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We discuss the propagation of an electromagnetic field in an inhomogeneously anisotropic material where the
optic axis is rotated in the transverse plane but is invariant along the propagation direction. In such a configuration,
the evolution of an electromagnetic wave packet is governed by the Pancharatnam-Berry phase (PBP), which is
responsible for the appearance of an effective photonic potential. In a recent paper [ACS Photon. 3, 2249 (2016)]
we demonstrated that the effective potential supports transverse confinement. Here we find the profile of the
quasimodes and show that the photonic potential arises from the Kapitza effect of light. The theoretical results
are confirmed by numerical simulations, accounting for the medium birefringence. Finally, we analyze in detail
a configuration able to support nonleaky guided modes.
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I. INTRODUCTION

In the last few years, a great deal of attention has been
devoted to investigating light propagation in inhomogeneously
anisotropic materials, featuring a rotation of the optic axis
but no variations in the local refractive indices. In such
configuration, a phase distribution proportional to the local
rotation angle of the optic axis can be superposed to the beam
wavefront, leading to the so-called planar photonics [1–4].
Such space-dependent phase delay is due to a gradient in
the Pancharatnam-Berry phase (PBP) [5,6], the latter being
associated with a change in the beam polarization. For a closed
path (same initial and final state) the PBP is provided by the
solid angle subtended by the closed circuit on the Poincaré
sphere [7].

Historically, the idea of modulating the phase of an electro-
magnetic wave via the PBP is due to Bomzon and co-workers,
who used a metallic subwavelength grating (nowadays it would
be called a two-dimensional metamaterial) [8,9]. This concept
was then applied by Marrucci and collaborators to nematic
liquid crystals (NLCs), which are natural materials where
the pointwise orientation of the optic axis can be engineered
by tailoring the boundary conditions via optical alignment
techniques [10–12]. This full control over the local NLC
director paved the way to new functionalities; for example, the
conversion of spin angular momentum (polarization degree
of freedom) to orbital angular momentum (spatial degree of
freedom) [13,14] and the realization of polarization gratings
in both amplitude [15,16] and phase [17–19]. Later on, the
interest on PBP was boosted thanks to the introduction of
metasurfaces and the demonstration of polarization-dependent
optical devices [3,20], such as lenses [21,22], holograms [23],
vortex plates in polymerizable NLCs [24], and deflectors based
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on the spin Hall effect [25,26]. Recently, the geometric phase
has been used to tailor the beam wavefront upon reflection
from a layer of chiral liquid crystals [4,27–29].

In this paper we investigate the propagation of finite-size
electromagnetic wave packets in inhomogeneously anisotropic
materials, subject to a pointwise rotation of the principal
axes (Fig. 1) but invariant along the propagation direction z.
Previously, by using geometric optics, other authors analyzed
the dependence of the beam trajectory on the photon for an
odd distribution of the rotation angle: the so-called optical
Magnus effect or spin Hall effect [30,31]. For even rotations,
the interplay between diffraction and PBP was discussed for
wide beams as superpositions of plane waves in Refs. [32,33],
whereas the approach we undertake hereby holds valid until
longitudinal field components become relevant, i.e., for beams
of size comparable to or narrower than the wavelength [34].
In a recent paper we showed that light propagates under the
influence of an effective photonic potential, leading to leaky
guided modes for bell-shaped distributions of the optic axis
rotation [35] (Fig. 1). In this paper we provide a complete and
detailed description of the theory—including a quantitative
comparison with numerical simulations- first published in
Ref. [35]. The paper is structured as follows: In Sec. II we
briefly recall the basics of optical propagation in twisted
anisotropic materials in the absence of diffraction. In Sec. III
we generalize to the three-dimensional case the paraxial
equations governing light propagation found in Ref. [35] to
the case of long (with respect to the Rayleigh length) samples.
We also sketch out the comparison with Pauli equation for
quantum particles. In Sec. IV we first discuss the physical
reason behind the absence of longitudinally invariant modes,
and then we find the equations governing the quasimodes,
including the higher-order components of the localized waves.
In Sec. V we provide an extended physical explanation about
the origin of the photonic potential as a Kapitza effect, i.e., a
periodic modulation of the PBP versus propagation providing
a z-independent effective photonic potential [36,37], by using
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FIG. 1. (a) Definition of the rotation angle θ . (b) Gaussian
distribution of the rotation angle θ on the plane xy when maximum
rotation is 90◦: the arrows correspond to the local optic axis (i.e.,
the extraordinary axis), superposed to the spatial distribution of θ

represented as a color map. When δ = π , the distribution plotted in
panel (b) corresponds to a polarization-dependent lens [3,21].

the plane-wave solution shown in Sec. II. In Sec. VI the
relationship between the symmetry of the twisting angle
and light behavior is first recalled, and then the profile of
the continuous-wave (cw) component of the quasimode is
computed for the first time. In Sec. VII we check the validity
of the theoretical results by using two different types of
numerical simulations based on an in-house beam-propagation
method (BPM) code written in the rotated reference system
and on an open-access finite-difference time domain (FDTD)
code. Through numerical simulations we check the validity
of effective photonic potential and—in the guiding case—the
accuracy of the associated quasimodes found in Sec. VI. In
Sec. VIII we report the design of a nonleaky (V-shaped)
waveguide in a twisted structure and test its properties via
FDTD simulations. Finally, in Sec. IX we summarize the
contents of this paper, pinpointing the novelties with respect
to Ref. [35] and illustrating future developments, both on the
theoretical and on the experimental and technological sides.

II. PANCHARATNAM-BERRY PHASE IN A THIN SAMPLE

We consider a nonmagnetic anisotropic uniaxial crystal.1

In the reference system of the principal axes (subscript D), the
relative permittivity is

ϵD =

⎛

⎝
ϵ⊥ 0 0
0 ϵ∥ 0
0 0 ϵ⊥

⎞

⎠, (1)

where ϵ⊥ and ϵ∥ are the dielectric constants for fields
oscillating normal and parallel to the optic axis n̂, respectively.
The optic axis n̂ is normal to the wave vector k and at an angle
θ (x,y) with respect to the axis y [Fig. 1(a)]. Noteworthy, ϵ⊥
and ϵ∥ are spatially uniform: this condition, together with the
previous assumption n̂ · k = 0, rules out any refractive index
changes in the transverse plane [38]. We then introduce the
ordinary and extraordinary refractive indices as n⊥ = √

ϵ⊥
and n∥ = √

ϵ∥, respectively. The local rotation of the optic

1Mutatis mutandis, all the following results remain valid in the more
general case of a biaxial crystal.

axis (i.e., of the principal axes) around z can be expressed as

R(θ ) =

⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎠. (2)

The matrix (2) operates on a vector in the laboratory framework
xyz and yields its coordinates in the Cartesian system aligned
with the local principal axes. The relative permittivity ϵ in xyz
is then provided by

ϵ(x,y) = R[−θ (x,y)] · ϵD · R[θ (x,y)]. (3)

When diffraction in the anisotropic material can be neglected,
light propagation can be modeled by using plane waves. In
fact, the Jones formalism [39] can be employed by accounting
for the transmission dependance on the transverse coordinate
(x,y) through the rotation angle θ . In the plane-wave approxi-
mation, light propagation through an anisotropic slab of length
z is given by

(
Eo(x,y,z)
Ee(x,y,z)

)
=

(
eik0n⊥z 0

0 eik0n∥z

)
·
(

Eo(x,y,0)
Ee(x,y,0)

)
, (4)

where Eo and Ee are the local ordinary and extraordinary
polarization components, respectively [Fig. 1(a)]. Since the
ordinary and extraordinary directions vary with (x,y), it is
more convenient to refer to the two circularly polarized beams
which are eigensolutions of the rotation operator (2). We thus
introduce the circular polarization basis L̂ = (x̂ − iŷ)/

√
2

(LCP, left-circular polarization) and R̂ = (x̂ + iŷ)/
√

2 (RCP,
right-circular polarization).2 The basis transformation from
linear to circular is obtained by the matrix P :

(
EL

ER

)
= P ·

(
Eo

Ee

)
= 1√

2

(
1 −i
1 i

)
·
(

Eo

Ee

)
, (5)

where the subscripts L and R correspond to LCP and RCP,
respectively. Finally, the overall transmission of the anisotropic
slab is [38]

(
EL(x,y,z)
ER(x,y,z)

)
= ein̄k0z

(
cos

(
δ
2

)
−i sin

(
δ
2

)
e2iθ

−i sin
(

δ
2

)
e−2iθ cos

(
δ
2

)
)

·
(

EL(x,y,0)
ER(x,y,0)

)
, (6)

where δ(z) = k0z%n is the retardation between ordinary
and extraordinary components, %n = n∥ − n⊥ is the bire-
fringence, and n̄ = (n∥ + n⊥)/2 is the average index of
refraction [10]. Equation (6) describes a continuous exchange
of power between the two circular polarizations RCP and LCP
due to birefringence. Consider a purely circular polarization
at the input z = 0 by setting, for example, ER(x,y,0) = 1
and EL(x,y,0) = 0. When δ = (2l + 1)π , with l an integer,
the RCP wave turns into LCP: this change in polarization
state is accompanied by a dynamic phase change %φdyn =
(2l + 1)π n̄/%n and a further phase shift %φgeo = ±2θ purely
of geometric origin, a manifestation of the PBP [10]. Planar
photonics elements based on PBP usually work in the latter
regime, i.e., with the length of the anisotropic material

2In this paper we adopt the source’s point of view.
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designed to achieve a π phase delay between ordinary and
extraordinary components.

III. PANCHARATNAM-BERRY PHASE
IN AN EXTENDED SAMPLE

Neglecting anisotropy in the diffraction operator [40],
Maxwell’s equations in the paraxial approximation read

∇2
(

Ex

Ey

)
+ k2

0

(
ϵxx(x,y) ϵxy(x,y)
ϵyx(x,y) ϵyy(x,y)

)(
Ex

Ey

)
= 0, (7)

where the relative permittivity is given by Eq. (3). The paraxial
approximation in Eq. (7) allows one to neglect the longi-
tudinal electric field whenever the beam size exceeds the
wavelength [34].

We apply the slowly varying envelope approximation
through the transformation Eo=eik0n⊥zψo and Ee=eik0n∥zψe,
i.e., factoring out the dynamic phase responsible for polariza-
tion rotation versus propagation. For paraxial wave packets,
the second derivatives along z can be neglected and Eq. (7)
yields [35]

2ik0n⊥
∂ψo

∂z
= − ∇2

t ψo +
[(

∂θ

∂x

)2

+
(

∂θ

∂y

)2]
ψo

+
(

∂2θ

∂x2
+ ∂2θ

∂y2

)
ψee

ik0%nz

+ 2
(

∂θ

∂x

∂ψe

∂x
+ ∂θ

∂y

∂ψe

∂y

)
eik0%nz, (8)

2ik0n∥
∂ψe

∂z
= − ∇2

t ψe +
[(

∂θ

∂x

)2

+
(

∂θ

∂y

)2]
ψe

−
(

∂2θ

∂x2
+ ∂2θ

∂y2

)
ψoe

−ik0%nz

− 2
(

∂θ

∂x

∂ψo

∂x
+ ∂θ

∂y

∂ψo

∂y

)
e−ik0%nz, (9)

where ∇2
t = ∂2

x + ∂2
y . Equations (8) and (9) indicate that the

waves are not subject to refractive index gradients because
transverse modulation is only due to the pointwise rotation
of the principal axes. For small birefringence, i.e., n⊥ ≈ n∥,
Eqs. (8) and (9) resemble the Pauli equation for a charged
massive particle moving in a bidimensional space [41]:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

xyψ + U (x,y)I · ψ + HLS(x,y,t) · ψ, (10)

with I being the identity operator and HLS being the Hermitian
matrix responsible for spin-orbit coupling [42];3 ψ is a
two-component spinor with elements ψo and ψe, respectively.
The term containing U (x) is a scalar potential acting equally
on both components; the term with HLS(x,y,t), which is
proportional to the Pauli matrix S2, can be associated with an
equivalent time-dependent magnetic field responsible for spin

3From the standard analogy between two-dimensional quantum
mechanics and paraxial optics in the monochromatic regime, the
propagation coordinate z plays the role of time.

rotation (in our case power exchange between extraordinary
and ordinary components).

IV. QUASIMODES IN (1 + 1) DIMENSIONS

Equations (8) and (9) do not support z-invariant modes
due to the explicit dependence on the propagation coordinate
z. This is due to the unavoidable power exchange between
ordinary and extraordinary components when the optic axis
rotates across the transverse plane. Noteworthy, the coupling
between the two components does not vanish for any co-
ordinate transformation. To clarify this, let us take a given
point P = (xP ,yP ) in the transverse plane with θP = θ (P )
and assume the wave packet to be, e.g., purely extraordinary.
Due to diffraction, wavelets in P will spread towards adjacent
points P + dP , where θ (P + dP ) = θP + dθ due to the optic
axis rotation. In P + dP , light will then be in a superposition
of ordinary and extraordinary polarization states, no matter
how small is the change in θ . This can also be explained
through a direct analogy with the quantum mechanics of
spinning particles: according to Eq. (10), photons behave like
spin- 1

2 particles [43] subject to a magnetic field rotating in
the plane xy versus the propagation coordinate z. Thus, the
commutation rule between orthogonal magnetic fields forbids
the existence of stationary energy eigenstates [41]. Non-
Abelian propagation of light in inhomogeneously anisotropic
materials was discussed earlier in the context of geometric
optics [31].

From what was stated above, no eigenmodes of Eqs. (8)
or (9) exist, as confirmed by direct numerical investigations.
Nonetheless, the system could support quasimodes, i.e., peri-
odically varying solutions of finite lateral extension [44,45].
Hereafter, for the sake of simplicity we consider the one-
dimensional case with ∂y = 0. The periodic quasimodes of
Eqs. (8) and (9) can be calculated by using the ansatz

ψj = gj (x)ei
∑∞

p=−∞
∫

β
(j )
p (x,z)dz (j = o,e), (11)

where gj (x) are z-independent functions, whereas the complex
exponentials account for spatial variations—in both phase and
amplitude—on longitudinal scales equal or smaller than the
beat length λ/%n. The periodicity of the quasimode is ensured
by setting β

(j )
p (x,z) = β

(j )
p (x) exp ( i2πp%n

λ
z) [44]. To calculate

the quasimodes of a guiding PBP structure, we start from
Eqs. (8) and (9) with the ansatz (11) and find

− 2k0n⊥go

∑

p

β
(o)
p (x,z)

= −
{

d2go

dx2
+ 2i

dgo

dx

∂φo

∂x
+ go

[
i
∂2φo

∂x2
−

(
∂φo

∂x

)2]}

+
(

dθ

dx

)2

go

+
[

d2θ

dx2
ge + 2

dθ

dx

(
dge

dx
+ ige

∂φe

∂x

)]
eik0%nzei(φe−φo),

(12)
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− 2k0n∥ge

∑

p

β
(e)
p (x,z)

= −
{

d2ge

dx2
+ 2i

dge

dx

∂φe

∂x
+ ge

[
i
∂2φe

∂x2
−

(
∂φe

∂x

)2]}

+
(

dθ

dx

)2

ge

−
[

d2θ

dx2
go + 2

dθ

dx

(
dgo

dx
+ igo

∂φo

∂x

)]
e−ik0%nzei(φo−φe),

(13)

where we introduced φj (x,z) =
∑

p

∫
β

(j )
p (x,z)dz. A quasi-

mode defined by Eq. (11) conserves its profile in propagation

provided that dβ
(j )
0

dx
= 0 is satisfied. Equations (12) and (13)

contain periodic terms on both sides; thus each harmonic can
be equalized separately. The computation is much easier if we
assume that φo − φe is constant versus z: after the derivation
we verify a posteriori that the latter condition is satisfied to
first order.

Focusing on the cw components p = 0, the latter satisfy
the eigenvalue problem

− 2β
(o)
0 k0n⊥go = −d2go

dx2
+

⎡

⎣
(

dθ

dx

)2

+ 1
k2

0(%n)2

∞∑

p=1

1
p2

dβ(o)
p

dx

dβ
(o)
−p

dx

⎤

⎦go, (14)

− 2β
(e)
0 k0n∥ge = −d2ge

dx2
+

⎡

⎣
(

dθ

dx

)2

+ 1
k2

0(%n)2

∞∑

p=1

1
p2

dβ(e)
p

dx

dβ
(e)
−p

dx

⎤

⎦ge. (15)

Thus Eqs. (14) and (15) show that the terms coupling
extraordinary and ordinary waves in Eqs. (8) and (9) act on
the cw components gj (x) (j = o,e) as additional contributions
(summations over p) to the photonic potential. Such higher-
order contributions, however, from a physical point of view are
expected to be relevant only when the beat length LB = λ/%n
exceeds the Rayleigh distance LR = πnw2

m/λ, with wm being
the transverse extent of the localized mode.

When higher-order contributions can be neglected
(i.e., LB/LR ≪ 1), Eqs. (14) and (15) describe a wave packet
evolving under the action of a photonic potential:4

V (x) = 1
2njk0

(
dθ

dx

)2

. (16)

We need now to evaluate the degree of accuracy in using the
potential (16) in Eqs. (14) and (15). Equations (12) and (13)
also determine the profile of the functions β

(j )
p (x) for p ̸= 0,

4Given the standard paraxial equation 2ik0n
∂A
∂z

+ ∂2A
∂x2 +k2

0%n2A=0,

the photonic potential is defined as V = −k0
%n2

2n
.

yielding the periodic evolution of the quasimode along z. The
knowledge of β

(j )
p (x) allows evaluating the weight of the term

∝
∑∞

p=1
1
p2

dβ
(o)
p

dx

dβ
(o)
−p

dx
on the photonic potential. For the sake of

simplicity, assuming non-negligible β
(j )
p only for |p| ! 1, for

p = 1 we get

−2k0n⊥goβ
(o)
1 = − λ

π%n

dgo

dx

dβ
(o)
1

dx
− λ

2π%n
go

d2β
(o)
1

dx2

+ ge

d2θ

dx2
+ 2

dge

dx

dθ

dx
, (17)

− 2k0n∥geβ
(e)
1 = − λ

π%n

dge

dx

dβ
(e)
1

dx
− λ

2π%n
ge

d2β
(e)
1

dx2
. (18)

Similarly, for p = −1,

− 2k0n⊥goβ
(o)
−1 = λ

π%n

dgo

dx

dβ
(o)
−1

dx
+ λ

2π%n
go

d2β
(o)
−1

dx2
, (19)

− 2k0n∥geβ
(e)
−1 = λ

π%n

dge

dx

dβ
(e)
−1

dx
+ λ

2π%n
ge

d2β
(e)
−1

dx2

− go

d2θ

dx2
− 2

dgo

dx

dθ

dx
. (20)

In the general case the functions β
(j )
p satisfy a second-

order ordinary differential equation with coefficients given
by the cw component gj (x). A drastic approximation is
at hand for large %n, when Eqs. (17)–(20) provide β

(e)
1 =

β
(o)
−1 = 0, β

(o)
1 = −(ge

d2θ
dx2 + 2 dθ

dx
dge

dx
)/(2k0n⊥go), and β

(e)
−1 =

(go
d2θ
dx2 + 2 dθ

dx
dgo

dx
)/(2k0n∥ge). Substituting back into Eqs. (14)

and (15), we find that the photonic potential is proportional
to ( dθ

dx
)2 + O(%n−2); as an immediate consequence, at this

order of approximation [the approximation includes to set
n⊥ ≈ n∥ on the LHS of Eqs. (14) and (15)] go = ge = g. The
modulation of the beam along z is now given by

β
(o)
1 = −

d2θ
dx2 + 2 dθ

dx
d ln g
dx

2k0n⊥
(21)

and

β
(e)
−1 =

d2θ
dx2 + 2 dθ

dx
d ln g
dx

2k0n∥
, (22)

i.e., the quasimode undergoes periodic modulation of both
amplitude and phase profiles. Since β

(e)
−1 ≈ −β

(o)
1 , φo − φe is

constant in a first approximation, in agreement with the initial
hypothesis. According to Eq. (22) it is β

(e)
−1 ∝ (w2

mk0)−1, in
turn providing

1
k2

0(%n)2

∞∑

p=1

1
p2

dβ(e)
p

dx

dβ
(e)
−p

dx
∝

(
LB

LR

)2

;

the latter result confirms that the ratio between the beating
length and the Rayleigh length is the smallness parameter in
our approximated treatment.

V. ORIGIN OF EFFECTIVE PHOTONIC POTENTIAL

Since we factored out the dynamic phase when introducing
the fields ψo and ψe, we can speculate that the photonic
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potential stems from the geometric phase. To prove this,
in analogy with standard graded-index guides and splitting
operators in numerical analysis, let us separate Eq. (7)
in two portions, one accounting for diffractive spreading
(second derivative along x) and one for the inhomogeneous
dielectric tensor, respectively. We guess that the transverse
phase distribution from the second part is able to compensate
diffraction after averaging along one beat length λ/%n. Owing
to the absence of diffraction, the solutions of the second part
of Eq. (7) correspond to Eqs. (6), i.e., the exact solutions in the
plane-wave limit. On the one hand, according to Eqs. (6), when
a purely circular polarization (either LCP or RCP) is launched,
the dynamic phase accumulated in propagation is k0nz. This
contribution is clearly constant in the transverse plane and thus
cannot be responsible for the appearance of an x-dependent
photonic potential. On the other hand, the terms between
square brackets in Eqs. (6) provide a phase delay of geometric
origin (i.e., due to variations in light polarization), which
we will analyze hereafter. We adopt Pancharatnam’s original
approach [46,47] to calculate the phase difference %φgeo
between two different polarizations as %φgeo = arg[E(θ1,z) ·
E∗(θ2,z)] (the superscript ∗ indicates the complex conjugate).
For a purely RCP wave in z = 0, Eqs. (6) provide

%φgeo = arg
[

cos2
(

δ

2

)
+ sin2

(
δ

2

)
e2i(θ2−θ1)

]
. (23)

Figure 2 graphs the geometric phase difference (23) versus δ in
the plane-wave limit: %φgeo is periodic with λ/%n and oscil-
lates between the two extrema 0 and 2(θ2 − θ1). The oscillation
shape versus propagation z depends strongly on its amplitude:
it is sinusoidal for small amplitudes (the exponential can be
Taylor expanded, retaining only the linear term), whereas it
is flat topped when θ2 − θ1 = 90◦; for intermediate values of
θ2 − θ1 there is a gradual transition between these two limits.
Figure 2 (red dashed lines) plots the sinusoidal approximation
of Eq. (23) to illustrate the discrepancy with the exact form for
various relative rotations θ2 − θ1.

Equation (23) is the key to understanding the evolution of
a finite-size beam: the beam wavefront acquires a continuous
geometric phase delay %φgeo, which is periodic with propaga-

FIG. 2. Pancharatnam-Berry phase difference %φgeo versus retar-
dation δ between two regions differing only by a relative rotation θ

when spatial dispersion is neglected, i.e., in the plane-wave limit. The
blue solid lines are the exact results computed from Eq. (23); the red
dashed lines are a sinusoidal approximation for %φgeo sharing the
same peak 2θ of the exact solutions.

tion z. Conversely, the amplitude of these phase-oscillations
depends on the optic axis rotation between neighboring points
in the transverse plane, i.e., on the θ distribution and its
derivatives across x. Through the Kapitza effect of light,
a periodic index modulation of the form %n2 = n2(x) −
n2 = f (z)W (x) with f (z) =

∑
l fl exp (2iπ lz/+) yields a

z-independent effective photonic potential [37]

VKap = −k0
n2(x) − n2

2n
= k0+

2

32nπ2

( ∞∑

l=−∞

flf−l

l2

)(
dW

dx

)2

.

(24)

In essence, VKap accounts for fast scale modulations on the
continuous-wave (cw) component: the rapid oscillations in
phase distribution entail a modulation of the transverse mo-
mentum kx , the latter providing a net cumulative phase across
the wavefront due to the effective kinetic energy k2

x/(2k0nj )
[36,37].

To further support the interpretation above, we recall that
the PBP is nontransitive [7]: at any given z, the phase difference
between two points x1 and x2 with rotation equal θ1 = θ (x1)
and θ2 = θ (x2), respectively, depends on the polarization state
of the beam in the whole interval [x1 x2] or, otherwise stated,
on its path on the Poincaré sphere. This is in sharp contrast
with the standard dynamic phase, where the phase difference
depends exclusively on initial and final states. Thus, the
accumulated phase difference needs to be computed by taking
adjacent points in space. Figure 2 shows that the profile (i.e.,
the Fourier coefficients fl) of the periodic function %φgeo along
z [given by Eq. (23)] markedly depends on the relative rotation
θ = θ2 − θ1, providing distinct Kapitza potentials VKap. In the
limit |x2 − x1| → 0 and infinitesimally small increments of
θ , Eq. (23) gives f (z) = sin( 2π%nz

λ
) and W (x) = 2n%nθ(x).

Such an approach provides an effective z-invariant potential
V = 1

4nk0
( dθ
dx

)2, the correct transverse profile but a factor of
two smaller than Eq. (16). Discrepancy arises from the fact
that the Kapitza model, elaborated in Ref. [37] for the scalar
case, does not account for the complete spin-orbit interaction
occurring in this case [48].

VI. FOCUSING AND DEFOCUSING POTENTIALS

According to Eq. (16), the shape of the effective photonic
potential strongly depends on the symmetry of θ (x). When θ is
bell shaped [solid blue line in Fig. 3(a)], the potential is M like
[dashed green line in Fig. 3(a)] and supports leaky modes [37].
Such modes can be computed with good accuracy by clipping
off the edges of the potential, i.e., approximating the M well
with a V profile [49]. For a Gaussian distribution of θ ,

θ (x) = θ0e
− x2

w2
θ , (25)

Fig. 3(a) plots the associated potential

V = 1
2njk0

[
2xθ0

w2
θ

exp
(

− x2

w2
θ

)]2

.

Figure 4(a) graphs the resulting quasimodes versus the maxi-
mum rotation θ0. The quasimodes computed from Eq. (16) hold
valid when the higher-order contributions, i.e., the sum over p
in Eqs. (14) and (15), are negligible; that is, for large-enough
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FIG. 3. (a) Rotation angle θ (blue solid line) and corresponding
photonic potential (dashed green line) versus x for a Gaussian-shaped
rotation of principal axes. Here θ0 = π/2 and wθ = 5 µm. (b) As in
panel (a) but when θ has a hyperbolic tangent distribution. Here
Lθ = 5 µm. When δ = π , panels (a) and (b) behave like a
polarization-dependent lens and deflector, respectively.

birefringence. In Sec. VII A, BPM simulations are used to
check the behavior versus the birefringence %n. On the other
hand, these results are valid as long as the mode remains
confined within the central lobe of the potential [see solid and
dashed lines in Fig. 4(b)], regardless of the birefringence %n
[37].

When θ (x) is odd symmetric [solid blue line in Fig. 3(b)],
the photonic potential is maximum in the center (around x = 0)
and minimum at the edges: light gets repelled from the region
around x = 0 and no lateral confinement occurs. For example,
if θ is given by

θ (x) = θ0 tanh
(

x

Lθ

)
, (26)

the effective potential is

V = 1
2njk0

{
θ0

Lθ

[
1 − tanh2

(
x

Lθ

)]}2

[see the dashed green line in Fig. 3(b)].

FIG. 4. (a) Intensity profile for a Gaussian distribution of θ

and wθ = 5 µm; each curve is labeled with the corresponding
maximum rotation θ0. (b) Corresponding width of the quasimode
versus maximum rotation angle θ0 for three different wθ , as labeled
(solid lines). The dashed lines graph the half width of the angular
distribution: above them the model is not accurate due to a finite
overlap of the mode with the edges of the photonic potential [37].
Here we solved Eqs. (14) and (15) by considering only the term given
by Eq. (16) when computing the quasimode; we assumed n⊥ = 1.5
and n∥ = 1.7.

VII. NUMERICAL SIMULATIONS

In this section we validate the theory developed above
by means of numerical simulations. First, we use BPM
simulations to verify that the photonic potential (16) describes
accurately light propagation in a twisted anisotropic medium.
Then, we use FDTD simulations to assess the paraxial ap-
proximation invoked in going from Eq. (7) to Eqs. (8) and (9).
With FDTD simulations we finally address the accuracy of
Eq. (7) in lieu of the exact Maxwell’s equations.

A. Beam-propagation method simulations

The presence of the effective potential given by Eq. (16)
can be tested by simulating Eqs. (8) and (9), which are valid in
the paraxial limit. To simulate light evolution in the rotated
reference system, we use a BPM code based on operator
splitting and the Crank–Nicolson algorithm for diffraction.

First, we check that twisted anisotropic materials exhibit a
quasi-isotropic response for propagation lengths much longer
than the Rayleigh distance and large-enough birefringence.
The results are shown in Fig. 5 for even [Eq. (25) and Fig. 3(a)]
and odd symmetry potentials [Eq. (26) and Fig. 3(b)], with
n⊥ = 1.5 and %n = 0.2, a birefringence large enough to
ensure that Eq. (16) is a good approximation to the exact
photonic potential. For δ = π , the even and odd distribu-
tions correspond to a polarization-dependent lens [21] and
a polarization-dependent deflector based on the spin Hall
effect [25], respectively. As predicted by our theory, in both
cases the electromagnetic propagation is nearly independent
of the input polarization. If the θ distribution is bell-shaped,
diffractive spreading is counteracted and light is laterally
trapped, i.e., waveguiding takes place. If θ is odd, light is
repelled from the symmetry axis x = 0. Summarizing, Fig. 5
confirms qualitatively that light is subject to an effective
potential given by Eq. (16).

Figure 6 displays light propagation for a Gaussian distri-
bution of θ [see Eq. (25) and Fig. 3(a)] versus the maximum
rotation θ0, with n⊥ = 1.5 and %n = 0.2. In agreement with

FIG. 5. Light propagation in the presence of (a) a focusing or (b)
a defocusing effective potential. The first and second rows correspond
to input wave packets polarized along y and x, respectively. In panel
(a) and (b) the transverse distribution of θ is given by Eqs. (25)
and (26), respectively. Here θ0 = 360◦, wθ = Lθ = 5 µm, n⊥ = 1.5,
and n∥ = 1.7, the wavelength is 1064 nm. The input is a Gaussian
beam of width 3 µm and with a flat phase front.
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FIG. 6. Intensity distribution in the plane xz versus maximum rotation angle θ0, computed with BPM simulations when θ is Gaussian with
wθ = 5 µm, see Eq. (25); here the refractive indices are n⊥ = 1.5 and n∥ = 1.7 and a y-polarized Gaussian beam of waist 3 µm is launched at
the input. In the first and second rows |ψe|2 and |ψo|2 are plotted, respectively. In the third and fourth rows the corresponding fields |Ey |2 and
|Ex |2 are graphed in the laboratory coordinate system, respectively.

Eq. (16), as θ0 increases the beams undergo a stronger
transverse confinement due to the M-shaped potential. At the
same time, the figure shows how a purely y-polarized input
beam couples a fraction of its power into the x polarization
owing to the pointwise rotation of the optic axis. Regardless
of θ0, strong coupling to radiation is observed due to the small
spatial overlap between a linearly polarized Gaussian beam
and the leaky modes.

Next, we check that our analytical model is in quantitative
agreement with the actual solutions as well. It is also important
to study how electromagnetic propagation depends on the
birefringence %n. To that extent, at the input we injected the
quasimodes computed from the eigenvalue problem, Eqs. (12)
and (13), in the limit of a large birefringence %n, i.e., when
only the action of the photonic potential provided by Eq. (16)
is considered; see Fig. 4. By means of Eqs. (21) and (22),
our theory predicts that the second term between square
brackets in Eqs. (12) and (13) goes as (%n)−2, and thus can be
neglected for large-enough birefringence. Figure 7 illustrates
the quasimode evolution in the medium for n⊥ = 1.5 and
varying the birefringence. For %n > 0.1, guiding is clearly
observed for both ψo and ψe: this implies that, for %n > 0.1,
higher-order terms in Eqs. (12) and (13) can be neglected. For
larger birefringence the generation of lateral wings is observed.
In this limit the difference between n⊥ and n∥ is large enough to
be appreciable even on the left-hand sides of Eqs. (12) and (13),
yielding a slightly anisotropic response on long scales (with
respect to the beat length λ/%n). For birefringence <0.1,
higher-order terms in Eqs. (12) and (13) are relevant and
the differences between the exact photonic potential and its
approximation given by Eq. (16) cannot be neglected anymore:
as a net result, guidance is lost and a polarization-dependent
behavior arises. In particular, the beam remains partially
trapped for birefringence down to %n ≈ 0.03 and %n ≈ 0.01
for ordinary and extraordinary inputs, respectively. Finally,

the power coupled to guided modes strongly depends on the
overlap between the input and the quasimode, as shown by
a direct comparison between Figs. 7 and 6. We note that the
overlap does not depend solely on the spatial distribution of
the optical wave packet but also on its local polarization: in
other words, the quasimodes are structured light.

B. Finite-difference time-domain simulations

We now check the previous results by FDTD simulations,
solving directly Maxwell’s equations in the time domain and
without the paraxial approximation. We used the open-source
code MEEP [50], taking a continuous-wave excitation at the
vacuum wavelength λ = 1 µm, although our findings are valid
regardless of the frequency. The source was a Gaussian-shaped
collection of dipoles, of width 3 µm across x, infinitesimally
narrow along z, and centered at x = z = 0. The emitted
radiation from the source was uniformly linearly polarized.
The inhomogeneous uniaxial medium started in z = 2 µm.

We first verify that the bell-shaped and odd θ distributions
correspond to a trapping and a repulsive dynamics, respec-
tively. We will use n⊥ = 1.5 and n∥ = 1.7 (thus %n = 0.2)
until otherwise specified. Figure 8(a) illustrates the wave
packet evolution when the rotation angle is given by Eq. (26)
[see Fig. 3(b)]: light is expelled from the central region.
Figure 8(b) graphs the confining case corresponding to Eq. (25)
[see Fig. 3(a)]. In both cases, the FDTD results are in
excellent agreement with the BPM simulations in Fig. 5.
We then concentrate on the trend of the guiding effect
[θ satisfying Eq. (25)] versus the maximum rotation angle
θ0; see Fig. 9. The confinement is strongly enhanced as
the maximum rotation increases, reaching a good degree of
confinement for θ0 = 360◦. A comparison with Fig. 6 is in
excellent agreement with the BPM results.
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FIG. 7. Columns 1 to 5: Intensity evolution in the plane xz when the mode plotted in Fig. 4 is launched at the input z = 0, for different
values of n∥ as labeled (the corresponding birefringence %n is 0.001, 0.01, 0.05, 0.2, and 0.4, from left to right, respectively). Top and bottom
rows correspond to local ordinary and extraordinary polarizations, respectively. Column 6: modulus of the field z = 500 µm versus x and the
refractive index n∥. Here θ is Gaussian with θ0 = 360◦ and wθ = 5 µm, n⊥ = 1.5.

Quantitative details on the evolution of the input wave
packet are gathered by computing its width

wη = 2

√∫ L

−L

x2-η(x)dx (η = I,Ej )

versus propagation z, with -I = I/
∫

Idx and -Ej
= |Ej |2/∫

|Ej |2dx (j = o,e) the probability densities for intensity
and electric fields, respectively. The integrals are limited to
the domain [−L,L] in order to get rid of the diffracting
components generated at the input interface and then radiated
out. Such densities allow us to evaluate how power shares
between the two orthogonal polarizations. The second row
in Fig. 10 shows beam size versus z and versus the maximum
rotation θ0, respectively. The beam width wI initially broadens
due to the strong radiation emitted at the input interface and
the coupling into the guide. Over longer propagation distances,

FIG. 8. FDTD simulations of the intensity distribution for (a)
defocusing [θ obeying Eq. (25)] and (b) focusing [θ distributions as
provided by Eq. (26)] effective potential. The input beam is linearly
polarized along y, n∥ = 1.7, wθ = Lθ = 5 µm, and θ0 = 360◦. The
white dashed line indicates the input interface, the red solid lines
show beam diffraction for θ0 = 0◦.

the wave packet narrows down and stabilizes to a width
corresponding to the leaky mode provided by Eq. (16). We
stress that, after the radiation excited at the input interface fades
out, another kind of coupling to radiation occurs, inherent to
leaky modes in M-shaped waveguides [49]. The corresponding
losses strongly depend on θ0, becoming negligible after several
Rayleigh distances for modes narrower than the guiding core of
the M guide. The two different contributions to radiation can
be discriminated more easily by BPM simulations, because
in that case the input can be tailored to match the effective
mode. The role of the overlap in z = 0 can be evaluated
by comparing Figs. 6 and 7 for n∥ = 1.7 (corresponding to
%n = 0.2) and θ0 = 360◦: when a Gaussian beam is launched,
at the input interface two additional beams are emitted, tilted to
left and right of the impinging wave vector by the same angle.
These side lobes are strongly dampened when the quasimode
is launched. The radiation loss in the bulk, related with the
leaky nature of the quasimode, can be better appreciated
for θ0 = 180◦ and n∥ = 1.7. In fact, once radiation from
the interface has moved away from the central region, the
amplitude of the central lobe slightly decreases with z, both in
BPM (Fig. 6) and in FDTD simulations (Fig. 9).

We finally investigate light propagation versus input po-
larization and birefringence; the results are shown in Fig. 11.
For %n > 0.2, the propagation is almost independent from
the input polarization; at lower birefringence, the propagation
is polarization dependent. These findings match the BPM
results, see e.g., Fig. 7. When n∥ = 1.501 and n∥ = 1.51
(corresponding to %n = 0.001 and %n = 0.01, respectively),
light propagation is polarization-dependent both in BPM and
FDTD simulations, owing to the action of the higher-order
contributions, the latter modifying the shape of the photonic
potential with respect to the approximated formula (16). In
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FIG. 9. FDTD simulations versus θ0. Evolution of |Ex |2 (first row), |Ey |2 (second row) and the overall intensity |Ex |2 + |Ey |2 (third row)
in the plane xz. The input beam is linearly polarized along y.

both cases, light trapping is stronger for input beams polarized
along y than along x. Specifically, for n∥ = 1.51, input wave
packets polarized along y are confined while the orthogonal
polarization spreads out, whereas for n∥ = 1.501 wave packet
widens irrespectively of the input polarization. Noteworthy,
when BPM (Fig. 7) and FDTD (Fig. 11) are compared, it is
important to recall that propagation lengths in the former are
much larger than in the latter.

VIII. NONLEAKY WAVEGUIDES

Equation (16) allows tailoring the profile θ (x) of the
continuous rotation to yield a bell-shaped effective well able to

FIG. 10. Direct comparison between analytic theory and FDTD
simulations when the input is linearly polarized along y, θ has is
Gaussian and wθ = 5 µm. Upper panels: overall intensity cross-
sections calculated at z = 120 µm for a Gaussian wave packet
undergoing diffraction when θ0 = 0◦ (solid black lines) and the
dielectric tensor is transversely rotated (solid blue lines). The red
dashed lines are the corresponding quasimodes from Eqs. (14) and
(15). Lower panels: wave packet width versus propagation distance z

using -Ey (blue solid line) and -I (red solid lines) for the probability
densities. The black dashed line corresponds to a diffracting Gaussian
beam in the limit θ0 = 0◦. Here L = 10 µm.

support nonleaky guided modes. Since the lowest value of the
potential is zero, for a nonleaky electromagnetic waveguide
the derivative dθ/dx must vanish in x = 0, corresponding
to a local extremum of θ . Therefore, θ (x) needs to be an
even function. The condition V (x) > 0 for |x| → ∞ must be
satisfied to get evanescent waves beyond the waveguide edges.
Moreover, a realistic waveguide must be (transversely) finite;
hence, we have to impose a linear trend θ (x) = α(|x| − x♦)
for |x| > x0, with x0 linked to the width of the guide. Finally,
for |x| < x0 we need to select a convex even function θ so
that the potential (16) has a relative minimum in x = 0. The

FIG. 11. FDTD simulations versus birefringence for a fixed θ

profile. The beam is linearly polarized along x (left column) and
y (right column). Birefringence %n is 0.001, 0.01, 0.2, and 0.4,
from the top to bottom row, respectively. The red solid lines show
the diffracting case, the dashed white lines correspond to the initial
section of the anisotropic medium. Here n⊥ = 1.5, θ0 = 360◦, and
wθ = 5 µm.
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FIG. 12. V-shaped PBP waveguide. (a) Rotation angle θ (blue
solid line) and corresponding potential V from Eq. (27) (green
dashed line) for x0 = 10 µm and a = 4×1010 m−2. (b) Mode width
versus a for (top to bottom curves) x0 = 5 µm (blue line), 10 µm
(green), and 20 µm (red). The stars graph the width wG of the
Gaussian fundamental mode of the parabolic potential in the limit
x0 → ∞. Inset: mode intensity profile when a = 2×1010 m−2 for
x0 = 5 µm (blue solid line) and x0 = 20 µm (red dashed line). Blue
stars represent the Gaussian mode when x0 → ∞.

simplest choice is a parabolic profile of the form ax2, such that
the resulting photonic potential V is

V (x) =

⎧
⎨

⎩

2a2x2

nj k0
for |x| ! x0

2a2x2
0

nj k0
for |x| > x0,

(27)

where we satisfied the continuity conditions on θ (x) and dθ/dx
by setting x♦ = x0/2 and α = 2ax0, respectively. An example
is graphed in Fig. 12(a).

In the limit x0 → ∞ the photonic potential is purely
parabolic, thus supporting an infinite number of guided modes,
the fundamental one being Gaussian with field proportional
to e−x2/w2

G and width wG = 1/
√

a. The fundamental mode
of the PBP waveguide defined by Eq. (27) corresponds to
such a solution for widths wG much smaller than x0, as
confirmed in Fig. 12(b) graphing the exact modes of the
potential Eq. (27). We analyze the beam propagation in
such PBP waveguide by means of FDTD simulations: a
synopsis of the results is available in Figs. 13(a) and 13(b).
As the coefficient a increases starting from zero, the wave
packet undergoes transverse confinement. In agreement with
Fig. 12(b), narrower waveguides (i.e., smaller x0) yield lower
field confinement.

FIG. 13. V-shaped PBP waveguide. FDTD simulations in the
plane xz for a = 0, 3×1010, and 3×1011m−2, respectively (slices
from bottom to top) when (a) x0 = 2 µm and (b) x0 = 10 µm. The
red dashed lines correspond to the straight lines x = ±|x0|, i.e., the
waveguide edges.

IX. CONCLUSIONS AND PERSPECTIVES

In this paper we examined the propagation of electromag-
netic waves in inhomogeneously anisotropic media, locally
twisted in the transverse plane but invariant in propagation.
First, we expanded the results reported in Ref. [35], providing
a deeper insight of the physical principles and extending the
theoretical computations. As a matter of fact, we showed that
light propagates under the influence of an effective photonic
potential due to the spin-orbit interaction, which originates
from the periodic modulation of the Pancharatnam-Berry
phase versus propagation via the Kapitza effect. Noteworthy,
this photonic potential features a quasi-isotropic behavior,
despite the locally anisotropic response of the material. The
attracting or repelling character of the potential strictly de-
pends on the symmetry of the optic axis rotation: in particular,
guiding structures correspond to bell-shaped distributions. Due
to the inherent power exchange between the ordinary and
the extraordinary components, the system does not support
z-invariant modes [30] but quasiperiodic modes, in agreement
with the Floquet theorem. While in general the guided modes
are leaky owing to an M-shaped potential, we designed a
distribution yielding a V-shaped potential and truly guided
modes.

With respect to Ref. [35], all of these results have been
(qualitatively and quantitatively) validated by means of BPM
and FDTD numerical simulations. In particular, here we used a
BPM written in the rotated framework, specifically developed
for this problem. We also demonstrated a very good agreement
between BPM and FDTD: this is a very important result given
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that BPM codes are much less demanding than FDTD from
the computational point of view. Our BPM code will be thus
relevant for the numerical analysis of q plates and similar
devices, nowadays mainly described by means of simple plane-
wave models. Both the numerical techniques confirmed that
our theory provides a very good approximation of the confined
mode for a vast range of parameters. With respect to the latter
statement, we also explored the limits of our analytical model
versus the medium birefringence and maximum rotation angle,
both for weakly and highly anisotropic materials.

Our findings pave the way to the design and realization
of a new kind of electromagnetic waveguides, with the
presented mechanism valid regardless of frequency. Twisted
structures can be realized, for example, by using liquid
crystals [4,10,51], laser-written anisotropic glasses [26], and
metamaterials [3,5,52]. With respect to Ref. [38], the ge-
ometry proposed herein is much simpler to realize because
it is structured only in the transverse plane. Furthermore,
the longitudinal homogeneity of the sample inhibits back
reflections, an important detrimental effect when fabricating
high-quality waveguides. Our results can be generalized to
more complicated and exotic anisotropic responses, includ-
ing, e.g., magneto-electric coupling [53–59]. Several future
developments can be envisaged, including the systematic

investigation of light trapping versus geometrical and material
parameters of the structure, and the usage of our model to
find the periodic components of the quasimode. It will be
also interesting to investigate the interplay between the Rytov-
Vladimirskii-Berry and the Pancharatnam-Berry phases which
are both of geometric origin [42], and the connection of our
system with the recently introduced gauge optics [60,61].

From a more fundamental point of view, this works
is an important contribution to the analogy between light
propagation in anisotropic materials and propagation of spin- 1

2
particles in magnetic fields: in fact, confinement based on
geometric phase can be readily transposed to matter waves,
e.g., charged particles in a Paul trap [62].
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