
From a Simple Flow to Social Applications

Juan Jara, Florian Daniel, Fabio Casati, and Maurizio Marchese

University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy
{juan.jara, daniel, casati, marchese}@disi.unitn.it

Abstract. Currently, there are a lot of people trying to leverage on the
success of social networks by implementing social applications. However,
implementing social applications is complex, due to the requirements and
constraints put by the social networks to protect their data. In this work
we present Simple Flow, a tool that simplifies the creation of social appli-
cations. Simple Flow proposes a processes-based approach to the design
and execution of social applications. Simple Flow targets end-users and
programmers with no experience in programming for social networks,
giving them the possibility to design processes by concatenating social
network actions (like post a message or comment a photo). For the exe-
cution of the designed processes Simple Flow interconnects, at runtime,
template web pages (one page per action) according to the process de-
sign defined previously. These templates abstract the complexities of the
interactions with social networks.

Keywords: Social Applications, Design Tools and Techniques, Component-
based development

1 Introduction and Motivation

Social applications are applications that use a social network infrastructure to
reach more users and disseminate themselves. These social applications have
different goals like meeting new people, sharing experiences, making professional
contacts, getting recommendations, advertising products among other activities.

There are a lot of people trying to leverage on the success of social networks
by implementing social applications. However, programming social applications
has some particular aspects that are different from generic web applications, for
example:

– The access to social network resources is usually done through restful APIs
(application programming interface), and already learning how to get the
desired data from a resource becomes a time consuming task;

– The application authentication, which is the process in which social appli-
cations have to authenticate themselves with the social network with which
they want to interact; and

– The user permission system. In social networks, usually, only a small portion
of the data is public. In order to get the rest of the data, the social applica-
tions need to get specific user-permissions, which depend on the data that
the applications want to access.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80335721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


These new aspects increase the complexity required to program social applica-
tions and usually discourage the people that approach it.

With our work we aim at reducing the complexity of programming social
applications. We propose Simple Flow, a tool that facilitates the way social ap-
plications are designed and executed. Simple Flow has a design phase, where
users use a process-based approach to design social applications, and an execu-
tion phase, in which users can execute the processes from the design phase.

In the design phase, we provide a method that makes it easier to interact
with the desired resources in a social network. We abstract the social network
API model into action patterns (like select user, create a post or upload a
photo) that users can combine into processes that model a social application
and express its logic.

In the execution phase, we provide a set of template web pages (one
template per action pattern) that can be linked among each other based on the
designed process from the design phase. Each template comes with a set of user
interface elements related to the action pattern it represents and also internally
handles the authentication process and the user permissions, abstracting from
the user the complexity of these procedures.

With Simple Flow we do not only target programmers with no experience
in social applications, we want to enable the widest possible set of people to
create social applications. For this reason, an additional goal of our work is to
grant the ability to create social applications to a set of people that goes beyond
professional programmers. It will be part of our future work therefore to identify
how far we can go in terms of simplifying this “programming” and in terms of
lowering the skill levels required to design social applications.

The remainder of this paper is organized as follows. In the next section we
present the context analysis. In Section 3, we explain our social application
model. In Section 4, we describe our proposal. In Section 5, we introduce some
related work. In Section 6 we present the discussion and the future work.

2 Context Analysis

In this section we explain who needs to create social applications and what types
of social applications are the most needed or requested.

2.1 Who needs to implement social applications?

To learn about the needs of social applications, we searched and analyzed the
social applications requests in three application-development outsourcing web-
sites: Freelancer (http://www.freelancer.com/), oDesk (https://www.odesk.
com/) and vWorker (http://www.vworker.com/). Most of the requests are re-
lated to the creation and management of contests which aim at motivating user
participation and brand advertisement. We also found out that there is a con-
stant demand by marketing people for analytic tools that measure the impact of
actions in social networks. These tools should be able to compute a wide range of



metrics, which are calculated using metrics like the number of posts, comments
and likes (or a combination of thereof).

From our own work as researchers we know, for example, that there is a
constant need of recruiting people for participating in experiments and user
studies. It would be useful to have an application that automatically disseminates
information about these experiments and helps recruiting people. There is also
the need to create applications for crowdsourcing content creation and content
description, all related to a specific topic.

2.2 Classification of most required applications

We can classify the identified needs into the following categories of social appli-
cations:

– Event advertisement: These applications allow users to define an invi-
tation message and schedule it for periodical dissemination through social
networks.

– Guided content creation: These applications guide users through the
content creation process, e.g., uploading a photo to a specific album to par-
ticipate in a photo contest, adding information related to the context of a
photo, etc.

– Voting: These applications present the user with a list of objects and ask
him/her to select one or more of them, e.g., asking a user to select from a
list of videos the one that he/she thinks is the funniest.

– Contest drawing generator: These applications select one or more objects
from a list following a specific criterion, e.g., from a list of message posts
select the one with most comments.

– Targeted dissemination: These applications send, to a selected number of
friends, a user defined request, e.g., selecting three friends and asking them
to comment a photo.

– Simple analytics: These applications get periodically information about
specified objects (e.g. albums, photos, posts). This information can be used
later for impact analysis, e.g., getting daily the number of likes or number
of comments for a photo.

Some of these simple applications can be combined to create more complex ones,
e.g., the guided content creation and targeted dissemination can be combined to
create an application for crowdsourcing content creation or content annotation
among a user’s friends.

3 The Social Application Model

The first step for facilitating the programming of social applications is to trans-
form the restful API model to a more familiar model. For this we abstract the
typical social networking APIs to action patterns (like select user, create a post
or upload a photo). Then we provide a method to combine the action patterns
into processes that represent the models of social applications.



3.1 The Action Conceptual Model

We select from social networks the objects that we consider most relevant, e.g.,
users, posts, photos, comments, etc. Then, for each object, we add their available
actions, e.g., upload, comment, like. The result is a set of patterns that represent
the actions available to social network users, e.g., select a friend, comment a
photo, create a post, etc. From now on, we will refer to action patterns just
as actions. The actions can require an input, may produce an output and have
some options that slightly modify their standard behavior. All of the previous
elements (actions, inputs, outputs, options, etc.) define our action conceptual
model. Figure 1 shows the model and the how its elements are related.

Fig. 1. Simple Flow action conceptual model

We describe the entities in Figure 1 as following:

– Actions: are the action patterns that represent a single step in our process
model (which is explained in the next section), e.g., upload photo to wall, like
a post, comment an album. We defined this list by combining the available
actions exposed by social networks through their APIs and, by analyzing the
interactions in the applications described in the previous section.

– Precedence Constraints: represent the relation between actions. The prece-
dence defines what actions can be used in each step of a process during the
design of the process.

– Options: represent action attributes that are used to modify the standard
behavior of its related action. Taking as an example the action comment an
album, one of the options for this action defines who creates the comment;
if it will be the process designer, the user executing the process, or both.

– Outputs: represent the data produced by an action after its execution. For
example, the comment an album action produces a comment object, and the
upload photo to wall action has a photo object as result.

– Inputs: represent the data requirements of an action. For example, the
comment a photo action requires a photo object that is the target of the



comment. The input object for an action can be chosen from one of the
produced outputs by other actions or from objects that already exist in
social networks.

The action conceptual model helps us to formally represent and design processes
for social networks.

3.2 The Process Model

We combine the actions and the precedence constraints from the conceptual
model to produce a directed graph that we call the action graph. The actions are
connected according to the data navigation structures of social networks (with
a major influence from Facebook). The action graph is the core of our proposal
and is used to guide the user during the design of processes. The action graph
is our approach to relieve end-users from most of the complexities of designing
processes for social networks.

A process is designed by concatenating the nodes from the action graph,
following the possible paths from one node to another. The first step of a process
has to be always the start node of the action graph and the last step the end
node. Only connected nodes can be executed consecutively in a process.

Figure 2 shows the conceptual representation of the action graph during the
design of a process. The highlighted node (with a big arrow on top) represents
the current selected action. The nodes pointed by the current node represent the
actions that can be executed after the selected action. The start node has the
“Login” label and the end node has the “End” label.

Fig. 2. Conceptual representation of the action graph

In the next section we explain how end-users can design and execute processes
using the concepts presented in this section.



4 Design and Execution of Social Applications

To test our process model, we propose Simple Flow, a tool for the design and
the execution of social applications. Simple Flow uses a process approach to
define social applications, that is, social applications are represented as simple
processes that run over social networks. Simple Flow has two phases:

– The design phase: where users create and define their processes, their logic
and what data from social networks it uses and affects.

– The execution phase: where users select and run a process; here, Sim-
ple Flow runs a process by concatenating predefined template web pages
following the process design that was created in the design phase.

We implemented a first version of the design phase and we are working on the
implementation of the execution phase. In the following sections we explain in
details both phases, for the design phase we show an example of the working UI
(user interface) and for the execution phase we sketch an example of how it will
work.

4.1 The Design Phase

The design phase is where users define and create the processes that represent
the social applications they want to create. The core of the design phase is the
action graph, which is our approach to lift from end-users the complexity related
to learning how to interact with the social network resources through the social
networks APIs.

Design Phase Components. The components of the design phase are classi-
fied as data, logic or presentation components as shown in Figure 3. The arrows
indicate the dependency relation between the components, e.g., the process de-
signer depends on the action graph.

Fig. 3. Components of the design phase

The data layer stores the elements of the action conceptual model and also the
user defined processes. The components of this layer are explained as following:



– The Action Model Elements contain the instances of the entities of the action
conceptual model that was explained in Section 3.1.

– The User Processes represent the set of processes already defined by the users
by concatenating sequentially actions and that are ready to be executed.

The components of the logic layer are responsible for associating to each action
its corresponding elements (inputs, outputs and options) and to also logically
relate the actions using the action graph. The components of this layer are
explained as following:

– The Action Graph represents the navigation structure between actions, it is
explained in Section 3.2.

– The Process Designer is the component that connects all the elements of an
action. When an action is added to a process, it associates to the added action
all its corresponding elements like input, output and options. Furthermore,
using the action graph, it prepares the actions that could be executed in the
next step.

The components of the presentation layer manage how the information is pre-
sented to the users. The components of this layer are explained as following:

– The Process Manager shows all the steps of the designed process, the input
and the output of each action.

– The Action Selection shows the list of actions that can be executed after the
last selected action.

– The Option Settings presents what options the last selected action has avail-
able.

Designing a Social Application. Figure 4 shows a view of the UI during the
design of a process. Each component of the presentation layer assists the user in
the design of a process.

The Process Manager shows the process that is being designed and is repre-
sented by the table in the “Flow Actions” column. The first column of the table
indicates the step of the process associated to the action and the last column
indicates the output that will be produced after the execution of the action, this
data can later be used as an input for another action. If an action requires an
input, its description will contain the following string: “[???]”. The step that is
currently being designed in Figure 4 is the third one: Comment a Photo.

The Action Selection presents to the user a list of actions that can be executed
after the current action (the list is contextual to the last action added to the
flow). In Figure 4 is represented by the “Available Actions” column. If the user
selects an action from the list, that action becomes the current action, which
would be the fourth step of the designed process.

The Option Settings presents to the user a set of options associated to the
current action. In Figure 4 is represented by the “Action Options” column. When
the user selects an action, the options for that action are loaded with default



Fig. 4. UI of the design phase during the design of a process

values that express to some degree the intended behavior of the action. The user
can change these options to modify the action behavior to meet specific needs.

Figure 5 shows a finished process model. This process represents a social
application for crowdsourcing photos that have annotated context information
in the form of comments. The goal of this application is to collect photos from
several users and to attach to each photo specific data related to the context of
the photo. A sketch example of the application during its execution can be seen
in Figure 6.

Fig. 5. A process model that represents a social application

The designed processes can be deployed for execution by their owners as a
part of Simple Flow. Each process can be disseminated by sharing its link and
can be executed by one or more people.



4.2 The Execution Phase

The execution phase is where Simple Flow runs the processes designed in the
previous phase. The main element of the execution phase is the action page.

The action page is a template web page that represents an action from the
action conceptual model. Each page is prepared to manage all the elements that
are associated to the action it refers to (input, output and options). The action
page facilitates the creation of social applications by:

– Implementing a UI for interacting with a social network API: an
action page is related to a specific action, which again is based on one of the
social network APIs; therefore, the action page implements a UI for a social
network API.

– Automatically authenticating the application with the social net-
work: each action page manages internally the authentication process of the
Simple Flow application with the social networks and uses these credentials
to interact with social networks when users run processes.

– Managing user permissions: Simple Flow includes all the required user
permissions by the set of actions that it provides; therefore, when users
register the Simple Flow application, they will be asked to give the necessary
permissions to run any designed process.

The execution phase runs a process by concatenating action pages following the
process model. The execution phase starts when a user clicks the link associated
to a process. At the beginning of the phase, Simple Flow reads the process
information and redirects the user to the first action page and makes this page
point to the next action page defined in the process model.

During the rest of the execution phase, for each step of the process, Simple
Flow:

– gets the input required by the action,
– prepares the page according to the action options, and
– makes the page point to the next action page.

When the user finishes carrying out the requested action, he/she is redirected
to the next page where the cycle starts again. Figure 6 shows a mockup of the
action pages for the process model from Figure 5 during the execution phase.

Simple Flow also facilitates the creation of social applications by allowing its
users to skip the steps related to registering the social application in the social
network and then installing it in a web server (this will be helpful especially for
users that only want to implement a few processes).

5 Related Work

In this section we present the works related to end-user development, we group
them according to their proposed approach to the creation of applications.



Fig. 6. Execution of the process from Figure 5, steps 2 to 5

5.1 Using Processes

First, we present the IFTTT (If this then that) project [1], which allows users
to define simple ECA (Event - Condition - Action) rules over social networks.
Users create rules by combining triggers (e.g., an upload of a photo, a post of
a message) and actions (e.g., tweeting a message, commenting a photo) with
their associated channels (e.g., Twitter, Facebook). The simplicity of IFTTT is
what inspired us to build our tool and we think that this is how applications
should be designed, specially by end users. IFTTT allows the design of 1-step
processes that are executed when their associated trigger is fired. The processes
designed with our tool can have more than one step and, generally, are executed
directly by users. There is also, Atooma [2], which is an IFTTT like approach for
smartphones. The difference with IFTTT is that users can add several triggers
for the If this condition and also do several actions for the then that part.

Then we have the BPM4People project [3], which extends BPMN (business
process modeling notation) with new task types that represent the unstructured
social interactions between the process stakeholders (e.g., social posting, com-
menting, voting, invitation to activity). Both, the BPM4People project and our
tool, propose the design of applications using a process representation. The dif-
ference is that the authors in [3] define processes using BPMN, which requires
time to learn and make this approach not suitable to end-users.

Then we also have [4], which allows users to define crowdsourcing programs
for the crowd computer using a process-based approach. The crowd computer
considers humans as part of the hardware of the system and available for the
realization of computational tasks. The difference with Simple Flow is that the
crowd computer is focused exclusively in the creation of crowdsourcing tasks and
the steps of a task can involve or not the interactions with social networks, while
Simple flow can define processes that aim or not to define a crowdsourced task
but all the steps of a task involve an interaction with a social network.

5.2 Using Mashups

In [5], the authors point to the fact that most of the proposals for general pur-
pose web-service composition (mashups) aimed at end-users failed. On the ba-
sis of these failures, the authors propose to use a domain specific approach to



mashups. The proposed approach indeed improved the results of the general
purpose mashups by lowering the entry barrier for end-users to mashup compo-
sition. We can consider Simple Flow as a domain specific mashup, the difference
between [5] and Simple Flow is that we also guide end-users during the web-
service composition with the action graph, preventing end-users from selecting
actions (web-services) that cannot be combined.

Then we have [6], where the authors propose to support the development
of mashups by integrating in existing mashup tools two techniques: automatic
composition, which automatically creates mashups according to the goals of the
end-user and; interactive pattern recommendation, which uses mashup compo-
sition patterns to recommend components to the end-user based on the current
mashup design. The difference with Simple Flow is that the proposal of [6] de-
pends on the existence and correctness of user-created patterns while in our
proposal the recommendation is based on the action graph. However, the pro-
posal of [6] could be integrated in general purpose mashup tools while Simple
Flow is constrained to a specific domain.

5.3 Other approaches

WeFlow [7], a tool for creating simple collaborative applications. The authors
propose the use of a specification language (similar to natural language) for
defining web applications. WeFlow has a generator engine that takes as input a
script written in this language and generates a web application. Although We-
Flow has similar goals than Simple Flow, the applications produced by WeFlow
do not interact with social networks.

The Jabberwocky programming environment [8], which is composed of three
components: a resource management system for human and computer workers, a
framework for programming sequential and parallel tasks, and a high-level pro-
gramming language for abstracting the low-level concepts of their framework.
The main difference with our tool is that they define applications using a pro-
gramming language similar to a structured query language and we use a process
model approach.

In [9], the authors propose to use a spreadsheet environment for the construc-
tion of mashups. The authors define custom functions that call web services and
pass the cell value as input of the service. Then, end-users can compose mashups
by linking functions using the cell reference property of spreadsheets. The au-
thors in [9] offer a developing environment that is well-known to end-users, how-
ever, they have the same drawbacks as the general purpose mashups.

6 Discussion and Future Work

When designing Simple Flow, we decided to make it as simple as possible to lower
the learning curve required to use it. To achieve this, we minimized the number
of inputs, outputs and options that each action had, which in turn increased the
total number of actions. To explain this better, we take as an example the action



of uploading a photo. With this action we have the option to upload a photo to
the user stream or to a user album. In the implementation of Simple Flow we
could have made this an action with two input parameters, one for specifying
the destination of the photo (stream or album) and the other for specifying
the identifier of the album in case that the selected destination was an album.
Instead, we decided to minimize the number of input parameters, which resulted
into two actions to upload a photo: one that uploads a photo to the user’s stream
(without parameters) and one that uploads a photo to a user album (with one
parameter for the album identifier). We think that the overhead of having many
actions instead of one can be overcome by giving meaningful descriptions to each
action, while still maximizing the simplicity of the interface.

For the users that want more independence from Simple Flow we plan to
add the option to export the implemented applications as an installable package.
Then, to run the exported applications, they require a new web server to install
it and to register the application to the desired social network.

Finally, we plan to carry out user studies to evaluate the design time and the
correctness of the applications created using Simple Flow, and the usability of
the UI of the page templates during the execution of the designed applications.

References

1. IFTTT: Put the internet to work for you, https://ifttt.com/
2. Atooma, http://www.atooma.com/welcome
3. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering

social BPM solutions. In: Business Process Management Workshops, Springer (2012)
219–230

4. Kucherbaev, P., Tranquillini, S., Daniel, F., Casati, F., Marchese, M., Brambilla,
M., Fraternali, P.: Business Processes for the Crowd Computer. In La Rosa, M.,
Soffer, P., eds.: Business Process Management Workshops BPM 2012 International
Workshops Tallinn Estonia September 3 2012 Revised Papers. Lecture Notes in
Business Information Processing. Springer Berlin Heidelberg (2013) 256–267

5. Casati, F., Daniel, F., Angeli, A.D., Imran, M., Soi, S., Wilkinson, C.R., Marchese,
M.: Developing Mashup Tools for End-Users: On the Importance of the Application
Domain. International Journal of Next-Generation Computing 3(2) (2012)

6. Chowdhury, S.R., Chudnovskyy, O., Niederhausen, M., Pietschmann, S., Sharples,
P., Daniel, F., Gaedke, M.: Complementary Assistance Mechanisms for End User
Mashup Composition. In: WWW13. (2013) 269–272

7. Kokciyan, N., Uskudarli, S., Dinesh, T.B.: User Generated Human Computation
Applications. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International
Conference on and 2012 International Confernece on Social Computing (SocialCom),
IEEE (2012) 593–598

8. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. Proceedings of the 24th annual ACM
symposium on User interface software and technology (2011) 53–68

9. Hoang, D.D., Paik, H.y., Benatallah, B.: An analysis of spreadsheet-based services
mashup. In: Proceedings of the Twenty-First Australasian Conference on Database
Technologies - Volume 104. ADC ’10, Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2010) 141–150


