
Spotlight
Editor: Gustavo Rossi • gustavo@lif ia.info.unlp.edu.ar

50 Published by the IEEE Computer Society 1089-7801/16/$33.00 © 2016 IEEE IEEE INTERNET COMPUTING

C rowdsourcing is the outsourcing of a unit of
work to a crowd of people via an open call
for contributions.1 Thanks to the availability

of online crowdsourcing platforms, such as Ama-
zon Mechanical Turk or CrowdFlower, the prac-
tice has experienced a tremendous growth over
the last few years2 and demonstrated its viability
in a variety of different fields, such as data col-
lection and analysis or human computation — all
practices that leverage on so-called micro-tasks,
which ask workers to complete simple assign-
ments (for example, label an image or translate
a sentence) in exchange for an optional reward
(such as a few cents or dollars). The power of
crowdsourcing is represented by the crowd, which
might be huge and span the world, and its ability
to process thousands of tasks in a short time.

The practice is, however, also increasingly
struggling with the inherent limitations of crowd-
sourcing platforms: not all types of work can eas-
ily be boiled down to simple micro-tasks, most
platforms still require significant amounts of
manual work and configuration, and there’s very
limited support for structured work — that is, work
that requires the integration of different tasks and

multiple actors, such as machines, individuals and
the crowd. We call these kinds of structured works
crowdsourcing processes, since they require the
coordination of multiple tasks, actors, and opera-
tions inside an integrated execution logic.

Without proper support for the design and
execution of crowdsourcing processes, running
them requires a huge amount of manual develop-
ment, data management, and coordination effort
as well as specialized expertise. This shortcom-
ing is acknowledged by the recent emergence
of advanced crowdsourcing approaches, such
as TurKit,3 Jabberwocky,4 and CrowdDB,5 which
all aim to ease the development and execution
of crowdsourcing processes, typically by build-
ing on top of existing crowdsourcing platforms.
However, they all come with a different perspec-
tive on the problem and, hence, present different
features and capabilities.

With this in mind, here we introduce the reader
to the problem of developing and running crowd-
sourcing processes and we provide an up-to-date
picture of the approaches that have emerged so
far. We identify a set of dimensions for the analy-
sis of platforms for crowdsourcing processes and

Crowdsourcing Processes:
A Survey of Approaches
and Opportunities
Pavel Kucherbaev • University of Trento, Italy

Florian Daniel • University of Trento, Italy, and Tomsk Polytechnic University, Russia

Stefano Tranquillini and Maurizio Marchese • University of Trento, Italy

This article makes a case for crowdsourcing approaches that are able to man-

age crowdsourcing processes, that is, crowdsourcing scenarios that go beyond

the mere outsourcing of multiple instances of a micro-task and instead require

the coordination of multiple different crowd and machine tasks. It introduces

the necessary background and terminology, identifies a set of analysis dimen-

sions, and surveys state-of-the-art tools, highlighting strong and weak aspects

and promising future research and development directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80335671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Crowdsourcing Processes: A Survey of Approaches and Opportunities

MaRCh/aPRIl 2016 51

review the state of the art accordingly.
This analysis produces a set of con-
siderations that might direct future
research and development efforts.

Crowdsourcing Processes
Although not explicitly named as
“crowdsourcing processes,” the litera-
ture is rich with examples of scenarios
that could benefit from explicit design
and runtime support for crowdsourc-
ing processes. Here, we briefly list some
examples:

•	 Anand Kulkarni and his col-
leagues6 crowdsource article writ-
ing (an article about the attractions
of New York City) that involves
tasks like structuring an article,
writing narrative, splitting content
into sections, adding pictures, iter-
ating over content, and coordinat-
ing workers that write, correct, or
structure text.

•	 Aniket Kittur and his colleagues7
crowdsource a trip-planning sce-
nario (a road trip from New York City
to San Francisco) that requires, for
instance, collecting routes, voting
for routes, collecting details about
hotels, restaurants, attractions, and
iterating over the options based on
feedback from the crowdsourcer
(who crowdsources the micro-tasks;
often called the “requester”).

•	 Matthew Marge and his colleagues8
study different audio transcription
experiments (route instructions for
robots), which require, for example,
hosting audio records, deploying
tasks in different batches, transcrib-
ing fragments and gluing them
together, iterating over transcriptions
until no typos are left, and control-
ling that workers don’t contribute to
different batches to avoid learning
effects.

•	 In other work, Stefano Tranquil-
lini and his colleagues9 mine pat-
terns from models with the help of
the crowd, a scenario that requires
dedicated task interfaces for the
interactive selection of patterns,

along with coordination of pattern
identification and assessment tasks,
automatically splitting/aggregating
the available dataset, filtering pat-
terns, and so on.

•	 The Galaxy Zoo project (www.gal-
axyzoo.org) is a good example of
an image classification process that
involves tasks such as classifying
images into spiral, elliptical, irregular,
or no galaxy, using a redundant num-
ber of workers, describing identified
galaxies in function of their galaxy
type (such as the number of arms in a
spiral galaxy), and asking experts to
resolve possible disagreements.

These examples show that in many
practical settings, crowdsourcing isn’t
just a matter of deploying a set of sim-
ple micro-tasks on a given platform.
Instead, it may comprise several differ-
ent tasks (writing, transcribing, classi-
fying, aggregating, spell checking, and
voting), actors (crowdsourcers, workers,
and experts), and automated operations
(data splitting, resolving redundancy or
multiple delegations, making decisions
about whether to involve an expert,
and synchronizing tasks). Running
such processes on top of micro-task
crowdsourcing platforms requires sig-
nificant amounts of manual work — for
example, to split or aggregate datasets
or tasks, design task UIs for each task
in the process, deploy tasks on the tar-
get platform, monitor task executions,
collect data, integrate them, split them
again, and so on. This is highly time
consuming and inefficient, and there’s
huge potential for automation.

Dimensions of Analysis
To compare the capabilities of existing
solutions for the development of crowd-
sourcing processes, from the aforemen-
tioned examples we derive the following
core dimensions and subdimensions:

Definition language. Developing a
crowdsourcing process requires a defini-
tion language following some paradigm
and notation.

•	 A paradigm tells whether the lan-
guage is imperative, declarative, or
configuration-based (restricted to
predefined templates or patterns).

•	 A notation specifies the specific
language used, such as Scala, Busi-
ness Process Model and Notation
(BPMN), or extensions thereof.

Task support. Crowd tasks are micro-
tasks performed by the workers of the
crowd; they leverage on crowd provid-
ers and may provide for different crowd-
management features. Machine tasks are
automated operations performed by a
machine, such as a data transformation.

•	 The crowd provider tells which
crowd provider (crowdsourcing plat-
form) is supported.

•	 Crowd management tells whether
additional crowd management fea-
tures (such as preselection or separa-
tion of duties) are supported.

•	 The machine task definition tells how
machine tasks are specified — for
example, via Web services or scripts.

Control flow support. Automating
work means automatically coordinat-
ing tasks — that is, controlling the flow
of action. The following are control
flow features that crowdsourcing pro-
cesses might need:

•	 task instantiation (individual and
multiple instances);

•	 sequential execution;
•	 parallel execution;
•	 decision points for conditional

flows;
•	 looping/iterating over similar tasks

or data items;
•	 subprocesses (or routines/proce-

dures) to support reuse.

Data management support. Next to
progressing the computation from one
task to another, it’s also mandatory
to provide each task with the neces-
sary input data. The following are the
basic data management requirements
highlighted in our scenario:

Spotlight

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

•	 Data hosting tells whether the tool
hosts data (such as audio tran-
scriptions) or references to data
(the URLs to the audio files).

•	 Data passing tells whether data
are passed via data flows, by value
(variables) or by reference (shared
memory).

•	 Data splitting/aggregation tells how
data transformations are specified.

Development support. Implementing a
crowdsourcing process further requires
designing suitable crowd tasks and
deploying them on the crowdsourcing
platform.

•	 Crowd task design tells if and how
the tool supports the design of crowd
tasks.

•	 Task deployment tells if and how
the tool supports the deployment
of tasks.

Quality control support. Finally, a cru-
cial aspect in crowdsourcing is quality
control. This dimension therefore looks
at which built-in quality control tech-
niques are supported (for example, iter-
ating over text until no typos are left).

Approaches and Tools
The approaches we review in the fol-
lowing are the result of two years of
watching emerging technologies in the
context of crowdsourcing. In particular,
we consider general-purpose approaches
that don’t restrict the types of tasks or
processes you can crowdsource. Also,
at the time of writing, suitable research
papers or online resources must have
been available so that we could make
an informed assessment of the identi-
fied dimensions. These criteria led us to
the 11 approaches that we describe next.

Selected Approaches
TurKit3 is a JavaScript-inspired scripting
language that allows one to program-
matically deploy tasks on Mechanical
Turk and to pass data among tasks.

AutoMan10 is a Scala-based pro-
gramming language similar to TurKit

that automatically manages the sched-
uling and pricing of task instances and
the acceptance and rejection of results,
given a target result quality.

Jabberwocky4 is a MapReduce-based
human computation framework with a
parallel programming framework and
language.

CrowdComputer9 is a BPMN-based
design and runtime environment
for complex crowdsourcing processes
with support for crowd and machine
tasks as well as individuals (for example,
experts).

CrowdLang11 is a BPMN-inspired
modeling language with crowd-
sourcing-specific constructs.

CrowdWeaver12 is a similar model-
based tool with a proprietary notation.

CrowdDB5 is an SQL-extension
that lets you embed crowd tasks (such
as inputs and comparisons) into SQL
queries.

AskSheet13 is a Google Sheet
extension with functions that allow
the spreadsheet to leverage on crowd-
sourcing tasks.

Turkomatic6 is a crowdsourcing
tool for complex tasks that delegates
not only work to the crowd but also
task management operations (such as
splitting tasks).

CrowdForge7 is a Django-based
crowdsourcing framework for crowd-
sourcing processes similar to Turkomatic
that, however, follows the Partition-
Map-Reduce approach.

CrowdSearcher14 is a system that
lets you design processes using reus-
able design patterns and leverage on
machine and crowd tasks as well as on
tasks deployed on Facebook.

We’re also aware of other instru-
ments, such as CrowdFlow, Quirk,
TurkDB, WorkFusion, and Crowd-
Flower Workflows, but we weren’t
able to collect enough public informa-
tion on them. Other approaches, such
as CrowdTruth or QualityCrowd2,
are tailored to specific domains (col-
lecting gold data for machine learn-
ing and video quality assessment,
respectively).

Comparing Features
Table 1 (see p. 54) describes the selected
platforms applying the dimensions and
subdimensions of analysis introduced
earlier. We also add a “public avail-
ability” dimension to the analysis, to
reflect if and how an approach can be
tried out and tested. To better highlight
commonalities and differences, we
group the approaches according to the
paradigm of their process definition
language (the suborder doesn’t follow
any temporal or functional order):

•	 In the imperative, textual approach,
a person (the crowdsourcer) writes
code telling how the process is
executed. The specific notations
used are Scala, a JavaScript-like
language, or a proprietary lan-
guage (Dog).

•	 For the imperative, visual approach,
a person models how to execute the
process visually using graphical
abstractions. The concrete nota-
tions are BPMN extensions, BPMN-
like notations, or custom notations.

•	 In the declarative approach, a per-
son defines what should be pro-
cessed or obtained as an output.
The SQL or spreadsheet formulas
are examples of notations used.

•	 For the configuration approach, a
person fills configuration proper-
ties that set up a predefined process
logic. In this case, the crowd-
sourcer is typically guided through
the configuration by a wizard.

As for task support, the most-used
crowd provider is Mechanical Turk
(MTurk), which is, however, restricted
to crowdsourcers from the US only;
CrowdFlower doesn’t have this restric-
tion. Some approaches self-manage
their own crowd. CrowdSearcher pro-
poses an alternative interpretation
and also supports deploying tasks on
Facebook, which adds extra oppor-
tunities such as access to people who
wouldn’t use conventional crowd-
sourcing platforms (such as teenagers)
and volunteer work by people in the

Crowdsourcing Processes: A Survey of Approaches and Opportunities

MaRCh/aPRIl 2016 53

crowdsourcer’s own social network.
CrowdComputer, given its roots in busi-
ness process management (BPM) that
focuses on coordinating human work,
also supports assigning tasks to individ-
uals (such as an expert) via a conven-
tional BPM engine. Crowd management
features are only scarcely supported and
mostly focus on worker preselection,
bonus payments, and approval or rejec-
tion of results. Machine tasks come in
different flavors: the imperative, textual
approaches allow the crowdsourcer to
write his or her own scripts; the visual
approaches support reusable modules
such as Web services; the declarative
approaches are limited to their envi-
ronment’s native capabilities; and the
configuration approaches may provide
for customizable, built-in machine tasks
(such as for data management).

From the control flow perspective,
all the platforms support automated
task instantiation. Given their impera-
tive nature, both the textual and the
visual approaches support most of the
control flow features; control flow
support by the declarative and con-
figuration approaches is platform-spe-
cific. Sequential execution is supported
by all except AskSheet (spreadsheet
functions are evaluated in parallel).
Parallel execution is also more plat-
form-specific. Decision points come
either as if-statements in imperative,
textual approaches and AskSheet,
graphical gateways in the imperative,
visual approaches, or adaptation rules
in CrowdSearcher. There are no explicit
decision points in Turkomatic, where
the workers decide at runtime whether
to split a task or execute it. Iterative
execution isn’t supported in platforms
without decision points. Subprocesses
are only weakly supported; if sup-
ported, they’re either reusable func-
tions (imperative, textual approaches),
BPMN processes (CrowdComputer), or
Python scripts (CrowdForge).

Regarding data management, all
platforms support the hosting of data,
except CrowdComputer, which only
manages data references. While this

requires the crowdsourcer to manage
the actual data himself, it reduces data
transfer and lets the crowdsourcer
protect data that’s sensitive (such
as images with nudity) or subject to
local regulations (such as healthcare
data). CrowdLang and CrowdForge
pass data by value; CrowdComputer
and AskSheet pass data by reference;
the other approaches use direct data
flows. Data splitting and aggregat-
ing logics are either built-in opera-
tors, custom crowd tasks, or coded
in the underlying process definition
language.

Development support for task design
comes in different flavors: manual, auto-
matic, wizard-based, or predefined tasks.
Manual design asks the crowdsourcer,
for instance, to develop HTML-based
Web forms (CrowdComputer) or XML
task definitions (CrowdForge). AutoMan
is instead able to automatically gener-
ate task user interfaces out of an SQL
query and the affected table schemas.
A wizard-based design is proposed by
CrowdSearcher, while Turkomatic and
AutoMan are examples of platforms that
support only predefined text editing and
voting tasks. Task deployment is gener-
ally automatic; CrowdComputer asks the
crowdsourcer to host task implementa-
tions, which might also require manual
intervention.

Also, for quality control, we iden-
tified four main approaches: rating
(a crowd task is used to rate work of
another task); voting (a crowd task is
used to collect preferences for results
of another task); consensus (new results
are accepted until at least two or more
results match); and control questions
(extra questions, for which the correct
answers are known, are injected into
a crowd task to evaluate a worker).
Automan stands out in this context: it
lets the crowdsourcer define an overall
budget and a target confidence level for
the results and automatically manages
the necessary pricing, approval, and
rejection of tasks.

As for the availability of the
approaches, four out of 11 platforms

are open source projects, but only two
are actually deployed online and ready
for use; six platforms aren’t available
at all. In this respect, it’s interesting
to note that all the approaches are
research prototypes. We’re aware that
companies such as CrowdFlower and
Workfusion deploy and run crowd-
sourcing processes on behalf of their
enterprise customers at a daily basis.
Workflows, CrowdFlower’s internal
platform for crowdsourcing processes,
is also available for enterprise custom-
ers; however, the commercial offering
is still fairly limited, if non-existent.
This could be an indication that the
goals and effectiveness of platforms
for crowdsourcing processes aren’t yet
clear and crisp enough for the market.

Discussion and Outlook
The selection of crowdsourcing
approaches discussed in this article
shows that a diverse and growing eco-
system of sophisticated solutions already
exists. As usual with automation instru-
ments, their usefulness in practice is a
tradeoff between how often a process
is repeated (for example, to test differ-
ent crowdsourcing settings) and how
easy it is to use the instrument (com-
pared to manual crowdsourcing). If not
in their current form (stand-alone plat-
forms), we expect that eventually — after
the initial prototypes introduced in this
article — support for crowdsourcing pro-
cesses will percolate into and enhance
existing crowdsourcing platforms, as is
already happening with CrowdFlower
Workflows.

We further discussed our analysis
with Lukas Biewald, CEO of Crowd-
Flower (the company operates as both
crowd provider and crowdsourcer on
behalf of its key customers), so as to
jointly identify some of the challenges
that the crowdsourcing community
will have to approach next to foster
tools for crowdsourcing processes.
Here are our thoughts.

Integration. The prevalence of propri-
etary notations for process definition

Spotlight

54 www.computer.org/internet/ IEEE INTERNET COMPUTING

risks to make integration with other
computing environments cumbersome.
Textual approaches (except AutoMan:
Scala) are especially hard to integrate
into other programming environments;
the same holds true for the visual
approaches (except for CrowdCom-
puter: BPMN) and the configuration-
based approaches. Only the declarative
approaches seem well-integrated into
their host environments (databases and
spreadsheets). However, many of the

surveyed approaches are equipped with
APIs that can be programmed and
leveraged on for integration from the
outside.

Quality control. The supported tech-
niques to control the quality of the
results produced by the crowd are
still rather limited, and quality is con-
trolled at the granularity of individual
crowd tasks only. More complex qual-
ity control logics (for example, provid-

ing quality that guarantees the ability
to raise exceptions and to dynamically
compensate for low quality) or logics
that control quality at the granular-
ity of entire crowdsourcing processes
(being able, for example, to maximize
the quality of outputs while at the same
time keeping a given budget and time
restrictions) still require more research.

Adaptive process execution. Crowd-
sourcing usually requires a significant

Table 1. Analysis of crowdsourcing platforms for crowdsourcing processes.

TurKit AutoMan Jabberwocky CrowdComputer CrowdLang CrowdWeaver CrowdDB AskSheet Turkomatic CrowdForge CrowdSearcher

Definition
language

Paradigm Imperative,
textual

Imperative,
textual

Imperative,
textual

Imperative,
visual

Imperative,
visual

Imperative,
visual

Declarative Declarative Declarative Configuration Configuration

Notation JavaScript-like Scala Dog BPMN extension* BPMN-like Custom modeling
language

Extended SQl Google Spreadsheet
formula

– Wizard for config, Python
for custom processes

Wizard plus
adaptation rules

Task
support

Crowd provider MTurk MTurk Self Self, BPM engine MTurk CrowdFlower MTurk MTurk MTurk MTurk MTurk, Facebook

Crowd management – approvement
and rejection

Profile-based (expertise,
demographics, groups)
preselection

Profile-based
preselection

– – approvement,
rejection, bonus
payment

– – – –

Machine tasks
definition

Script Script Script Generic Web
services

Generic
machine
tasks

Generic machine
tasks

SQl operations Spreadsheet
functions

– – Data management
operations

Control flow
support

Task instantiation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sequential
execution

✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓

Parallel execution – – ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓

Decison points ✓ ✓ ✓ ✓ ✓ – – ✓ – – ✓

looping/iterative
execution

✓ ✓ ✓ ✓ ✓ – – – – – ✓

Subprocess ✓ ✓ ✓ ✓ – – – – – ✓ –

Data
management
support

Data hosting Data Data Data References Data Data Data Data Data Data Data

Data passing
among tasks

By value By value By value By reference By value Data flow Data flow By reference Self-managed
data flow

By value Data flow

Data splitting,
aggregating

Script Script Script Built-in Built-in Built-in SQl operations Spreadsheet
functions

By crowd By crowd Built-in

Development
support

Task design Manual Predefined Manual Manual automatic Wizard automatic Wizard Predefined Manual Wizard

Task deployment automatic automatic automatic automatic and
manual

automatic automatic automatic automatic automatic automatic automatic

Quality control support Voting Confidence
levels under
given budget

– Custom logics – Control
questions,
consensus

Consensus Rating, consensus Voting Voting Consensus

Public availability Open source Open source – Open source,
deployed online

– – – – – Open source Deployed online

* BPMN = Business Process Model and Notation.

Crowdsourcing Processes: A Survey of Approaches and Opportunities

MaRCh/aPRIl 2016 55

testing and fine-tuning effort for both
individual tasks and entire processes.
Many times, processes are constructed
by running a task, analyzing its out-
put, deciding whether postprocessing
of the data is needed or whether the
next crowd task can be executed, and
so on. This, on the one hand, asks for
novel testing techniques for crowd-
sourcing processes and, on the other
hand, for crowdsourcing processes
that can be started, even if not yet

completely defined, and that can be
refined at runtime — for example, by
adding ad hoc tasks or operations.

Worker selection and training. The
success of crowdsourcing depends
first and foremost on the quality of
work produced, and this, in turn,
depends on the workers’ skills and
abilities. However, the solution isn’t
always about selecting workers with
the necessary skills, though — espe-

cially if, for example, a given skill or
domain knowledge isn’t present at all.
A challenge for future crowdsourcing
practice is therefore to understand
how to train workers for specific
skills, how to motivate them to par-
ticipate in training, how to reward
and certify training, and how to prop-
erly value training in the selection
of workers. These are all advanced
crowd-management aspects that will
require effective answers.

Table 1. Analysis of crowdsourcing platforms for crowdsourcing processes.

TurKit AutoMan Jabberwocky CrowdComputer CrowdLang CrowdWeaver CrowdDB AskSheet Turkomatic CrowdForge CrowdSearcher

Definition
language

Paradigm Imperative,
textual

Imperative,
textual

Imperative,
textual

Imperative,
visual

Imperative,
visual

Imperative,
visual

Declarative Declarative Declarative Configuration Configuration

Notation JavaScript-like Scala Dog BPMN extension* BPMN-like Custom modeling
language

Extended SQl Google Spreadsheet
formula

– Wizard for config, Python
for custom processes

Wizard plus
adaptation rules

Task
support

Crowd provider MTurk MTurk Self Self, BPM engine MTurk CrowdFlower MTurk MTurk MTurk MTurk MTurk, Facebook

Crowd management – approvement
and rejection

Profile-based (expertise,
demographics, groups)
preselection

Profile-based
preselection

– – approvement,
rejection, bonus
payment

– – – –

Machine tasks
definition

Script Script Script Generic Web
services

Generic
machine
tasks

Generic machine
tasks

SQl operations Spreadsheet
functions

– – Data management
operations

Control flow
support

Task instantiation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sequential
execution

✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓

Parallel execution – – ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓

Decison points ✓ ✓ ✓ ✓ ✓ – – ✓ – – ✓

looping/iterative
execution

✓ ✓ ✓ ✓ ✓ – – – – – ✓

Subprocess ✓ ✓ ✓ ✓ – – – – – ✓ –

Data
management
support

Data hosting Data Data Data References Data Data Data Data Data Data Data

Data passing
among tasks

By value By value By value By reference By value Data flow Data flow By reference Self-managed
data flow

By value Data flow

Data splitting,
aggregating

Script Script Script Built-in Built-in Built-in SQl operations Spreadsheet
functions

By crowd By crowd Built-in

Development
support

Task design Manual Predefined Manual Manual automatic Wizard automatic Wizard Predefined Manual Wizard

Task deployment automatic automatic automatic automatic and
manual

automatic automatic automatic automatic automatic automatic automatic

Quality control support Voting Confidence
levels under
given budget

– Custom logics – Control
questions,
consensus

Consensus Rating, consensus Voting Voting Consensus

Public availability Open source Open source – Open source,
deployed online

– – – – – Open source Deployed online

Spotlight

56 www.computer.org/internet/ IEEE INTERNET COMPUTING

This survey is based on the analy-
sis of research papers and hands-

on tests of the available prototypes.
Acknowledging the limitations of this
approach (the level of detail of papers,
impossibility to access prototypes, and
the pace of evolution), we intend to
add a new section on crowdsourcing
processes to the “Crowdsourcing” entry
in Wikipedia (https://en.wikipedia.org/
wiki/Crowdsourcing), enabling every-
body to integrate and extend this anal-
ysis as a community effort.

Acknowledgments
We thank Lukas Biewald (CrowdFlower), Nic-

ola Sambin (SpazioDati), Patrick Minder and

Abraham Bernstein (CrowdLang), Alexander J.

Quinn (AskSheet), and Marco Brambilla (Crowd-

Searcher) for their help.

References
1. J. Howe, Crowdsourcing: Why the Power of

the Crowd Is Driving the Future of Busi-

ness, Crown Publishing Group, 2008.

2. Crowdsourcing Week, “2014 Global Crowd-

sourcing Pulsecheck: 1st Annual Survey

Topline Results,” Slide Share, Apr. 2015; www.

slideshare.net/crowdsourcingweek/2014-

global-crowdsourcing-pulsecheck-1st-

annual-survey-topline-results.

3. G. Little et al., “TurKit: Human Compu-

tation Algorithms on Mechanical Turk,”

Proc. 23rd Ann. ACM Symp. User Inter-

face Software and Technology, 2010,

pp. 57–66.

4. S. Ahmad et al., “The Jabberwocky Program-

ming Environment for Structured Social

Computing,” Proc. 24th Ann. ACM Symp.

User Interface Software and Technology, 2011,

pp. 53–64.

5. M.J. Franklin et al., “CrowdDB: Answering

Queries with Crowdsourcing,” Proc. SIG-

MOD, 2011, pp. 61–72.

6. A. Kulkarni, M. Can, and B. Hartmann,

“Collaboratively Crowdsourcing Workflows

with Turkomatic,” Proc. ACM 2012 Conf.

Computer Supported Cooperative Work,

2012, pp. 1003–1012.

7. A. Kittur et al., “Crowdforge: Crowdsourc-

ing Complex Work,” Proc. 24th Ann. ACM

Symp. User Interface Software and Tech-

nology, 2011, pp. 43–52.

8. M. Marge, S. Banerjee, and A.I. Rudnicky.

“Using the Amazon Mechanical Turk for

Transcription of Spoken Language,” Proc.

Int’l Conf. Acoustics, Speech, and Signal

Processing, 2010, pp. 5270–5273.

9. S. Tranquillini et al., “Modeling, Enacting

and Integrating Custom Crowdsourcing

Processes,” ACM Trans. Web, vol. 9, no. 2,

2015, article no. 7.

10. D.W. Barowy et al., “AutoMan: A Platform

for Integrating Human-based and Digital

Computation,” Proc. ACM Int’l Conf. Object

Oriented Programming Systems Languages

and Applications, 2012, pp. 639–654.

11. P. Minder and A. Bernstein, “CrowdLang —

Programming Human Computation Systems,”

Proc. Web Science Conf., 2012, pp. 209–212.

12. A. Kittur et al., “Crowdweaver: Visually

Managing Complex Crowd Work,” Proc.

ACM 2012 Conf. Computer Supported

Cooperative Work, 2012, pp. 1033–1036.

13. A.J. Quinn and B.B. Bederson, “AskSheet:

Efficient Human Computation for Decision

Making with Spreadsheets,” Proc. 17th

ACM Conf. Computer Supported Coop-

erative Work & Social Computing, 2014,

pp. 1456–1466.

14. A. Bozzon et al., “Pattern-Based Specifica-

tion of Crowdsourcing Applications,” Proc.

Int’l Conf. Web Eng., LNCS 8541, Springer,

2014, pp. 218–235.

Pavel Kucherbaev is a PhD student in the Depart-

ment of Information Engineering and Com-

puter Science at the University of Trento, Italy,

and the European Institute of Technology

Digital program. His research

focuses on quality control and

timeliness of crowdsourcing

micro-tasks. Contact him at

pavel.kucherbaev@unitn.it.

Florian Daniel is a senior research

fellow at the University of

Trento, Italy, and professor at

the Tomsk Polytechnic Uni-

versity, Russia. His research

focuses on crowdsourcing,

Web engineering, mashups,

service-oriented computing,

and business process man-

agement. Daniel has a PhD in

information technology from

Politecnico di Milano. Contact him at florian.

daniel@unitn.it.

Stefano Tranquillini is a postdoctoral researcher in

the Department of Information Engineering

and Computer Science at the University of

Trento, Italy. His main research interests are

in the areas of business process management,

crowdsourcing, and the integration of the

two. Tranquillini has a PhD in information

engineering and computer science from the

University of Trento. Contact him at stefano.

tranquillini@unitn.it.

Maurizio Marchese is an associate professor in

the Department of Information Engineer-

ing and Computer Science at the University

of Trento, Italy, and a director of educa-

tion in the European Institute of Technol-

ogy ICT Labs initiative for the Trento node.

His main research interests are in social

informatics, where he studies how infor-

mation systems can realize social goals,

apply social concepts, and become sources

of information relevant for social sciences

and for analysis of social phenomena. Con-

tact him at maurizio.marchese@unitn.it.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

