
Developing Mashup Tools for End-Users: On the
Importance of the Application Domain

Florian Daniel, Muhammad Imran, Stefano Soi, Antonella De Angeli, Christopher R. Wilkinson, Fabio

Casati and Maurizio Marchese

University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

The recent emergence of mashup tools has refueled research on end-user development, i.e., on enabling end-users
without programming skills to compose their own applications. Yet, similar to what happened with analogous

promises in web service composition and business process management, research has mostly focused on technology
and, as a consequence, has failed its objective. Plain technology (e.g., SOAP/WSDL web services) or simple

modeling languages (e.g., Yahoo! Pipes) don’t convey enough meaning to non-programmers.

In this article, we propose a domain-specific approach to mashups that “speaks the language of the user”, i.e.,
that is aware of the terminology, concepts, rules, and conventions (the domain) the user is comfortable with. We

show what developing a domain-specific mashup tool means, which role the mashup meta-model and the domain

model play and how these can be merged into a domain-specific mashup meta-model. We exemplify the approach
by implementing a mashup tool for a specific scenario (research evaluation) and describe the respective user study.

The results of a first user study confirm that domain-specific mashup tools indeed lower the entry barrier to

mashup development.

General Terms: Design, Experimentation

1. INTRODUCTION

Mashups are typically simple web applications (most of the times consisting of just one single
page) that, rather than being coded from scratch, are developed by integrating and reusing
available data, functionalities, or pieces of user interfaces accessible over the Web. For instance,
housingmaps.com integrates housing offers from Craigslist with a Google map, adding value to
the two individual applications.

Mashup tools, i.e., online development and runtime environments for mashups, ambitiously
aim at enabling non-programmers (regular web users) to develop their own applications, some-
times even situational applications developed ad hoc for a specific immediate need. Yet, similar
to what happened in web service composition, the mashup platforms developed so far tend to
expose too much functionality and too many technicalities so that they are powerful and flexible
but suitable only for programmers. Alternatively, they only allow compositions that are so simple
to be of little use for most practical applications.

For example, mashup tools typically come with SOAP services, RSS feeds, UI widgets, and the
like. Non-programmers do not understand what they can do with these kinds of compositional
elements [Namoun et al. 2010a; 2010b]. We experienced this with our own mashup and com-
position platforms, mashArt [Daniel et al. 2009] and MarcoFlow [Daniel et al. 2010], which we
believe to be simpler and more usable than many composition tools but that still failed in being
suitable for non-programmers [Mehandjiev et al. 2011]. Yet, being amenable to non-programmers

Author’s address: University of Trento - Department of Information Engineering and Computer Science, Via
Sommarive 5, 38122 Povo (TN), Italy.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.
c© 2012 ACM 0000-0000/2012/0000-0001 $5.00

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80335746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 · F. Daniel et al.

is increasingly important as the opportunity given by the wider and wider range of available on-
line applications and the increased flexibility that is required in both businesses and personal life
management raise the need for situational (one-use or short-lifespan) applications that cannot be
developed or maintained with the traditional requirement elicitation and software development
processes.

We believe that the heart of the problem is that it is impractical to design tools that
are generic enough to cover a wide range of application domains, powerful enough to enable the
specification of non-trivial logic, and simple enough to be actually accessible to non-programmers.
At some point, we need to give up something. In our view, this something is generality, since
reducing expressive power would mean supporting only the development of toy applications, which
is useless, while simplicity is our major aim. Giving up generality in practice means narrowing
the focus of a design tool to a well-defined domain and tailoring the tool’s development paradigm,
models, language, and components to the specific needs of that domain only.

In this paper, we therefore champion the notion of domain-specific mashup tools and
describe what they are composed of, how they can be developed, how they can be extended for the
specificity of any particular application context, and how they can be used by non-programmers
to develop complex mashup logics within the boundaries of one domain. We provide the following
contributions:

(1) We describe a methodology for the development of domain-specific mashup tools, defining the
necessary concepts and design artifacts. As we will see, one of the most challenging aspects
is to determine what is a domain, how it can be described, and how it can both constrain
a mashup tool (to the specific purpose of achieving simplicity of use) and ease development.
The methodology targets expert developers, who implement mashup tools.

(2) We detail and exemplify all design artifacts that are necessary to implement a domain-specific
mashup tool, in order to provide expert developers with tools they can reuse in their own
developments.

(3) We apply the methodology in the context of an example mashup platform that aims to support
a domain most scientists are acquainted with, i.e., research evaluation. This prototypal tool
targets domain experts.

(4) We perform a user study in order to assess the usability of the developed platform and the
viability of the respective development methodology.

While we focus on mashups, the techniques and lessons learned in the paper are general in
nature and can easily be applied to other composition or modeling environments, such as web
service composition or business process modeling.

Next, we first introduce a reference scenario. In Section 3, we present key definitions and
provide the problem statement. Section 4 outlines the methodology followed to implement the
scenario. In Section 5 we describe ResEval Mash, the actual implementation of our prototype
tool, and in Section 6 we report on a user study conducted with the tool and the respective
results. In Section 7, we review related works. We conclude the paper in Section 8.

2. SCENARIO: RESEARCH EVALUATION

As an example of a domain specific application scenario, let us describe the evaluation procedure
used by the central administration of the University of Trento (UniTN) for checking the pro-
ductivity of each researcher who belongs to a particular department. The evaluation is used to
allocate resources and funding for the university departments. In essence, the algorithm compares
the quality of the scientific production of each researcher in a given department of UniTN with
respect to the average quality of researchers belonging to similar departments (i.e., departments
in the same disciplinary sector) in all Italian universities. The comparison uses the following
procedure based on one simple bibliometric indicator, i.e., a weighted publication count metric.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 3

(1) A list of all researchers working in Italian universities is retrieved from a national registry,
and a reference sample of faculty members with similar statistical features (e.g., belonging
to the same disciplinary sector) of the evaluated department is compiled.

(2) Publications for each researcher of the selected department and for all Italian researchers in
the selected sample are extracted from an agreed-on data source (e.g., Microsoft Academic,
Scopus, DBLP, etc.).

(3) The publication list obtained in the previous step is then weighted using a venue classifica-
tion. That is, the publications are classified by an internal committee in three quality cate-
gories mainly based on ISI Journal Impact Factor: A/1.0(top), B/0.6(average), C/0.3(low).
For each researcher a single weighted publication count parameter is thus obtained with a
weighted sum of his/her publications.

(4) The statistical distribution – more specifically, a negative binomial distribution – of the
weighted publication count metric is then computed out of the Italian researchers’ reference
sample.

(5) Each researcher in the selected department is ranked based on his/her weighted publication
count by comparing this value with the statistical distribution. That is, for each researcher
the respective percentile (e.g., top 10%) in the distribution of the researchers in the same
disciplinary sector is computed.

Italian Researchers
[Sector="ComputerScience"]

Bar Chart

Microsoft Academic
Publications

Italian Researchers
[University="UniTN",

Department="ComputerScience"]

Venue Rankings
Impact

Percentiles

GetImpact

GetImpact

SetVenueWeights

GetPercentiles

SetDistribution Plot

Set-
Researcher

Impact

Impact

SetVenueWeights

Set-
Researcher

Microsoft Academic
Publications

Figure. 1. University of Trento’s internal researcher evaluation procedure.

The percentile for each researcher in the selected department is considered as an estimation of
the publishing profile of that researcher and is used for comparison with other researchers in the
same department. As one can notice, plenty of effort is required to compute the performance of
each researcher, which is currently mainly done manually. Fervid discussion on the suitability of
the selected criteria often arise, as people would like to understand how the results would differ
changing the publications ranking, the source of the bibliometric information, or the criteria of
the reference sample. Indeed all these factors have a big impact on the final result and have been
locally at the center of a heated debate. Many researchers would like to use different metrics, like
citation-based metrics (e.g., h-index). Yet, computing different metrics and variations thereof is
a complex task that costs considerable human resources and time.

The requirement we extract from this scenario is that we need to empower people involved in
the evaluation process (i.e., the average faculty member or the administrative persons in charge of
it) so that they can be able to define and compare relatively complex evaluation processes, taking
and processing data in various ways from different sources, and visually analyze the results. This
task, requiring to extract, combine, and process data and services from multiple sources, and

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

4 · F. Daniel et al.

finally represent the information with visual components, has all the characteristics of a mashup,
especially if the mashup logic comes from the users.

In Figure 1 we illustrate the mashup model we are aiming at for our researchers evaluation
scenario within a specific department. The model starts with two parallel flows: one computing
the weighted publication number (the “impact” metric in the specific scenario) for all Italian
researchers in a selected disciplinary sector (e.g., Computer Science). The other computes the
same “impact” metric for the researchers belonging to the UniTN Computer Science department.
The former branch defines the distribution of the Italian researchers for the Computer Science
disciplinary sector, the latter is used to compute the impact percentiles of UniTN’s researchers
and to determine their individual percentiles, which are finally visualized in a bar chart.

Although the composition model in Figure 1 is apparently similar to conventional web service
composition or data flow models, in the following we will show why we are confident that also
end-users will be able to model this or similarly complex evaluation scenarios, while, instead,
they are not yet able to compose web services in general.

3. ANALYSIS AND PROBLEM

If we carefully look at the described mashup scenario, we see that the proposed model is domain-
specific, i.e., it is entirely based on concepts that are typical of the research evaluation domain.
For instance, the scenario processes domain objects (researchers, publications, metrics, and so
on), uses domain-specific components (the Italian researchers data source, the Impact metric,
etc.), and complies with a set of domain-specific composition rules (e.g., that publications can be
ranked based on the importance of the venue they have been published in).

In order to enable the development of an application for the described evaluation procedure,
there is no need for a composition or mashup environment that supports as many composition
technologies or options as possible. The intuition we elaborate in this article is that, instead, a
much more limited environment that supports exactly the basic tasks described in the scenario
(e.g., fetch the set of Italian researchers) and allows its users to mash them up in an as easy as
possible way (e.g., without having to care about how to transform data among components) is
more effective. The challenge lies in finding the right trade-off between flexibility and simplicity.
The former, for example, pushes toward a large number of basic components, the latter toward
a small number of components. As we will see, it is the nature of the specific domain that tells
us where to stop.

Throughout this paper, we will therefore show how the development of the example scenario
can be aided by a domain-specific mashup tool. Turning the previous consideration into practice,
the development of this tool will be driven by the following key principles:

(1) Intuitive user interface. Enabling domain experts to develop their own research evalu-
ation metrics, i.e., mashups, requires an intuitive and easy-to-use user interface (UI) based
on the concepts and terminology the target domain expert is acquainted with. Research
evaluation, for instance, speaks about metrics, researchers, publications, etc.

(2) Intuitive modeling constructs. Next to the look and feel of the platform, it is important
that the functionalities provided through the platform (i.e., the building blocks in the com-
position design environment) resemble the common practice of the domain. For instance, we
need to be able to compute metrics, to group people and publications, and so on.

(3) No data mapping. Our experience with prior mashup platforms, i.e., mashArt [Daniel
et al. 2009] and MarcoFlow [Daniel et al. 2010], has shown that data mappings are one of the
least intuitive tasks in composition environments and that non-programmers are typically
not able to correctly specify them. We therefore aim to develop a mashup platform that is
able to work without data mappings.

Before going into the details, we introduce the necessary concepts, starting from our interpre-
tation of web mashups [Yu et al. 2008]:

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 5

Definition A web mashup (or mashup) is a web application that integrates data, application
logic, and/or user interfaces (UIs) sourced from the Web. Typically, a mashup integrates and
orchestrates two or more elements.

Our reference scenario requires all three ingredients listed in the definition: we need to fetch
researchers and publication information from various Web-accessible sources (the data); we need
to compute indicators and rankings (the application logic); and we need to render the output to
the user for inspection (the UI). We generically refer to the services or applications implementing
these features as components. Components must be put into communication, in order to support
the described evaluation algorithm.

Simplifying this task by tailoring a mashup tool to the specific domain of research evaluation
first of all requires understanding what a domain is. We define a domain and, then, a domain-
specific mashup as follows:

Definition A domain is a delimited sphere of concepts and processes; domain concepts consist
of data and relationships; domain processes operate on domain concepts and are either atomic
(activities) or composite (processes integrating multiple activities).

Definition A domain-specific mashup is a mashup that describes a composite domain process
that manipulates domain concepts via domain activities and processes. It is specified in a domain-
specific, graphical modeling notation.

The domain defines the “universe” in the context of which we can define domain-specific
mashups. It defines the information that is processed by the mashup, both conceptually and
in terms of concrete data types (e.g., XML schemas). It defines the classes of components that
can be part of the process and how they can be combined, as well as a notation that carries
meaning in the domain (such as specific graphical symbols for components of different classes).
For instance, in our reference scenario, concepts include publications, researchers, metrics, etc.
The process models define classes of components such as data extraction from digital libraries,
metric computation, or filtering and aggregation components. These domain restrictions and
the exposed domain concepts at the mashup modeling level is what enables simplification of the
language and its usage.

Definition A domain-specific mashup tool (DMT) is a development and execution envi-
ronment that enables domain experts, i.e., the actors operating in the domain, to develop and
execute domain-specific mashups via a syntax that exposes all features of the domain.

A DMT is initially “empty”. It then gets populated with specific components that provide
functionality needed to implement mashup behaviors. For example, software developers (not
end-users) will define libraries of components for research evaluation, such as components to
extract data from Google Scholar, or to compute the h-index, or to group researchers based
on their institution, or to visualize results in different ways. Because all components fit in the
classes and interact based on a common data model, it becomes easier to combine them and to
define mashups, as the DMT knows what can be combined and can guide the user in matching
components. The domain model can be arbitrarily extended, though the caveat here is that a
domain model that is too rich can become difficult for software developers to follow.

Given these definitions, the problem we solve in this paper is that of providing the necessary
concepts and a methodology for the development of domain-specific mashup models and DMTs.
The problem is neither simple nor of immediate solution. While domain modeling is a common
task in software engineering, its application to the development of mashup platforms is not trivial.
For instance, we must precisely understand which domain properties are needed to exhaustively
cover all those domain aspects that are necessary to tailor a mashup platform to a specific domain,
which property comes into play in which step of the development of the platform, how domain
aspects are materialized (e.g., visualized) in the mashup platform, and so on.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

6 · F. Daniel et al.

The DMT idea is heavily grounded on a rich corpus of research in Human-Computer In-
teraction (HCI), demonstrating that consideration of user knowledge and prior experience are
required to create truly usable and inclusive products, and are key considerations in the perfor-
mance of usability evaluations [Nielsen 1993]. The prior experience of products is important to
their usability, and the transfer of previous experience depends upon the nature of prior and sub-
sequent experience of similar tasks [Thomas and van-Leeuwen 1999]. Familiarity of the interface
design, its interaction style, or the metaphor it conforms to if it possesses one, are key features for
successful and intuitive interaction [Okeye 1998]. More familiar interfaces, or interface features,
allow for easier information processing in terms of user capability, and the subsequent human
responses can be performed at an automatic and subconscious level. Karlsson and Wikstrom
[2006] identified that the use of semantics could be an effective tool for enhancing product design
and use, particularly for novel users, as they can indicate how the product or interface will be-
have and how interaction is likely to occur. Similarly, Monk [1998] stressed that to be usable and
accessible, interfaces need to be easily understood and learned, and in the process, must cause
minimal cognitive load. Effective interaction consists of users understanding potential actions,
the execution of specific action, and the perception of the effects of that action.

As we cannot exploit the users’ technical expertise, we propose here to exploit their knowledge
of the task domain. In other words, we intend to transform mashups from technical tools built
around a computing metaphor to true cognitive artifacts [Norman 1991], capable to operate upon
familiar information in order to “serve a representational function that affect human cognitive
performance.”

4. METHODOLOGY

Throughout this paper we show how we have developed a mashup platform for our reference
scenario, in order to exemplify how its development can approach the above challenges systemat-
ically. The development of the platform has allowed us to conceptualize the necessary tasks and
ingredients and to structure them into a methodology for the development of domain-specific
mashup platforms. The methodology encodes a top-down approach, which starts from the anal-
ysis of the target domain and ends with the implementation of the specifically tailored mashup
platform. Specifically, developing a domain-specific mashup platform requires:

(1) Definition of a domain concept model (DCM) to express domain data and relationships.
The concepts are the core of each domain. The specification of domain concepts allows the
mashup platform to understand what kind of data objects it must support. This is different
from generic mashup platforms, which provide support for generic data formats, not specific
objects.

(2) Identification of a generic mashup meta-model1 (MM) that suits the composition needs of
the domain and the selected scenarios. A variety of different mashup approaches, i.e., meta-
models, have emerged over the last years, e.g., ranging from data mashups, over user interface
mashups to process mashups. Before thinking about domain-specific features, it is important
to identify a meta-model that is able to accommodate the domain processes to be mashed
up.

(3) Definition of a domain-specific mashup meta-model. Given a generic MM, the next step is
understanding how to inject the domain into it so that all features of the domain can be
communicated to the developer. We approach this by specifying and developing:

(a) A domain process model (PM) that expresses classes of domain activities and, possibly,
ready processes. Domain activities and processes represent the dynamic aspect of the

1We use the term meta-model to describe the constructs (and the relationships among them) that rule the design
of mashup models. With the term instance we refer to the actual mashup application that can be operated by the

user.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 7

domain. They operate on and manipulate the domain concepts. In the context of
mashups, we can map activities and processes to reusable components of the platform.

(b) A domain syntax that provides each concept in the domain-specific mashup meta-model
(the union of MM and PM) with its own symbol. The claim here is that just catering for
domain-specific activities or processes is not enough, if these are not accompanied with
visual metaphors that the domain expert is acquainted with and that visually convey the
respective functionalities.

(c) A set of instances of domain-specific components. This is the step in which the reusable
domain-knowledge is encoded, in order to enable domain experts to mash it up into new
applications.

(4) Implementation of the DMT as a tool whose expressive power is that of the domain-specific
mashup meta-model and that is able to host and integrate the domain-specific activities and
processes.

The above steps mostly focus on the design of a domain-specific mashup platform. Since
domains, however, typically evolve over time, in a concrete deployment it might be necessary
to periodically update domain models, components, and the platform implementation (that is,
iterating over the above design steps), in order to take into account changing requirements or
practices. The better the analysis and design of the domain in the first place, the less modifications
will be required in the subsequent evolution steps, e.g., limiting evolution to the implementation
of new components only.

In the next subsections, we expand each of the above design steps; we do not further elaborate
on evolution.

4.1 The Domain Concept Model

The domain concept model is constructed by the IT experts via verbal interaction with the
domain experts or via behavioral observation of the experts performing their daily activities and
performing a suitable task-analysis. The concept model represents the information experts know,
understand, and use in their work. Modeling this kind of information requires understanding the
fundamental information items and how they relate to each other, eventually producing a model
that represents the knowledge base that is shared among the experts of the domain.

In domain-specific mashups, the concept model has three kinds of stakeholders (and usages),
and understanding this helps us to define how the domain should be represented. The first stake-
holders are the mashup modelers (domain experts), i.e., the end-users that will develop different
mashups from existing components. For them it is important that the concept model is easy
to understand, and an entity-relationship diagram (possibly with a description) is a commonly
adopted technique to communicate conceptual models. The second kind of stakeholders are the
developers of components, which are programmers. They need to be aware of the data format in
which entities and relationships can be represented, e.g., in terms of XML schemas, in order to
implement components that can interoperate with other components of the domain. The third
stakeholder is the DMT itself, which enforces compliance of data exchanges with the concept
model. Therefore:

Definition The domain concept model (DCM) describes the conceptual entities and the
relationships among them, which, together, constitute the domain knowledge.

We express the domain-model as a conventional entity-relationship diagram. It also includes
a representation of the entities as XML schemas. For instance, in Figure 2 we put the main
concepts we can identify in our reference scenario into a DCM, detailing entities, attributes,
and relationships. The core element in the evaluation of scientific production and quality is the
publication, which is typically published in the context of a specific venue, e.g., a conference or
journal, by a publisher. It is written by one or more researchers belonging to an institution.
Increasingly – with the growing importance of the Internet as information source for research

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

8 · F. Daniel et al.

PublicationPublisher

ResearcherInstitution Metric

Venue

Source Journal Conference

Name
Address

Name
Address

FirstName
LastName
Title

Title
PublicationDate
Keywords

Name
Value

Name
URL

Name
StartDate
EndDate
City
Country

written by
0..N

1..N

belongs to

1..N0..N

published by

1..N1..1

published in

1..10..N

cites

0..N

0..N

...

Figure. 2. Domain concept model for the research evaluation scenario

evaluation – also the source (e.g., Scopus, the ACM digital library or Microsoft Academic) from
which publications are accessed is gaining importance, as each of them typically provides only
a partial view on the scientific production of a researcher and, hence, the choice of the source
will affect the evaluation result. The actual evaluation is represented in the model by the metric
entity, which can be computed over any of the other entities.

In order to develop a DMT, the ER (Entity-Relationship) model has to be generated through
several interactions between the domain expert and the IT expert, who has knowledge of concep-
tual modeling. The IT expert also generates the XML schemas corresponding to the ER model,
which are the actual artifacts processed by the DMT. In fact, although the ER model is part of
the concept model, it is never processed itself by the DMT. It rather serves as a reference for
any user of the platform to inform them on the concepts supported by it. In principle, other
formalisms can be adopted (such as UML Class diagrams). We notice that each concept model
implicitly includes the concept of grouping the entities in arbitrary ways, so groups are also an
implicitly defined entity.

4.2 The Generic Mashup Meta-Model

When discussing the domain concept model we made the implicit choice to start from generic
(i.e. domain-independent) models like Entity-Relationship diagrams and XML, as these are well
established data modeling and type specification languages amenable to humans and machines.
For end-user development of mashups, the choice is less obvious since it is not easy to identify a
modeling formalism that is amenable to defining end-user mashups (which is why we endeavor to
define a domain-specific mashup approach). If we take existing mashup models and simply inject
specific data types in the system, we are not likely to be successful in reducing the complexity
level. However, the availability of the DCM makes it possible to derive a different kind of mashup
modeling formalism, as discussed next.

To define the type of mashups and, hence, the modeling formalism that is required, it is
necessary to model which features (in terms of software capabilities) the mashups should be
able to support. Mashups are particular types of web applications. They are component-based,
may integrate a variety of services, data sources, and UIs. They may need an own layout for
placing components, require control flows or data flows, ask for the synchronization of UIs and
the orchestration of services, allow concurrent access or not, and so on. Which exact features a
mashup type supports is described by its mashup meta-model.

In the following, we first define a generic mashup meta-model, which may fit a variety of
different domains, then we show how to define the domain-specific mashup meta-model, which

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 9

will allow us to draw domain-specific mashup models.

Definition The generic mashup meta-model (MM) specifies a class of mashups and, thereby,
the expressive power, i.e., the concepts and composition paradigms, the mashup platform must
know in order to support the development of that class of mashups.

The MM therefore implicitly specifies the expressive power of the mashup platform. Identifying
the right features of the mashups that fit a given domain is therefore crucial. For instance, our re-
search evaluation scenario asks for the capability to integrate data sources (to access publications
and researchers via the Web), web services (to compute metrics and perform transformations),
and UIs (to render the output of the assessment). We call this capability universal integration.
Next, the scenario asks for data processing capabilities that are similar to what we know from
Yahoo! Pipes, i.e., data flows. It requires dedicated software components that implement the
basic activities in the scenario, e.g., compute the impact of a researcher (the sum of his/her
publications weighted by the venue ranking), compute the percentile of the researcher inside the
national sample (producing outputs like “top 10%”), or plot the department ranking in a bar
chart.

4.2.1 The meta-model. We start from a very simple MM, both in terms of notation and
execution semantics, which enables end-users to model own mashups. Indeed, it can be fully
specified in one page:

(1) A mashup m = 〈C,P, V P, L〉, defined according to the meta-model MM, consists of a
set of components C, a set of data pipes P , a set of view ports V P that can host and render
components with own UI, and a layout L that specifies the graphical arrangement of components.

(2) A component c = 〈IPT,OPT,CPT, type, desc〉, where c ∈ C, is like a task that performs
some data, application, or UI action.
Components have ports through which pipes are connected. Ports can be divided in input (IPT)
and output ports (OPT), where input ports carry data into the component, while output ports
carry data generated (or handed over) by the component. Each component must have at least
either an input or an output port. Components with no input ports are called information
sources. Components with no output ports are called information sinks. Components with both
input and output ports are called information processors. UI components are always information
sinks.
Configuration ports (CPT) are used to configure the components. They are typically used to
configure filters (defining the filter conditions) or to define the nature of a query on a data source.
The configuration data can be a constant (e.g., a parameter defined by the end-user) or can arrive
in a pipe from another component. Conceptually, constant configurations are as if they come
from a component feeding a constant value.
The type (type) of the components denotes whether they are UI components, which display data
and can be rendered in the mashup’s layout, or application components, which either fetch or
process information.
Components can also have a description desc at an arbitrary level of formalization, whose purpose
is to inform the user about the data the components handle and produce.

(3) A pipe p ∈ P carries data (e.g., XML documents) between the ports of two components,
implementing a data flow logic. So, p ∈ IPT × (OPT ∪ CPT).

(4) A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an IFRAME,
inside the HTML template that gives the mashup its graphical identity. Typically, a template
has multiple place holders.

(5) Finally, the layout L defines which component with own UI is to be rendered in which
view port of the template. Therefore l ∈ C × V P .

Each mashup following this MM must have at least a source and a sink, and all ports of all
components must be attached to a pipe or manually filled with data (the configuration port).

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

10 · F. Daniel et al.

This is all we need to define a mashup and as we will see, this is an executable specification.
There is nothing else besides this picture. This is not that far from the complexity of specifying a
flowchart, for example. It is very distant from what can be an (executable) BPMN specification
or a BPEL process in terms of complexity.

In the model above there are no variables and no data mappings. This is at the heart of
enabling end-user development as this is where much of the complexity resides. It is unrealistic
to ask end-users to perform data mapping operations. Because there is a DCM, each component
is required to be able to process any document that conforms to the model. This does not mean
that a component must process every single XML element. For example, a component that
computes the h-index will likely do so for researchers, not for publications, and probably not for
publishers (though it is conceivable to have an h-index computed for publishers as well). So the
component will “attach” a metric only to the researcher information that flows in. Anything else
that flows in is just passed through without alterations. The component description will help
users to understand what the component operates on or generates, and this is why an informal
description suffices. What this means is that each component in a domain-specific mashup must
be able to implement this pass-through semantics and it must operate on or generate one or more
(but not all) elements as specified in the DCM. Therefore, our MM assumes that all components
comply to understand the DCM.

Furthermore, in the model there are also no gateways a-la BPMN, although it is possible to
have dedicated components that, for example, implement an if-then semantics and have two
output ports for this purpose. In this case, one of the output ports will be populated with an
empty feed. Complex routing semantics are virtually impossible for non-experts to understand
(and in many cases for experts as well) and for this reason if they are needed we delegate them to
the components which are done by programmers and are understood by end-users in the context
of a domain.

4.2.2 Operational semantics. The behavior of the components and the semantics of the MM
are as follows:

(1) Executions of the mashups are initiated by the user.

(2) Components that are ready for execution are identified. A component is ready when all the
input and configuration ports are filled with data, that is, they have all necessary data to
start processing.

(3) All ready components are then executed. They process the data in input ports, consuming
the respective data items form the input feed, and generate output on their output ports.
The generated outputs fill the inputs of other components, turning them executable.

(4) The execution proceeds by identifying ready components and executing them (i.e., reiterating
steps 2 and 3), until there are no components to be executed left. At this point, all components
have been executed, and all the sinks have received and rendered information.

4.2.3 Generic mashup syntax. Developing mashups based on this meta-model, i.e., graphically
composing a mashup in a mashup tool, requires defining a syntax for the concepts in the MM.
In Figure 3 we map the above MM to a basic set of generic graphical symbols and composition
rules. In the next section, we show where to configure domain-specific symbols.

4.3 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section allows the definition of a class
of mashups that can fit in different domains. Thus, it is not yet tailored to a specific domain, e.g.
research evaluation. Now we want to push the domain into the mashup meta-model constraining
the class of the mashups that can be produced to that of our specific domain. The next step is
therefore understanding the dynamics of the concepts in the model, that is, the typical classes
of processes and activities that are performed by domain experts in the domain, in order to
transform or evolve concrete instances of the concepts in the DCM and to arrive at a structuring

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 11

Name
[(Static conf.
parameters)*]

Input port
(multiple input
ports are allowed)

Pipe

Output port (multiple
output ports are allowed)

Shape
(may vary)

Port
name

Configuration port for dynamic configuration
parameters (multiple ports are allowed)

Figure. 3. Basic syntax for the concepts in the mashup meta-model.

of components as well as to an intuitive graphical notation. What we obtain from this is a
domain-specific mashup meta-model. Each domain-specific meta-model is a specialization of the
mashup meta-model along three dimensions: (i) domain-specific activities and processes, (ii)
domain-specific syntax, and (iii) domain instances.

4.3.1 Domain process model

Definition The domain process model (PM) describes the classes of processes or activities
that the domain expert may want to mash up to implement composite, domain-specific processes.

Operatively, the process model is again derived by specializing the generic meta-model based
on interactions with domain experts, just like for the domain concept model. This time the topic
of the interaction is aimed at defining classes of components, their interactions and notations. In
the case of research evaluation, this led to the identification of the following classes of activities,
i.e., classes of components:

(1) Source extraction activities. They are like queries over digital libraries such as Scopus
or Scholar. They have no input port, and have one output port (the extracted data). These
components may have one or more configuration ports that specify in essence the “query”. For
example a source component may take in input a set of researchers and extract publications and
citations for every researcher from Scopus.

(2) Metric computation activities, which can take in input institutions, venues, researchers,
or publications and attach a metric to them. The corresponding components have at least one
input and one output ports. For example, a component determines the h-index for researchers,
or determines the percentile of a metric based on a distribution.

(3) Aggregation activities, which define groups of items based on some parameter (e.g., affili-
ation).

(4) Filtering activities, which receive an input pipe and return in output a filtering of the input,
based on a criterion that arrives in a configuration port. For example we can filter researchers
based on the nationality or affiliation or based on the value of a metric.

(5) UI widgets, corresponding to information sink components that plot or map information
on researchers, venues, publications, and related metrics.

For simplicity, we discuss only the processes that are necessary to implement the reference
scenario.

4.3.2 Domain syntax. A possible domain-specific syntax for the classes in the PM (derived
from the generic syntax presented in Figure 3) is shown in Figure 4, which is used for our reference
scenario in Figure 1 shown earlier. Its semantic is the one described by the MM in Section 4.2.
In practice, defining a PM that fully represents a domain requires considering multiple scenarios
for a given domain, aiming at covering all possible classes of processes in the domain.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

12 · F. Daniel et al.

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

Figure. 4. Domain-specific syntax for the concepts in the domain-specific meta-model extension

4.3.3 Domain instances. Figure 1 actually exemplifies the use of instances of domain-specific
components. For example, the Microsoft Academic Publications component is an instance of
source extraction activity with a configuration port (SetResearchers) that allows the setup of the
researchers for which publications are to be loaded from Microsoft Academic. The component is
implemented as web service, and its symbol is an instantiation of the parametric source component
type in Figure 4 without static query. Similarly, we need to implement web services for the
Italian Researchers (source extraction activity), the Venue Ranking (source extraction activity),
the Impact (metric computation activity), the Impact Percentiles (metric computation activity),
and the Bar Chart (UI widget) components.

In summary, what we do is limiting the flexibility of a generic mashup tool to a specific class of
mashups, gaining however in intuitiveness, due the strong focus on the specific needs and issues
of the target domain. Given the models introduced so far, we can therefore refine our definition
of DMT given earlier as follows:

Definition A domain-specific mashup tool (DMT) is a development and execution environ-
ment that (i) implements a domain-specific mashup meta-model, (ii) exposes a domain-specific
modeling syntax, and (iii) includes an extensible set of domain-specific component instances.

5. THE RESEVAL MASH TOOL FOR RESEARCH EVALUATION

The methodology described above is the result of our experience with the implementation of our
own domain-specific mashup platform, ResEval Mash2. ResEval Mash is a mashup platform for
research evaluation, i.e., for the assessment of the productivity or quality of researchers, teams,
institutions, journals, and the like. The platform is specifically tailored to the need of sourcing
data about scientific publications and researchers from the Web, aggregating them, computing
metrics (also complex and ad-hoc ones), and visualizing them. ResEval Mash is a hosted mashup
platform with a client-side editor and runtime engine, both running inside a common web browser.
It supports the processing of also large amounts of data, a feature that is achieved via the sensible
distribution of the respective computation steps over client and server.

In the following, we show how ResEval Mash has been implemented, starting from the domain
models introduced throughout the previous sections.

5.1 Design Principles

Starting from the considerations in Section 3, the implementation of ResEval Mash is based
on a set of design principles (described next), which we think are crucial for the success of a
mashup platform like ResEval Mash. The first and last principles stem from our prior work
and user studies [Namoun et al. 2010b] in the context of web service composition and end-
user development, while the second and third principles respond to domain-specific requirements
identified during the analysis of the domain and are based on our past experience with similar
problems in the context of the LiquidPub European project3.

(1) Hidden data mappings. In order to prevent the users from defining data mappings,
the mashup component used in the platform are all able to understand and manipulate

2http://open.reseval.org/
3http://liquidpub.org/

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 13

the domain concepts expressed in the DCM, which defines the domain entities and their
relations. That is, they accept as input and produce as output only domain entities (e.g.,
researchers, publications, metric values). Since all the components, hence, speak the same
language, composition can do without explicit data mappings and it is enough to model
which component feeds input to which other component.

(2) Data-intensive processes. Although apparently simple, the chosen domain is peculiar in
that it may require the processing of large amounts of data. For instance, we may need to
extract and process all the publications of the Italian researchers, i.e., on average several
dozens of publications by about sixty-one thousand researchers (and this only for Italian
scenarios). Loading these large amounts of data from remote services and processing them in
the browser at the client side is unfeasible due to bandwidth, resource, and time restrictions.
Data processing should therefore be kept at the server side (we achieve this via dedicated
RESTful web services running on the mashup server).

(3) Platform-specific services. As opposed to common web services, which are typically
designed to be independent of the external world, the previous two principles instead demand
for services that are specifically designed and implemented to efficiently run in our domain-
specific architecture. That is, they must be aware of the platform they run in. As we will see,
this allows the services to access shared resources (e.g., the data passed among components)
in a protected and speedy fashion.

(4) Runtime transparency. Finally, research evaluation processes like our reference scenario
focus on the processing of data, which – from a mashup paradigm point of view – demands
for a data flow mashup paradigm. Although data flows are relatively intuitive at design time,
they typically are not very intuitive at runtime, especially when processing a data flow logic
takes several seconds (as could happen in our case). In order to convey to the user what
is going on during execution, we therefore want to provide transparency into the state of a
running mashup.
We identify two key points where transparency is important in the mashup model: compo-
nent state and processing state. At each instant of time during the execution of a mashup,
the runtime environment should allow the user to inspect the data processed and produced
by each component, and the environment should graphically communicate the processing
progress by animating a graphical representation of the mashup model with suitable colors.

These principles require ResEval Mash to specifically take into account the characteristics of
the research evaluation domain. Doing so produces a platform that is fundamentally different
from generic mashup platforms, such as Yahoo! Pipes4.

5.2 Architecture

Figure 5 illustrates the internal architecture that takes into account the above principles and the
domain-specific requirements introduced throughout the previous sections: Hidden data map-
pings are achieved by implementing mashup components that all comply with the domain con-
ceptual model described in Figure 2. The processing of large amounts of data is achieved at
the server side by implementing platform-specific services that all operate on a shared memory,
which allows the components to read and write back data and prevents them from having to pass
data directly from one service to another. The components and services implement the domain
process model discussed in Section 4.3, i.e., all the typical domain activities that characterize the
research evaluation domain. Runtime transparency is achieved by controlling data processing
from the client and animating accordingly the mashup model in the Composition Editor. Doing
so requires that each design-time modeling construct has an equivalent runtime component that
is able to render its runtime state to the user. The modeling constructs are the ones of the
domain-specific syntax illustrated in Figure 4, which can be used to compose mashups like the

4http://pipes.yahoo.com/pipes/

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

14 · F. Daniel et al.

Figure. 5. Mashup Platform Architecture

one in our reference scenario (see Figure 1). Given such a model, the Mashup Engine is able to
run the mashup according to the meta-model introduced in Section 4.2.

The role of the individual elements in Figure 5 is as follows:

Mashup Engine: The most important part of the platform is the mashup engine, which is
developed for the client-side processing, that is we control data processing on the server from
the client. The engine is primarily responsible for running a mashup composition, triggering
the component’s actions and managing the communication between client and server. As a
component either binds with one or more services or with a JavaScript implementation, the
engine is responsible for checking the respective binding and for executing the corresponding
action. The engine is also responsible for the management of complex interactions among
components. A detailed view of these possible interaction scenario is given later in this
section.

Component and Composition mappers: The component and composition mappers parse
component and composition descriptors to represent them in the composition editor at design
time and to bind them at run time.

Composition editor: The composition editor provides the mashup canvas to the user. It
shows a components list from which users can drag and drop components onto the canvas and
connect them. The composition editor implements the domain-specific mashup meta-model
and exposes it through the domain syntax. From the editor it is also possible to launch the
execution of a composition through a run button and hand the mashup over to the mashup
engine for execution.

Server-Side Services: On the server side, we have a set of RESTful web services, i.e.,
the repository services, authentication services, and components services. Repository services
enable CRUD operations for components and compositions. Authentication services are
used for user authentication and authorization. Components services manage and allow
the invocation of those components whose business logic is implemented as a server-side web
service. These web services, together with the client-side components, implement the domain
process model. A detail explanation of how to develop a service for a component is given in
section 5.4.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 15

CDM Memory Manager: The common data model (CDM) memory manager implements
the domain concept model (DCM) and supports the checking of data types in the system.
All data processing services read and write to this shared memory through the CDM memory
manager. In order to configure the CDM, the CDM memory manger generates corresponding
Java classes (e.g., in our case these classes are POJO, annotated with JAXB annotations)
from an XSD that encodes the domain concept model. The CDM interacts with a shared
memory that provides a space for each mashup execution instance. In our first proof-of-
concept prototype we use the server’s working memory (RAM) as shared memory, which
allows for high performance. Clearly, this solution fits the purpose of our prototype but it
may not scale to in-production installations, which may need to deal with large numbers of
users and large amounts of data that only hardly can be kept in RAM. In our future work,
we will therefore develop a persistent database-based shared memory.

Server-engine: All services are managed by the server-side engine, which is responsible for
managing all the modules that are at the server side, e.g., the CDM memory manager, the
repository, and so on. The server-side engine is the place where requests coming from the
client side are dispatched to the respective service implementing the required operations.

Local Database and the Web: Both the local database and the Web represent the data
which is required and used by the components services. We as platform provider provides an
initial database and a basic set of services on top of it. A third-party service can be deployed
and thus it can use an external database anywhere on the Web.

Component registration interface: The platform also comes with a component registra-
tion interface for developers, which aids them in the setup and addition of new components
to the platform. The interface allows the developer to define components starting from ready
templates. In order to develop a component, the developer has to provide two artifacts: (i)
a component definition and (ii) a component implementation. The implementation consists
either of JavaScript code for client-side components or it is linked by providing a binding to
a web service for server-side components.

5.3 Components Models and Data Passing Logic

There are two component models in ResEval Mash, depending on whether the respective busi-
ness logic resides in the client or in the server side: server components (SC) are implemented as
RESTful web services that run at the server side; client components (CC) are implemented in
JavaScript file and run at the client side. Independently of the component model, each component
has a client-side component front-end, which allows (i) the Mashup Engine to enact component
operations and (ii) the user to inspect the state of the mashup during runtime. All commu-
nications among components are mediated by the Mashup Engine, internally implementing a
dedicated event bus for shipping data via events. Server components require interactions with
their server-side business logic and the shared memory; this interaction needs to be mediated by
the Mashup Engine. Client components directly interact with their client-side business logic; this
interaction does not require the intervention of the Mashup Engine.

Components consume or produce different types of data: actual data (D), configuration param-
eters (CP), and control data like request status (RS), a flag telling whether actual data is required
in output (DR), and a key (K) identifying data items in the shared memory. All components
can consume and produce actual data, yet, as we will see, not always producing actual data in
output is necessary. The configuration parameters enable the setup of the components. The
request status enables rendering the processing status at runtime. The key is crucial to identify
data items produced by one component and to be “passed” as input to another component. As
explained earlier, instead of directly passing data from one service to another, for performance
reasons we use a shared memory that all services can access and only pass a key, i.e., a reference
to the actual data from component to component.

Based on the flow of components in the mashup model, we can have different data passing

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

16 · F. Daniel et al.

SC A SC B CC C CC D SC E

Service A Service B Service E

Mashup Engine

Shared Memory

Component services

Component front-ends

JS logic C JS logic D

Se
rv

er

 C
lie

nt

Logical data flow

Physical data flow

1:
 a

ut
o

ru
n

2:
 [C

P]
3:

 [K
,C

P]

10: [K,D]

5:
 [K

,R
S]

6:
 [R

S]

7:
 [K

]

8:
 [K

,C
P]

9:
 [K

,C
R

,C
P]

11
: [

K,
R

S,
D

]
12

: [
R

S]

13
: [

D
]

14
: [

D
]

15
: [

D
]

18
: [

D
,C

P]
19

: [
K,

D
,C

P]

20: [K,D]

21
: [

K,
R

S]
22

: [
R

S]

4: [K,D]

16
: [

D
]

17
: [

D
]

Payload

Component-internal communiation

SC = Server component
CC = Client component

K = Key
DR = Output data required
CP = Configuration parameters
D = Data
RS = Request status

Figure. 6. ResEval Mash’s internal data passing logic.

patterns. Given the two different types of components, we can recognize four possible interaction
patterns. The four patterns are illustrated in Figure 6 and described in the following paragraphs:

(1) SC-SC interaction: Both the components are of type SC. In Figure 6, component A is
connected with component B. Since component A is the first component in the composition
and it does not require any input, it can start the execution immediately. It is the responsi-
bility of the Mashup Engine to trigger the operation of the component A (step 1). At this
point, component A calls its back-end web service through the Mashup Engine, passing only
the configuration parameters (CP) to it (2). The Mashup Engine, analyzing the composition
model, knows that the next component in the flow is also a server component (component
B), so it extends component A’s request adding a key control information to the original
request, which can be used by component A’s service to mark the data it produces in the
shared memory. Hence, the Mashup Engine invokes service A (3). Service A receives the
control data, executes its own logic, and stores its output into the Shared Memory (4). Once
the execution ends, Service A sends back the control data (i.e., key and request status) to
the Mashup Engine (5), which forwards the request status to component A (6); the engine
keeps track of the key. With this, component A has completed and the engine can enable
the next component (7). In the SC-SC interaction, we do not need to ship any data from the
server to the client.

(2) SC-CC interaction: Once activated, component B enacts its server-side logic (8, 9, 10).
The Mashup Engine detects that the next component in the flow is a client component, so it
adds the DR control data parameter in addition to the key and the configuration parameters,
in order to instruct the web service B to send actual output data back to the client side after
it has been stored in the Shared Memory. In this way, when service B finishes its execution, it
returns the control data and the actual output data of the service (i.e., key, request status and
output data) to the Mashup Engine (11), which then passes the request status to component

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 17

B (12) and the actual data to the next component in the mashup, i.e., component C (13).

(3) CC-CC interaction: Client component to client component interactions do not require
to interact with the server-side services. Once the component C’s operation is triggered in
response to the termination of component B, it is ready to start its execution and to pass
component B’s output data to the JavaScript function implementing its business logic. Once
component C finishes its execution, it sends its output data back to the engine (14), which
is then able to start component D (15) by passing C’s output data.

(4) CC-SC interaction: After the completion of component D (16), the Mashup Engine passes
the respective data to component E as input (17). At this point, component E calls its
corresponding service E, passing to it the actual data and possible configuration parameters
(18), along with the key appended by the Mashup Engine (19). Possibly, also the Output
Data Request flag could be included in the control data but, as explained, this depends on the
next component in the flow, which for presentation purpose is not further defined in Figure
6. Eventually, service E returns its response (i.e., key and request status – plus possible
output data if the DR flag is present) to the Mashup Engine (21), which is then delivered to
component E (22).

While ResEval Mash fully supports these four data passing patterns and is able to understand
whether data are to be processed at the client or the server side, it has to be noted that the
actual decision of where data are to be processed is up to the developer of the respective mashup
component. Client components by definition require data at the client side; server components
at the server side. Therefore, if large amounts of data are to be processed, a sensible design
of the respective components is paramount. As a rule of thumb, we can say that data should
be processed at the server side whenever possible, and component developers should use client
components only when really necessary. For instance, visualization components of course require
client-side data processing. Yet, if they are used as sinks in the mashup model (which is usually
the case), they will have to process only the final output of the actual data processing logic, which
is typically of smaller size compared to the actual data sourced from the initial data sources (e.g.,
a table of h-indexes vs. the lists of publications by the set of the respective researchers).

5.4 The Domain-Specific Service Ecosystem

An innovative aspect of our mashup platform is its approach based on the concept of domain-
specific components. In Section 5.2 we described the role of the Components services in the
architecture of the system. These are not simply generic web services, but web services that
constitute a domain-specific service ecosystem, i.e., a set of services respecting shared models
and conventions and that are designed to work collaboratively where each of them provides a
brick to solve more complex problems proper of the specific domain. Having such an ecosystem
of compatible and compliant services, introduces several advantages that make our tool actually
usable and able to respond to the specific requirements of the domain we are dealing with.

Given the important role domain-specific components and services play in our platform, next
we describe how they are designed and illustrate some details of their implementation and their
interactions with the other parts of the system.

A ResEval Mash component requires the definition of two main artifacts: the component
descriptor and the component implementation.

The component descriptor describes the main properties of a component, which are:

(1) Operations. Functions that are triggered as consequence of an external event that take some
input data and perform a given business logic.

(2) Events. Messages produced by the component to inform the external world of its state
changes, e.g., due to interactions with the user or an operation completion. Events may
carry output data.

(3) Implementation binding. A binding defining how to reach the component implementation.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

18 · F. Daniel et al.

Figure. 7. The descriptor of the Italian Researchers component along with its representation in
the Composition Editor

(4) Configuration parameters. Parameters that, as opposed to input data, are set up at compo-
sition design time by the designer to configure the component’s behavior.

(5) Meta-data. The component’s information, such as name and natural language description of
the component itself.

In our platform the component descriptors are implemented as XML file, which must comply
with an XML Schema Definition (XSD). The XSD defines both the schema for the component de-
scriptors and the admitted data types. Validating the descriptor against the data types definition
we can actually enforce the adoption of the common domain concept model (DCM), which enable
smooth composability and no need for data mapping in the Composition Editor, as discussed in
Section 5.1.

For example, an excerpt of the Italian Researchers component descriptor along with its rep-
resentation in the Composition Editor is shown in Figure 7. The component is implemented
through a server-side web service. Its descriptor does not present any operation and it has an
event called Researchers Loaded, which is used to spit out the list of researchers that are re-
trieved by the associated back-end service. The binding among the service and its client-side
counterpart is set up in the descriptor through the <request> tag. As shown, this tag includes
the information needed to invoke the service, i.e., its end-point URL and the configuration pa-
rameters that must be sent along with the request. In addition, the attribute triggers specifies
the event to be raised upon service completion. The attribute runsOn, instead, specifies the
component’s operation that must be invoked to start the service call. In this particular case,
since the component has no operations and no inputs to wait for, when the mashup is started the
Mashup Engine automatically invokes the back-end service associated to the component, causing
the process execution to start. If we were dealing with a component implemented via client-side
JavaScript, we would not need the <request> tag, and the implementation binding would be

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 19

represented by the ref attribute of the component operation or event, whose value would be the
name of the JavaScript function implementing the related business logic.

The component in Figure 7 has different configuration parameters, which are used to define
the search criteria to be applied to retrieve the researchers. We can see the uniId parameter.
Beside the name of the related label, we must specify the renderer to be used, that is, the
way in which the parameter will be represented in the Composition Editor. In this case, we are
using a text input field with auto-completion features. The auto-completion feature is provided
by a dedicated service operation that can be reached at the address specified in the url option.
Finally, we can see the presence of the configTemplate tag, which is just used to set the order
in which the parameters must be presented in the component representation in the Composition
Editor.

The other main artifact that constitutes a ResEval Mash component is its implementation .
As already discussed above, a component can be implemented in two different ways: through
client-side JavaScript code (client component) or through a server-side web service (server com-
ponent). The choice of having a client-side or a server-side implementation depends mainly on
the type of component to be created, which may be a UI component (i.e., a component the
user can interact with at runtime through a graphical interface) or a service component (i.e., a
component that runs a specific business logic but does not have any UI). UI components (e.g.,
the Bar Chart of our scenario) are always implemented through client-side JavaScript files since
they must directly interact with the browser to create and manage the graphical user interface.
Service components (e.g., the Microsoft Academic Publications of our scenario), instead, can be
implemented in both ways, depending on their characteristics. In the research evaluation domain,
since they typically deal with large amounts of data, service components are commonly imple-
mented through server-side web services. In such a way, they do not have the computational
power constraints present at the client-side and, moreover, they can exploit the platform features
offered at the server-side, like the Shared Memory mechanism, which, e.g., permit to efficiently
deal with data-intensive processes. In other cases, where we do not have particular computa-
tional requirements, a service component can be implemented via client-side JavaScript, which
runs directly in the browser. The JavaScript implementation, both in case of UI and service
components, must include the functions implementing the component’s business logic.

For example, our Italian Researchers service component is implemented at server-side since
it has to deal with large amounts of data (i.e., thousands of researchers), so it belongs to the
server components category (introduced in Section 5.3). This type of components, to correctly
work within our domain-specific platform, must be implemented as Java RESTful web service
following specific implementation guidelines. In particular, the service must be able to properly
communicate with the other parts of the system and, thus, it must be aware of the data passing
patterns discussed before and the shared memory. Figure 8 shows the interaction protocol with
the other components of the platform the service must comply with.

The service is invoked through an HTTP POST request by the client-side Mashup Engine,
performed through an asynchronous Ajax invocation (the half arrowheads in the figure represent
asynchronous calls). The need to expose all the operations through HTTP POST comes from the
fact that in many cases it must be possible to send complex objects as parameters to the service,
which would not be possible in general using a GET request. For instance, in our example,
the operation is invoked through a POST request at the URL http://.../resevalmash-api/

resources/italianSource/researchers and the component’s configuration parameters (e.g.,
selected university or department) are posted in the request body. Besides the parameters, the
body also includes control data, that is the key and the OutputDataRequired flag.

Once the request coming from the Mahup Engine is received by the service, the service code
must process it following the sequence diagram shown in Figure 8. If the service is designed to
accept input data, first it will get the data from the Shared Memory through the API provided
by the Server-Side Engine, using the received key as parameter.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

20 · F. Daniel et al.

Database.getData(SQL)

Response: Data

Client-Side
Mashup Engine Service Server-Side

Engine Database

(Key, OutputDataRequired, ConfigParams)

SharedMemory.getData(Key)

Response: InputData

Core Business Logic

SharedMemory.storeData(Key, OutputData)

Response: OutputData

HTTP POST http://.../resource

OPT:

[if OutputDataRequired = false]
Response: Key, RequestStatus

[else]
Response: Key, RequestStatus, OuputData

OPT:

ALT:

Figure. 8. Platform-specific interaction protocol each service must comly with

Then, the service may need to have access to other data for executing its core business logic.
The services developed and deployed by us (as platform owners) can use the system database to
persistently store their data, as show in the second optional box. This is, for instance, the case
of our Italian Researchers component that retrieves the researchers from the system database,
where the whole Italian researchers data source has been pre-loaded for efficiency reasons. Third-
party services, instead, do not have access to the system database but they can use external data
sources as external databases or online services available on the Web. Clearly, the usage of the
system database guarantees higher performances and avoids possible network bottlenecks.

Once the service has retrieved all the necessary data, it starts executing its core business logic
(for our example component, it consists in the filtering of the researchers of interest based on
the configuration parameters). The business logic execution results are then stored in the Shared
Memory using the Server-Side Engine API methods. Typically, all the services will produce some
output data, although, possibly, there could be exceptions like, for instance, a service that is only
designed to send emails.

Finally, the service must send a response back to the Mashup Engine. The response content
depends on the OutputDataRequest flag value. If it is set to false, as shown in the upper part
of the alternative box in the figure, the response will contain the Key and the RequestStatus

of the service (success or error). If the flag is set to true, in addition to those control data, the
response will also contain the actual OutputData produced by the service logic.

So far, all components and services for ResEval Mash have been implemented by ourselves,
yet the idea is to open the platform also to external developers for the development of custom

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 21

components. In order to ease component development, e.g., the setup of the connection with
the Shared Memory and the processing of the individual control data items, we will provide a
dedicated Java interface that can be extended with the custom logic. The description, regis-
tration, and deployment of custom components is then possible via the dedicated Component
Registration Interface briefly described in Section 5.2.

6. USER STUDY AND EVALUATION

A summative evaluation was conducted to analyse the user experience with ResEval Mash. The
results reported in this paper concentrate on usability, with an emphasis on the role of prior ex-
perience on learning. Prior experience was differentiated in two categories which are fundamental
in our approach to mashup design: domain knowledge and computing skills. Domain knowledge
was controlled by selecting all users with expertise in research evaluation, computing skills varied
in the sample from people with no programming knowledge at all, to expert programmers.

The study applied a concurrent talk-aloud protocol, a technique requiring users to verbalise
all their thoughts and opinions while performing a set of tasks. Verbalisation capture techniques
have been found to be particularly effective when conducting experimental investigations, which
provide an opportunity to study communication between products, designers and users [Jarke
et al. 1998; Rouse and Morris 1986]. Responses given during task completion are considered more
representative of the behavior and problems users have during assessment [Hands and Davidoff
2001] and concurrent talk-aloud protocols have been shown to encourage participants to go into
greater detail, to provide more in-depth evaluation, and help pin-point usability problems and
places where their expectations fail to be met [Teague et al. 2001].

6.1 Method

Ten participants covering a broad range of academic and technical expertise were invited to use
ResEval Mash. At the beginning of the study, they signed a consent form presenting ResEval
Mash as a tool for allowing non-programmers to develop their own computing applications. Then,
they were asked to fill in a questionnaire reporting their computing skills and knowledge about
research evaluation alongside some basic demographic information (e.g., age and job position).
Specifically, participants were asked to estimate their skills with the use of software similar to the
Microsoft Office Suite tools, programming languages, flowcharts and mashup tools, on a 4-point
scale, ranging from very skilled to no skilled at all. They were also presented with a list of 21
concepts related to research evaluation and asked to indicate for each of them whether they were
aware of it and able to understand its meaning, on a 2 point scale (yes vs. no).

After the questionnaire, participants watched a video tutorial (lasting approximately 10 min-
utes) that instructed them how to operate ResEval Mash. The video introduced the basic func-
tionalities of the tool, quickly explaining the concept of components, configuration parameters,
and data compatibility. It then showed how to create a simple mashup of 4 components to display
the H-index of the researchers of the Department of Computer Science and Engineering of the
University of Trento on a bar chart according to the Microsoft Academics publication source.
Finally, the video presented another mashup example used to summarize and reinforce the con-
cepts shown up to this point, where 4 components were connected to visualize on a bar chart the
G-index of a researcher (Figure 9.a).

After training, participants were asked to use the system. The first task asked people to start
from the first composition presented in the video tutorial and to modify the year parameter of
the Microsoft Academic component, to select a different department from the Italian Researchers
component and finally to replace the publication source component currently used in the composi-
tion with the Google Scholar component. The second task required them to design a composition
to compute the participant’s own publication count and visualize it on a chart. The correct
solution required linking together 4 components, as highlighted in Figure 9.b.

Whilst completing these two tasks, participants were asked to “talk aloud” regarding their
thoughts and actions. This interaction was filmed, as was the interview that followed task com-

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

22 · F. Daniel et al.

Figure. 9. Mashup compositions to compute G-Index (a) and publication count (b)

pletion. The interview focused on interactional difficulties experienced, the evolution of partici-
pants’ conceptual understanding over time, and a detailed usability evaluation stressing a feature
based assessment reporting which features were considered to be beneficial to interaction, which
were understood, and what participants, as users, would like to see in the system.

6.2 Results

The video-capture and talk aloud protocols were used to establish strengths and weaknesses in
design and conceptual understanding. A subsequent usability assessment was used to identify the
difficulties participants reported experiencing and their understanding of key features of mashup
tool interaction. Anonimized data related to the initial and final questionnairs are available on
the ResEval Mash project website5. Videos recording user interactions with the tool can not be
provided for privacy reasons.

6.2.1 Sample description. The sample covered a broad range of job positions and technical
skills. Half of it was composed of people who reported not being skilled in programming languages,
the other half reported being very skilled or good in relation to programming languages. All
the participants possessed moderate to no experience with mashup tools. The breakdown of
participants according to Position is reported in Table I.

IT Skills Position

High Computing Skills PhD Students (3), Post-doc (1), Senior Faculty Member (1)

No Computing Skills Administrative People (3), PhD student (1), Senior Faculty Member (1)

Table I. User categories

On average as a group, participants had a good understanding of the domain. They pos-
sessed experience of 80% of the 21 domain specific conceptual components listed during the
pre-interaction assessment. This value ranged from a minimum of 48% to a maximum of 100%.

6.2.2 Usability evaluation. Overall, the tool was deemed as usable and something with which
participants were comfortable. Independently of their level of computing knowledge, all partici-
pants were able to accomplish the tasks with minimal or no help at all. The only visible difference
reflected a variable level of confidence in task execution. The IT expert users reflected less before
performing their actions and appeared to be more confident during the test. Overall, among the
users with lower computing skills there was agreement that more training in the use of the tool

5http://open.reseval.org/project-updates/user-studies/

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 23

would be beneficial, whereas this requirement did not emerge from the more skilled sample. It is
worth noticing however that the people reporting this need also indicated a lower level of domain
knowledge as compared to the other users.

All participants understood the concept of “component” and had no specific issues in terms of
configuring or connecting components. However, the post-doc researcher suggested that it might
be beneficial for the system to indicate clearly when a proposed connection was inappropriate or
illegal by using colour to differentiate the states of legality or appropriateness. Another partici-
pant suggested the possibility of disabling the illegal components from the selection panel when
a component was selected in the composition canvas. Selection of components was highlighted
as a potential problem, as identification of the right component required some time to be per-
formed. During the study, this did not appear to be a major problem, as only a selected number
of components (N= 8) were tested. Yet, it is reasonable to assume that this problem will increase
as the number of available components grows. One participant suggested a search feature, to
complement the current menu selection interaction mode.

The task requiring tailoring an existing mashup was generally performed better than the task
requiring creating a new mashup. In the latter case, a problem emerged with the selection of the
first component (i.e., Researcher Input), as several participants selected the Italian Researchers
component expecting to be capable to personalise their query there. Saving of configurations was
also a source of uncertainty for several participants. The configuration parameters only needed
to be filled in by the users and no other action from them was required. This was not clear to
the users that in many cases expected an explicit saving action to be performed (e.g., through a
“Save configuration” button) and that also expected a feedback to be returned on configuration
completion. Several people used the “Close” button after updating the configuration, leading to
deletion of the component.

Furthermore, most participants reported some difficulty interacting with the tool due to the
physical interaction of double-clicking on the component image in order to open it and been
capable to configure its parameters. This constraint was referenced as taking time to learn.

6.3 Discussion

Our study indicates real potential for the domain-specific mashup approach to allow people with
no computing skills to create their own applications. The comparison between the two groups of
users highlighted good performance independently of participants computing skills. The request
for higher training emerging from a few less expert users appeared to be rather linked to a weaker
domain knowledge than to their computing capabilities. Further research will explore the relative
role of these two factors by a full factorial experimental study on a larger sample. However, this
preliminary study suggested that ResEval Mash is a successful tool appealing both to expert
programmers and end-users with no computing skills.

All participants reported a good level of understanding of the basic concepts implemented in
ResEval Mash, although some suggestions for improvement were collected, mainly related to ver-
bal labels used to denote components. Most usability issues evinced from behavioral observations
can be easily solved. For instance, the uncertainty experienced by several users with saving the
configuration parameters can be counteracted by adding an explicit saving option in the inter-
face of the components. A more serious issue was highlighted as regards selection of components,
which was found to be an error prone and time demanding task. This problem is likely to increase
exponentially with the availability of more components, but it can be partially counteracted by a
smart advice system decreasing the number of items available for selection based on a comparison
between the current application context and previous successful implementations, as presented
in [De Angeli et al. 2011]. For instance, illegal components could be automatically disabled and
the one used more often made salient.

Overall, the study provided some interesting results and highlighted the important role of
user evaluation in the design of interactive systems. A major finding is related to the ease with
which our sample (independently of their technical skills) understood that components had to

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

24 · F. Daniel et al.

be linked together so that information could flow between different services. This is a well-
acknowledged problem evinced in several user studies of EUD tools (e.g., the ServFace Builder,
Namoun et al 2011), which surprisingly did not occur at all in the current study. The mismatch
can be due to a different level of complexity of the evaluation tasks, but also to an important
design difference. Indeed, ResEval Mash only requires users to connect components as holistic
concepts, whereas other tools, such as the ServFace builder required the user to perform complex
connections between individual fields of user interfaces. More research is needed to understand
the boundaries of ResEval Mash, testing it with more complex development scenarios.

7. RELATED WORK

Although the requirement for more intuitive development environments and design support for
end-users clearly emerges from research on end-user development (EUD), for example for web
services [Namoun et al. 2010a; 2010b], little is available to satisfy this need. There are currently
two main approaches to enable less skilled users to develop programs: in general, development
can be eased either by simplifying it (e.g., limiting the expressive power of a programming lan-
guage) or by reusing knowledge (e.g., copying and pasting from existing algorithms). Among the
simplification approaches, the workflow and Business Process Management (BPM) community
was one of the first to propose that the abstraction of business processes into tasks and control
flows would allow also less skilled users to define their own processes. Yet, according to our
opinion, this approach achieved little success and modeling still requires training and knowledge.
The advent of the service-oriented architecture (SOA) substituted tasks with services, yet com-
position is still a challenging task even for expert developers [Namoun et al. 2010a; 2010b]. The
reuse approach is implemented by program libraries, services, or templates (such as generics in
Java or process templates in workflows). It provides building blocks that can be composed to
achieve a goal, or the entire composition (the algorithm - possibly made generic if templates are
used), which may or may not suit a developer’s needs.

Mashups aim to bring together the benefits of both simplification and reuse. In the case of
domain-specific mashup environments, we aim to push simplification even further compared to
generic mashup platforms by limiting the environment (and, hence, its expressive power) to the
needs of a single, well-defined domain only. Reuse is supported in the form of reusable domain
activities, which can be mashed up.

As such, the work presented in this paper is related to three key areas, i.e., domain-specific
modeling, web service composition, and mashups, which we briefly overview in the following.

Domain-specific modeling. The idea of focusing on a particular domain and exploiting its
specificities to create more effective and simpler development environments is supported by a
large number of research works [Lédeczi et al. 2001] [Costabile et al. 2004] [Mernik et al. 2005]
[France and Rumpe 2005]. Mainly these areas are related to Domain Specific Modeling (DSM)
and Domain Specific Language (DSL).

In DSM, domain concepts, rules, and semantics are represented by one or more models, which
are then translated into executable code. Managing these models can be a complex task that is
typically suited only to programmers but that, however, increases his/her productivity. This is
possible thanks to the provision of domain-specific programming instruments that abstract from
low-level programming details and powerful code generators that “implement” on behalf of the
modeler. Studies using different DSM tools (e.g., the commercial MetaEdit+ tool and academic
solution MIC [Lédeczi et al. 2001]) have shown that developers’ productivity can be increased up
to an order of magnitude.

In the DSL context, although we can find solutions targeting end-users (e.g., Excel macros)
and medium skilled users (e.g., MatLab), most of the current DSLs target expert developers
(e.g., Swashup [Maximilien et al. 2007]). Also here the introduction of the “domain” raises the
abstraction level, but the typical textual nature of these languages makes them less intuitive and
harder to manage and less suitable for end-users compared to visual approaches. Benefits and

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 25

limits of the DSM and DSL approaches are summarized in [France and Rumpe 2005] and [Mernik
et al. 2005].

Web service composition. BPEL (Business Process Execution Language) [OASIS 2007] is
currently one of the most used solutions for web service composition, and it is supported by
many commercial and free tools. BPEL provides powerful features addressing service composition
and orchestration but no support is provided for UI integration, as, for instance, required in our
reference scenario. This shortcoming is partly addressed by the BPEL4People [Active Endpoints,
Adobe, BEA, IBM, Oracle, SAP 2007b] and WS-HumanTask [Active Endpoints, Adobe, BEA,
IBM, Oracle, SAP 2007a] specifications, which aim at introducing also human actors into service
compositions. Yet, the specifications focus on the coordination logic only and do not support the
design of the UIs for task execution. In the MarcoFlow project [Daniel et al. 2010] we provide
a solution that bridges the gap between service and UI integration, but the approach is however
complex and only suited for expert programmers.

Mashups. Web mashups [Yu et al. 2008] emerged as an approach to provide easier ways to
connect together services and data sources available on the Web [Hartmann et al. 2006], together
with the claim to target non-programmers. Yahoo! Pipes 6 provides an intuitive visual edi-
tor that allows the design of data processing logics. Support for UI integration is missing, and
support for service integration is still poor. Pipes operators provide only generic programming
features (e.g., feed manipulation, looping) and typically require basic programming knowledge.
The CRUISe project [Pietschmann et al. 2009] specifically focuses on composability and context-
aware presentation of UIs, but does not support the seamless integration of UI components with
web services. The ServFace project 7, instead, aims to support normal web users in composing
semantically annotated web services. The result is a simple, user-driven web service orchestra-
tion tool, but UI integration and process logic definitions are rather limited and again basic
programming knowledge is still required.

8. STATUS AND LESSONS LEARNED

The work described in this paper resulted from actual needs within the university that were not
yet met by current technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of use and expressive
power. They define seemingly useful abstractions and tools, but in the end developers still prefer
to use (textual) programming languages, and at the same time domain experts are not able to
understand and use them. What we have pursued in our work is, in essence, to constrain the
language to the domain (but not in general in terms of expressive power) and provide a domain-
specific notation so that it becomes easier to use. In particular, the language does not require
users to deal with one of the most complex aspects of process modeling (at least for end-users),
that of data mappings, as the components and the DMT take care of this, thanks to the common
data model. This is a very simple, but very powerful concept, because now users just need to take
components, place them next to each other and simply connect them, something very different
from what traditional mashup or service composition tools require.

The results of our user study regarding the ResEval Mash tool, our domain-specific mashup
platform for research evaluation, show that end-users feel comfortable in a mashup environment
that resembles the domain they are acquainted with. The intuitiveness of the used components,
which represent well-known domain concepts and actions, prevails over the lack of composition
knowledge the users (the domain experts) may have and help them to acquire the necessary
composition knowledge step by step by simply “playing” with ResEval Mash. Components in
ResEval Mash have real meaning to users.

Yet, we also acknowledge that there is still work to be done, in order to turn ResEval Mash

6http://pipes.yahoo.com
7http://www.servface.eu

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

26 · F. Daniel et al.

into a even more powerful instrument for research evaluation. Before going publicly online, we
still would like to improve the intuitiveness of its user interface, especially as for what regards
the configuration of component parameters, a task that was not perceived as intuitive by users.
We also have to complete the implementation of some of the components. In the context of
both this work and other research conducted in parallel, we have learned that users with only
little IT skills may benefit from contextual help [De Angeli et al. 2011], e.g., provided in the
form of recommendations that suggest the user which next composition action could make sense.
We already designed the respective client-side knowledge base for storing composition knowledge
and a respective recommendation engine to provide interactive, contextual help [Roy Chowdhury
et al. 2011]; next, we will work on the extraction (mining) of reusable composition knowledge
(in the form of composition patterns) from existing mashup models. Joining the power of both
domain-specific design and suitable assistance technologies will allow us to widen even further
the spectrum of people that are able to develop mashups.

At a more technical level, we will study how to relax our design principle that asks for
platform-specific web service implementations, that is, we will try to understand which platform-
independent services (i.e., services that are not designed to know the platform’s concept model
and to use platform utilities like the shared memory) we can leverage on for the definition of
research evaluation mashups and how to integrate them technically into the platform (e.g., via a
suitable mediator or dedicated wrappers). This will allow us to improve reuse of existing services
and to further assist service developers in implementing research evaluation functionalities (in
that we would take over part of the work that makes them platform-specific). The challenge will
be to identify the right trade-off between platform dependence and platform independence.

Acknowledgment: This work was supported by EU project OMELETTE (contract no.
257635).

REFERENCES

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. 2007a. Web Services Human Task (WS-HumanTask)

Version 1.0. Tech. rep. June.

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. 2007b. WS-BPEL Extension for People (BPEL4People)

Version 1.0. Tech. rep. June.

Costabile, M. F., Fogli, D., Fresta, G., Mussio, P., and Piccinno, A. 2004. Software environments for

end-user development and tailoring. PsychNology Journal 2, 1, 99–122.

Daniel, F., Casati, F., Benatallah, B., and Shan, M.-C. 2009. Hosted Universal Composition: Models, Lan-
guages and Infrastructure in mashArt. In ER’09. Berlin, Heidelberg, 428–443.

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., and Yan, L. 2010. From People to Services to UI:

Distributed Orchestration of User Interfaces. In BPM’10. 310–326.

De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodriguez, C., Daniel, F., and Casati, F. 2011. End-user
requirements for wisdom-aware eud. In Proceedings of IS-EUD 2011. 245–250.

France, R. and Rumpe, B. 2005. Domain specific modeling. Software and Systems Modeling 4, 1–3.

Hands, D., A. S. and Davidoff, J. 2001. Recency and duration neglect in television picture quality evaluation.

applied cognitive psychology. Applied Cognitive Psychology 15, 639–657.

Hartmann, B., Doorley, S., and Klemmer, S. 2006. Hacking, Mashing, Gluing: A Study of Opportunistic
Design and Development. Pervasive Computing 7, 3, 46–54.

Jarke, M., Bui, X., and Carroll, J. 1998. Scenario management: An interdisciplinary approach. Requirements

Engineering 3, 3, 155–173.

Karlsson, M. and Wikstrom, L. 2006. Contemporary Ergonomics. Taylor and Francis, Great Britain, Chapter
Safety semantics: A study on the effect of product expression on user safety behaviour, 169–173.

Lédeczi, Á., Bakay, A., Maroti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., and Karsai, G. 2001.
Composing domain-specific design environments. IEEE Computer 34, 11, 44–51.

Maximilien, E. M., Wilkinson, H., Desai, N., and Tai, S. 2007. A domain-specific language for web apis and

services mashups. In ICSOC. 13–26.

Mehandjiev, N., De Angeli, A., Wajid, U., Namoun, A., and Battocchi, A. 2011. Empowering end-users to
develop service-based applications. End-User Development , 413–418.

Mernik, M., Heering, J., and Sloane, A. M. 2005. When and how to develop domain-specific languages. ACM

Comput. Surv. 37, 4, 316–344.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

Developing Mashup Tools for End-Users · 27

Monk, A. 1998. Cyclic interaction: a unitary approach to intention, action and the environment. Cognition 68,

95–110.

Namoun, A., Nestler, T., and De Angeli, A. 2010a. Conceptual and Usability Issues in the Composable Web of
Software Services. In Current Trends in Web Engineering - 10th International Conference on Web Engineering

ICWE 2010 Workshops. Springer, 396–407.

Namoun, A., Nestler, T., and De Angeli, A. 2010b. Service Composition for Non Programmers: Pro-spects,
Problems, and Design Recommendations. In Proceedings of the 8th IEEE European Conference on Web Services

(ECOWS). IEEE, 123 – 130.

Nielsen, J. 1993. Usability Engineering. Academic Press, California.

Norman, D. A. 1991. Cognitive artifacts. Cambridge University Press, New York, NY, USA, 17–38.

OASIS. 2007. Web Services Business Process Execution Language Version 2.0. Tech. rep., http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. April.

Okeye, H. 1998. Metaphor mental model approach to intuitive graphical user interface design. Ph.D. thesis,

Cleveland State University, USA.

Pietschmann, S., Voigt, M., Rümpel, A., and Meißner, K. 2009. Cruise: Composition of rich user interface

services. In ICWE’09. 473–476.

Rouse, W. and Morris, N. 1986. On looking into the black box: Prospects and limits in the search for mental

models. Psychological bulletin 100, 3, 349.

Roy Chowdhury, S., Daniel, F., and Casati, F. 2011. Efficient, Interactive Recommendation of Mashup

Composition Knowledge. In Proceedings of ICSOC 2011. Springer, 374–388.

Teague, R., De Jesus, K., and Ueno, M. 2001. Concurrent vs. post-task usability test ratings. In CHI’01
extended abstracts on Human factors in computing systems. ACM, 289–290.

Thomas, B. and van-Leeuwen, M. 1999. The user interface design of the fizz and spark GSM telephones. Taylor

& Francis, London.

Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008. Understanding Mashup Development. IEEE Internet
Computing 12, 44–52.

International Journal of Next-Generation Computing, Vol. 2, No. 2, 09 2012.

