
On the Systematic Development of
Domain-Specific Mashup Tools for End Users

Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,
Fabio Casati and Maurizio Marchese

Department of Information Engineering and Computer Science
University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

Abstract. The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end users without program-
ming skills to compose their own applications. Yet, similar to what hap-
pened with analogous promises in web service composition and busi-
ness process management, research has mostly focused on technology
and, as a consequence, has failed its objective. Plain technology (e.g.,
SOAP/WSDL web services) or simple modeling languages (e.g., Yahoo!
Pipes) don’t convey enough meaning to non-programmers.
In this paper, we propose a domain-specific approach to mashups that
“speaks the language of the user”, i.e., that is aware of the terminology,
concepts, rules, and conventions (the domain) the user is comfortable
with. We show what developing a domain-specific mashup tool means,
which role the mashup meta-model and the domain model play and how
these can be merged into a domain-specific mashup meta-model. We
exemplify the approach by implementing a mashup tool for a specific
scenario (research evaluation) and describe the respective user study.
The results of a first user study confirms that domain-specific mashup
tools indeed lower the entry barrier to mashup development.

1 Introduction

Mashups are typically simple web applications that, rather than being coded
from scratch, are developed by integrating and reusing available data, function-
alities, or pieces of user interfaces accessible over the Web. Mashup tools, i.e.,
online development and runtime environments for mashups, ambitiously aim at
enabling non-programmers (regular web users) to develop their own applica-
tions.Yet, similar to what happened in web service composition, the mashup
platforms developed so far either expose too much functionality and too many
technicalities so that they are powerful and flexible but suitable only for pro-
grammers, or only allow compositions that are so simple to be of little use
for most practical applications. For example, mashup tools typically come with
SOAP services, RSS feeds, UI widgets, and the like. Non-programmers do not
understand what they can do with these kinds of compositional elements. We
experienced this with our own mashup and composition platforms, mashArt [4]



and MarcoFlow [5], which we believe to be simpler and more usable than many
composition tools but that still failed in being suitable for non-programmers.
Yet, being amenable to non-programmers is increasingly important as the op-
portunity given by the wider and wider range of available online applications
and the increased flexibility that is required in both businesses and personal life
management raise the need for situational (one-use or short-lifespan) applica-
tions that cannot be developed or maintained with the traditional requirement
elicitation and software development processes.

We believe that the heart of the problem is that it is impractical to design
tools that are generic enough to cover a wide range of application domains, pow-
erful enough to enable the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some point, we need to give up
something. In our view, this something is generality, since reducing expressive
power would mean supporting only the development of toy applications, which is
useless, while simplicity is our major aim. Giving up generality in practice means
narrowing the focus of a design tool to a well-defined domain and tailoring the
tool’s development paradigm, models, language, and components to the specific
needs of that domain only.

In this paper, we therefore champion the notion of domain-specific mashup
tools and describe what they are composed of, how they can be developed, how
they can be extended for the specificity of any particular application context, and
how they can be used by non-programmers to develop complex mashup logics
within the boundaries of one domain. We provide the following contributions:

– We describe a methodology for the development of domain-specific mashup
tools, defining the necessary concepts and design artifacts. As we will see,
one of the most challenging aspects is to determine what is a domain, how
it can be described, and how it can both constrain a mashup tool (to the
specific purpose of achieving simplicity of use) and ease development. The
methodology targets expert developers, who implement mashup tools.

– We detail and exemplify all design artifacts that are necessary to implement
a domain-specific mashup tool, in order to provide expert developers with
tools they can reuse in their own developments.

– We apply the methodology in the context of an example mashup platform
that aims to support a domain most scientists are acquainted with, i.e.,
research evaluation. This prototypal tool targets domain experts.

– We perform a user study, in order to assess the viability of the developed
platform and of the respective development methodology.

While we focus on mashups, the techniques and lessons learned in the paper
are general and can be applied to other composition or modeling environments.

Next, we first introduce our reference scenario. In Section 3, we introduce
our basic definitions and provide our problem statement. In Section 4 we outline
the methodology we follow to implement the scenario and provide the necessary
details. In Section 5 we describe the actual implementation of our prototype
tool, and in Section 6 we report on a preliminary user study. In Section 7, we
review related works. We conclude the paper in Section 8.



2 Scenario: Research Evaluation

As an example of a domain specific task, we now describe the evaluation pro-
cedure used by the central administration of the University of Trento (UniTN)
for checking the productivity of each researcher who belongs to a particular
department with respect to the average quality of researchers belonging to simi-
lar departments (i.e., departments in the same disciplinary sector) in all Italian
universities. The comparison uses the following procedure based on one simple
bibliometric indicator, i.e., a weighted publication count metric.

1. A list of all researchers working in Italian universities is retrieved from a
national registry, and a reference sample of faculty members with similar
statistical features (e.g., belonging to the same disciplinary sector) of the
evaluated department is compiled.

2. Publications for each researcher of the selected department and for all Italian
researchers in the selected sample are extracted from an agreed-on data
source (e.g., Microsoft Academic, Scopus, DBLP, etc.).

3. The publications obtained in the previous step are then weighted using a
venue classification. For each researcher a single weighted publication count
parameter is thus obtained with a simple weighted sum of her publications.

4. The statistical distribution – more specifically, a negative binomial distri-
bution – of the weighted publication count metric is then computed for the
researchers’ reference sample.

5. Each researcher in the selected department is ranked, based on her individ-
ual weighted publication count, over the computed statistical distribution,
thereby estimating her percentile, i.e. the percentage of the researchers in the
same disciplinary sector having equal or lower values for the specific metric.

The requirement we extract from this domain-specific scenario is that we
need to empower people involved in the evaluation process (that is, the average
faculty member or the administrative persons in charge of research evaluation) so
that they are able to define and compare relatively complex evaluation processes,
taking and processing data in various ways from different sources, and visually
analyze and understand the results. As we need to extract, combine, and process
data and services from multiple sources and represent the information with visual
components, this task has all the characteristics of a mashup.

3 Analysis and Problem

If we carefully look at the described mashup scenario, we see that it is purely
domain-specific, i.e. it processes domain objects (researchers, publications, met-
rics, and so on), uses domain-specific processes (e.g., the computation of weighted
publication count metric) and complies with a set of domain-specific composition
rules. Throughout this paper, we will see how the development of this scenario
can be aided by a domain-specific mashup tool. Before going into the details, we
introduce the necessary concepts:



We define a web mashup (or mashup) as a web application that integrates
data, application logic, and/or user interfaces (UIs) sourced from the Web [15].
Typically, a mashup integrates and orchestrates two or more elements. Our ref-
erence scenario requires all three ingredients of the definition: we need to fetch
researchers and publication information from various Web-accessible sources (the
data); we need to compute indicators and rankings (the application logic); and
we need to render the output to the user for inspection (the UI). We generically
refer to the services or applications implementing these features as components.

In order to support the described evaluation algorithm, components must
be composed and put into communication. Simplifying this task by tailoring a
mashup tool to the specific domain of research evaluation first of all requires
understanding what a domain is. We define a domain as a delimited sphere
of concepts and processes; domain concepts consist of data and relationships;
domain processes operate on domain concepts and are either atomic (activities)
or composite (processes integrating multiple activities).

A domain-specific mashup is therefore a mashup that describes a com-
posite domain process that manipulates domain concepts via domain activities
and processes. It is typically specified using a domain-specific, graphical model
notation. A domain-specific mashup tool (DMT) is a development and ex-
ecution environment that enables domain experts, i.e., the actors operating in
the domain, to develop and execute domain-specific mashups via a syntax that
exposes all features of the domain.

A DMT is initially “empty”. It then gets populated with specific components
that provide functionality needed to implement mashup behaviors. For example,
software developers (not end-users) will define libraries of components for re-
search evaluation, such as components to extract data from Google Scholar, or
to compute the h-index. The domain model can be arbitrarily extended, though
the caveat here is that a domain model that is too rich can become difficult for
software developers to follow.

Given these definitions, the problem we solve in this paper is that of provid-
ing the necessary concepts and a methodology for the development of domain-
specific mashup models and DMTs. The problem is neither simple nor of immedi-
ate solution. While domain modeling is a common task in software engineering,
its application to the development of mashup platforms is not trivial. For in-
stance, we must precisely understand which domain properties are needed to
exhaustively cover all necessary domain aspects that are necessary to tailor a
mashup platform to a specific domain, which property comes into play in which
step of the development of the platform, how domain aspects are materialized
(e.g., visualized) in the mashup platform, and so on.

4 Methodology

Throughout this paper we show how we have developed a mashup platform for
our reference scenario, in order to exemplify how its development can approach
the above challenges systematically. The development of the platform has allowed



us to conceptualize the necessary tasks and to structure them into the following
methodology steps:

1. Definition of a domain concept model (CM) to express domain data and
relationships. The concepts are the core of each domain. The specification
of domain concepts allows the mashup platform to understand what kind of
data objects it must support. This is different from generic mashup platforms,
which provide support for generic data formats, not specific objects.

2. Identification of a generic mashup meta-model1 (MM) that suits the compo-
sition needs of the domain and the selected scenarios. A variety of different
mashup approaches, i.e., meta-models, have emerged over the last years and
before thinking about domain-specific features, it is important to identify a
meta-model that accommodates the domain processes to be mashed up.

3. Definition of a domain-specific mashup meta-model. Given a generic MM, the
next step is understanding how to inject the domain into it. We approach
this by specifying and developing:

(a) A domain process model (PM) that expresses classes of domain activities
and, possibly, ready processes. Domain activities and processes represent
the dynamic aspect of the domain. They operate on and manipulate the
domain concepts.

(b) A domain syntax that provides each concept in the domain-specific
mashup meta-model (the union of MM and PM) with its own symbol.
Domain concepts and activities must be represented by visual metaphores
conveying their meaning to domain experts.

(c) A set of instances of domain-specific components. This is the step in
which the reusable domain-knowledge is encoded, in order to enable do-
main experts to mash it up into new applications.

4. Implementation of the DMT as a tool whose expressive power is that of the
domain-specific mashup meta-model and that is able to host and integrate
the domain-specific activities and processes.

In the next subsections, we expand each of these steps.

4.1 The Domain Concept Model

The domain concept model is obtained via interactions between an IT expert
and a domain expert. The heart of each domain is represented by the information
items each expert of that domain knows and understands. Modeling this kind
of information requires understanding which these information items are and
how they relate to each other, eventually producing a conceptual model that
represents the knowledge base that is shared among the experts of the domain.

In domain-specific mashups, the concept model has three kinds of readers
(and usages), and understanding this helps us to define how the domain should

1 We use the term meta-model to describe the constructs (and the relationships among
them) that rule the design of mashup models. With the term instance we refer to
the actual mashup application that can be operated by the user.



PublicationPublisher

ResearcherInstitution Metric

Venue

Source Journal Conference

Name
Address

Name
Address

FirstName
LastName
Title

Title
PublicationDate
Keywords

Name
Value

Name
URL

Name
StartDate
EndDate
City
Country

written by
0..N

1..N

belongs to

1..N0..N

published by

1..N1..1

published in

1..10..N

cites

0..N

0..N

...

Fig. 1. Domain concept model for the research evaluation scenario

be represented. The first readers are the mashup modelers (domain experts). For
them an entity-relationship diagram is a commonly adopted technique, able to
let them understand quite easily conceptual models. The second readers are the
developers of components (programmers), which need to be aware of the data
format in which entities and relationships can be represented, e.g., in terms of
XML schemas. The third reader is the DMT itself, which enforces compliance
of data exchanges with the concept model.

Therefore, the domain concept model (CM) describes the conceptual en-
tities and the relationships among them, which, together, constitute the domain
knowledge. We express the domain concept model as a conventional entity-
relationship diagram. It also includes a representation of the entities as XML
schemas. For instance, in Figure 1 we put the main concepts we can identify in
our reference scenario into a CM, detailing entities, attributes, and relationships.
The core element in the evaluation of scientific production and quality is the pub-
lication, which is typically published in the context of a specific venue, e.g., a
conference or journal, by a publisher. It is written by one or more researchers
belonging to an institution. Increasingly – with the growing importance of the
Internet as information source for research evaluation – also the source (e.g.,
Scopus or Google Scholar) from which publications are accessed is gaining im-
portance. The actual evaluation is represented in the model by the metric entity,
which can be computed over any of the other entities. We notice that each con-
cept model implicitly includes the concept of grouping the entities in arbitrary
ways, so groups are also an implicitly defined entity.

4.2 The Generic Mashup Meta-Model

To define the type of mashups and, hence, the modeling formalism that is
required, it is necessary to model which features (in terms of software capabil-
ities) the mashups should be able to support. Mashups are particular types of
web applications. They are component-based, may integrate a variety of services,
data sources, and UIs. They may need an own layout for placing components,
require control flows or data flows, ask for the synchronization of UIs and the



orchestration of services, allow concurrent access or not, and so on. Which exact
features a mashup type supports is described by its mashup meta-model.

We first define a generic mashup meta-model, which may fit a variety of
different domains, then we show how to define the domain-specific mashup meta-
model, which will allow us to draw domain-specific mashup models. Specifically,
the generic mashup meta-model (MM) specifies a class of mashups and,
thereby, the expressive power, i.e., the concepts and composition paradigms, a
mashup platform must know in order to support the development of that class
of mashups. The MM implicitly specifies the expressive power of the mashup
platform. Identifying the right features of the mashups that fit a given domain
is therefore crucial.

For instance, our research evaluation scenario asks for the capability to in-
tegrate data sources (to access publications and researchers via the Web), web
services (to compute metrics and perform transformations), and UIs (to ren-
der the output of the assessment). We call this capability universal integration.
Next, the scenario asks for data processing capabilities that are similar to what
we know from Yahoo! Pipes, i.e., data flows. It requires dedicated software com-
ponents that implement the basic activities in the scenario, e.g., compute the
impact of a researcher (the sum of his/her publications weighted by the venue
ranking), compute the percentile of the researcher inside the national sample
(producing outputs like “top 10%”), or plot the department ranking as a chart.

For our research evaluation scenario, we start from a very simple MM, both
in terms of notation and execution semantics, which enables end-users to model
their own mashups. Indeed, it can be fully specified in one page:

– A mashup m = 〈C,P, V P, L〉, defined according to the meta-model MM,
consists of a set of components C, a set of data pipes P , a set of view ports
V P that can host and render components with own UI, and a layout L that
specifies the graphical arrangement of components.

– A component c = 〈IPT,OPT,CPT, type, desc〉, where c ∈ C, is like a task
that performs some data, application, or UI action.

Components have ports through which pipes are connected. Ports can be
divided in input (IPT ) and output ports (OPT ), where input ports carry
data into the component, while output ports carry data generated (or handed
over) by the component. Each component must have at least either an in-
put or an output port. Components with no input ports are called infor-
mation sources. Components with no output ports are called information
sinks. Components with both input and output ports are called information
processors. UI components are always information sinks.

Configuration ports (CPT ) are used to configure the components. They are
typically used to configure filters (defining the filter conditions) or to define
the nature of a query on a data source. The configuration data can be a
constant (e.g., a parameter defined by the end-user) or can arrive in a pipe
from another component. Conceptually, constant configurations are as if they
come from a component feeding a constant value.



The type (type) of the components denotes whether they are UI components,
which display data and can be rendered in the mashup’s layout, or application
components, which either fetch or process information.
Components can also have a description desc at an arbitrary level of formal-
ization, whose purpose is to inform the user about the data the components
handle and produce.

– A pipe p ∈ P carries data (e.g., XML documents) between the ports of two
components, implementing a data flow logic. So, p ∈ IPT × (OPT ∪CPT ).

– A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an
IFRAME, inside the HTML template that gives the mashup its graphical
identity. Typically, a template has multiple place holders.

– Finally, the layout L defines which component with own UI is to be rendered
in which view port of the template. Therefore l ∈ C × V P .

Each mashup following this MM must have at least a source and a sink, and
all ports of all components must be attached to a pipe or manually filled with
data (the configuration port).

In the model above there are no variables and no data mappings. This is
at the heart of enabling end-user development as this is where much of the
complexity resides. It is unrealistic to ask end users to perform data mapping
operations. Because there is a CM, each component is required to be able to
process any document that conforms to the model. This does not mean that a
component must process every single XML element. For example, a component
that computes the h-index will likely do so for researchers, not for publications,
and probably not for publishers (though it is conceivable to have an h-index
computed for publishers as well). So the component will “attach” a metric only
to the researcher information that flows in. Anything else that flows in is just
passed through without alterations. The component description will help users
to understand what the component operates on or generates, and this is why
an informal description suffices. What this means is that each component in a
domain-specific mashup must be able to implement this pass-through semantics
and it must operate on or generate one or more (but not all) elements as spec-
ified in the CM. Therefore, our MM assumes that all components comply to
understand the CM.

The operational semantics of the MM is as follows:

1. Execution of the mashup is initiated by the user.
2. Components that are ready for execution are identified. A component is

ready when all the input and configuration ports are filled with data, that
is, they have all necessary data to start processing.

3. All ready components are executed. They process the data in input ports,
consuming the respective data items form the input feed, and generate out-
put on their output ports. The generated outputs fill the inputs of other
components, turning them executable.

4. The execution proceeds by identifying ready components and executing them
(i.e., reiterating steps 2 and 3), until there are no components to be executed



Name
[(Static conf. 
parameters)*]

Input port (multiple 
input ports are 
allowed)

Pipe

Output port (multiple 
output ports are allowed)

Shape (may vary)

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

(a) Basic syntax for the concepts in the 
mashup meta-model that are to be exposed 
to the user. Data mappings are con!gured 
in a dedicated pop-up window.

(b) Domain-speci!c syntax for the concepts in the 
domain-speci!c meta-model extension

Port 
name

Configuration port for 
dynamic configuration 
parameters (multiple 
ports are allowed)

Fig. 2. Generic and domain-specific syntax for research evaluation

left. At this point, all components have been executed, and all the sinks have
received and rendered information.

Developing mashups based on this meta-model, i.e., graphically composing a
mashup in a mashup tool, requires defining a syntax for the concepts in the
MM. In Figure 2(a) we map the above MM to a basic set of generic graphical
symbols and composition rules. In the next section, we show where to configure
domain-specific symbols.

4.3 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section allows the
definition of a class of mashups that can fit in different domains. Thus, it is
not yet tailored to a specific domain, e.g. research evaluation. Now we want
to push the domain into the mashup meta-model constraining the class of the
mashups that can be produced to that of our specific domain. The next step
is therefore understanding the dynamics of the concepts in the model, that is,
the typical classes of processes and activities that are performed by domain
experts in the domain, in order to transform or evolve concrete instances of the
concepts in the CM and to arrive at a structuring of components as well as to
an intuitive graphical notation. What we obtain from this is a domain-specific
mashup meta-model. Each domain-specific meta-model is a specialization of the
mashup meta-model along three dimensions: (i) domain-specific activities and
processes, (ii) domain-specific syntax, and (iii) domain instances.

The domain process model (PM) describes the classes of processes or
activities that the domain expert may want to mash up to implement composite,
domain-specific processes. Operatively, the PM is again derived by specializing
the generic meta-model based on interactions with domain experts, just like
for the domain concept model. This time the topic of the interaction is aimed
at defining classes of components, their interactions and notations. In the case
of research evaluation, this led to the identification of the following classes of



activities, i.e., classes of components. For instance, Source extraction, Metric
computation, and Filtering and Aggregation activities.

A possible domain-specific syntax for the classes in the PM is shown
in Figure 2(b), which is used for our reference scenario. Its semantic is the
one described by the MM in Section 4.2. In practice, defining a PM that fully
represents a domain requires considering multiple scenarios for a given domain,
aiming at covering all possible classes of processes in the domain.

A set of instances of domain activities must be implemented, providing
concrete mashup components. For example, the Microsoft Academic Publications
component is an instance of source extraction activity with a configuration port
(SetResearchers) that allows the setup of the researchers for which publications
are to be loaded from Microsoft Academic.

In summary, we limit the flexibility of a generic mashup tool to a specific
class of mashups, gaining however in intuitiveness, due to the strong focus on
the specific needs and issues of the target domain. Given the models introduced
so far, we can therefore say that a domain-specific mashup tool (DMT) is
a development and execution environment that (i) implements a domain-specific
mashup meta-model, (ii) exposes a domain-specific modeling syntax, and (iii)
includes an extensible set of domain-specific component instances.

5 The ResEval Mashup Tool

Given the above methodology and artifacts, we now summarize how we used
these ingredients to develop a mashup platform for research evaluation.

Design Principles. The described mashup scenario is based on a data flow
paradigm, which is typically not very intuitive to non-programmers, especially
at runtime when processing the data flow logic lasts several seconds. In order to
have a more accessible tool, we bet on transparency, i.e., we provide its users with
insight into the state of a running mashup. We identify two key points where
transparency is important in the mashup model: components and processing
state. At each instant of time during the execution of a mashup, we allow a
user to inspect the data processed and produced by each component, and we
graphically communicate the state of the control flow by animating the mashup
model with suitable colors.

Another peculiar aspect of the chosen domain is that it may require the pro-
cessing of large amounts of data (e.g., we need to extract all the publications
of the Italian researchers of a given sector). Loading these data from the server,
processing them on the client side, and moving them from one component to
another in the browser is unfeasible, due to bandwidth, resource, and time re-
strictions. Data processing must therefore occur at the server side, and only
control data and excerpts of the actual data processed need to be exchanged
between the client and the server, in order to achieve transparency. There are
two exceptions to this approach. First, when the client-side component must
process the data, such as in the case of a UI component (e.g., a chart showing



Fig. 3. Internal architecture of the ResEval Mash platform.

some data). Second, when the developer chooses to implement a data processing
logic as a JavaScript function instead of implementing it as a web service.

Architecture and Implementation . The architecture of the implemented
platform is shown in Figure 3. The most important part of the platform is the
mashup execution engine, which is developed for client-side processing, that is we
control data processing on the server from the client. The engine is primarily re-
sponsible for running a mashup composition, triggering the component’s actions
and managing the communication between client and server. The composition
editor provides the mashup canvas to the user. It shows a components list from
which users can drag and drop components onto the canvas and connect them.
The composition editor implements the domain-specific mashup meta-model and
exposes it through the domain syntax. From the editor it is also possible to launch
the execution of a composition through a run button and hand the mashup over
to the mashup engine for execution. The composition editor and its various parts
are shown in Figure 4. The platform also comes with a component registration
interface for developers, which aids them in the setup and addition of new com-
ponents to the platform.

On the server side, we have a set of RESTful web services, i.e., the compo-
nents services, authentication services, components and composition repository
services and shared memory services. Components services manage and allow the
invocation of those components whose business logic is implemented as a server-
side web service. These web services, together with the client-side components,
implement the domain process model. Authentication services are used for user
authentication and authorization. Components and composition repository ser-



Fig. 4. Composition editor and example mashup output.

vices enable CRUD operations for components and compositions. Shared mem-
ory services provide an interface for external web services (i.e., services which are
not deployed on our platform) to use the shared memory in order to increase the
performance. The shared memory manager provides and manages a space for
each mashup execution instance on server side. The common data model (CDM)
module implements the domain concept model (CM) and supports the checking
of data types in the system. CDM configures itself using an XSD (i.e., an XML
schema representing domain concept model ) and generates the domain specifi-
cation classes (e.g., in our case these classes are POJO, annotated with JAXB
annotations). In Figure 4 we illustrate the mashup model that implements the
solution to our researchers evaluation scenario for a specific department. The
model starts with two parallel flows: one computing the weighted publication
count (the “impact” metric in the specific scenario) for all Italian researchers in
a selected disciplinary sector (e.g., Computer Science); the other flow computes
the same “impact” metric for the researchers belonging to the UniTN Computer
Science department. The former branch defines the distribution of the Italian
researchers for the Computer Science disciplinary sector, the latter is used to
compute the impact percentiles of UniTN’s researchers and to determine their
individual percentiles, which are finally visualized in a bar chart.

A demo of ResEval Mash is described in [8] and a continuously updated
prototype of the tool is available online at http://open.reseval.org/.

6 User study and Evaluation

In order to evaluate our domain-specific mashup approach, we conducted a user
study. The results reported in this paper concentrate on usability, with an em-
phasis on the role of prior experience on learning. Prior experience was differ-
entiated in two categories which are fundamental in our approach to mashup



design: domain knowledge and computing skills. As described later, for each
user we measured the levels of experience for both categories.

Method . Ten participants covering a broad range of academic and technical
expertise were invited to use ResEval Mash. At the beginning participants were
asked to fill in a questionnaire reporting their computing skills and to watch a
video tutorial, introducing the basic functionalities of the tool (e.g., it showed
how to create a simple mashup). After this training, participants were asked to
use the system to accomplish 3 tasks. The first one, starting from the compo-
sition presented in the video tutorial, to modify the configuration parameter of
a component, the second to replace some components inside the composition,
and the third to build a mashup composition from scratch. Whilst completing
these tasks, participants were asked to “talk aloud” regarding their thoughts
and actions. This interaction was filmed, as was the interview that followed task
completion. The interview focused on interactional difficulties experienced and
the evolution of participants’ conceptual understanding over time.

Results. Overall, the tool was deemed as usable and something with which par-
ticipants were comfortable. Independently of their level of computing knowledge,
all participants were able to accomplish the tasks with minimal or no help at
all. The only visible difference reflected a variable level of confidence in task
execution. IT experts appeared to be more confident during the test.

The results of our study indicate real potential for the domain-specific mashup
approach to allow people with no computing skills to create their own applica-
tions. The comparison between the two groups of users (IT and non IT experts)
highlighted good performance independently of participants’ computing skills.
The request for higher training emerging from a few less expert users appeared
to be rather linked to a weaker domain knowledge than to their computing ca-
pabilities (a result we will further explore in future research). A major finding of
this study is related to the ease with which our sample understood that compo-
nents had to be linked together so that information could flow between different
services. This is a well-acknowledged problem evinced in several user studies of
EUD tools (e.g., [12]), which did not occur at all in the current study.

Overall, this study suggests that ResEval Mash is a successful tool appealing
to both expert programmers and end users with no computing skills.

7 Related Work

Domain-specific modeling. The idea of focusing on a particular domain and
exploiting its specificities to create more effective and simpler development envi-
ronments is supported by a large number of research works [9] [3] [11] [6]. Mainly
these areas are related to Domain Specific Modeling (DSM) and Domain Specific
Language (DSL).

In DSM, domain concepts, rules, and semantics are represented by one or
more models, which are then translated into executable code. Managing these
models can be a complex task that is typically suited only to programmers



but that, however, increases his/her productivity. This is possible thanks to the
provision of domain-specific programming instruments that abstract from low-
level programming details and powerful code generators that “implement” on
behalf of the modeler. Studies using different DSM tools (e.g., the commercial
MetaEdit+ tool and academic solution MIC [9]) have shown that developers’
productivity can be increased up to an order of magnitude.

In the DSL context, although we can find solutions targeting end users (e.g.,
Excel macros) and medium skilled users (e.g., MatLab), most of the current
DSLs target expert developers (e.g., Swashup [10]). Also here the introduction
of the “domain” raises the abstraction level, but the typical textual nature of
these languages makes them less intuitive and harder to manage and less suitable
for end users compared to visual approaches. Benefits and limits of the DSM and
DSL approaches are summarized in [6] and [11].

Web service composition. BPEL (Business Process Execution Language) [13]
is currently one of the most used solutions for web service composition, and it is
supported by many commercial and free tools. BPEL provides powerful features
addressing service composition and orchestration but no support is provided for
UI integration, as, for instance, required in our reference scenario. This short-
coming is partly addressed by the BPEL4People [2] and WS-HumanTask [1]
specifications, which aim at introducing also human actors into service compo-
sitions. Yet, the specifications focus on the coordination logic only and do not
support the design of the UIs for task execution. In the MarcoFlow project [5]
we provide a solution that bridges the gap between service and UI integration,
but the approach is however complex and only suited for expert programmers.

Mashups. Web mashups [15] emerged as an approach to provide easier ways to
connect together services and data sources available on the Web [7], together with
the claim to target non-programmers. Yahoo! Pipes (http://pipes.yahoo.com)
provides an intuitive visual editor that allows the design of data processing log-
ics. Support for UI integration is missing, and support for service integration
is still poor. Pipes operators provide only generic programming features (e.g.,
feed manipulation, looping) and typically require basic programming knowledge.
The CRUISe project [14] specifically focuses on composability and context-aware
presentation of UIs, but does not support the seamless integration of UI com-
ponents with web services. The ServFace project (http://www.servface.eu),
instead, aims to support normal web users in composing semantically annotated
web services. The result is a simple, user-driven web service orchestration tool,
but UI integration and process logic definitions are rather limited and again
basic programming knowledge is still required.

8 Status and Lessons Learned

The work described in this paper resulted from actual needs within the university
and within the context of an EU project, which were not yet met by current
technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of



use and expressive power. They define seemingly useful abstractions and tools,
but in the end developers still prefer to use (textual) programming languages,
and at the same time domain experts are not able to understand and use them.
What we have pursued in our work is, in essence, to constrain the language
to the domain (but not in general in terms of expressive power) and provide a
domain-specific notation so that it becomes easier to use and in particular does
not require users to deal with one of the most complex aspect of process modeling
(at least for end users), that of data mappings, as the components and the DMT
take care of this, thanks to the common data model. This is a very simple, but
very powerful, concept, because now users just need to take components, place
them next to each other and simply connect them, something very different from
what traditional mashup or service composition tools require.

References

1. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task
(WS-HumanTask) Version 1.0. Technical report, June 2007.

2. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for
People (BPEL4People) Version 1.0. Technical report, June 2007.

3. M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and A. Piccinno. Software en-
vironments for end-user development and tailoring. PsychNology Journal, pages
99–122, 2004.

4. F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan. Hosted Universal Composi-
tion: Models, Languages and Infrastructure in mashArt. In ER’09, pages 428–443.

5. F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. From People
to Services to UI: Distributed Orchestration of User Interfaces. In BPM’10, pages
310–326.

6. R. France and B. Rumpe. Domain specific modeling. Software and Systems Mod-
eling, 4:1–3, 2005.

7. B. Hartmann, S. Doorley, and S. Klemmer. Hacking, Mashing, Gluing: A Study of
Opportunistic Design and Development. Pervasive Computing, 7(3):46–54, 2006.

8. M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese. ResEval Mash:
A Mashup Tool for Advanced Research Evaluation. In Proceedings of WWW 2012.

9. Á. Lédeczi, A. Bakay, M. Maroti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and
G. Karsai. Composing domain-specific design environments. IEEE Computer,
34(11):44–51, 2001.

10. E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai. A domain-specific language
for web apis and services mashups. In ICSOC, pages 13–26, 2007.

11. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

12. A. Namoun, T. Nestler, and A. De Angeli. Service Composition for Non Pro-
grammers: Prospects, Problems, and Design Recommendations. In Proceedings of
ECOWS, pages 123–130. IEEE, 2010.

13. OASIS. Web Services Business Process Execution Language Version 2.0. Technical
report, April 2007.

14. S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner. Cruise: Composition of
rich user interface services. In ICWE’09, pages 473–476. 2009.

15. J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding Mashup Develop-
ment. IEEE Internet Computing, 12:44–52, 2008.


