
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Data Management for Heterogeneous
Genomic Datasets

Stefano Ceri, Abdulrahman Kaitoua, Marco Masseroli, Pietro Pinoli, Francesco Venco

Abstract—Next Generation Sequencing (NGS), a family of technologies for reading the DNA and RNA, is changing biological
research, and will soon change medical practice, by quickly providing sequencing data and high-level features of numerous individual
genomes in different biological and clinical conditions. Availability of millions of whole genome sequences may soon become the
biggest and most important ”big data” problem of mankind. In this exciting framework, we recently proposed a new paradigm to raise
the level of abstraction in NGS data management, by introducing a GenoMetric Query Language (GMQL) and demonstrating its
usefulness through several biological query examples. Leveraging on that effort, here we motivate and formalize GMQL operations,
especially focusing on the most characteristic and domain-specific ones. Furthermore, we address their efficient implementation and
illustrate the architecture of the new software system that we have developed for their execution on big genomic data in a cloud
computing environment, providing the evaluation of its performance. The new system implementation is available for download at the
GMQL website (http://www.bioinformatics.deib.polimi.it/GMQL/); GMQL can also be tested through a set of predefined queries on
ENCODE and Roadmap Epigenomics data at http://www.bioinformatics.deib.polimi.it/GMQL/queries/.

Index Terms—Genomic data management, Operations for genomics, Data modeling, Query languages, Cloud-based systems.

F

1 INTRODUCTION

N EXT Generation Sequencing (NGS), also known as
high-throughput sequencing, is a family of technolo-

gies for reading the DNA and RNA precisely, quickly and
cheaply [1], [2]; in the next decade, it will offer fast (few
hours) and inexpensive (hundreds of dollars) readings of the
whole human genome [3]. Large-scale sequencing projects
are spreading, and huge amounts of sequencing data are
continuously collected by a growing number of research
laboratories, often organized through world-wide consortia
(such as ENCODE [4], TCGA [5], 1000 Genomes Project
[6], or Roadmap Epigenomics [7]). Answers to fundamental
questions for biological and clinical research are hidden in
these data, e.g., how protein-DNA interactions and DNA
three-dimensional conformation affect gene activity, how
cancer develops, how driving mutations occur, how much
complex diseases such as cancer are dependent on personal
genomic traits or environmental factors. Personalized and
precision medicine based on genomic information is be-
coming a reality; the potential for data querying, analysis
and sharing may be considered as the biggest and most
important big data problem of mankind.

So far, the bioinformatics research community has been
mostly challenged by the so-called NGS primary analysis
(production of ”reads”, i.e., nucleotide sequences represent-
ing short DNA or RNA segments) and secondary analysis
(alignment of reads to a reference genome and search for
specific features on the reads, such as variants/mutations
and peaks of expression); but the most important emerging
problem is the NGS tertiary analysis, concerned with multi-
sample processing of heterogeneous information, annota-

• S. Ceri, A. Kaitoua, M. Masseroli, P. Pinoli and F. Venco are with the
Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Milan, Italy. E-mail: {firstname.lastname}@polimi.it

Fig. 1. Phases of genomic data analysis, source: http://blog.goldenhelix.
com/grudy/a-hitchhikers-guide-to-next-generation-sequencing-part-2/

tion and filtering of variants, and integration of genomic
features (e.g., specific DNA variants, or signals and peaks of
expression, i.e., DNA regions with higher density of reads).
While secondary analysis targets raw data in output from
NGS machines by using specialized methods, tertiary analy-
sis targets processed data in output from secondary analysis,
and it is responsible of sense making, e.g., discovering how
heterogeneous regions interact with each other (Fig. 1).

NGS data are managed by a variety of tools focused on
ad-hoc processing targeted to specific tasks, data extractions
and transformations (e.g., alignment to a reference, muta-
tion and peak calling, reading of gene expression); each
tool manages data in specific technology-driven formats,
with no emphasis on interoperability, format-independent
representations, powerful abstractions, and out-of-the-box
thinking and scaling. Cloud-based approaches to genomics

http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://blog.goldenhelix.com/grudy/a-hitchhikers-guide-to-next-generation-sequencing-part-2/
http://blog.goldenhelix.com/grudy/a-hitchhikers-guide-to-next-generation-sequencing-part-2/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

have been targeted to speeding up specific data extraction,
transformation and analysis processes, but not to combining
results from different data processes.

In this scenario, we recently proposed a new holistic
approach to genomic data modeling and querying1 that
takes advantage of cloud-based computing to manage het-
erogeneous data produced by NGS technology. In [8], we
introduced the novel GenoMetric Query Language (GMQL),
built on an abstracted model for genomic data; we sketched
out its main operations and demonstrated its usefulness,
expressive power and flexibility through multiple differ-
ent examples of biological interest (including finding dis-
tal bindings in transcription regulatory regions, associating
transcriptomics and epigenomics, and finding somatic mu-
tations in exons).

Here, we fully formalize GMQL operations, focusing
on domain-specific operations for genomics, and then we
address their efficient implementation in the context of
standard cloud systems; we provide full evaluation of their
performance, compare them with the state-of-the-art, and
show that indeed they scale linearly with the number of
considered regions, which can rise up to hundreds of mil-
lions. We focus on three operations: COVER, which computes
genomic region-based operations such as unions of intersec-
tions; JOIN, which compares genomic regions by distance,
typically subject to minimality or cardinality constraints;
and MAP, which changes reference regions for looking at
experiments.

A new, web service based, system implementation of
GMQL is freely provided for download at http://www.
bioinformatics.deib.polimi.it/GMQL/, in which GMQL is
translated into Apache Pig [9] and executed on the Apache
Hadoop YARN framework [10]. GMQL can also be tested in a
web application that provides a set of predefined, paramet-
ric GMQL queries on ENCODE and Roadmap Epigenomics
data, available at http://www.bioinformatics.deib.polimi.
it/GMQL/queries/. Thus, while [8] proves user focused
innovation for biologists, this paper presents solid domain-
specific innovation for genomics in cloud-based data man-
agement, associated with a new implementation which op-
erates on any server or cloud supporting Hadoop and Pig.

The remaining of this paper is structured as follows.
Section 2 presents the state of the art and discusses other
related current approaches and implementations. Section 3
provides the formalization of the syntax and semantics of
the defined Genomic Data Model, as well as its motivation
and examples. Then, Section 4 dwells into the description
and formalization of our proposed GenoMetric Query Lan-
guage, discussing first its general operations, then its most
characteristic and domain-specific ones, including COVER,
JOIN and MAP; for each of them motivation, syntax and se-
mantics, and examples are provided. Section 5 illustrates the
architecture of the new software system that we developed
for the execution of GMQL queries on big genomic data,
focusing on its repository layer and on the GMQL orchestra-
tor/optimizer. In Section 6 and Section 7 we dwell into the
details of the implementation of our proposal for big data
management support in a cloud computing environment,
including parallelism options and optimal implementation

1. http://www.bioinformatics.deib.polimi.it/genomic computing/

of some domain specific operations. Section 8 illustrates and
discusses the performance evaluation of our implementa-
tion, both with respect to some state-of-the-art alternatives
and to scaling with big datasets, and provides a full GMQL
query example with its biological interpretation. Section 9
concludes.

With our approach, very complex genomic operations
can be written as simple queries, with implicit iteration
over thousands of heterogeneous samples, and computed in
few minutes over servers or clouds supporting Hadoop and
Pig. Bringing genomics to the cloud is becoming more and
more essential [11]; we apply cloud computing to genomic
processed data, with the objective of querying thousands
of heterogeneous samples. Other available cloud computing
tools start from raw read data or aligned DNA sequences,
and are complementary to our system. A unique aspect
of our approach is to include metadata in the data model
and in the query language. Each dataset includes metadata
describing properties of the data samples; GMQL progres-
sively builds new datasets out of existing ones, thus the
query result also carries metadata, as an indication of data
provenance.

2 RELATED WORK

Several organizations are considering genomics at a global
level. Global Alliance for genomics and Health2 is a large
consortium of over 200 research institutions with the goal
of supporting voluntary and secure sharing of genomic and
clinical data; their work on data interoperability is pro-
ducing a conversion technology for the sharing of data on
DNA sequences and genomic variation [12]. Google recently
provided an API to store, process, explore, and share DNA
sequence reads, alignments and variant calls, using Google’s
cloud infrastructure [13].

We compare our work with recent papers on genomic
data management. Works by Röhm and Blakeley [14], by
Tata, Patel et. al. [15], [16], and by Bafna et al. [17], [18]
address the querying of NGS data using either the Struc-
tured Query Language (SQL) (in the former case) or SQL
extensions (in the latter two cases). Use of plain SQL was
attempted in [14], which highlights the performance bottle-
necks of conventional SQL optimization when dealing with
domain-specific functions and parallelization. Tata, Patel
et. al. developed Periscope [15], [16], a system supporting
matching operators over DNA sequences, encoded as char-
acter strings; they report fast execution times and some
collaborations working on the full mouse genome. Several
domain-specific extensions are proposed in [17] to overcome
SQL limitations in expressing genomic computations.

Each of these systems works on raw read data or aligned
DNA sequences and highlights specialized processing for
given aspects (e.g., sequence matching or genomic feature
calling) as they must reproduce genome processing tasks
which are normally solved by ad-hoc specific tools (e.g.,
aligners, and mutation or peak callers). Carrying out such
tasks from within an integrated system is potentially very
effective, as no information is left outside of the query
system, but there is as well a big risk of giving up the

2. http://genomicsandhealth.org/

http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://www.bioinformatics.deib.polimi.it/genomic_computing/
http://genomicsandhealth.org/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

quality of specialized tools; moreover, some widely avail-
able experimental data (e.g., from ENCODE or Roadmap
Epigenomics) include datasets resulting after the calling
processes. None of these systems integrates metadata within
their computations, which are only addressed to genomic
data.

Other works have proposed the embedding of query
processing functions within libraries that can be integrated
within programs [19], [20]. In particular, [20] presents a
rather elegant mathematical formalism, based on set alge-
bra; its authors propose a genomic region abstraction (that
may represent reads, genomic variants, mutations, and so
on) and then define a set of region operations, delivered as
the Genomic Region Operation Kit (GROK) library. In compar-
ison, GROK supports lower-level abstractions than GMQL
and some low-level operations (e.g., flipping regions) that
are not directly supported by GMQL, but they must be
embedded into C++ programming language code. Further-
more, high-level declarative operations, such as JOIN and
MAP, can be encoded in GROK, but they must be invoked
from command line editors or C++ programs. GROK shows
excellent performance on desktop systems, but it is unsuit-
able for parallelization and does not deal with metadata.

Several other tools focus on specific data formats or
tackle specific needs and processing requirements. Among
them, BEDTools [21] and BEDOPS [22] apply to the BED for-
mat; they efficiently process region data, but of individual
samples (at most two at a time, for their comparison), re-
quiring verbose scripts for multiple sample processing, with
lower performance. Moreover, they cannot manage sample
metadata and do not have an internal standard for data
format; this may lead different scripts to generate different
output formats, with the need for external languages (e.g.,
AWK, or SED) to manipulate their outputs, which increases
their script verbosity. A functional comparison of these tools
with GMQL is published as supplemental material to [8],
where we illustrate how biologists would comparatively
build a long query with the three approaches. BEDTools and
BEDOPS can be used from within software environments for
bioinformatics (e.g., BioPerl, BioPython, R and Bioconductor),
but are not designed for cloud computing.

A recent work by Nordberg et al. [23] presents BioPig, a
set of extensions for specific NGS analysis tasks to the Pig
Latin data processing language [24]. BioPig includes three
modules that can be used in the early phase of NGS data
analysis for processing the raw read data files produced
by NGS machines. SeqPig [25] is another collection of sim-
ilar modules to manipulate, analyze and query sequencing
datasets. The work by Weiwiorka et al. [26] presents anal-
ogous analysis tasks implemented on Apache Spark [27]. All
these works are complementary to our, as they apply on
NGS read data instead of on processed data, and indicate a
growing interest in parallel processing for genomics.

Besides cloud-based systems, scientific databases can
also be used to support genomic computing, including Ver-
tica [28] (used by Broad Institute and NY Genome Center)
and SciDB [29] (further enhanced by Paradigm4,3 a company
whose products include genomic adds-on to SciDB and
access to NGS data from TCGA and 1000 Genomes Project.)

3. http://www.paradigm4.com/

3 GENOMIC DATA MODEL

The proposed Genomic Data Model (GDM) is based on the
notions of datasets and samples; datasets are collections of
samples, and each sample consists of two parts, the region
data, which describe portions of the DNA, and the metadata,
which describe sample general properties.

3.1 Motivation

GDM stands as a new data model, with distinguishing
features. In contrast to other data models and LIMS [30],
it clearly divides observations, i.e., genomic regions, from
metadata, i.e., available information about how observations
are collected. For the former, GDM provides a flat attribute-
based organization, by imposing that each dataset is asso-
ciated with a given data schema; the first five attributes of
such schema are fixed and represent the sample identity
and genomic coordinates. We built adapters from several
processed data types to GDM schemas, and we will translate
more processed data types in the future, as they will become
available.

Instead, in GDM metadata are free-format, attribute-
value pairs, since metadata are usually unstructured and
very arbitrary. We expect metadata to include at least the
experiment type, the sequencing and analysis method used
for data production, the cell line, tissue, experimental con-
dition (e.g., antibody target for NGS chromatin immunopre-
cipitation sequencing (ChIP-seq) samples) and organism se-
quenced; in case of clinical studies, individual’s descriptions
including phenotypes.

Tens of thousands of samples of different types and
hundreds of millions of processed data describing genomic
regions from ENCODE, TCGA and Roadmap Epigenomics,
collected in our system repository, can be comprehensively
queried thanks to their modeling using the GDM.

3.2 Syntax and Semantics

A genomic region ri is a well-defined portion of the genome
qualified by a quadruple of values, called region coordi-
nates: ri =< chr, left, right, strand > where chr is the
chromosome4 where the region is located, left and right
are the two ends of the region along the DNA coordinates,
and strand represents the direction of the DNA region
reading5, encoded as either ’+’ or ’−’, and can be missing
(encoded as ’∗’)6. Regions have associated properties (i.e.,
values) which are detected by the post-processing of DNA
or RNA sequencing reads. Metadata describe the biological
and clinical properties associated with each sample; due
to the great heterogeneity of this information, they are
represented as arbitrary attribute-value pairs.

4. The simplest way of considering DNA is as a string of billions
of elements (i.e., nucleotides, represented by the letters A,C,G,T)
enclosed within chromosomes (23 in humans), which are disconnected
intervals of the string.

5. DNA is made of two strands rolled-up together in anti-parallel
directions, i.e., they are read in opposite directions by the biomolecular
machinery of the cell.

6. According to the UCSC notation, we use 0-based, half-open inter-
base coordinates, i.e., the considered genomic sequence is [left, right).
Left and right ends can be identical (e.g., when the region represents a
single nucleotide insertion).

http://www.paradigm4.com/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

Fig. 2. Regions and metadata of a dataset consisting of two samples.

Formally, a sample s is modeled as the following triple
< id, {< ri, vi >}, {mj} >, where:
• id is the sample identifier, of type long.
• Each region is a pair of coordinates ri and values vi.

Coordinates are records of the four fixed attributes chr,
left, right, strand, which are typed string, long,
long, char, respectively; values are records of typed
attributes. We assume attribute names of a sample to
be different, and types to be any of Boolean, char,
string, int, long, double. The region schema of s
is the list of attribute names used for coordinates and
values.

• Metadata mj are attribute-value pairs < aj , vj >, where
we assume the type of each attribute aj and value vj to
be string.

A dataset is a collection of samples with the same region
schema. Each dataset is typically produced within the same
project (either at a genomic research center or within an
international consortium) using the same technology and
tools, but in different experimental conditions; such differ-
ence is typically described by the sample metadata. Sample
identifiers are unique within each dataset.

3.3 Examples
Each dataset is stored using two normalized data structures,
one for regions and one for metadata; an example of these
two data structures is shown in Fig. 2. Note that the region
values have an attribute p_value of type double (repre-
senting how significant is the peak of expression in that
genomic region). Note also that the id attribute provides
a many-to-many connection between regions and metadata
of a sample; e.g., sample 1 has five regions and four
metadata attributes, while sample 2 has four regions and
three metadata attributes. In the bottom part of Fig. 2, the
regions of the two samples are aligned along two lines
representing the chromosomes 1 and 2 of the DNA; regions
of the first sample are stranded (positively or negatively),
while regions of the second sample are not stranded.

Although the above example is simple, GDM supports
the schema encoding of many types of processed data in

Fig. 3. Regions from heterogeneous samples.

different formats, including the BED, bedGraph, broadPeak,
narrowPeak, VCF and GTF standard data formats; they
have five common attributes, and differ in the subsequent
attributes of the schema. Schemas and one example instance
of DNA-seq (mutation) and RNA-seq (gene expression) data
are:

DNA-seq
(id, (chr, left, right, strand),
(A, G, C, T, del, ins, inserted, ambiguous,
Max, Error, A2T, A2C, A2G, C2A, C2G, C2T))

(1, (chr1, 917179, 917180, +),
(0, 0, 0, 0, 1, 0, ’.’, ’.’,
0, 0, 0, 0, 0, 0, 0, 0))

RNA-seq
(id, (chr, left, right, strand),
(source, type, score, frame, geneID,
transcriptID, RPKM1, RPKM2, iIDR))

(1, (chr8, 101960824, 101964847, *),
(’GencodeV10’, ’transcript’, 0.026615, NULL,
’ENSG00000164924.11’, ’ENST00000418997.1’,
0.209968, 0.193078, 0.058))

Fig. 3 shows, in an abstract form, regions from heteroge-
neous samples, i.e., containing different types of data, which
are modeled in GDM. Data are stored in file systems as
discussed in Section 5.1.

4 GENOMETRIC QUERY LANGUAGE

In this Section we provide detailed description and
formalization of our GenoMetric Query Language,
discussing its general operations first and then its most
typical and domain-specific operations, providing for each
of them motivation, syntax and semantics, and an example.

A GMQL query (or program) is expressed as a sequence
of GMQL operations, each with the following structure:

<variable> = operation(<params>) <variables>

where each variable stands for a GDM dataset. Operations
have associated parameters, are either unary (with one input
variable) or binary (with two input variables), and construct
one result variable.

4.1 Motivation
GMQL is inspired by Pig Latin [24]; as in that data pro-
cessing language, a GMQL program is a sequence of steps,
much like in a programming language, each of which carries
out a single, high-level data transformation, like in SQL. We
agree with [24] that to experienced system programmers, this
method is much more appealing than encoding their task as an



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

SQL query. Moreover, an operator-based language is much
more flexible, as it can be easily extended in order to meet
domain-specific requirements.

GMQL operations form a closed algebra: results are
expressed as new datasets derived from their operands.
Thus, operations typically have a region-based part and
a metadata part; the former one builds new regions, the
latter one traces the provenance of each resulting sample.
Most GMQL operations are intuitive for readers who are
knowledgeable of relational algebra; we informally define
these operations first, and then we focus on the most char-
acteristic, domain-specific operations.

4.2 Standard GMQL Operations
Before dwelling into GMQL operations, we describe some
common syntactic elements. Parameters of several opera-
tions include predicates, used to select and join samples;
predicates are built by arbitrary Boolean expressions of
simple predicates, as it is customary in relational algebra.
Predicates on regions must use the attributes in the re-
gion’s schema; predicates on metadata may use arbitrary
attributes. Thus, when a predicate on regions uses an illegal
attribute, the query is also illegal; when a predicate on meta-
data uses an attribute which is not present, the predicate
is unknown, but the query is legal. We use a three-value
logic (true, false, unknown) for metadata predicates p
and consider only those samples s for which p(s) is true.
The main standard GMQL unary operations are:
• SELECT: applies on metadata and keeps in the result the

input dataset samples which satisfy a metadata predi-
cate; their metadata and region data are kept unchanged.

• ORDER: uses metadata attributes to order the samples of
a dataset, by adding to each sample an order metadata
attribute with the sample ranking value, and possibly to
filter the top samples based upon the ordering.

• AGGREGATE: computes aggregate functions over region
values of each sample of a dataset and adds the result as
new metadata attributes of the sample.

• PROJECT: applies on regions and keeps in the result the
input region attributes expressed as parameters. It can
also be used to build new region attributes as scalar
expressions of region attributes (e.g., the length of a
region as the difference between its right and left
ends). Metadata are kept unchanged.

• MERGE: merges all the samples of a dataset into a single
sample, having as regions all the input regions and as
metadata the union of the sets of input attribute-value
pairs of the dataset samples.

Two GMQL binary operations allow building unions or
differences of datasets and samples.
• UNION: applies to two datasets and builds their union,

so that each sample of each operand contributes exactly
to one sample of the result; if datasets have different
schemas, the result schema is the union of the two sets
of attributes of the operand schemas, and in each result
sample the values of the attributes missing in the original
operand of the sample are set to null. Metadata of each
sample are kept unchanged.

• DIFFERENCE: applies to two datasets and preserves in
output the regions of the first dataset which do not

intersect with any region of the second dataset; only the
metadata of the first dataset are maintained, unchanged.

We next focus on domain-specific operations, responding
to particular genomic requirements: the unary operation
COVER, with its variants SUMMIT and FLAT, and the binary
operations JOIN and MAP 7.

4.3 COVER Operation
The COVER operation applies to a single dataset and pro-
duces a single sample from all the dataset samples (each of
which may include overlapping regions).

4.3.1 Motivation
The COVER operation is widely used in order to select
regions which are present in a given number of samples; this
processing is typically used in the presence of overlapping
regions, or of replicate samples of the same experiment.
The grouping option allows grouping samples with similar
experimental conditions, and produces a single sample for
each group.

4.3.2 Syntax and Semantics
The syntax allows for several optional parts8:

<S2> = COVER[_FLAT|_SUMMIT](<minAcc>,<maxAcc>
[; <aggregs>] [GROUP_BY <attribs>]) <S1>

Resulting regions of the result sample in S2 are non-
overlapping and are built from the regions of the samples in
S1 complying with the following conditions:

1) Each resulting region r in S2 is the contiguous in-
tersection of at least minAcc and at most maxAcc
contributing regions ri in the samples of S1; minAcc
and maxAcc are called accumulation indexes9.

2) Resulting regions may have new attributes calculated
by means of aggregate expressions (<aggregs>) over
the attributes of the contributing regions. The Jaccard
Index10, a standard measure of similarity of the con-
tributing regions ri, is added as default attribute.

3) Metadata of the contributing samples are merged, and
only their distinct attribute-value pairs are kept.

4) When a GROUP_BY clause is present, samples in S1 are
first partitioned by groups, each with a distinct value

7. These operations have a biological interpretation. COVER is used
to merge multiple replicate samples, or to identify DNA areas where
multiple different transcription factor binding sites or histone modifica-
tions occur. JOIN is set to detect (epi)genomic features (e.g., mutations,
transcription factor binding sites, histone modifications, methylation
sites) overlapping or at a certain distance from other genomic features
or DNA know structural annotations (e.g., gene transcription start
sites). MAP is used to discover how selected (epi)genomic features map
to reference regions, e.g., how many mutations occur within certain
genes.

8. In the syntax, square brackets [] denote optionality, and plurals
denote optional repetitions.

9. The keyword ANY can be used as maxAcc; in this case no
maximum is set (it is equivalent to omitting the maxAcc option). The
keyword ALL stands for the number of samples of the operand, and
can be used both for minAcc and maxAcc; these can also be expressed
as arithmetic expressions built by using ALL (e.g., ALL-3, ALL+2,
ALL/2). Cases when maxAcc is greater than ALL are relevant when the
input samples include overlapping regions.

10. The Jaccard Index is calculated as the ratio between the
intersection and the union of the contributing regions.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

Fig. 4. Sketches of domain-specific GMQL operations used in the motivational examples of Section 4.

of the grouping metadata attributes (<attribs>), and
then the cover operation is separately applied to each
group, yielding to one sample in the result for each
group.

The _FLAT variant returns the union of all the regions
which contribute to the COVER (more precisely, it returns
the contiguous region that starts from the first end and
stops at the last end of the input regions which would
contribute to each result region of the COVER). The _SUMMIT
variant returns only those portions of the result regions of
the COVER where the maximum number of input regions
intersect (more precisely, it returns regions that start from
a position where the number of intersecting regions is not
increasing afterwards and stops at a position where either
the number of intersecting regions decreases, or it violates
the max accumulation index).

4.3.3 Example
The following COVER operation produces output regions in
the RES dataset where at least 2 and at most 3 regions in the
EXP dataset overlap, having as resulting region attributes
the max p_value of the overlapping regions and their
JaccardIndex; the result has one sample for each input
antibody_target value. Fig. 4(A) shows a sketch of the
operation applied to an experiment dataset regarding a
single antibody target; note that there are four input samples
and one result sample, whose regions represent the intervals
where there are between 2 and 3 input regions).

RES = COVER(2, 3; p_value AS MAX(p_value)
GROUP_BY antibody_target) EXP;

4.4 JOIN Operation
The JOIN operation applies to two operands, called left and
right datasets, and acts in two phases: first, a meta join
predicate builds new samples from pairs of samples, one of
the right and one of the left dataset. Then, a genometric join
predicate, dealing with distal properties of regions, selects
the regions to include in these new samples.

4.4.1 Motivation
Meta join predicates allow selecting sample pairs with ap-
propriate biological conditions (e.g., regarding the same cell
line or antibody target); genometric join predicates allow
expressing distal conditions on sample regions, which are

needed by biologists when they extract pairs of regions on
the genome based on their relative position.

4.4.2 Syntax and Semantics
The syntax of JOIN is:

<S3> = JOIN([<meta-pred>;] <genometric-pred>;
<region-constr>) <S1> <S2>

Given two datasets S1 and S2, let s1 denote a sample of S1
and s2 denote a sample of S2. The join meta predicate is
the conjunction of simple predicates <a1> <comparison>
<a2> (with a1 and a2 metadata attributes of s1 and s2,
respectively). Each simple predicate evaluates to true when
s1 has a pair < a1, v1 >, s2 has a pair < a2, v2 >, and
the comparison predicate applied to v1 and v2 is true; it
evaluates to false otherwise. In this way, pairs < si, sj >
of samples are selected from the original datasets; when the
join meta predicate is not present, all the sample pairs in the
Cartesian product of S1 and S2 are selected11.

Next, we first discuss the structure of resulting samples,
and then the syntax and semantics of genometric join predi-
cates. Assume that the genometric join predicate, applied to
regions ri of si and rj of sj , is true. Then, new regions rij are
computed by applying the constructor <region-constr>
to the regions ri of si and rj of sj ; the constructor has four
options:

1) LEFT returns the left region (i.e., the region with the
coordinates of ri);

2) RIGHT returns the right region (i.e., the region with the
coordinates of rj);

3) INT returns the region intersection (i.e., the region with
the coordinates of the common elements of ri and rj); if
the intersection is empty, no region is produced by the
pair < ri, rj >. If no regions are produced for a given
sample sij , then the sample sij is not created;

4) CAT returns the concatenation of ri and rj (i.e., the
region from the lower left end between those of ri and
rj to the upper right end between those of ri and rj).

The schema of regions rij is obtained as composition of
the schemas of si and sj . It includes a new identifier,
the region coordinates and then the concatenation of the
other attributes of the schemas of si and sj , respectively

11. Syntactic disambiguation based on left and right key-
words is used to denote the common metadata attributes, e.g.,
left->antibody_target == right->antibody_target.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

(by disambiguating their names with their original dataset
name, if necessary); region values vi and vj are given to
such attributes. LEFT and RIGHT options of the region
constructor have also two optional modifiers:

1) PROJECT_ creates the schema of regions rij as equal to
the schema of ri (in the case of PROJECT_LEFT) or of
rj (in the case of PROJECT_RIGHT).

2) _DISTINCT (i.e., LEFT_DISTINCT or
RIGHT_DISTINCT), if two or more regions rij of
a resulting sample have identical coordinates and also
identical values for all their attributes, produces in
output only one region of them.

PROJECT_ and _DISTINCT modifiers can also be
used together (e.g., PROJECT_LEFT_DISTINCT), where
_DISTINCT is particularly useful.

We next turn to genometric join predicates. They are
based on the genometric distance, defined as the number
of bases (i.e., nucleotides) between the closest opposite ends
of two genomic regions, measured from the right end of the
region with left end lower coordinate. Note that with the
GDM choice of interbase coordinates6, intersecting regions
have distance less than 0 and adjacent regions have distance
equal to 0; if two regions belong to different chromosomes,
their distance is undefined (and predicates based on dis-
tance fail). Genometric join predicates are composed from
the following simple predicates:

1) DISTANCE < <C> (or DISTANCE <= <C>), true if the
distance of two regions is less (or less equal) than a
given constant C.

2) MINDISTANCE, true for < ri, rj > if rj is the region of
sj at minimal distance from ri (the left region); more
than one region may be returned when several of them
are at the same distance from ri.

3) FIRST AFTER DISTANCE <C>, true if rj is the closest
region farther than C bases from the left region ri; more
than one region may be returned when several of them
are at the same distance from ri.

Note that the above predicates produce a small number
of result regions, as they introduce thresholds either on
the number or on the distance of regions which satisfy
each predicate; the simple predicate DISTANCE > <C> can
be also used, but only in conjunction with anyone of the
above predicates. Variants of these clauses allow to spec-
ify different genometric conditions for the UPSTREAM and
DOWNSTREAM directions of the DNA (i.e., the left and right
side, respectively, of the left region ri).

4.4.3 Example
The following GMQL program searches for those regions,
of particular ChIP-seq experiments, called histone modifica-
tions (HM), that are at a minimal distance from transcription
start sites of genes (TSS), provided that such distance is
greater than 120K bases12. A sketch on small data is illus-
trated in Fig. 4(B); note that the result is projected on the
second (RIGHT) operand, i.e. on HM.

RES = JOIN(MINDISTANCE AND DISTANCE > 120000;
RIGHT) TSS HM;

12. This query can be used in the search for enhancers, i.e., parts of
the genome which have an important role in gene activity regulation;
the complete example, with a similar query, is in [8], Section 3.2.

4.5 MAP Operation
A MAP is a binary operation over two samples, respec-
tively called reference and experiment. The operation is
performed by first merging the samples in the reference
operand, yielding to a single set of reference regions, and
then by computing, for each sample in the experiment
operand, aggregates over the values of the experiment re-
gions that intersect with each reference region; we say that
experiment regions are mapped to the reference regions.

4.5.1 Motivation
A MAP operation produces a regular structure, called geno-
metric space, built as a matrix, where each experiment
sample is associated with a column, each reference region
with a row, and the matrix entries are typically scalars; such
space can be inspected using heat maps, where rows and/or
columns can be clustered to show patterns, or processed and
evaluated through any matrix-based analytical process.

In general, a MAP operation allows a quantitative reading
of experiments with respect to reference regions; when the
biological function of the reference regions is not known,
the MAP helps in extracting the most interesting reference
regions out of many candidates.

4.5.2 Syntax and Semantics
The syntax of MAP is:

<S2> = MAP(<aggregates>) <R> <S1>

The semantics is as follows. Let < rk > be all the regions
in all samples in R, obtained as result of the preliminary
operation of merging in a single sample all the samples in
the reference operand R. Let s1h be a sample of the second
operand (S1), with s1h =<< ri, vi >,mj > according to the
GDM notation. From every sample s1h in S1, the operation
builds a new sample s2h in S2 with the same metadata as
s1h and with the regions < rk > as regions. The attributes
of a region rk of each new sample s2h are computed by
means of aggregate expressions over the attributes of those
regions ri of s1h which intersect with the region rk.

4.5.3 Example
In the example below, the MAP operation counts how many
mutations occur in known genes, where the dataset EXP
contains DNA mutation regions of multiple experiment
samples and the dataset GENE contains the known gene
regions; e.g., in the sketch in Fig. 4(C), on the first gene we
count 6 mutations from the first experiment and 3 mutations
from the second experiment.

RES = MAP(COUNT) GENE EXP;

5 ARCHITECTURE

We developed a new software system for the execution of
GMQL queries on big genomic data; its architecture is moti-
vated by the need of bringing GMQL to cloud computing
and make it usable. The overall software architecture is
shown in Fig. 5. It includes the repository layer, the engine
layer and the GMQL layer, which in turn consists of an
orchestrator and a compiler, and is accessible through a
web service API.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

Fig. 5. Components of our software system.

5.1 Repository
The system repository has been designed with the objectives
of providing transparency, privacy, ease of use and read-
only access to public data; the user should not be aware of
how files are internally managed, should register files with
simple operations, should have a private space, and should
have access to public data, managed by administrators.

The repository includes a Local File System (LFS), or-
ganized within the Linux file system of the master node of
the computing framework, and an Hadoop Distributed File
System (HDFS) [31], shared among all the computing nodes.
Datasets are stored in the HDFS system, subdivided in
metadata and region data. Optionally, a copy can be present
in the LFS. Both the LFS and the HDFS store the control data,
which are used to guide the processing. Control data include
the schema for each dataset (encoded in Extensible Markup
Language - XML) and the Apache Lucene [32] indexes for
metadata. Moreover, both file systems have a public and
a private space. Besides the genomic data, the LFS stores
system-controlled information, encoded in XML, about the
registered users, their security control and privileges, their
saved queries and the location of their private resources13.

All the datasets are stored in their original text format,
as usually these files must be concurrently available to users
for other computations. Only the datasets that are selected
by a GMQL query are serialized by suitable adapters and
translated to the internal binary GDM format on demand,
when they are loaded in the engine before query execution;
at that point, they are managed by Apache Pig under
Hadoop. In this way, we do not replicate data in the native
and GDM formats and we minimize data translations from
native into GDM format.

5.2 Orchestrator
The orchestrator, written in Java programming language,
controls the processing flow of the GMQL code, including

13. In the system installation at IEO-IIT (https://www.ieo.it/en/
http://genomics.iit.it/), a center of excellence in oncology research,
we connected the repository to a Laboratory Information Management
System (LIMS) designed for storing both the raw data after NGS and
the workflows for producing processed data into the HDFS [30].

compilation, data selection from the repository, scheduling
of the efficient execution of Pig Latin code over the Apache
Pig engine [9], and storing of the resulting datasets in the
repository in standard format. The orchestrator has four
components: the Repository Manager, for registering users
and creating, deleting and changing datasets and their
samples; the Index Manager, for creating and searching
metadata indexes; the GMQL Job Manager, for launching
the GMQL compiler, scheduling GMQL jobs and reporting
about the status of GMQL jobs to users; and the GMQL Job
Optimizer, for controlling the parallelization factors and
choosing the version of Pig Latin translator.

When a user submits a GMQL query, the orchestrator
uses the job manager to call the GMQL compiler, which
produces the query translation into Pig Latin and the search
criteria for loading the relevant samples from the repository.
Then, the orchestrator uses the index manager to search the
index and select the samples that comply to the search cri-
teria, produces a list of the URIs of the samples to be loaded
and invokes the job optimizer, which sets the execution
parameters (such as the parallelization factors discussed
in the next section); eventually, the orchestrator manages
the outcome of the computation, including indexing of the
result and storage in the user space. The system supports
two types of execution, a Local mode and a Map-Reduce
mode; the former one is suggested only for small data sizes,
during the setup and debugging of GMQL programs.

The orchestrator can be invoked through different inter-
faces, including:
• Linux shell commands, each supported by suitable

APIs, for managing the repository (adding users,
adding/deleting datasets, and adding/deleting samples
from existing datasets) and for compiling, running and
tracking the execution of GMQL queries.

• RESTful web-services, which use the standard HTTP
protocol and JSON files, thereby enabling the access to
GMQL from within bioinformatics software and work-
flow engines, such as Galaxy [33].

6 BIG DATA MANAGEMENT SUPPORT

In this section we present the translation of GMQL into Pig
Latin, which includes parallelism options; in the next section
we present the implementation of domain-specific GMQL
operations.

6.1 GMQL Compiler

Our developed translator has two components, the lexer and
the parser. The former one scans the GMQL query and gen-
erates a list of tokens; the latter one identifies sub-sequences
of the token list which correspond to grammar rules, using
a LALR(1) algorithm [34]. When a statement is semantically
valid, the compiler first infers the schema of the new intro-
duced variable, then updates the internal state and finally
emits the Apache Pig code that performs the requested
operation. The internal state contains the name and schema
of each variable which is either generated or mentioned in
the query. We implemented the GMQL translator in Racket
[35], a general-purpose functional programming language
in the Lisp/Scheme family associated with a powerful set of

https://www.ieo.it/en/
http://genomics.iit.it/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

tools; Racket has advanced macro system and higher order
functions, which facilitate the production of a concise, clean
and safe code. Fig. 6 shows the translation of the JOIN in
the example at the end of subsection 4.4.3.

Fig. 6. Translation of a GMQL JOIN into Pig Latin.

Datasets are loaded into suitable Apache Pig variables;
we use the format illustrated in Fig. 2, where each dataset
is mapped into two bags, named V_region.dat and
V_meta.dat. In Fig. 6, lines 1-10 are concerned with meta-
data and produce the data bag RES_meta. The metadata of
the two operands are first grouped by sample and then the
cross product of samples is generated and flattened; each
pair in the cross product is associated with a new sample
having as metadata the union of the metadata of the two
operands.

Lines 11-20 work on regions. We encoded in Java pro-
gramming language a fast-join algorithm which searches for
matching regions at minimal and bound distance (discussed
in Section 7.2). First, samples are grouped and paired (as
in the case of metadata). Then, the RES_joiner class is
defined as result of invoking the MinDist+GreaterThan
Java code; the defined function is invoked on each pair of
samples and the result is finally flattened. The linking of
metadata and regions of each output sample is guaranteed
by the use of the same hash function on the two ids of the
input pairs, at lines 8 and 10 for the metadata and within
the Join function for the regions.

6.2 Parallelism in the Generated Code
Several aspects of the translation contribute to the gener-
ation of high-performance Apache Pig code (which makes
the translator a sort of syntax-directed optimizer):
• Use of by-pair parallelism, generated when an opera-

tions can be split into independent computations over
pairs of samples.

• Use of by-chrom parallelism, which is generated by
partitioning the GROUP and CROSS Apache Pig opera-
tions by chromosome. This is a classic distributed join;

as result, regions are only produced from input regions
with matching chromosomes14.

• Use of suitable parallelism directives in Apache Pig op-
erations, so as to improve the performance (e.g., setting
the number of reducers as a function of the size of the
input bags).

We instead delegate basic Apache Pig optimizations (such as
dead-code deletion, filter pushing and so on) to the Apache
Pig compiler, which is called upon the generated code.

6.2.1 Effect of By-Chrom Parallelism
In Fig. 7 we show the effect of adding by-chrom parallelism
to the by-pair parallelism of the JOIN operation of three
reference samples over an increasing number of experi-
ment samples. The figure shows an important reduction
of processing time with the addition of by-chrom paral-
lelism, which depends both on the increased parallelism
and reduced data sizes of operands (we also observed much
smaller intermediate data sizes); moreover, all algorithms
shown in Section 7 need the ordering of regions along the
genome, and the time of ordering is also reduced with
smaller data sizes. We found similar results in other opera-
tions and hence generally adopted the by-chrom parallelism
together with the by-pair parallelism.

Fig. 7. Performance of by-chrom parallelism added to by-pair paral-
lelism.

6.2.2 Size-Specific Tuning
In our experiments we used Apache Pig version 0.15.0; this
version performs an automatic setting of internal parame-
ters based on the size of the input of each Pig operation,
controlling parallelization aspects such as the number of re-
ducers. Our compiler allows overruling of the setting of the
reducer threshold, limiting the amount of data that should
be managed by each reducer; we noted better performance
by increasing the standard number of reducers by a factor
4, dividing the input in chunks of 0.25 GB rather than 1 GB.

We then considered the behavior of Apache Pig opera-
tions with small input sizes. We noted that operations over
metadata are less demanding and operations over regions
are more demanding. Thus, after several experiments, we
empirically produced a simple rule: if the size of inputs of
an Apache Pig operation is above 2 GB, we simply set the

14. This parallelism is produced by changing, in Fig. 6, lines 11 and
12, where GROUP has to be applied by using also the chromosome, and
lines 13 and 14, where CROSS is turned into a join on the chromosome.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 10

reduce threshold to 0.25 GB; if it is below 2 GB, we assign
to the Apache Pig operation a fixed number of reducers,
equal to 1 if the operation applies to metadata and to 8
if the operation applies to regions, where 8 is the number
of reduce slots available on our server. We tested this rule
on many complex queries and obtained a performance gain
between 10% and 20%15.

7 OPTIMIZATION OF SELECTIONS AND JOINS

In this section, we briefly describe the optimization of the
Selection operation, then we focus on the Join operation
optimization using the Distance and MinDistance al-
gorithms, with their several variants; Map operation is a
variant of Distance Join. Due to space limitations, we omit
to discuss the Cover operation optimization.

7.1 Selection

All GMQL queries include an initial SELECT statement that
typically extracts few samples (i.e., only the ones needed to
answer a query) out of all the datasets of large repositories.
Thus, we use Apache Lucene indexing for metadata; just
the matching samples of each dataset are loaded in GDM
format. Lucene allows for arbitrary Boolean expressions
over attribute values; its processing time (order of millisec-
onds) is negligible with respect to execution times on the
cloud. Prior to building the index, text of metadata attributes
is cleaned from control or reserved characters; the same
processing is applied to query constants.

7.2 Join

In the case of JOIN and MAP, our initial GMQL translator
was using the CROSS operation of Pig Latin for first building
the cross product of the regions in the two input vari-
ables, and then computing the join predicates (for JOIN),
or aggregate functions (for MAP). In spite of parallelism,
using CROSS is too heavy, as it scales with the product
of the number of regions (as shown by Fig. 10 and Fig.
11). A better approach leverages the fact that regions are
aligned to the same reference. We devised a family of smart
join and map algorithms, that apply to pairs of samples
and compare much fewer regions by carefully scanning the
genome; they are implemented as user-defined functions in
Java programming language and embedded in the form of
reducers within the generated Pig Latin code, parallelized
by chromosome as discussed in the previous section.

7.2.1 Distance Join
The DistanceJoin algorithm produces pairs of regions
which are at a distance below a given threshold and serves
as basis for discussing all the algorithms of this section.
It accepts as input the two samples R (reference) and E
(experiment), the maximum distance threshold m and the
region construction option con; it produces as output the
list O of result regions, assembled according to the region
construction option. This algorithm adds genomic-specific

15. In Example 3.2 in [8], which includes a cascade of 4 GMQL joins
and is translated into 32 Apache Pig operations that use reducers, we
obtained a reduction of execution time of 17%, from 633 to 525 seconds.

features to the classic sort-merge algorithms for temporal
intersection joins [36], such as the separation of upstream and
downstream regions (with respect to the left and right side
of a reference region, respectively) and richer distance con-
straints. The main difference with respect to [36] is that our
algorithm does not maintain pointers into data sequences,
which are disallowed in our computational environment;
instead, it carefully manages a cache of regions of the
experiment, including those regions that could still be joined
with the current reference.

Distances may distinguish the upstream and downstream
directions of the genome5; the predicate DistTest receives
as input two regions (r1, r2) and two thresholds on the
upstream (u) and downstream (d) directions of the genome,
respectively. DistTest is true when regions satisfy the
thresholds. A simple utility function out(r1,r2,con)
builds the output region out of two matching regions,
according to the option LEFT, RIGHT, INT, or CAT for the
con parameter, described in Section 4.4.2.

We first discuss the DistanceJoin algorithm with sym-
metric distance thresholds. The algorithm is composed of
one external loop on each region of the reference R and
two internal loops, one to analyze cached regions from
the previous iteration and one to advance the scan on the
regions of the experiment E and fill the cache C; on the first
iteration, the first of these internal loops is not executed, as
C is empty. In the pseudo-code below, length returns the
length of a list, <- adds an element to a list, and EOF(L[i])
is true when L[i-1] is the the last element of the list L.

1 DistanceJoin(R,E,m,con)
2 { O := []; // output
3 C := []; // cache list
4 j := 0; // ranges on E
5 for i := 0...R.length-1
6 { T := []; // temp list
7 for k := 0...C.length-1
8 { if (DistTest(R[i],C[k],m,m))
9 { O <- out(R[i],C[k],con);
10 T <- C[k]; }
11 else if (R[i].right < C[k].left)
12 { T <- C[k]; }}
13 C := T;
14 while (NOT EOF(E[j]) AND
15 (R[i].right + m > E[j].left))
16 { if (DistTest(R[i],E[j],m,m))
17 { O <- out(R[i],E[j],con);
18 C <- E[j]; }
19 j++; }}
20 return O; }

Note that the Map algorithm is a variant of the
DistanceJoin algorithm with m = −1; it consists of
collecting, for each reference region, the bag of experiment
regions which intersect the reference region (i.e., which are
at negative distance from it) and then applying aggregate
functions to the values of that bag of regions.

The general case of the distal join includes as input two
distinct thresholds for the upstream (u) and downstream (d)
directions of the genome5, respectively. The input parame-
ters of the modified algorithm include the two thresholds,
and the code at its lines 8-10 is substituted by the following
code, where m denotes the maximum value between u and
d:



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

if DistTest(R[i],C[k],m,m)
{ if (DistTest(R[i],C[k],d,u)
AND (R[i].strand = ’+’ OR R[i].strand = ’*’)
AND (C[k].strand = ’+’ OR C[k].strand = ’*’))
{ O <- out(R[i],C[k],con); }
else if (DistTest(R[i],C[k],u,d)
AND (R[i].strand = ’-’ OR R[i].strand = ’*’)
AND (C[k].strand = ’-’ OR C[k].strand = ’*’))
{ O <- out(R[i],C[k],con); }
T <- C[k]; }

Note that a first invocation of DistTest (controlling the
caching mechanism) is with m for both the third and fourth
parameter, and then two cases are considered, first when
both strands (one of the sample R and one of the match-
ing sample E) are either positive or undefined, and then
when both such strands are negative or undefined; in these
subsequent DistTest invocations, the two parameters are
swapped. A similar substitution is required for the code at
lines 16-18.

7.2.2 MinDistance Join

Also the MinDistanceJoin algorithm has an external iter-
ation on the reference sample R and an internal iteration on
the experiment sample E, also subdivided into two parts, re-
spectively used for emptying and filling the cache C. Cache
management is more complex, as it requires two temporary
lists T and B. The latter one includes the current best regions;
it is reassigned whenever the best distance is strictly im-
proved, while more regions with distance tie are appended
to it. The algorithm uses the function Dist(r1,r2) that
computes the distance between regions, which is 0 if two
regions are adjacent or -1 if they overlap.

1 MinDistanceJoin(R,E,con)
2 { O := []; // output
3 C := []; // cache list
4 j := 0; // ranges on E
5 for i := 0...R.length-1
6 { T := []; // temp list
7 B := []; // best distance list
8 m := MAX-CHROM-DIMENSION;
9 for k := 0...C.length-1
10 { d := dist(R[i],C[k]);
11 if (d < m)
12 { m := d;
13 if (C[k].left < R[i].left)
14 { T := []; }
15 B := out(R[i],C[k],con); }
16 else if (m = d)
17 { B <- out(R[i],C[k],con); }
18 T <- C[k]; }
19 C := T;
20 while (NOT EOF(E[j]) AND
21 (R[i].right + m >= E[j].left))
22 { d := Dist(R[i],E[j]);
23 if (d < m)
24 { m := d;
25 B := out(R[i],E[j],con);
26 if (E[j].left < R[i].left)
27 { C := []; }}
28 else if (d = m)
29 { B <- out(R[i],E[j],con); }
30 C <- E[j];
31 j++; }
32 O <- B; }
33 return O; }

Variants of the above pseudo-code allow to add mini-
mum or maximum distance thresholds, or to extract top k
matches.

8 EVALUATION

In this section, we compare our system performance with
the equivalent state-of-the-art and then we show our linear
scale-up. Finally, we present a full example with biological
interpretation. We measured performances both on Amazon
Web Service cloud, taking advantage of multiple nodes (see
Section 8.2), and on our server, an Intel R© Xeon R© Processor
with CPU E5-2650 at 2.00 GHz, six cores, RAM of 128 GB,
hard disk of 4x2 TB, and the engines Apache Hadoop 2.6.2,
Apache Pig 0.15.0 and Apache Lucene 5.3.1.

8.1 Comparison with the State of the Art
No cloud computing system operates on region-based pro-
cessed data, but BEDTools [21] and BEDOPS [22] are popu-
lar biologists’ tools for scripting region-based computations
which perform set-oriented operations upon regions; hence,
we consider them the closest tools for a state-of-the-art com-
parison. They provide single machine code that uses multi-
threading for some computationally expensive operations;
they do not support implicit iteration over data samples or
metadata management.

As BEDTools and BEDOPS are not cloud computing
tools, they have excellent performance when applied to
one pair of samples; however, these tools scale with great
difficulty, both for what concerns programmability and per-
formance. Since they do not support implicit iteration, for
a comparison we coded a read function, which iteratively
reads input files, and then scripted programs with explicit
iteration. For instance, the GMQL operation:

RES = MAP(COUNT) GENE EXP;

is encoded by the following BEDOPS program:16

sort-bed ˜/gene.bed > ˜/file1_sorted.bed;
i = 0
while read NAME
do
i = $((i+1))
sort-bed $NAME > ˜/file2_sorted.bed;
bedmap --ec --count --echo ˜/file1_sorted.bed
˜/file2_sorted.bed > "˜/$i.bedOpsRes";
echo "$i.$NAME";
done < ˜/inputfiles.txt

Fig. 8 shows comparative performances of the
DISTANCE JOIN operation between three reference sam-
ples of about 45K regions each and an increasing number
of experiment samples with an average of 50K regions and
7.5 MB size each. GMQL performs worse than BEDOPS and
BEDTools when experiment samples are less than 50, but it
outperforms them above such threshold.

Fig. 9 shows comparative performances of the MAP
operation with a count aggregate function in the same
experimental setting, but with a single reference sample; in

16. For brevity, we do not show the encoding in BEDTools and
for distal join both in BEDTools and BEDOPS; neither BEDTools nor
BEDOPS have metadata, hence we omitted from the translation of
GMQL the Apache Pig code which loads and builds metadata.

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight

masseroli
Highlight



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

Fig. 8. Performance of the DISTANCE JOIN operation with increasing
number of samples; GMQL vs. BEDOPS vs. BEDTools.

this case, GMQL performs worse when experiment sam-
ples are less than 500, but it outperforms both BEDOPS
and BEDTools above such threshold. Furthermore, GMQL
time does not depend on the complexity of operation (e.g.,
number of computed aggregates), but rather to the need
of distributing sample files, partitioned over the number of
chromosomes, to the computing nodes. Instead, BEDOPS
requires an increase of 30% of execution time for computing
two aggregates, and BEDTools does not support multiple
aggregates.

Fig. 9. Performance of the MAP operation with increasing number of
samples; GMQL vs. BEDOPS vs. BEDTools.

We conclude that BEDOPS has comparatively better per-
formance than BEDTools, as independently reported in [20],
and that beyond given thresholds GMQL performs faster
on big data; moreover, GMQL provides a cloud computing
solution, whose performance will increase with better op-
erating system, better computing infrastructures and larger
clouds.

8.2 GMQL Scaling with Big Datasets
Fig. 10 illustrates the performance of the three kinds
of JOIN (DISTANCE, MINDISTANCE and FIRST AFTER
DISTANCE) described in Section 4.4.2, when executed with
3 samples of about 45K regions each as fixed references and
a growing number of samples (up to 2.5K) as experiment
samples; these samples have a variable number of regions
and sizes, with an average of 50K regions and 7.5 MB size
each. The diagram shows almost linear scaling; it also shows
that the encoding of the JOIN as crossproduct (CROSS) has
much worse performance.

MAP is a simple case of DISTANCE JOIN; hence, its
performance curves are similar. Fig. 11 shows the MAP

Fig. 10. JOIN performance over big data.

performance when the set of all known human genes (both
protein coding and not) is used as single reference sample;
note the linear scale up to only 15 minutes with 2500
experiment samples (77,778,000 regions) and 45K genes.

Fig. 11. MAP performance over big data.

We also used the Hadoop framework provided by Ama-
zon Web Services17 with m3.2xLarge model, 8 CPU, 30 GB
RAM, 2x80 GB storage SSD to test the MAP operation with
over than 4000 samples, our largest dataset (about 31.1 GB);
parallelism was set to 1 master node and 5, 10, and 15 slave
nodes, respectively. Table 1 shows a significant reduction in
execution time with the increase of the number of nodes,
although scalability is lower when going from 10 to 15
nodes, most likely due to higher communication overhead.

TABLE 1
Scalability of MAP execution time by increasing parallelism in the

Amazon Web Service cloud

Master Nodes Slave Nodes Processing Time
1 5 29 min 14 sec
1 10 19 min 30 sec
1 15 16 min 30 sec

8.3 Full Biological Example
This example uses a MAP operation to count the peak regions
in each ENCODE ChIP-seq sample that intersect with a
gene promoter (i.e., proximal regulatory region); then, in
each sample it projects over (i.e., filters) the promoters with
at least one intersecting peak, and counts these promoters.
Finally, it extracts the top 3 samples with the highest number
of such promoters.

17. http://aws.amazon.com/

http://aws.amazon.com/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

HM_TF = SELECT(dataType == ’ChipSeq’) ENCODE;
PROM = SELECT(annotation == ’promoter’) ANN;
PROM1 = MAP(peak_count AS COUNT) PROM HM_TF;
PROM2 = PROJECT(peak_count >= 1) PROM1;
PROM3 = AGGREGATE(prom_count AS COUNT) PROM2;
RES = ORDER(DESC prom_count; TOP 3) PROM3;

The query was executed over 2,423 samples including a total
of 83,899,526 peaks, which first were mapped to 131,780
promoters within the ANN annotation dataset, producing as
result 29 GB of data; next, promoters with intersecting peaks
were counted, and the 3 samples with more of such promot-
ers were selected, having between 30K and 32K promoters
each. Processing required 11 minutes and 50 seconds.

The RES result variable includes both regions and meta-
data; the former ones indicate interesting promoter regions
(that can be further inspected using viewers, e.g., genome
browsers), the latter ones allow tracing provenance of re-
sulting samples. Fig. 12 shows 4 metadata attributes of the
resulting samples: the order of the sample, the antibody
and cell type considered in the ChIP-seq experiment, and
the promoter region count.

Fig. 12. Metadata excerpt of the resulting samples.

Further biological use case examples were thoroughly
illustrated and discussed previously in [8].

9 CONCLUSIONS

In this paper, we thoroughly discussed and motivated our
approach to genomic data modeling and querying, formal-
ized GMQL operations, and illustrated GMQL implementa-
tion over big genomic data, evaluating its performance. The
main contribution of our new system is the ability of query-
ing thousands or even millions of processed experimental
samples, which will soon become available [37]; indeed they
are growing at an extremely fast speed, and are well curated
and published online by large consortia. Data complexity
is manifesting itself not only in its sheer size, but also in
the heterogeneity and large number of underlying samples,
conditions, etc. GDM provides interoperability across tens
of processed data formats, while GMQL supports high-level
query processing through a combination of relational and
domain-specific region management operations, tailored to
the needs of genomic data management; it brings to bi-
ologists well-established (by Edgar F. Codd [38]) database
concepts. Our choice of deploying GMQL in a cloud com-
puting environment, rather than using a conventional or

scientific DBMS (such as Vertica [28] or SciDB [29]), is
also motivated by our vision of moving our project soon
into Apache-incubation, so as to generate a community of
users and developers, and also benefit from the existence
of complementary frameworks (e.g., Adam [39] supporting
primary and secondary genomic data analysis and Apache
Mahout [40] supporting machine learning.)

We deployed two installations of our implemented soft-
ware system, one at Politecnico di Milano for system de-
velopment and one at IEO-IIT18, a center of excellence in
cancer research, for conducting joint research projects19.
Our system can be freely downloaded from: http://www.
bioinformatics.deib.polimi.it/GMQL/ and can be tested
through a web application freely available at http://www.
bioinformatics.deib.polimi.it/GMQL/queries/, which pro-
vides a set of predefined parametric GMQL queries on our
system repository. We are currently working towards new
releases of the system which will use Apache Spark [27] and
Apache Flink [41] engines under the Apache Hadoop YARN
[10] framework.

ACKNOWLEDGMENTS

We acknowledge the essential contributions of Heiko Muller
(IIT) and of Gianpaolo Cugola, Matteo Matteucci, Fernando
Palluzzi and Vahid Jalili (PoliMI). Research was supported
by the Data-Driven Genomic Computing (GenData 2020)
PRIN project (2013-2015), funded by the Italian Ministry of
the University and Research, and by a grant from Amazon
Web Services.

REFERENCES

[1] J. Shendure, and H. Ji, ”Next-generation DNA sequencing,” Nat.
Biotechnol., vol. 26, no. 10, pp. 1135-1145, 2008.

[2] S. C. Schuster, ”Next-generation sequencing transforms today’s
biology,” Nat. Methods., vol. 5, no. 1, pp. 16-18, 2008.

[3] NIH National Human Genome Research Institute, ”DNA Se-
quencing Costs.” http://www.genome.gov/sequencingcosts/

[4] ENCODE Project Consortium, ”An integrated encyclopedia of
DNA elements in the human genome,” Nature, vol. 489, no. 7414,
pp. 57-74, 2012.

[5] Cancer Genome Atlas Research Network, J. N. Weinstein, E. A.
Collisson, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott,
I. Shmulevich, C. Sander, and J. M. Stuart, ”The Cancer Genome
Atlas pan-cancer analysis project,” Nat. Genet., vol. 45, no. 10, pp.
1113-1120, 2013.

[6] 1000 Genomes Project Consortium, G. R. Abecasis, D. Altshuler,
A. Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles,
and G. A. McVean, ”A map of human genome variation from
population-scale sequencing,” Nature, vol. 467, no. 7319, pp. 1061-
1073, 2010.

[7] C. E. Romanoski, C. K. Glass, H. G. Stunnenberg, L. Wilson, and G.
Almouzni, ”Epigenomics: Roadmap for regulation,” Nature, vol.
518, no. 7539, pp. 314-316, 2015.

[8] M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Paluzzi,
H. Muller, and S. Ceri, ”GenoMetric Query Language: A novel ap-
proach to large-scale genomic data management,” Bioinformatics,
vol. 12, no. 4, pp. 837-843, 2015.

[9] Apache Pig. http://pig.apache.org/
[10] Apache Hadoop YARN. https://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/YARN.html

18. https://www.ieo.it/en/ - http://genomics.iit.it/
19. Most relevant on going projects regard: Study of 3D chromatin

structure, DNA replication and gene expression intertwinement, Chro-
matin state changes in time-course Myc binding, and Co-occurrence of
TEAD and other transcription factor binding sites.

http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://www.bioinformatics.deib.polimi.it/GMQL/queries/
http://www.genome.gov/sequencingcosts/
http://pig.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.ieo.it/en/
http://genomics.iit.it/


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 14

[11] L. D. Stein, ”The case for cloud computing in genome informatics,”
Genome Biol., vol. 11, no. 5, pp. 207, 2010.

[12] Global Alliance Genomics API. http://ga4gh.org/#/
documentation

[13] Google Genomics Could Platform. https://cloud.google.com/
genomics/

[14] U. Röhm and J. Blakeley, ”Data management for high-throughput
genomics,” in Proc. CDIR, 2009, pp. 1-10.

[15] S. Tata, J. M. Patel, J. S. Friedman, and A. Swaroop, ”Declarative
Querying for Biological Sequences,” in Proc. IEEE ICDE, 2006, pp.
87-99.

[16] S. Tata, W. Lang, and J. M. Patel, ”Periscope/SQL: Interactive
exploration of biological sequence databases,” in Proc. VLDB, 2007,
pp. 1406-1409.

[17] V. Bafna, A. Deutsch, A. Heiberg, C. Kozanitis, L. Ohno-Machado,
and G. Varghese, ”Abstractions for genomics,”Commun. ACM, vol.
56, no. 1, pp. 83-93, 2013.

[18] C. Kozanitis, A. Heiberg, G. Varghese, and V. Bafna, ”Using
Genome Query Language to uncover genetic variation,” Bioinfor-
matics, vol. 30, no. 1, pp. 1-8, 2014.

[19] M. Cereda, M. Sironi, M. Cavalleri, and U. Pozzoli, ”GeCo++: a
C++ library for genomic features computation and annotation in
the presence of variants,” Bioinformatics, vol. 27, no. 9, pp. 1313-
1315, 2011.

[20] K. Ovaska, L. Lyly, B. Sahu, O. A. Jnne, and S. Hautaniemi,
”Genomic Region Operation Kit for flexible processing of deep
sequencing data,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol.
10, no. 1, pp. 200-206, 2013.

[21] A. R. Quinlan and I. M. Hall, ”BEDTools: a flexible suite of utilities
for comparing genomic features,” Bioinformatics, vol. 26, no. 6, pp.
841-842, 2010.

[22] S. Neph, M. S. Kuehn, A. P. Reynolds, E. Haugen, R. E. Thur-
man, A. K. Johnson, E. Rynes, M. T. Maurano, J. Vierstra, S.
Thomas, R. Sandstrom, R. Humbert, and J. A. Stamatoyannopou-
los, ”BEDOPS: high-performance genomic feature operations,”
Bioinformatics, vol. 28, no. 14, pp. 1919-1920, 2012.

[23] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang, ”BioPig: a
Hadoop-based analytic toolkit for large-scale sequence data,”
Bioinformatics, vol. 29, no. 23, pp. 3014-3019, 2013.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, ”Pig
Latin: A not-so-foreign language for data processing,” in ACM-
SIGMOD, 2008, pp. 1099-1110.

[25] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio, E. Kor-
pelainen, G. Zanetti, and K. Heljanko, ”SeqPig: simple and scalable
scripting for large sequencing data sets in Hadoop,” Bioinformatics,
vol. 30, no. 1, pp. 119-120, 2014.

[26] M. S. Weiwiorka, A. Messina, A. Pacholewska, S. Maffioletti, P.
Gawrysiak, and M. J. Okoniewski, ”SparkSeq: Fast, scalable and
cloud-ready tool for the interactive genomic data analysis with
nucleotide precision,” Bioinformatics, vol. 30, no. 18, pp. 2652-2653,
2014.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, ”Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proc. USENIX, 2012, pp. 15-28.

[28] Vertica. https://www.vertica.com/
[29] SciDB. http://www.scidb.org/
[30] F. Venco, Y. Vaskin, A. Ceol, and H. Muller, ”SMITH: a LIMS for

handling next-generation sequencing workflows,” BMC bioinfor-
matics, vol. 15, no. Suppl 14, pp. S3, 2014.

[31] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ”The Hadoop
distributed file system,” in Proc. MSST, 2010, pp. 1-10.

[32] Apache Lucene. http://lucene.apache.org/
[33] Galaxy. http://galaxyproject.org/
[34] F. DeRemer and T. Pennello, ”Efficient computation of LALR(1)

Look-Ahead sets,” ACM Trans. Prog. Lang, Syst., vol. 4, no. 4, pp.
615-649, 1982.

[35] Racket. http://racket-lang.org/
[36] H. Gunadhi and A. Segev, ”Query processing algorithms for

temporal intersection joins,” in Proc. IEEE ICDE, 1991, pp. 336-344.
[37] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M.

J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, ”Big
data: astronomical or genomical?” PLoS Biol., vol. 13, no. 7, pp.
e1002195, 2015.

[38] E. F. Codd, ”A relational model of data for large shared data
banks,” Comm. ACM, vol. 13, no. 6, pp. 377-387, 1970.

[39] Adam. http://www.bdgenomics.org/

[40] Apache Mahout. http://mahout.apache.org/
[41] Apache Flink. http://flink.apache.org/

Stefano Ceri is Professor at the Dipartimento
di Elettronica, Informazione e Bioingegneria
(DEIB) of Politecnico di Milano. He obtained
his Dr. Eng. Degree from Politecnico di Milano
in July 1978. He was Visiting Professor at the
Computer Science Department of Stanford Uni-
versity (1983-1990), Chairman of the Computer
Science Section of DEI (1992-2004), Director of
Alta Scuola Politecnica (ASP) of Politecnico di
Milano and Politecnico di Torino (2010-2013). He
has been awarded two advanced ERC Grants

on Search Computing (2008-2013) and Genomic Computing (2016-
2021). He is currently leading the PRIN project GenData 2020. He is
the recipient of the ACM-SIGMOD ”Edward T. Codd Innovation Award”
(2013), and an ACM Fellow and member of the Academia Europaea.

Abdulrahman Kaitoua received his B.E. de-
gree with high distinction in Computer Systems
Engineering from Mamoun Private University
(MUST), Syria, in 2009. He received his Mas-
ters in Electrical and Computer Engineering de-
partment from the American University of Beirut
(AUB), Lebanon, in 2013. He is currently a Ph.D.
student in Information Technology at Politecnico
di Milano University, Italy. His research interests
include bioinformatics, cloud computing, soft-
ware engineering, data mining, distributed com-

puting, and big data processing.

Marco Masseroli received the Laurea Degree in
Electronic Engineering in 1990 from Politecnico
di Milano, Italy, and a PhD in Biomedical Engi-
neering in 1996, from Universidad de Granada,
Spain. He is Associate Professor at the Dipar-
timento di Elettronica, Informazione e Bioingeg-
neria (DEIB) of Politecnico di Milano, Italy. His
research interests are in the area of bioinfor-
matics and biomedical informatics, focused on
distributed Internet technologies, biomolecular
databases, controlled biomedical terminologies

and bio-ontologies to effectively retrieve, manage, analyze, and se-
mantically integrate genomic information with patient clinical and high-
throughout genomic data. He is the author of more than 180 scientific
articles in international journals, books and conference proceedings.

Pietro Pinoli received the BS/MS degree in
Computer Science and Engineering in 2012 from
Politecnico di Milano, Italy. He is currently a
PhD candidate at the Dipartimento di Elettron-
ica, Informazione e Bioingegneria (DEIB) of Po-
litecnico di Milano, Italy, and a member of the
DEIB Bioinformatics Group. He is a collaborator
of the Istituto Europeo di Oncologia (IEO). His
research interests include databases, big data,
machine learning and bioinformatics.

Francesco Venco graduated at University of
Padova with a thesis on Bayesian Network au-
tomatic learning and received a PhD in Infor-
mation Technology from Politecnico di Milano,
Italy. During the last years he worked with the
group of Bioinformatics of Politecnico di Milano
on techniques to manage large NGS (Next Gen-
eration Sequencing) data, in collaboration with
IEO research center. His main focus is on effi-
cient algorithms to manage big genomic data.

http://ga4gh.org/#/documentation
http://ga4gh.org/#/documentation
https://cloud.google.com/genomics/
https://cloud.google.com/genomics/
https://www.vertica.com/
http://www.scidb.org/
http://lucene.apache.org/
http://galaxyproject.org/
http://racket-lang.org/
http://www.bdgenomics.org/
http://mahout.apache.org/
http://flink.apache.org/

	Introduction
	Related Work
	Genomic Data Model
	Motivation
	Syntax and Semantics
	Examples

	Genometric Query Language
	Motivation
	Standard GMQL Operations
	COVER Operation
	Motivation
	Syntax and Semantics
	Example

	JOIN Operation
	Motivation
	Syntax and Semantics
	Example

	MAP Operation
	Motivation
	Syntax and Semantics
	Example


	Architecture
	Repository
	Orchestrator

	Big Data Management Support
	GMQL Compiler
	Parallelism in the Generated Code
	Effect of By-Chrom Parallelism
	Size-Specific Tuning


	Optimization of Selections and Joins
	Selection
	Join
	Distance Join
	MinDistance Join


	Evaluation
	Comparison with the State of the Art
	GMQL Scaling with Big Datasets
	Full Biological Example

	Conclusions
	References
	Biographies
	Stefano Ceri
	Abdulrahman Kaitoua
	Marco Masseroli
	Pietro Pinoli
	Francesco Venco


