

Benchmarking has become an important tool to 
improve product and process performance in several 
industries [10-15]. In the high tech industries such as the 
high-performance computing systems it is particularly 
useful to measure the progress of the technology and 
compare performance changes of products over time. The 
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TOP500 supercomputer project provides a ranking of 
systems, but it is based only on the ratio Mflops to Watt 
(i.e., speed to power) and, consequently, unable to take 
into account several attributes of the system in the same 
time. This paper adopts a non-parametric method to 
develop an efficiency index that compares high-
performance computing systems and generates useful 
benchmarks. It has the following organization. The second 
section presents the non-parametric approach to measure 
the supercomputer efficiency. In the third section, the 
study setting and model specifications to implement the 
method to compare computers in the TOP500 list are 
illustrated, while in the fourth section the results of the 
benchmarking analysis are discussed. Finally, the last 
section provides conclusions and summarizes this work. 
 
A NON-PARAMETRIC APPROACH TO MEASURE 
EFFICIENCY 

Introduced in 1978 by Charnes et al. [16], Data 
Envelopment Analysis (DEA) is a technique for decision 
making which provides the relative efficiency of a 
homogeneous set of units, known as decision making units 
(DMUs). When DMUs use multiple inputs to produce 
multiple outputs (MIMO problems), the efficiency scores 
are defined as the ratio of the weighted sums of outputs to 
the weighted sums of inputs. In particular, the Charnes-
Cooper-Rhodes (CCR) model is formulated in terms of the 
following fractional programming to calculate the relative 
efficiency of the DMU p [16]: 
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where n is the number of DMU, m is the number 

of  inputs and s is the number of outputs. Also, yki and xji 

represent the amount of output k and input j produced by 
DMU i, respectively. Lastly, vk and uj are the weights 
given to output k and input j, respectively. 

The above fractional program can be converted 
into the primal CCR model and the dual CCR model, 
which are linear programs (LP). The following dual model 
is easier to solve because of its reduced calculation size: 
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where  is the efficiency score and i the dual variables.  

DEA formulations can be either input or output 
oriented. In the case of an input-oriented model, DEA 
measures the ability of DMUs to produce a given set of 
outputs with the minimum amount of inputs. The output-
oriented model maximizes the amount of outputs while 
controlling the set of inputs. The obtained efficiency score, 
in both input and output orientation, is denominated 
technical efficiency (TE) [17]. 

In order to identify the relative efficiency scores 
of all the DMUs, the problem has to run n times. 
Efficiency scores range from 0 to 1; if a DMU has a score 
of 1 it will be considered efficient, whereas if the score is 
lower than 1 the DMU will be deemed inefficient. For 
each inefficient DMU, efficient DMUs can be used as 
benchmark units for improving performance and 
overcoming inefficiencies [18]. 

The main criticisms the described DEA model 
presents are related to the random noise of the data and the 
difficulty in applying statistical inference on efficiency 
scores [19]. In order to overcome these limitations, Simar 
and Wilson introduced the bootstrapped approach [20] and 
provided an ad hoc algorithm for estimating the bias 
corrected efficiency scores and confidence intervals [21]. 
 
STUDY SETTING AND MODEL SPECIFICATION 
 
Method 

The supercomputers technical efficiency TE is 
measured by implementing an input-oriented DEA model 
and assuming both constant returns to scale (CRS) and 
variable returns to scale (VRS). In order to have variable 
returns to scale, an additional convexity constraint i = 1 
had to be considered in the CCR model that assumes 
constant returns to scale to formulate the Banker-Charnes-
Cooper BCC model [22]. As the VRS model measures the 
pure technical efficiency the efficiency scores always 
satisfies the inequity (VRS) ≥ (CRS). In this study the 
DEA-bootstrapping is carried out by using the R FEAR 
package and performing 2,000 replications with alpha 
equal to 0.05 [23]. The bootstrapped VRS DEA efficiency 
is used to perform statistical analysis in order to assess the 
weight that the supercomputers characteristics (inputs and 
outputs) have on their technical efficiency. To this aim, the 
truncated regression technique has been performed as 
suggested in literature, assuming 0 and 1 as lower and 
upper limitations [21]. 
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Table-1. Input and output variables. 
 

type variable description 

input Power 
the average power consumption (measured in 
kilowatts or kW) of a supercomputer while 

achieving Rmax 

 Number of cores 
the total number of central processing units 

(called cores) 

output Performance 

geometric mean of Rmax (the maximal LINPACK 
performance achieved, measured in GFLOPS) and 
Rpeak (the theoretical peak performance, measured 

in GFLOPS) 
 
Sample 

Data have been collected in January 2015 for a 
sample including 500 high-performance computers from 
the Top500 database freely available online [24]. This 
database contains supercomputers ranked by their 
performance on the LINPACK Benchmark [25]. 
 
Variables 

The input and output variables displayed in 
Table-1 have been used to specify the DEA model 
implemented to calculate technical efficiency. 

In particular, both input variables were directly 
available in the Top500 database, while the output variable 

was obtained as the geometric mean of Rmax and Rpeak. The 
choice to use only one output variable obtained as a 
combination of two output variables was suggested by the 
high correlation of these latter. 
 
RESULTS 

Table-2 shows statistics relative to the input and 
output variables used to calculate supercomputer technical 
efficiency. Data indicate that supercomputers differ to a 
large extent as all variables have a great standard 
deviation. For instance, power varies from 35 kW to 
19,431 kW, while Rmax varies from 153,381 GFLOPS to 
33,862,700 GFLOPS. 

 
Table-2. Statistics relative to the whole sample. 

 

Variable Mean St.dev. Maximum Minimum 

Power 1,185 1,763 19,431 35 

No. of cores 46,288 168,455 3,120,000 2,992 

Rmax 615,726 2,024,264 33,862,700 153,381 

Rpeak 907,005 3,036,893 54,902,400 170,394 

 
In order to perform DEA variables have been 

preliminarily normalized, generating measurements 
between 0 and 1. Table-3 displays the supercomputer 
efficiency measurements calculated adopting both the 
CRS and VRS approach. Table-3 also contains the 
bootstrapped efficiency scores for both approaches 
(CRSboot and VRSboot). The mean CRS and VRS 

efficiency scores are 28.9% and 31.7%, while the lower 
CRS and VRS efficiency scores are 6.5% and 7.2%, 
respectively. Differences between CRS and VRS 
efficiencies indicate that the computing systems size (i.e., 
scale) has an effect on their technical efficiency. The 
number of 100% efficient supercomputers is 9 in the VRS 
approach and only 3 in the CRS approach. 

 
Table-3. Efficiency measurements. 

 

 CRS CRSboot VRS VRSboot 

mean 0.289 0.272 0.317 0.277 

st.dev 0.160 0.143 0.184 0.141 

maximum 1.000 0.882 1.000 0.858 

minimum 0.065 0.056 0.072 0.055 

no. 100% efficient 
supercomputers 

3 - 9 - 
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Figure-1. VRS efficiency plot. 
 

Figure-1 plots the distribution of the whole 
sample VRS efficiency measurements sorted by size (grey 
area).  The shape of the area is indicating that a large 

amount of supercomputers in the sample have technical 
efficiency between 40% and 20%, while only a small 
number of them have efficiency higher than 60%. 

 

 
 

Figure-2. VRS efficiency vs TOP500 rank plot. 
 

Figure-2 shows both the calculated VRS 
efficiency and the Top500 rank measurements (light and 
dark grey areas, respectively). Scores have been sorted 
according to the Top500 rank. Even though the two 
measurements have similar trends for the aggregate 
sample, the shapes of the two areas indicate that there may 
be important differences at the micro level (e.g., the 
individual supercomputer). 

Finally, Table-4 reports the outcome of the 
truncated regression analysis conducted adopting the 

bootstrapped VRS efficiency as dependent variable, and 
the input and output variables of the DEA model as 
independent variables. As expected, both the coefficients 
of the “No. of cores” and “Power” variables have negative 
signs, while the coefficient of the “Rmax” variable has a 
positive sign. The “Rpeak” coefficient is not statistically 
significant. In terms of size of effects, Rmax contributes 
more than No. of cores and Power to the technical 
efficiency measurement, while Power is less important 
than No. of cores. 
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Table-4. Truncated regression analysis. 
 

Variable Coefficient z Prob. |z|>Z* 

constant -.00030*** -35.44 .0000 

No. of cores -2.36446*** -4.42 .0000 

Power -.87856*** -6.46 .0000 

Rmax 4.37089*** 5.76 .0000 

Rpeak -1.01040 -1.37 .1712 

    

Sigma .13478*** 25.72 .0000 

Log likelihood function 346.35932 

Inf.Cr.AIC -680.7 

AIC/N -1.361 
 

*** indicates significant at the one percent level. Threshold values for the model are 0, 1. 
 
CONCLUSIONS 

This paper has suggested an efficiency index 
useful to compare high-performing computers and conduct 
benchmarking studies. This index is calculated by 
implementing a non-parametric technique denominated 
Data Envelopment Analysis (DEA). A benchmarking 
analysis was conducted using the Top500 database. Two 
different DEA formulations have been adopted in the 
empirical study - the CRS and the VRS - the first one 
assuming constant returns to scale and the second one 
assuming variable returns to scale in order to take into 
account and assess the effect of the size of the system 
upon efficiency. To gain a more in depth knowledge of the 
single supercomputer characteristics that most influence 
their efficiency a regression analysis was carried on 
adopting the bootstrapped VRS DEA score as the 
dependent variable of a truncated regression equation. 

The benchmarking study shows that the DEA 
VRS efficiency index is between 7.2% and 100%, while 
the CRS efficiency index is between 6.5% and 100%. The 
mean VRS and CRS efficiencies are 31.7% and 28.9%, 
respectively. Findings also indicate that the scale effect 
influences the efficiency score. The regression analysis 
suggests that the supercomputers characteristics contribute 
differently to the efficiency measurement. The efficiency 
score increases when Rmax increases, while decreases when 
either the No. of cores or Power increases. Particularly, the 
effect of Rmax is greater than the No. of cores and Power, 
while Power is less important than No. of cores.  

The efficiency index is alternative to the ratio 
Mflops to Watt (i.e., speed to power) which is used in the 
Top500 database to rank supercomputers. Even though the 
proposed efficiency index generates only a relative 
ranking of the supercomputers, it provides a more 
comprehensive measurement of their performance as it 
takes into account several attributes of the system in the 
same time, supporting the benchmarking practice and 
developing useful information about how to compare 
supercomputers in multiple-dimension variables space and 
improve existing supercomputers or develop new 

supercomputers that more closely fit technology 
opportunities and trends, particularly taking into account 
both the market demand for greater performance and 
quality and the concerns for energy saving and 
sustainability [26-27].  
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