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The first Gamma–Ray Burst (GRB) catalog presented by the Fermi-Large Area Telescope (LAT)

collaboration includes 28 GRBs, detected above 100 MeV overthe first three years since the

launch of the Fermi mission. However, more than 100 GRBs are expected to be found over a

period of six years of data collection thanks to a new detection algorithm and to the development

of a new LAT event reconstruction, the so-called “Pass 8”. Our aim is to provide revised prospects

for GRB alerts in the CTA era in light of these new LAT discoveries.

We focus initially on the possibility of GRB detection with the Large Size Telescopes (LSTs).

Moreover, we investigate the contribution of the Middle Size Telescopes (MSTs), which are cru-

cial for the search of larger areas on short post trigger timescales. The study of different spectral

components in the prompt and afterglow phase, and the limitson the Extragalactic background

light are highlighted. Different strategies to repoint part of – or the entire array – are studied in

detail.
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1. Introduction

Gamma–Ray Bursts represent a very interesting case study inastrophysics, mainly due to their
multi–disciplinary nature. At present time, a GRB can trigger one or more of the dedicated instru-
ments based on several satellites orbiting around the Earth, such as Swift, Fermi, MAXI or INTE-
GRAL. The observed keV-MeV prompt emission may be accompanied by X–ray, optical or radio
emission. Rapid follow–up of this keV–MeV emission is possible thanks to communication through
the Gamma-ray Coordinates Network (GCN), where the GRB position is spread out in real time
to all other observatories. This includes all currently operative Imaging Atmospheric Cherenkov
Telescopes (IACTs) like MAGIC, H.E.S.S., and VERITAS. Unfortunately, none of them ever suc-
ceeded in capturing a high-energy signal from a GRB, but several upper limits from a single or from
a sample of bursts were published by each collaboration overthe last years. In this contribution,
we aim to investigate the possibility by the Cherenkov Telescope Array (CTA) [1] to detect such
elusive GRB emission.

2. CTA configurations

CTA is a worldwide project aiming to build and operate a thirdgeneration of IACTs. In its
current design, two huge arrays for a total amount of more than 100 telescopes are foreseen, one
in each hemisphere, to extend the energy range of currently operating IACTs mainly to higher
energies and to improve the sensitivity of about one order ofmagnitude with better angular and
energy resolutions.

In order to cover the energy range from 20 GeV to more than 100 TeV, three kinds of tele-
scopes are envisaged: Large Size Telescopes (LSTs, 20 GeV÷ 100 GeV), Medium Size Tele-
scopes (MSTs, 100 GeV÷ 10 TeV), and Small Size Telescopes (SSTs, 10 TeV÷ > 100 TeV).
This configuration is driven by the features of the Cherenkovsignal at different energies: near the
threshold, the number of source photons is relatively high but the Cherenkov image is poor, so few
huge telescopes (3 or 4, with a diameter of 23 m) are used to collect the faint showers. In this
region, the challenge is to distinguish between Cherenkov and Night Sky Background (NSB) pho-
tons, and to discriminate primary gammas from the overwhelming flux of cosmic rays hadrons. On
the other hand, the effective area is not an issue, so a small number of big telescopes close to each
other is the best configuration. At higher energies, the Cherenkov signal starts to increase and the
flux from the source is rapidly fading, so a compromise array of ∼ 25 telescopes of 12 m diameter
scattered over an area of around 3 km2 is the best choice. At the highest energies the situation is
completely different: the Cherenkov signal is very strong,but the steep spectra reduce the signal to
a handful of primary gammas. To overcome this, a huge effective area up to 6-7 km2, covered by∼
70 SSTs (4 m diameter) is needed. We notice that for energies& 10 TeV the Cherenkov images are
so rich that it is not only easy to discard the NSB photons, butalso to discriminate gammas from
hadrons, approaching a background-free working mode for which the sensitivity is proportional to
the effective area and not to its square root. Due to the Extragalactic Background Light (EBL) ab-
sorption, that strongly depresses the high–energy spectraof distant sources detected on Earth (the
limit being E. 1 TeV for z≥ 0.1) and to the fact that the Galactic plane is mostly visiblefrom the
Southern hemisphere, the SST array is not expected to be built in the Northern observatory.
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3. High–energy GRB observations

Due to their elusive nature, GRBs represent a very interesting candidate for future observations
by CTA, as highlighted also in [2]. Prospects for VHE GRB observations by CTA were also
presented in detail by [3]. Most of these analyses relied on extrapolations taken (1) from the
GRB spectral parameters published in the catalogs of the Burst and Transient Source Experiment
(BATSE, 20 keV–2 MeV) or of theSwiftBurst Alert Telescope (BAT, 15–150 keV); and (2) from
some very energetic GRBs detected by Fermi before 2012.

Since June 2008, the Fermi mission is constantly enhancing the number of GRB detections.
The Fermi Gamma-Ray Burst Monitor (GBM, [4]) is sensitive inthe energy rate bewteen 8 keV to
40 MeV and its field of view covers almost 4π sr. The GBM trigger rate lies at∼250 GRB/yr (i.e.
higher than BAT with∼100 GRB/yr) and the second GBM catalog (covering 4 years of operation)
includes almost 1000 bursts [5]. Furthermore, thanks to theLAT [6] onboard Fermi, the number
of high–energy GRBs dramatically increased with respect tothe bunch of events seen in the ’90s
by the Energetic Gamma–ray Experiment Telescope (EGRET, 20MeV–30 GeV). LAT operates
at energies between 100 MeV and>300 GeV and its first GRB catalog [7] already included∼30
GRBs observed during the first three years of operation above100 MeV with the standard event
reconstruction analysis. This number gets even larger whenconsidering dedicated low–energy
techniques (LLE) exploring the energy region between 10 and100 MeV, where the LAT and GBM
energy ranges overlap.

The current number of official LAT GRB detections is constantly kept up–to–date on the LAT
Public Table website [8] and lists almost 100 GRBs at the timeof this writing, that is after seven
years into the Fermi mission. However, this number is meant to grow as soon as the new event
reconstruction algorithm (the so–calledPass 8) will be released and the catalog will be updated
(see [9] for more details).

Fermi’s GRBs exhibit dozen of GeV photons with unprecedented high energies. The current
record holder is GRB 130427A, which emitted a 95 GeV photon [10] and was detected at a low
redshift of 0.34. It was followed–up by a very large number oftelescopes, including the Veritas
array [11]. Unfortunately, Veritas’ observations only began almost 20 hours post trigger, leading to
no GRB detection. The upper limit (UL) was placed at 3.3×10−12 erg cm−2 s−1.

In the near future, we plan to revisit the latest prospects for VHE GRB observations in the
light of the newest simulations produced by the CTA collaboration. We want to focus on the
extrapolation to high energies of Fermi–like GRBs, both from the prompt emission using the GBM
sample and from the late emission using the LAT sample, in particular using those bursts with
measured redshift. For this contribution, we use the extremely fluent GRB 130427A as a test case
and see how well we might observe this event at several epochsafter the trigger with various CTA
configurations.

4. Simulation of GRB observations with ctools

In order to estimate the possible detection of GRBs by CTA, weintend to set up a library of
GRBs at different times, extrapolating the LAT flux to the highest energies and properly taking into
account the time evolution of their flux. However, since we donot yet model the effect of the EBL,
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Figure 1: Simulation of GRB 130427A withctools. Left panel: Count map of GRB 130427A as seen by
CTA North in 600 s, after 1000 s from the trigger in the energy range 20 GeV–100 GeV;Right panel:Count
map of GRB 130427A as seen by CTA North in 1800 s, after 10000 s of the trigger in the energy range 20
GeV–100 GeV

our current simulations are limited up to 100 GeV, an energy where the effect of the cosmological
attenuation is not relevant (see Section 5. for more details).

To estimate the detectability of a GRB we make use of thectools, a software package specif-
ically developed for the scientific analysis of CTA data [12]. In these first tests, we simulate the
high–energy emission of GRB 130427A as detected by LAT, witha spectral indexγ = 2.2 (which
is almost constant from 400 s up to 70 ks post trigger) and a power law decay with a temporal
index τ = 1.35 (valid for t> 380 s). We cross checked our extrapolation to the CTA energies by
comparing it with the UL placed on this GRB by VERITAS [11]. This was calculated assuming an
intrinsic GRB spectrum of (dN/dE)∝ Eγ absorbed using the EBL model of [13].

We simulate two possible observations of this GRB by CTA: (a)the first one lasting 10 min at
t = 1 ks post trigger; (b) the second one lasting half an hour at t= 10 ks post trigger. We assume
both observations on axis with respect to the CTA array and a zenith angleθ = 20o. Figure 1
shows two count maps of the simulated GRB in the energy range 20 GeV–100 GeV. They were
obtained using thectools functionsctobssimandctbin, and adopting the recently provided CTA
instrument response functions (IRFs) [14]. In this particular case, we made use of theNorth_0.5h
andNorth_5hIRFs, respectively. A preliminaryctlike analysis is performed on the two observa-
tions, getting a significant detection in both cases. We planto perform similar analyses for other
Fermi GRBs with known redshift, using different observing profiles and spectra.

5. Effect of the Extragalactic Background Light

The interaction of extragalactic VHE photons with EBL at UV–optical wavelengths produces
ane+e− pair and thus an exponential attenuation of the gamma–ray flux. This absorption increases
with the redshift of the source, the gamma–ray energy and thephoton density of the EBL (for
a review, see [15]). Moreover, it is particularly importantfor GRBs, since they are cosmological
sources with a mean redshiftz≃ 2. Many EBL models have been published in the last decades, with
a general trend towards a decrease of the corresponding optical depth due to the observation of VHE
photons at larger redshifts [16], which were recently detected from blazars atz≃ 1 [17, 18, 19].
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The EBL models are getting close to the firm lower limits derived from integrated galaxy number
counts [20]. As an indication, the high–energy spectrum of asource at z≃ 1 shows a cutoff at
E≈100 GeV. In our future work we will consider the EBL model by [21]. For simplicity, in our
simulations we will extend the spectrum only up to 1 TeV, the maximum energy after which the
source is assumed to be totally absorbed.

However, the observed spectral indices in blazars do not seem to follow the amount of soften-
ing with increasing redshift predicted by the EBL absorption [22], and there are other indications
of an overestimation of the EBL photon density (e.g., [23]).A possible explanation of these results
could be the oscillation from photons to Axion–Like Particles (ALPs), which propagate unim-
peded over cosmological distances before reconversion, reducing the optical depth along the VHE
gamma–ray path [24]. In this framework, GRBs, with their cosmological distances, may be useful
to add stronger constraints on the EBL and give new hints on the existence of ALPs.

6. CTA operating modes

CTA’s complex and varied experimental layout will be run in different ways depending on the
target features:

1. highest sensitivity observations, with all telescopes pointing toward a single source;

2. normal operations, with the array split into sub–arrays with different targets;

3. sky survey, with the aim of covering large portions of the sky to detect new or transient
sources.

Case 1. applies mainly to flaring or varying sources, when theobservation cannot be postponed
and the maximum sensitivity over the whole energy range is required. This is not the case of deep
observations, since the comparison of the primary spectra with the expected sensitivity shows that
the core energy window (around 1 TeV) will be covered in a timeconsiderably smaller than the
high energy tail. We therefore expect for deep field observations that the SST array will make very
long exposures on selected candidates suggested by MSTs on the basis of hard spectrum or high
flux. This is case 2., with the array split into the different telescope types, but mainly for MSTs,
this can apply also to telescopes of the same type. Case 3. is the most relevant one for this study,
since it allows the detection of serendipitous sources, variable or unexpected, and GRBs are both.
This observation mode will be therefore analyzed in more details.

The current field of view (FoV) of operating IACT arrays (4–5◦) will be widened by MSTs and
SSTs up to 8–10◦. Unfortunately, since the detection of primary photons is through the Cherenkov
images, the sensitivity is not uniform inside the FoV and dramatically drops towards its edge.
This means that, if we want to enlarge the total FoV by pointing the telescopes towards different
directions, the FoV of each telescope must overlap in order to obtain a uniform sensitivity. At
present, only the Galactic plane was scanned, starting fromHEGRA [25, 26] up to the 1400 hours–
long survey by H.E.S.S. [27, 28, 29]. Outside the Galactic plane, only small promising regions
were observed, limiting our knowledge of the VHE sky to a few per cent.

In order to efficiently scan large portions of the sky, the divergent mode was firstly proposed.
In this mode, instead of having all telescopes pointing towards the same direction (the so called
“parallel mode”), each telescope points to an angle slightly increasing from the center to the edges
of the array. Another possibility, the so called “convergent mode”, envisages that this angle is
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Figure 2: Three modes of configuration of the telescope system used in the sky–survey scans: a) normal
(parallel) mode; b) divergent mode; c) convergent mode (taken from [30]).

reduced from the array center to its edges (see the sketch in Figure 2). Both modes were deeply
studied for MSTs by means of an accurate simulation of the shower development in the atmosphere
and of the telescopes response in [30], for different angle separations. The results show that the
maximum sensitivity for sky survey is achieved in divergentmode with large offset angles (∼ 6◦

from the central to the outermost telescopes), with a decrease of the observing time for a given
sensitivity by a factor of∼2.3 with respect to the parallel mode. However, the angular and energy
resolutions are worsened by a factor up to 2. The convergent mode is a better choice at high energy,
favoring the observation of sources with hard spectra. In this work, we propose a third possibility,
that is a mixture between parallel and divergent modes.

In the past, exciting observations made by Whipple in the late ’80s were performed using a
single telescope recording the Cherenkov images by means ofa pixelated camera that allowed the
discrimination between gammas and hadrons. With just one image, the core location (and thus
the primary energy) could be badly determined, limiting thedetection inside the Cherenkov “pool”
(with radius rp ∼ 120 m) where the lateral distribution of photons is approximately flat. After
imaging, the next fundamental improvement to the IACT technique was the stereo approach firstly
used by HEGRA: with at least two images, the shower axis couldbe determined geometrically with
a better resolution on both energy and arrival direction. This approach was so widely adopted that
even for CTA the main trigger will be given by the coincidenceof at least two telescopes, and the
mono events will be collected only for calibration and testing purposes.

Since for IACTs the single observing unit is a couple of nearby telescopes, we propose here a
“coupled divergent mode” in which couples of telescopes arepointing to slightly different positions
as in Figure 2b) for single ones. The tilt angle will be chosenon the basis of the sensitivity decrease
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over the FoV for each couple of telescopes. If, for example, the sensitivity is halved at 3◦, a tilt
angle of 6◦ will assure a uniform sensitivity at least along the line connecting the center of the
FoV of the two couples of telescopes. For the entire sky we expect that this value will be reduced,
and we plan to perform an accurate simulation to optimize this separation angle. Even if the main
contribution in GRB searches will come from LSTs, which due to their paucity can hardly benefit
of whatever divergent mode, the contribution of MSTs could still be not negligible. The medium
sized telescopes are not designed for fast slewing as LSTs (which can repoint within 100 s or
less), but there are indications from EGRET and from Fermi observations that the VHE emission is
delayed with respect to the prompt phase. Concerning the energy window, the energy range from
100 GeV to 1 TeV corresponds respectively to an horizon from z≃ 1 to z≃ 0.1, depending on
the EBL absorption model. For follow–up observations, the GRB location is often given by fast
satellite analysis with large uncertainties, mostly greater than the 50% sensitivity FoV, so some
kind of divergent mode must be applied. Moreover, a sky survey with large angular acceptance
could reveal a serendipitous GRB.

In the future, Monte Carlo simulations to obtain the expected performance of the MST array
operated in “coupled divergent mode” are planned, and the results will be compared with those
presented in [30]. An estimate of the rate of serendipitous GRBs detectable during the sky survey
will be also given.
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