
Complementary Assistance Mechanisms for End User
Mashup Composition

Soudip Roy Chowdhury1, Olexiy Chudnovskyy2,Matthias Niederhausen3,
Stefan Pietschmann3, Paul Sharples4, Florian Daniel1, and Martin Gaedke2

1{rchowdhury,daniel}@disi.unitn.it, 2{olexiy.chudnovskyy,martin.gaedke}@cs.tu-
chemnitz.de,3{matthias.niederhausen,stefan.pietschmann}@t-systems-mms.com,

4p.sharples@bolton.ac.uk

ABSTRACT
Despite several efforts for simplifying the composition pro-
cess, learning efforts required for using existing mashup edi-
tors to develop mashups remain still high. In this paper, we
describe how this barrier can be lowered by means of an as-
sisted development approach that seamlessly integrates au-
tomatic composition and interactive pattern recommenda-
tion techniques into existing mashup platforms for support-
ing easy mashup development by end users. We showcase
the use of such an assisted development environment in the
context of an open-source mashup platform Apache Rave.
Results of our user studies demonstrate the benefits of our
approach for end user mashup development.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-

re]: Programming Techniques; D.2.6 [Software]: Software
Engineering—Programming Environments

Keywords
assisted mashup development, automated compostion, in-
teractive pattern recommendation, end user development,
crisis mashup

1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.

com/pipes/) or Apache Rave (http://rave.apache.org/),
offer simple modeling constructs, visual metaphors for pro-
gramming that aim to help end users without program-
ming skills in designing composition logics by re-using exist-
ing components/widgets. Despite the popularity of mashup
tools in research, their applicability in end user development
domain is still a far fetched goal. In practice, building a
mashup remains a challenging task for non-programmers and
even for less-skilled developers. This is because of the fact
that less-skilled users simply lack knowledge about which
components are available in a platform and how to use these
components in their mashup design, how to configure such
components to satisfy the design requirements etc. Above
all for less skilled users or end users it is difficult to think of
a program from design perspectives and, hence, these users
find it difficult to define a consistent composition logic that
integrates multiple components.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

In order to aid such users in the design of mashups, re-
lated work has proposed two distinct approaches: goal-

oriented solutions [4, 6, 9] aim to assist end users by au-
tomatically deriving compositions that satisfy user-specified
goals; pattern-based development [3, 5] aims to recom-
mend composition patterns in response to modeling actions,
e.g., to auto-complete partial mashup models. Goal-oriented
solutions strive for simple interactions with users to elicit the
goal, i. e., intent of a composition without requiring users to
actually model the mashup, while pattern-based approaches
interactively assist them throughout the modeling process.
None of the two individually may thus provide sufficient as-
sistance to an user in developing mashups. Previous work
therefore motivates the joint use of goal-based and pattern-
based approaches for mashup composition. Authors in the
paper [7] proposed such a hybrid approach, but they don’t
provide detailed insight into how to implement such a sys-
tem in practice.

Our paper demonstrates how such a hybrid assistance
solution can be designed in practice. Our system is de-
veloped on top of an existing open-source, widget-based
mashup platform Apache Rave by combining the simplicity
of a dialog-based automatic composer with the step-by-step
assistance by an interactive pattern recommender [8]. In
this demo we show how these two techniques complement
each other well in assisting end users. We further show the
usability of our system in an end user development scenario
(emergency management). The user studies performed with
our system provide evidences for the effectiveness of our hy-
brid assisted development approach in mashup development.

2. CHALLENGES AND CONTRIBUTIONS
To identify the challenges and requirements for end user

assistance, let us introduce a real-world scenario, which also
provides the context for our demonstration. In August 2002,
a devastating flood caused by heavy rains hit the east of
Germany and several other parts of Europe. Such a crisis
situation demands for IT systems that support information
seekers as well as humanitarian activity coordinators. The
former want to quickly get an overview of the overall situ-
ation to understand the impact of an emergency incidents.
This requires them to aggregate and filter information from
different data sources (e. g., news articles, social streams,
etc.). The latter need tools that help them to coordinate
rescue tasks, calculate risks, and communicate with both
their teams and the local authorities.

These situational requirements underline the necessity of
a mashup platform that not only supports the quick devel-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80335717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Widget mashup environment

Widget container

Widget library

Mobile workspace manager

Desktop workspace manager

Widget 

browser

Pattern 

recommender

Automatic 

composition

engine

MDL 

workspace 

models

reads / 

writes

Widget information store

Widget 

registry

Domain 

ontology

references

Workspaces
Workspaces
Workspaces

runs 

widgets 

from

reads widgets defn. from

Third party UIs, widgets, 

services, network gateways

describes

a b

Figure 1: Functional architecture of the OMELETTE assisted development approach

opment of such applications but can also serve users with
various technical backgrounds. However, to design such sit-
uational applications end user developers face several tech-
nical challenges, which are described below: First, while the
intention of building a mashup is clear to end users, they
do not necessarily know which kind of widgets they need.
Second, if they do know, they still have no understanding of
whether these widgets are available in the current mashup
design platform and if they are not available then how to
find an alternative widget having similar functionality. This
process can be a cumbersome and error-prone for different
reasons, but mostly due to insufficient or unsuitable widget
descriptions (e.g., meta-data). Finally, end users typically
lack knowledge about how to define the data and/or con-
trol flow in a composition, which are complex programming
concepts for them to understand.

In this demonstration, we show how we address the de-
sign related issues for a hybrid development assistance ap-
proach. We further show how our approach of combining
two complementary assistance mechanisms, namely an au-
tomatic composition engine and a pattern recommender can
efficiently help end users in designing situational mashups.

The contributions of this paper are as follows:

• We describe our goal-oriented dialog system that en-
ables the automatic composition of workspaces to less
skilled users.

• We describe our pattern-based recommendation system
that enables more skilled users to extend and/or refine
mashup designs in a step-by-step fashion.

• We explain the implementation and integration of the
respective algorithms into the open source mashup plat-
form Apache Rave.

• We report on a user study conducted with 44 partic-
ipants, demonstrating the benefit of combining both
assistive techniques in one environment.

In the following, we present the realization of these contri-
butions in the context of the EU FP7 project OMELETTE

(http://www.ict-omelette.eu/). After that, we provide
an overview of the demonstration workflow and close this
paper with our findings from the user studies and ideas for
future work.

3. OMELETTE APPROACH TO ASSISTED
MASHUP COMPOSITION

Figure 1 gives an overview of the OMELETTE mashup
architecture. Therein, widgets represent full-fledged appli-
cation modules integrating both business logic and UI. The
widget mashup environment allows end users to compose
mashups (so-called workspaces) by placing one or more wid-
gets on the composition canvas. Technical complexity of
defining the data flow logic among components are abstracted
from the user and handled automatically by the platform
and the widget implementations. To facilitate assisted devel-
opment,OMELETTE extends the mashup engine of Apache
Rave and implements additional functional modules, e. g.,
inter-widget communication, widget information store, wid-
get registry, etc.

Even though mashup creation sounds very simple, end
users need support to cope with the challenges discussed in
the previous section. Therefore, we introduce two tools to
support users in implementing the desired applications with-
out being overwhelmed by the technical details of the under-
lying platform and widget specifications. The first tool, the
Automatic Composition Engine (ACE), targets novices
who have no or very little experience in mashup development
and need to be guided through the composition process. The
second tool, the Pattern Recommender (PR), addresses
those users who are already familiar with the composition
environment, but need help in finding appropriate building
blocks.

3.1 Automatic Composition Engine
The ACE allows end users to focus on the goal of the

composition instead of the individual building blocks and
their accurate “wiring”. The ACE (cf. Figure 1.a) extends
the mashup environment with a dialog-based interface that
enables end users to specify their goals in an interactive
manner. The dialog takes place in form of a question-answer
game, during which the system elicits and refines user goals.
Eventually, this process results in the automatic composition
of a workspace derived from the identified goals.

The basis for this mechanism is an extensible knowledge
base and a rule engine guiding the dialog with the user
and ensuring the goal of a composition is clear at the end.
The knowledge base comprises a domain ontology with facts
about the application domains (e. g., project management
or trip organization) and a set of functions defining the be-
havior of the dialog agent. The first function dedicated to



Figure 2: Hybrid recommendation system

question building is language-aware and responsible for the
conversation flow with the user. The rule-based definition
of this function enables dynamic and flexible conversations
taking application context into account, e. g, the availabil-
ity and capabilities of mashup components. Based on the
user responses, the evidence collection function produces
an overlay model of the domain ontology. The widget se-

lection function defines a mapping between possible sets of
collected evidences and a SPARQL search query to be issued
to the widget registry, containing semantic descriptions of
functional and non-functional aspects of the available wid-
gets. The current implementation filters keyword annota-
tions from the domain knowledge against widgets’ textual
attributes, such as title, description, tags, and category. To
guarantee the best interoperability between the resulting
widgets, they are filtered based on the information about
their inter-widget-communication capabilities. Finally, the
workspace configuration function derives a set of config-
uration parameters to be applied to widgets and workspace
based on the evidences collected during the dialog.

In summary, the dialog agent helps users to select and
configure widgets out of a large number of potentially in-
compatible components in an interactive and natural fash-
ion. The more widgets with similar functionality and from
different vendors are registered in the platform, the better
results are achieved by ACE.

3.2 Pattern Recommender
The design goals behind the PR – as explained in our

prior work [1] – can be summarized as follows: it supports
less skilled users in extending mashups created by the ACE
and it also provides autonomous assistance for skilled devel-
opers in building mashups from scratch. The PR helps users
to reuse existing composition knowledge: the knowledge be-
hind the PR’s recommendations is harvested from existing
workspace models. Extracted patterns are stored in a knowl-
edge base (KB), which is structured to minimize database
join operations for pattern retrieval at runtime. Currently,
the PR supports two composition pattern types: widget

co-occurence and multi-widget patterns. During com-
position, the PR reacts to user modeling actions (adding,
deleting, or selecting a widget, etc.) on widgets (the object

of an action) in the current workspace design. Upon each
interaction, the action and its object are captured by the rec-
ommendation engine via suitable event listeners. With this
information, the PR engine queries the client-side KB for
recommendations, where an object-action-recommendation
mapping tells the engine which types of recommendations
are to be retrieved. The list of patterns retrieved from the

KB are then filtered and ranked based on the current com-
position context (current workspace model) and rendered in
the recommendation panel. The panel is the user interface
of the PR and allows users to select a recommended pattern
or browse its details. Upon selection of a pattern, the PR
automatically weaves it into the current workspace model,
resolving possible model conflicts.

4. IMPLEMENTATION
OMELETTE’s assisted development approaches are im-

plemented by extending two active Apache Software Foun-
dation projects: Apache Rave and Apache Wookie (http:
//wookie.apache.org/). While Rave is used as the core
mashup engine in OMELETTE, Wookie serves as a repos-
itory and runtime container for W3C widgets, accessible by
both assistance mechanisms for retrieving widget informa-
tion. Both assistance tools were realized as W3C widgets
and are shown in action in Figure 2.

Apart from its client-side UI, ACE’s answer processing
and evidence collection take place on the server side via a
dedicated RESTful interface. The conversation and ques-
tion building strategies are specified using production rules,
which are executed on the server side by the JBoss Drools
engine (http://www.jboss.org/drools/). To find widgets
that best fit a user’s needs, the server part of ACE uses a
dedicated semantic registry (widget registry cf. Figure 1)
based on the WebComposition/DataGridService [2].

The PR widget contains recommendation and weaving al-
gorithms implemented in JavaScript. The client-side pattern
KB runs on an in-browser SQLite (http://www.sqlite.org/)
implementation. This eliminates performance overheads of
client-server communication for retrieving recommendation
patterns at runtime. Client and server-side pattern KBs are
synchronized when loading the PR into a user’s workspace.
From then on, all queries triggered by the PR to retrieve
patterns from the KB are directed to the client-side only.
JavaScript event listeners capture the triggering events for
pattern retrieval, i. e., DOM modifications (e.g., adding a
widget, deleting a widget) of the workspace model.
Both the ACE and the PR rely on three new APIs intro-
duced into Apache Rave to provide the necessary integra-
tion points between the mashup platform and the assistance
tools. The first API allows the pattern mining algorithm of
PR’s server-side component to fetch all workspace models
from the workspace repository. The second one is used by
the recommendation algorithm implemented in PR to re-
trieve information about the set of widgets present in the



current workspace model. Finally, the third one is used by
ACE and PR to populare workspaces with new widgets.

5. DEMONSTRATION STORYBOARD
In the demo session, we plan to showcase the two assistive

techniques described above using the scenario introduced in
the Section 2. We will show how workspaces can be created
ad hoc by end users in the case of an emergency situation,
and how such workspaces can be rapidly extended with the
help of the assistance provided by the OMELETTE ap-
proach.

The demo will start from a blank workspace. By inter-
acting with the dialog system of the ACE, the user will ex-
press his/her composition intentions, e. g., to gather infor-
mation about emergency incidents and getting public web
cam footage to gauge the impact on the ground zero. This
will lead ACE to automatically populate the workspace with
suitable widgets and their implicit wiring, without any fur-
ther user interaction.

The second part of our demo will involve the extension
of this workspace model with other widgets (e.g., telco wid-
gets) that may be of interest to an emergency coordinator
in the given scenario. We will show how the interactive rec-
ommender helps users to extend an existing workspace with
a new set of widgets in a step-by-step manner.

Finally, we will explain the architecture behind our as-
sisted platform and share the lessons learned during the im-
plementation and user studies.

A screencast of our approach at work is available at
http://www.ict-omelette.eu/assisted-composition.

6. EVALUATION AND FUTURE WORK
In order to evaluate our approach with a potential user

group, we have conducted a user study including both the
ACE and the PR. The study was conducted in China and
Germany. In total, 44 participants attended the study, with
only 11 of them had previous experiences of using widgets
or configuring portal interfaces. Participants were equally
distributed in test and control groups.

For evaluating the ACE, users were given the task to cre-
ate a simple mashup that required them to build a workspace
with at least three widgets. The required widgets were not
explicitly named, but rather described by their functionality.
The control group was assigned the same task, but had to
use Apache Rave’s widget store to search for suitable wid-
gets. Interestingly, the study shows that participants using
the ACE took more time on average than the control group
(261 vs. 159 seconds). One decisive factor for this is the
tool’s learning curve: While all participants had the chance
to try out the widget store before, the ACE was newly intro-
duced. Even further, a few usability issues led some users
far astray (hence the high variance), requiring them to start
over multiple times.

The PR was evaluated in a similar fashion. Here, par-
ticipants had to modify a given workspace with additional
functionalities. The test group used the PR, whereas the
control group again used the widget store to find right wid-
gets. As the results show, the PR significantly reduced the
overall task completion time (57 vs. 137 seconds). While
the difference of the mean development time between the
groups seems rather big, it must be noted that the PR has

the distinct advantage of not requiring the user to leave his
workspace in search of widgets.

For user satisfaction, there was a huge gap between user
groups: while 64% of Chinese users said that they found our
assistance mechanism to be useful and would use it again,
only 36% of German users did so. However, 61% of all users
agreed that this feature was important or even essential for
a mashup environment.

Overall, the study shows that users with little experience
in mashups prefer being guided through the processes of
creating and extending their workspace. While no signifi-
cant increase in efficiency could be verified for the process of
creating a new mashup from scratch, results show that the
recommendation of additional widgets based on an existing
workspace provides significant benefits for users.

As a follow up to this user study, we are currently ad-
dressing usability issues of Apache Rave and of our assis-
tance mechanisms. We are also working on a more natural
goal elicitation system for the ACE to give users more free-
dom in creating new workspaces. The improvements on the
ACE are going to be part of another evaluation, the results
thereof we plan to present at the demo session. Future work
includes improvement of composition patterns coverage in
the PR’s pattern KB as well as providing more explanations
with each recommendation step to help users understand
and decide whether to follow a recommendation or not.

Acknowledgment. This work was supported by the Euro-
pean Commission (project OMELETTE, contract 257635).
Authors thank Vadim Chepegin from TIE Kinetix b.v. for
his contributions to the design and implementation of the
ACE.

7. REFERENCES
[1] S. R. Chowdhury, C. Rodŕıguez, F. Daniel, and

F. Casati. Baya: assisted mashup development as a
service. In WWW’12 (Companion Volume), pages
409–412.

[2] O. Chudnovskyy and M. Gaedke. Development of Web
2.0 Applications using WebComposition / Data Grid
Service. Service Computation’10, pages 55–61.

[3] O. Greenshpan, T. Milo, and N. Polyzotis.
Autocompletion for mashups. VLDB’09, 2:538–549.

[4] M. Henneberger, B. Heinrich, F. Lautenbacher, and
B. Bauer. Semantic-Based Planning of Process Models.
In Multikonferenz Wirtschaftsinformatik’08.

[5] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, and H.-y.
Paik. Semantic-based mashup of composite
applications. IEEE Trans. Serv. Comput., 3(1):2–15,
Jan. 2010.

[6] S. Pietschmann, C. Radeck, and K. Meißner.
Semantics-based discovery, selection and mediation for
presentation-oriented mashups. In MASHUPS’11.

[7] C. Radeck, A. Lorz, G. Blichmann, and K. Meißner.
Hybrid recommendation of composition knowledge for
end user development of mashups. In ICIW’12, pages
30–33.

[8] S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient,
Interactive Recommendation of Mashup Composition
Knowledge. In ICSOC’11, pages 374–388.

[9] V. Tietz, G. Blichmann, S. Pietschmann, and
K. Meißner. Task-based recommendation of mashup
components. In ICWE’11, pages 25–36.


