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Abstract

The recent development of Sequence Capture methodology represents a powerful strategy for

enhancing data generation to assess genetic variation of targeted genomic regions. Here, we pre-

sent SUPER-CAP, a bioinformatics web tool aimed at handling Sequence Capture data, fine calcu-

lating the allele frequency of variations and building genotype-specific sequence of captured

genes. The dataset used to develop this in silico strategy consists of 378 loci and related regula-

tive regions in a collection of 44 tomato landraces. About 14,000 high-quality variants were identi-

fied. The high depth (>40�) of coverage and adopting the correct filtering criteria allowed

identification of about 4,000 rare variants and 10 genes with a different copy number variation.

We also show that the tool is capable to reconstruct genotype-specific sequences for each geno-

type by using the detected variants. This allows evaluating the combined effect of multiple vari-

ants in the same protein. The architecture and functionality of SUPER-CAP makes the software

appropriate for a broad set of analyses including SNP discovery and mining. Its functionality, to-

gether with the capability to process large data sets and efficient detection of sequence variation,

makes SUPER-CAP a valuable bioinformatics tool for genomics and breeding purposes.

Key words: target enrichment, sequence reconstruction, heterozygous variants, web tool analysis

1. Introduction

Identifying sequence polymorphisms responsible for phenotypic vari-
ation and understanding the genetic basis of complex traits have
been two major challenges of plant molecular genetics since the de-
velopment of the first molecular markers up to the impressive high-
throughput genomics technologies available today.1,2 The process of
genotype-phenotype association is one of the central goals in the
path towards plant improvement, and this requires the use of all the
genetic and genomic information available for a given individual

and/or population. The association of the genomic variation with
traits of interest requires the reliable detection and the systematic in-
vestigation of the entire spectrum of DNA variability, including sin-
gle nucleotide polymorphisms (SNPs), insertions/deletions (INDELs)
as well as copy number variations (CNVs) and presence/absence of
variations (PAV). Substantial progress towards this goal was made
in the last few years. Large germoplasm collections have been charac-
terized using SSR,3,4 SNP markers and SNP arrays.5–9 However,
most of these approaches had known disadvantages that limited the
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power of the detection, in particular because the SNPs used in these
studies were selected from a limited number of divergent sources and
were commonly chosen to exceed a minimum frequency of the rare
allele. Whole genome sequencing has also been used to explore indi-
vidual variation at the genomic level in plants10–13 but, due to its
high cost and complexity in data analysis, it is not expected to be
widely applied for investigation of variants underlying specific traits
of interest at a sufficient coverage. Recently, the development of mi-
croarray based or liquid-based genomic selection methods, com-
monly referred to as ‘Sequence Capture’, provided an affordable way
to produce high-quality variants, thus solving most of the ascertained
bias reported.14–16 Combining the recently developed targeted se-
quence enrichment with Next-Generation Sequencing (NGS) tech-
nologies, Sequence Capture methodology represents a powerful
strategy for enhancing data generation to assess genetic variation of
target regions, and it is likely to replace PCR as the main target en-
richment method in both plants and animals.17 In addition, setting
the experiments to obtain a sufficient depth of coverage would sup-
port the detection of rare functional variants and allow the discovery
of complete haplotypes of genes, as well as CNV and PAV. With the
ever-decreasing costs of sequencing and the advances in Sequence
Capture technologies, these approaches are nowadays largely ap-
plied in different fields. Thanks to its high reliability and moderate
cost per experiment, Sequence Capture is becoming an affordable di-
agnostic tool for medical and personalized medicine purposes.18

Despite its large employment in the medical field, the use of Sequence
Capture in plant science is still emerging. Sequence Capture experi-
ments were carried out for few species, including maize,19 straw-
berry,20 rapeseed canola,21,22 black cottonwood,23 potato,24

wheat,25,26 medicago17 and cassava.27

The work herein proposed, which investigates the sequence variation
of a group of 378 genes and the related regulative regions in a collection
of 44 landraces, represents the first study of Sequence Capture in to-
mato species. Although software tools are available for variant calling
and variant mining, their application is not straightforward, requiring
users to install various packages and to convert data into different for-
mats. This lack of easily accessible software pushed us to propose a
web-based tool, named SUPER-CAP (http://supercap.sequentiabiotech.
com/), to boost quick, proficient and affordable analysis of sequence
capture data. This tool, benefitting from SUPER-W pipeline28 and com-
bining different software and customizable procedures, assists the user
in sequence capture experiments from the identification of single-
nucleotide variants (SNVs) and small insertions and deletions (INDELs)
to the reconstruction of genotype-specific (hereafter referred to as ‘pri-
vate’) sequences/gene features for each target region of each sample.

In addition, in this study, an explorative investigation on different
aspects affecting sequence capture data was also carried out. For in-
stance, since one of the major challenges in the enrichment/capture
technologies are to avoid spurious variants calling for heterozygous
(He) loci, this work evaluated how the depth of the reads and the pro-
cedure set-ups impact the variant calling of He variants. In fact, being
the tomato a highly homozygous (Ho) species, it represents a good
model for testing He variant calling into the gene set considered. In
addition, spurious callings are frequently referred to multi-copy gene
families (duplicated region/high homologous regions).29 The gene set
considered in this study represents a large range of variability in terms
of gene families. This allowed for suitable assessment and estimation
of the effective presence of He variants among the multi-copy genes.

As a final point, the variant set was also used to investigate: (i) the
level and the type of sequence polymorphism in captured genes
across the 44 tomato samples, (ii) the pattern of variants distribution

among the lines, with respect to the identification of rare variants,
(iii) the number of genes CNV, PAV and (iv) the functional annota-
tion of the variants in order to prioritize the study of highly relevant
variants. The work herein proposed represents a framework for easy
Sequence Capture-related experiments that will promote similar
studies, as well as in differing species.

2. Material and methods

2.1. Plant material and selection of target genes

A panel of 44 genetically diverse Solanum lycopersicum genotypes
was selected from a wide collection of tomato landraces30 available
at the University of Naples, department of Agricultural Sciences.
Plants were grown in a greenhouse under controlled conditions at
the aforementioned Department; detailed information, including
source and geographic origin for each genotype, is presented in
Supplementary Table S1.

Genomic DNA from the 44 genotypes was isolated from young
tomato leaves using the DNeasy Plant Mini Kit (Qiagen, Valencia,
CA, USA). DNA quantity and purity/degradation was firstly checked
on 1% agarose gel. In order to fit the standard parameters for
Sequence Capture analyses, DNA concentration and quality were de-
termined by Nanodrop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and Qubit fluorometer (Life Technologies,
Darmstadt, Germany) according to the manufacturer’s requirements.

An inventory of 378 candidate genes representing possible targets for
antioxidant metabolism in tomatoes was compiled from published liter-
ature, previous research31,32 and exploration of metabolic pathway
databases (LycoCyc at http://solgenomics.net/and KEGG at http://www.
genome.jp/kegg/). Genes were also selected to represent different gene
family sizes. In total 235 out of the 378 genes completely represent 25
gene families. In particular, 171 genes belong to eight large gene families
(we declared a big family if composed by more than 10 copies in the ge-
nome), 40 belong to seven medium gene families (between nine and four
gene copies), and 24 belong to 10 small gene families (two or three cop-
ies). Six out of the 378 genes represent single copy genes. Moreover, in
order to take into account variations in the regulatory region of each se-
lected gene, a 3 Kbp promoter region was also included in the analysis.
For genes with an intergenic distance shorter than 3 Kbp, only the re-
lated shorter portion of the promoter was considered. Supplementary
Table S2 shows detailed information of the genomic regions considered.

2.2. Sequence capture design and sequencing

Probe design and gene enrichment were performed following the proto-
col provided with the solution-based Roche NimbleGen SeqCap EZ
Library (Roche-NimbleGen, Madison, WI, USA). Loci coordinates of
the genic and promotor regions were identified and submitted to Roche
Diagnostics for probe design using NimbleDesign and SignalMap soft-
ware (http://www.nimblegen.com/products/software/index.html). This
probe set contains probes with up to 20 close matches in the genome as
determined by the Sequence Search and Alignment by Hashing
Algorithm (http://www.sanger.ac.uk/resources/software/ssaha/). Acco
rding to NimbleGen specification, we considered a probe to match the
genome if the variation ratio was <0.05. Following the SeqCapEZ pro-
tocol, 44 paired-end libraries were prepared using the Illumina Kapa
Library Prep Kit and were multiplexed and sequenced with HiSeq
1,500 (read size:100 bp) according to Illumina specifications.
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2.3. SUPER-CAP usage and procedures

SUPER-CAP is a bioinformatics tool specifically designed for accu-
rate mapping, variant calling and reconstruction of private sequences
using the variations detected from Sequence Capture data. SUPER-
CAP includes an updated version of SUPER-W (release 4).28 SUPER-
CAP is a user-friendly web tool which only needs two input files to
work: the captured region file in BED format and the filtered NGS
reads in FASTQ format. The main steps and procedure underlying
the SUPER-CAP tool, including the calling variants, the variants fil-
tering and the targeted sequence reconstruction are presented in
Figure 1.

SUPER-W has been modified to specifically handle sequence cap-
ture data. In this new version, SUPER-W uses as input the BED file
of capture probe design (it can also handle a whole exome) and the
filtered NGS reads. The first step is to map all the samples against a
reference genome (specified by the user) with BWA (version 0.7.5;
options used: mem:BWA-MEM algorithm).33 The mapped files are
processed for PCR duplicates (Picard, MarkDuplicates tool, version
1.118), filtered for quality (minimum quality required: 30), sorted
and indexed.34 The resulting BAM file is then used for the variant
calling step. Small variations (SNPs and short deletion and insertion
polymorphisms), large variations (deletions, inversions and duplica-
tions), or both, can be set for detection. The small variations are

called with SAMtools34 through an accurate and sensitive double
calling step, while the structural variants are detected using LUMPY
(version 0.0.11; options used: -mv 4 –tt 0 –pe –sr).35

Once the variant calling step has been successfully completed, sta-
tistics on sequence capture experiment are calculated. The statistics
report can be considered as a checkpoint, allowing the user to check
the IN/OFF target read count, which highlights the specificity or sen-
sitivity of the sequence capture experiment.

Raw genomic variants annotated by SUPER-W are then classified
and filtered out. As default, only variants with a coverage >6� and a
Phred quality >30 were used for subsequent analysis. Furthermore,
variants overlapping each other are removed from downstream anal-
ysis as they cause a low confidence region. Moreover, a special op-
tion has been released to allow calling variants according to
customized allele frequency (AF). As default value, variants with an
AF between 0 and 0.2 are considered Ho for the reference allele, var-
iants with a AF between 0.4 and 0.6 are considered He while vari-
ants with an AF between 0.8 and 1 are considered Ho for the
alternative allele. Variants with an AF ranging out of boundaries set
(i.e. between 0.2 and 0.4 and between 0.6 and 0.8) are called with an
alert comment in the output VCF file. Coverage and quality filters as
well as the AF parameters can be manually modified by the user.
Finally, the filtered variants were classified according to type (SNP or

Figure 1. The SUPER-CAP tool. The main steps and procedures underlying the tool are graphically reported in the workflow.
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INDEL). For SNP variants the breakdown into transitions and trans-
versions was also determined. To improve the variant features,
SnpSift and SnpEff36 were implemented in the workflow, which al-
lows imputing the gene region in which the variants fall (promoter,
intron, exon, Untranslated regions (UTRs)) and the putative impact
of the variants on protein functionality.

The high-quality variants, the reference genome and the BED file
of the captured regions were used to perform a targeted sequence re-
construction. Using bcftools37 and BEDtools38 utilities, a new con-
sensus sequence was created by applying the filtered variants to the
reference sequence. He SNPs were introduced using IUPAC ambigu-
ity codes and He INDELs were discarded. Through a liftover pro-
cess, which recalculates the gene coordinates after the insertion or
deletion of INDELs, a FASTA file with reconstructed sequences was
created. Variants reconstructed were also displayed in the SUPER-
CAP’s browser results page, allowing the user to explore the type
and the number of variants easily.

2.4. Web tool development and design

With the aim of supplying SUPER-CAP with a graphical user inter-
face, we developed a NodeJS-based web tool (version 4.4.1.
Available at https://nodejs.org/), available at ‘http://supercap.sequen
tiabiotech.com/’. Using this tool, the user can upload the two re-
quired files (the BED file of the target regions and the FASTQ files of
the sequenced reads) and choose the analysis parameters (i.e. the
quality thresholds for the filtering procedure and the AF range for
the He /Ho assignation). An ID is given after completion of the pro-
cedure, which is required for accessing the results page. Both the re-
constructed sequences in FASTA format and the whole variants in
VCF format can be downloaded from the ‘Download section’. In ad-
dition, the visualization of the reconstructed sequence is also shown
in an interactive graphical interface in the results page. Here the user
can explore, for each gene in each genotype, the type and the number
of variants that have been incorporated and the effect they produced
on the reference protein. General mapping statistics, including IN/
OFF targets, as well as the sensitivity of the experiment, are dis-
played in the same page.

2.5. Use of SUPER-CAP on tomato experimental data

The reads obtained by sequencing the tomato DNA samples were
quality checked using FastQC (http://www.bioinformatics.babra
ham.ac.uk/projects/fastqc/). Then, reads were filtered for quality and
trimmed with the Trimmomatic tool (version 0.30; options used: –
windowsSize 3 –requiredQuality 22 –MINLEN 30).39 By using the
filtered reads, the following procedures were undertaken: reads fall-
ing in the designed regions with a PHRED quality >30 and a mini-
mum length of 30 bp were mapped onto the tomato genome SL2.
50.40 Then, PCR duplicates and multiple mapped reads were re-
moved by filtering on a meaningful MAPQ score of 30. Once the var-
iants were called, in order to reduce the number of false positives
calls, an additional filter was applied and only variants with coverage
higher than 6� and a PHRED quality >30 were selected. The total
numbers of He and Ho variants, as well as their ratio, were calcu-
lated with default parameters (0.4–0.6 as optimal AF range for the
He calling). A Neighbour-joining dendrogram was built in TASSEL
v.541 by using the detected filtered variants, and the related tree was
graphically refined using the Fig-tree software (http://tree.bio.ed.ac.
uk/software/figtree/). SNPs and INDELs were also structurally and
functionally annotated with SnpEff v4.236 using the tomato iTAG2.
40 annotation.

2.6. Validation of variants

To test the reliability of the adopted procedures, a validation of the
variants detected was achieved by exploring publicly available data
for tomato. In particular, data from a previous genotyping experi-
ment which detected variants for 7,720 SNPs through the SolCAP ar-
ray,30,32 as well as data concerning the resequencing of 360 tomato
genomes,42 were considered. Of the 44 genotypes used in this study,
37 were common to those used in the SolCAP experiment and 9 in
the 360 genome project. The validation was performed by compar-
ing the number and the concordance of shared variations among the
common genotypes. Only Ho variations were used for the validation.
Intersection of the sets was carried out by intersectBed tool38 and the
comparison analysis by using VCFtools.43

2.7. CNV and PAV identification

The coverage and total number of reads were evaluated for each
sample. Alignments were visualized using the IGV browser version
2.3.3 (http://www.broadinstitute.org/igv/). CNV was computed fol-
lowing a modified procedure of Schiessl et al. (2014)22 using a nor-
malized read coverage for each captured region. CNV in a given
target region was assumed if the ratio of normalized coverage (geno-
type)/normalized coverage (all genotypes) was <0.5 or >1.5, respec-
tively. PAV was assumed if the ratio was <0.05.

3. Results and discussion

3.1. Sequence capture experiment

We designed a custom capture probe experiment by using a custom-
izable and cost-effective approach based on Roche-NimbleGen
SeqCap EZ technology. This framework helped to set up an in silico
approach (SUPER-CAP) with the aim of facilitating further sequence
capture studies.

This study investigated the sequence variation of a group of 378
genes and related regulative regions. The total size of the sequenced
region was 2,338,578 bp, of which 1,353,817 bp corresponded to
genic regions and 984,761 bp to their related promoter regions.
Capturing probes were developed by Roche NimbleGen to target the
specific regions. The final design was non-redundant and covered
about 92.6% of the targeted regions. The 7.4% of non-covered re-
gions represents those that did not match the minimum parameters
for the capture and in the majority of the cases (>95%) these were
promoter regions. It has already been reported that the cover design
slightly varies depending on different factors, including the commer-
cial technology adopted.44

After the enrichment of the targeted regions, each capture library
was sequenced in one Illumina HiSeq lane. The number of raw reads
generated per sample varied between 1,103,352 and 2,683,868
(Table 1). Sequenced reads were analyzed in order to remove low-
quality regions. After quality trimming, between 71 and 93% of the
reads were retained and then used as input for SUPER-CAP. Data
were then statistically evaluated for: (i) alignment rates, the number
of mapped reads on the total reads, (ii) specificity, the number of
reads that map to the targeted sequence and (iii) sensitivity, the per-
centage of targeted bases covered by sequence reads. The reads from
samples 21A, 1A and 64A showed the highest alignment rates
(>98%). In contrast, the lowest alignment rate was observed in ge-
notypes 85A, 79A and 38A (<78%). The alignment success was
however independent of the total number of reads. Specificity of the
capture was imputed considering the number of reads in the target
interval on the number of mapped reads. It showed an average value
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of 74.80%. The minimum value 67.2% was detected for the geno-
type 14A and the maximum (77.02%) for the genotype 43A. In addi-
tion, considering an extension of flanking regions of 200 bp, the
specificity was found to vary only slightly, showing an average in-
crease of <1%. The range, considering flanking regions, was indeed
from 67.75 to 77.59%.

Even though investigators are seeking experimental designs that
generate robust scientific findings at the lowest sequencing cost, an
adequate depth of coverage is very important in order to reduce the

variant-error rate and the assembly gaps, and to obtain the correct
call of variants, in particular for the He ones.45 It has indeed been
demonstrated that for short Illumina reads a coverage comprised be-
tween 30� and 55� appears necessary to correctly identify SNVs
and small INDELs with a proper degree of reliability.45,46

In our experiment, the normalized mean coverage of the total tar-
geted regions showed an average value of 53.89�, allowing very ac-
curate detection of variants. Analysing the sensitivity of the
experiment (Supplementary Fig. S1), which shows how well the

Table 1. Alignment statistics for the 44 individual captures (Sample ID)

Sample ID Raw reads Mapped
reads

Mapped reads
Q> 30

Mapped reads
Q> 30 WD

Alignment
rate (%)

On target
reads (%)

On target
reads þ
200 bp (%)

Mean depth
of coverage

1A 1,344,456 1,327,567 1,269,157 1,251,088 98.74 75.45 76.06 43.2
3A 1,314,574 1,293,498 1,234,679 1,213,125 98.4 75.07 75.65 42.42
5A 1,413,706 1,391,398 1,331,163 1,310,092 98.42 75.94 76.55 45.97
8A 1,376,510 1,342,280 1,279,940 1,262,285 97.51 74.93 75.51 43.94
14A 1,580,074 1,231,066 1,142,665 1,128,063 77.91 67.22 67.75 39.67
15A 1,686,492 1,340,263 1,274,719 1,262,193 79.47 75.66 76.27 44.92
20A 1,480,340 1,162,656 1,101,676 1,056,514 78.54 71.73 72.28 40.27
21A 1,304,914 1,289,290 1,228,450 1,211,447 98.8 74.62 75.21 41.77
26A 1,103,352 871,462 830,910 821,995 78.98 75.72 76.35 30.03
27A 1,469,212 1,436,034 1,365,188 1,344,283 97.74 74.73 75.3 47.02
28A 1,354,892 1,332,311 1,264,586 1,190,895 98.33 70.39 70.87 40.76
30A 1,397,308 1,379,189 1,319,320 1,300,299 98.7 75.76 76.43 45.43
32A 1,893,224 1,480,474 1,410,253 1,394,575 78.2 74.55 75.18 48.69
34A 1,891,936 1,478,312 1,411,043 1,396,990 78.14 75.18 75.84 48.54
35A 1,788,530 1,398,636 1,333,126 1,316,721 78.2 74.51 75.16 46.02
38A 1,886,966 1,468,035 1,399,866 1,386,113 77.8 74.57 75.21 48.23
40A 2,651,822 2,575,073 2,463,126 2,432,466 97.11 76.67 77.25 88.92
41A 2,683,868 2,594,090 2,482,444 2,451,378 96.65 76.75 77.31 90.36
42A 1,450,568 1,424,424 1,348,207 1,329,068 98.2 74.28 74.84 46.26
43A 2,082,552 2,006,847 1,921,991 1,899,495 96.36 77.02 77.59 70.57
45A 2,409,462 2,316,282 2,221,361 2,193,201 96.13 76.59 77.18 80.52
57A 1,297,772 1,275,552 1,216,245 1,198,785 98.29 75 75.56 42.68
64A 1,446,368 1,429,441 1,366,044 1,346,218 98.83 75.98 76.56 47.44
66A 2,267,108 2,176,890 2,081,441 2,057,807 96.02 76.59 77.17 74.86
70A 1,372,572 1,297,126 1,223,744 1,206,911 94.5 72.75 73.28 41.49
75A 1,799,384 1,396,835 1,323,958 1,312,523 77.63 73.81 74.38 45.59
78A 2,060,104 1,992,077 1,903,906 1,876,376 96.7 76.81 77.4 72.14
79A 1,666,724 1,295,896 1,235,321 1,224,643 77.75 75.02 75.63 44.71
85A 1,879,204 1,439,306 1,364,666 1,344,083 76.59 73.83 74.42 47.2
87A 2,342,600 2,247,877 2,150,105 2,124,074 95.96 76.24 76.83 77.91
92A 2,247,742 2,165,543 2,069,466 2,043,464 96.34 75.25 75.84 73.65
93A 1,877,134 1,465,142 1,394,154 1,379,154 78.05 74.36 74.95 48.29
94A 2,105,320 2,019,814 1,927,953 1,904,794 95.94 75.59 76.25 68.51
97A 2,489,394 2,402,528 2,299,398 2,270,879 96.51 76.11 76.72 82.59
99A 2,479,650 2,380,804 2,280,336 2,251,710 96.01 76.49 77.11 81.97
102A 1,760,260 1,374,039 1,305,068 1,293,203 78.06 73.31 73.91 44.39
103A 1,969,444 1,886,176 1,780,373 1,747,969 95.77 71.5 72 61.9
105A 1,942,196 1,516,300 1,450,772 1,438,620 78.07 76.3 76.9 51.32
109A 1,835,360 1,428,227 1,356,340 1,343,895 77.82 74.8 75.39 49.28
111A 2,541,684 2,006,126 1,913,540 1,893,325 78.93 76.22 76.82 68.21
115A 1,547,164 1,229,818 1,166,492 1,099,375 79.49 70.75 71.3 41.5
117A 1,682,246 1,333,089 1,273,573 1,262,226 79.24 76.42 77.03 44.83
118A 1,665,304 1,320,669 1,260,016 1,248,760 79.3 75.09 75.72 43.63
120A 1,651,964 1,308,823 1,249,979 1,237,454 79.23 76.03 76.64 43.62
Mean 1,806,624 1,602,892 1,527,880 1,505,875 88.72 74.80 75.40 53.89

The number of raw reads (Raw reads), mapped reads (Mapped reads), mapped reads with quality Q> 30 (Mapped reads Q>30) and without duplications
(Mapped reads Q> 30 WD) were reported. For each sample, the alignment rate (Alignment rate), the specificity (On target reads), the specificity including the
flanking regions of 200 bp (On target reads + 200 bp) and the average depth of coverage (Mean depth of coverage ) are also reported.
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targeted region is covered for reads at depths from 1� to the max
depth (>150�), we observed that at a minimum coverage of 1�
about 95% of the designed target regions resulted completely cov-
ered. Between 91 and 94% of the target was covered when a mini-
mum coverage of ten reads was applied. At 20�, 76–93% of the
target regions was still covered.

Although Sequence Capture experiments represent a promising
technology, only few studies have used Sequence Capture in plants
(<20 in PubMed in April 2016). Probably the lacking of straightfor-
ward procedures for data analysis makes this technology still emerg-
ing. For this reason, SUPER-CAP, representing a user-friendly tool,
could boost the use of this technology also for plant organisms.
Moreover, in this study, the high rates reached for the capture pa-
rameters, in particular for the specificity (>74%), highlighted the
high efficiency reached by combing an accurate probe design with a
high performant aligner included in the pipeline (BWA), for which
high confidence of sequence alignments has been already reported.19

This makes the performances obtained in this study in terms of align-
ment rate and sensitivity in line with performances reported for other
organisms, for example humans.44

3.2. Variant calling and reconstruction of private

sequences

SUPER-CAP allowed to detect 25,654 unfiltered variants in the tar-
geted regions considered. Then the filtering procedure allowed to

reduce the number of false positives/low-quality variants. Only vari-
ants exhibiting coverage higher than 6� and PHRED quality higher
than 30 were selected. Even if a different threshold could be applied
to the filtering procedure, we observed that in our experiment a
depth coverage of six represented the minimum coverage to maxi-
mize the PHRED quality (Supplementary Fig. S2). Subsequent crite-
ria were adopted to appropriately detect the number of He variants.
A preliminary survey was carried out in order to estimate the number
of He variants in accordance with the range of the AF (AF of mapped
reads for each locus) (Supplementary Fig. S3). As expected, an in-
verse correlation between the range of AF and number of He variants
was observed. This indicated that the set-up of the AF-range deeply
affects the estimation of the He variants in the calling procedure. In
order to make this sensitive phase of the variant calling easily cus-
tomizable, we allow the SUPER-CAP user to set their own AF range.
In this study, we set an AF range of 0.4-0.6 for the He variants, in
line with a previous study in tomato.10 At this threshold, 86,120 var-
iants in 14,116 sites were scored. Only 5% (4,970) of the total vari-
ants in 2,543 sites resulted to be He. Looking at the distribution of
the He variants, we observed that they were not uniformly distrib-
uted across the chromosomes and genotypes. Chromosome 11 har-
boured the highest number of He variants per Mbp of captured
region (Supplementary Fig. S4) while chromosomes 10 and 0 har-
boured the lowest number. Considering the 44 samples analysed, the
heterozygosity ranged from 1.1 to 47% (Fig. 2), with a minimum
value for sample 99A and a maximum value for sample 85A. Sample

Figure 2. Distribution of variants detected for each genotype according to the type of variants. Proportion of Ho and He SNP and INDEL are reported as well as

the number of private variants. A dendrogram built by using the complete set of variants shows the relationship among the genotypes.
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85A showed an unexpected high percentage of residual heterozygos-
ity, suggesting a possible sampling error of the plant material for this
genotype (which could be mixed with other genotypes or to a resid-
ual segregation during the germoplasm conservation). For this rea-
son, the sample was excluded from subsequent analyses.

Figure 2 shows the number of variants detected for each sample,
with respect to the proportion of SNPs and INDELs at both Ho and
He level. Although INDELs are present at lower rates than SNPs,
small INDELs represent functionally important types of genomic
variation.47,48 It is reported that, compared with other sequencing
technologies, Illumina does not appear to have high error rates in ho-
mopolymer regions.49 However, in this study the INDELs surveyed
were obtained after discarding positions overlapping with homopol-
ymers >7 bp, both in the tomato reference and in resequencing se-
quences. This allowed to avoid possible errors due to technical bias
and enabled to collect a final high-quality set of variants.

As a whole, the sample with the highest number of variants was
42A, which harbours >4,000 SNPs and about 1,000 INDELs. The
sample with the lowest number of variants was 102A which exhibits
1,123 variants between SNPs and INDELs. On average, 1,357 SNPs
per sample were scored, of which 6.8% turned out to be He. The av-
erage of INDELs per sample turned out to be about 600, and only
3% were He.

The high depth of coverage reached in this experiment supported
the detection of rare variants. It has been suggested that rare or low-
frequency variants, which are not fully captured using other conven-
tional genotyping technology, could largely contribute to explain the
effects of some traits50 or to characterize their genetic architecture.51

In this study 5,441 Ho and 442 He genotype-specific variants were
identified. Among these, 1,965 Ho and 216 He variants resulted still
private variants when compared with external public repository for
SNPs in tomato (360 tomato genomes42). This could be of interest
when designing specific SNP markers or for studying the potential
functionality of specific haplotypes in the landraces collection used in
this survey. However, the rare variants identified alone do not seem
to explain the phylogenetic differences observed (Fig. 2). The genetic
divergence was associated with the high number of private alleles
only in a few samples (i.e. 103A and 97A).

The possibility of reconstructing private sequences from high-
throughput resequencing data is still a challenge today.28 For this
reason, the last step in the SUPER-CAP workflow allows to specifi-
cally insert the detected variants into the sequence of each sample.
This step, which integrates the single information of the variants in a
genotype-specific gene-based view, enables to obtain a necessary
starting point for further functional validation analyses. In this study,
a total of 16,254 regions (378*43), each including the gene and the
related promoter region, were reconstructed. In order to easily ex-
ploit the combined effect of multiple variants in the same protein, re-
construction of the CDS was also performed. Future works,
benefitting from this effort, will evaluate the combined effect of the
variants for each gene in order to find relevant association with anti-
oxidant content in tomato.

3.3. Validation of variants

In order to validate the variants detected, we performed a survey by
exploring the available resources already present for tomato. About
8,600 variant sites detected in the present study overlapped with
those reported in the genome resequencing data of 360 tomatoes.42

Most of the non-overlapping variants were excluded since they clas-
sified as rare variants in the experiment, being present only in specific

samples. Moreover, by using nine common accessions, an analysis
on the concordance of the variant calling was performed. Each of the
nine samples shared a different number of variants, ranging from
191 to 985. Taking into account the Ho alternative variants only, an
average of 95% concordance was found. Another validation was
carried out by comparing SNPs detected on a tomato population
genotyped using a SolCAP arrays,30,32 which included 7,720 SNPs.
Only 170 of the 7,720 SNPs fall in the targeted region considered in
the present study, since the targeted regions represent �1% (378/
34,725) of the tomato genes. Of these 170 SNPs, a subset of 97 be-
longs to common accessions and was used for validation. On aver-
age, a concordance >95% was observed. In most cases the
discrepancies were genotyped as He either on the SolCAP array
(2.5%) or in the Sequence capture (0.6%). When excluding the He
cases, the similarity increased to 98%.

3.4. CNV and PAV

CNV and PAV have been recently reported as sources of important
phenotypic variation in plants.52–54 The adequate depth coverage
reached in this study allowed to hypothesize on the possible struc-
tural variations occurring among the samples considered. To do this,
CNV and PAV analyses were performed to detect additional or de-
leted homologous loci of the 378 genes among the 43 samples, by
analysing the normalized depth coverage of each sample. The com-
parison of read depths along the loci revealed at least 10 loci with a
significant variation in depth in at least one line. In particular, nine
genes (four Pectinesterases, two Phenylalanine ammonia-lyase, one
Reductase, one Inositol-3-phosphate synthase, one Caffeoyl-CoA O-
methyltransferase) showed a CNV, and one gene (Dehydroascorbate
reductase) showed a PAV (Supplementary Table S3). Three genes
showed a putative reduction of the CNV (ratio <0.5) while six
showed an increase (ratio >1.5). The very low number of reads cap-
tured for two samples (103A and 15A) for the gene Solyc09g056180
was associated with a PAV and we assumed that this gene was de-
leted in the two samples. In addition, an experimental validation by
genomic PCR corroborated this result, highlighting that no amplifi-
cation of the Solyc09g056180 was present for these two genotypes
as showed in Supplementary Figure S5. The analysis of the coverage
revealed a uniform high level of coverage across all the samples for
seven genes (Solyc00g027770, Solyc00g282510, Solyc00g030510,
Solyc02g075620, Solyc03g042560, Solyc03g036470, Solyc03g07
1860). Indeed, these seven genes showed levels of coverage ranging
between 104.58� and 192.48�, representing an increase of two to
four fold compared with the average coverage encountered among
all the genes (53.89�). This could be due to the lack of regions in the
current release of tomato. A high number of reads collapsing on spe-
cific regions could be caused by unassembled/misassembled regions
in the genome.29 To validate this unexpected high coverage, we eval-
uated the depth of coverage of these genes in two further indepen-
dent resequencing experiments (Heinz and Moneymaker) by using
publicly available data (variation data from SGN databases). We ob-
served that significant high coverage was obtained for three genes in
at least one of the two resequencing experiments and one gene in
both the resequencing experiments (data not shown). This corrobo-
rates that the reference genome could carry misleading sequences. An
additional indication of this hypothesis, as also discussed below,
come from the high ratio of He observed for these genes, showing
that similar but not identical reads were mapped on the reference
regions.
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3.5. Heterozygous variants into gene families

He variant assignments represent one crucial difficulty in sequence
experiments.10,29,55 Since one of the causes of spurious He call was
hypothesized to derive from duplicated genes, a specific investigation
was carried out, aided by the high quality of variants detected by
SUPER-CAP. Previous studies reported that false-positive signals
could arise in regions with low complexity,56 or result from misalign-
ment of multiple copies of genes, paralogues, or pseudogenes57 but,
to our knowledge, no study has analysed the behaviour of the He
variants in the gene family context.

In our collection, 235 out 378 genes completely represent 25 gene
families. In particular, 171 genes belong to eight large gene families,
40 belong to seven medium gene families, 24 belong to 10 small gene
families and six are single copy genes. In order to estimate the num-
ber of He variants in each group we evaluated (Fig. 3) the average
He density (number of He variants for Kbp) for each gene family.
On average, a lower number of He variants was identified in the sin-
gle genes compared with the gene family groups. Significant differ-
ences were observed at t-test between single genes and Large,
Medium and Small gene families (P ¼ 0.007) but not among gene
families themselves (P > 0.05). Although these results evidence that
gene families, despite the number of copies, are more prone to pro-
duce He variants compared with single genes, the high standard devi-
ation detected showed that differences seem to be associated with
specific cases in each gene family and not due to a general behaviour.
It appears evident that in each gene family only specific genes showed
a very high level of heterozygosity in almost all the genotypes
(Supplementary Fig. S6). In particular it was evident that
Solyc00g282510, Solyc03g042560, Solyc00g027770 and
Solyc01g091060 (belonging to large gene families) and
Solyc12g098090 (belonging to a medium gene family) showed a
skewed rate of He variants. Some possible explanations of this result
were hypothesized. In particular, exploring if neighbouring regions
of these genes showed a similar rate of heterozygosity (by using in-
formation from the 360 genome project), we evidenced that a similar
high rate of He variants was found only for Solyc03g042560 in a re-
gion spanning �300 Kbp.

Another source of false positive He variants might be due to du-
plicated regions found in the samples that are not found in the refer-
ence genome. In such cases, the variants will be due to reads from the
two copies (or more) that are piled in the only copy found in the

reference genome. Such biases could occur because of the limited
number of genotypes on which the original reference sequence was
based, or sequencing and alignment errors (Lander et al., 2001).
Fortunately, these cases can be highlighted looking at excesses of
depth of coverage. Three out of the five genes (Solyc00g282510,
Solyc00g027770, Solyc01g091060) exhibiting a high He density
showed a high depth of coverage in parallel (as also evidenced in the
previous paragraph), generally doubled or tripled in comparison to
the average value of all the samples. This proves that the tomato ref-
erence genome might carry misleading sequences for those regions
and that the He calls observed are likely to be false-positives.

3.6. Variants classification and annotation

As an additional step, the functional annotation of the variants has
also been investigated by using SnpEff and SNPsift programs. The
SNPs discovered were classified according to their type (transition vs
transversion and insertions vs deletion) and the genomic region they
were found in. A significant number of the SNPs discovered (6,098,
44.2%) were located in the genic region and, among these, about
21% were found within exons, 73% within introns, 1.73% within
the 50-UTR and 3.68% within the 30-UTR (Fig. 4). The remaining
7,674 (55.8%) were found to be within the promoter region.
Considering the number of variants per Kbp, eight variants per Kbp
were found in the promoter region on average, while only 2.2 vari-
ants per Kbp were found in the exonic regions. Introns and UTRs
showed more than double the number of variants per Kbp compared
with exonic regions. Genic and intergenic variants were classified as
transition/transversion and insertion/deletion typologies. Transitions
represent approximately 64.54% of all post-filtered SNPs (11,495),
with 44.2% (5,160) of them being located in genic regions. Deletions
in average were more represented than insertions, particularly in pro-
moter and intron regions. Then, the 6,098 variants of the genic re-
gions were annotated according to their putative effect on the
protein by using SnpEff v4 (Table 2). The goal of annotating variants
is to provide a prediction of which ones are functionally relevant.
Our detected variants were assigned to a diverse range of functional
classes, with the majority (78%) classified as ‘modifier’, therefore
without predictable effects being located in the UTR regions or in the
introns. These may have little or no effect on the phenotype. Among
the remaining variants, about 12% showed a ‘low effect’, since they

Figure 3. Average He variants density (He density) for each gene family (reported as EC number) in each category (LARGE, MEDIUM, SMALL, SINGLE). He den-

sity is expressed as the average number of He variants for 10 Kbp. Bar errors represent SD of the mean.
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were variants in coding regions that did not change the amino acid
sequence (synonymous variant). About 9% showed a ‘moderate’ ef-
fect. These variants are predominantly non-synonymous amino acid
changes (missense variant) and in few cases in-frame deletion/inser-
tion. They are the most likely candidates for causal mutations, since
they could alter the structure and function of relevant proteins. Last,
about 1% of the variants were predicted to have a ‘high effect’. In
particular, 14 variants were predicted to cause a frameshift: two of
them a splice site acceptor modification, and nine and three a start or
stop codon gain or loss, respectively. On average, we observed that

the percentage of INDELs with ‘high effect’ was higher than for
SNPs, since an INDEL may rapidly cause a frameshift in the se-
quence. The list of the variant with a moderate or a high effect with
respect to the gene they affected is provided in Supplementary
Table S4.

Thus, a larger effort would be warranted to study potential links
between the identified variants and trait variation in tomato, and to
determine how they affect the regulation of biological pathways and
processes. The variants selected or prioritized in this way would be
highly preferred marker sets to be subjected to association studies us-
ing suitably larger populations, for which panels with considerable
genotype and phenotype information has already been collected.30,32
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