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Abstract

Synthesis of DoAll loops is a key aspect of High Level Synthesis since they allow
to easily exploit the potential parallelism provided by programmable devices.
This type of parallelism can be implemented in several ways: by duplicating
the implementation of body loop, by exploiting loop pipelining or by applying
vectorization.

In this paper a methodology for the synthesis of nested irregular DoAll loops
based on outer vectorization is proposed. The methodology transforms the in-
termediate representation of the DoAll loop to introduce vectorization and it
can be easily integrated in existing state of the art High Level Synthesis flows
since does not require any modification in the rest of the flow. Vectorization
is not limited to perfectly nested countable loops: conditional constructs and
loops with variable number of iterations are supported. Experimental results on
parallel benchmarks show that the generated parallel accelerators have signifi-
cant speed-up with limited penalties in terms of resource usage and frequency
decrement.

Keywords: High Level Synthesis, Vectorization, Code Transformations

1. Introduction

Heterogeneous multiprocessor systems are becoming very common in a large
group of embedded system application fields because their heterogeneity allows
to efficiently execute tasks with different characteristics. The parts of the appli-
cation which are characterized by high degree of parallelism are good candidates
to be mapped on programmable hardware devices like Field Programmable Gate
Arrays (FPGA) since their hardware implementation can potentially have very
significant speed-up with respect to software implementation. Design by hand
efficient hardware implementations can be a hard task since requires the knowl-
edge of hardware description languages which is typically a rare expertise. To
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overcome or at least to mitigate this issue, High Level Synthesis [1] has been in-
troduced: it consists of a (semi)-automatic design flow, potentially composed of
several methodologies, that starting from a high level representation of a spec-
ification (e.g., a C/C++ source code implementation) produces its hardware
implementation.

Loop parallelization is one of the most used techniques exploited by High
Level Synthesis to take advantage of the parallelism provided by the hardware
platforms. An important class of loops which are good candidates to be par-
allelized are DoAll loops [2]. These loops are characterized by the absence of
inter-iteration dependences which allows completely independent execution of
different iterations. A parallel hardware implementation of this type of loop
can be obtained by replicating multiple times the module implementing its
body. This type of approach potentially provides good results in terms of per-
formance, but it can significantly increase the resources usage. Moreover, the
obtained speed-up can be partially reduced by the concurrent accesses to shared
resources (e.g., shared memory) performed by the different module replicas. The
contention resolutions can indeed introduce overhead both in terms of delay in
critical path (e.g., for the presence of the arbiter) and of cycles (e.g., because of
the stalls introduced during resources acquisition).

This paper proposes a methodology for High Level Synthesis of DoAll loops
based on vectorization [3] (i.e., introduction of functional units processing vec-
tors of data) to mitigate these problems. This type of approach is the funda-
ments of the architecture of Graphic Processing Units [4] but it can be adopted
also for General Purpose Processors [5]). Applying this type of parallelization in
High Level Synthesis has been proposed in [6], but with significant limitations
to its applicability. In this paper an extension of the methodology is proposed
which removes all the constraints allowing to apply vectorization to DoAll loops
with arbitrary structure. The methodology does not introduce any significant
change to the structure of the Finite State Machine nor to the hardware accel-
erator interface, so it can be easily integrated in existing High Level Synthesis
design flows provided that they already support synthesis of vector operations.
Its main contributions are the following:

• It extends the applicability of vectorization in High Level Synthesis by
allowing vectorization of arbitrary DoAll loops containing nested loops
with arbitrary number of iterations and presence of conditional constructs
which provoke control divergences.

• It does not require any change to the rest of the High Level Synthesis flow
and it can be applied even if the rest of the High Level Synthesis flow does
not support synthesis of vector instructions at all.

The rest of the paper is organized as follows. Section 2 presents related work
while Section 3 presents the example on which the proposed methodology will
be applied and introduces some preliminary definitions. Section 4 describes the
proposed methodology whose experimental results are presented in Section 5.
Finally Section 6 presents the conclusions of the paper.
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2. Related Work

Synthesis of DoAll loops is a very well studied topic of High Level Syn-
thesis so that many approaches have been proposed to address this problem.
Identification of this type of loops can be performed by means of Polyhedral
methodologies, which allow to analyze and transform source code specifications
exposing the different possibilities of parallelizing a loop. An example of frame-
work aiming at performing such type of transformations is presented in [2]:
this framework is able to systematically identify effective access patterns and
to apply both inter- and intra- block optimizations, exposing several types of
possible parallelization. The framework then evaluates each of them, and when
estimated it as profitable, applies it to the specification source code.

Despite completeness of existing frameworks and methodologies for polyhe-
dral analysis, this type of techniques is still limited to loops with limited irregu-
larity in their structure. For this reason, most of the recent synthesis techniques
for DoAll loops start from applications where parallelism has already been iden-
tified. Papakonstantinou et al. [7] proposed the automatic synthesis of applica-
tions written with CUDA programming model. The proposed approach adopts
FCUDA, a design flow which translates the CUDA code into task-level parallel
C code. This code is then provided as input to AutoPilot which performs the
actual synthesis producing a multi accelerators system. In a similar way, Choi
et al. [8] proposed the automatic synthesis of applications already parallelized,
but they start from applications exploiting pthreads and OpenMP API. In this
case, the methodology directly produces parallel hardware implementations of
the loops which have been annotated with #pragma omp for (they are DoAll
loops with compile time known number of iterations). The parallel architec-
ture is obtained by replicating multiple times the hardware accelerator which
implements the body loop. This approach implies to replicate multiple times
the whole implementation of the loop and requires a processor to synchronize
the execution of the accelerators, with a significant increase of resources us-
age. Castellana et al. [9] proposed an High Level Synthesis design flow which
address the parallelization of parallel loop implementing RDF queries by ex-
ploiting a distributed controller which manages the execution of the different
iterations. In this case, the memory accesses are managed by a memory inter-
face controller which provides dynamic routing of memory accesses and conflicts
management. Tan et al. [10] instead presented an architecture for parallelizing
the execution of pipelined loops which are a superclass of the DoAll loops. In
this type of applications, nested irregular loops (i.e., nested loops with vari-
able number of iterations) can introduce delays because of control divergence.
To mitigate this issue, some stages of the pipeline architecture are selectively
replicated, reducing the stalls to be introduced to maintain the pipeline syn-
chronized. Another approach to solve this type of problems (i.e., the automatic
synthesis of OpenMP annotated applications) was proposed in [11] but targeting
heterogeneous systems implemented onto FPGAs. All these approaches, since
the different accelerator replicas potentially access at the same time to external
data, require to add logic to control resources contention, potentially delaying
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requests performed by the single accelerators and limiting the scalability of the
approach.

Parallelization of complex DoAll loops (i.e., outer loops) by means of vec-
torization was proposed for SIMD processors [3]: loops are vectorized during
compilation for SIMD architectures, even if they contain other loops or con-
ditional constructs, provided that some conditions are met. In particular, the
outer and the inner loops must be countable and all the conditional constructs
must be removable by means of if-conversion. Moreover, ad-hoc analyses and
transformations are applied trying to maximize the number of aligned accesses.
Karrenberg and Hack instead proposed a methodology [5] for the vectorization
of arbitrary code. The methodology is based on the transformations of the
Control Flow Graph as the methodology proposed in this paper and the con-
trol divergence is mainly removed by removing the conditional constructs and
by speculating instructions, potentially increasing the latency of the iterations
of the vectorized loops. On the contrary, in the methodology proposed in this
paper, the control divergence is addressed by exploiting conditional assignments
but trying to preserve the nesting relationships among conditional constructs
without increasing the iteration loop latency.

Vectorization is heavily exploited in Graphical Processing Units [4] whose ar-
chitectures are based on this paradigm. However, even if they contain dedicated
components to efficiently support control divergence, this can still be a signifi-
cant issue for some applications so that compiling optimization techniques (e.g.,
[12]) have been proposed to mitigate the problem. The architecture generated
with the proposed technique in this paper does not exploit any special com-
ponents to manage the control divergence, so that they do not require further
modifications of the rest of the High Level Synthesis flow. Moreover, the code
transformations presented in [5] and in [12] and aimed at reducing the control
divergences, for example by changing how parallel iterations are grouped in vec-
tors, can be easily integrated in the proposed design flow. Both the vectorization
implemented on SIMD processors and on Graphical Processing Units have the
same limitation: the degree of parallelism is fixed. Implementing solutions with
a smaller degree of parallelism can only provide potential advantages in terms of
power consumption. On the contrary, because of their programmabilty, FPGAs
allow to implement vector architectures with an arbitrary degree of parallelism.

Finally, the effects of using vector functional units in High Level Synthe-
sis have already been evaluated in [13]. The authors proposed the adoption
of configurable vector functional units which can implement at the same time
both scalar operations and vector operations. This approach produces better
solutions both in terms of performances and power consumption, showing the
effectiveness of using parallel functional units, but it is limited to the paral-
lelization of some operations of the specification.
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#pragma omp parallel for
for(i = 0; i < RowsNumb; i++) { BB1 1 OuterLoop:

2 i_2 = PHI<0, i_28>;
3 c_3 = i_2 < RowsNumb;
4 if(c_3){

local = 0; BB2 5 local_5 = 0;
rl = RowLength[i]; 6 rl_6 = RowLength[i_2];
if(rl){ 7 c_7 = rl_6 != 0;

8 if(c_7) {
j=0; BB3 9 j_9 = 0;
while(j < rl); { BB4 10 InnerLoop:

11 j_11 = PHI<j_9,j_18>
12 local_12 = PHI<local_5, local_16>
13 c_13 = j_11 < rl_6;
14 if(c_13) {

local += Matrix[i][j]; BB5 15 t_15 = Matrix[i_2][j_11];
16 local_16 = local_12 + t_15;

j++; 17 j_17 = j_11 + 1;
} 18 goto InnerLoop;

}
} }
else { else {

if(old_row[i]>0) { BB6 19 t_19 = old_row[i_2];
20 c_20 = t_19 > 0;
21 if(c_20){

local = old_sum[i]; BB7 22 t_22 = old_sum[i_2];
23 local_23 = t_22;

} }
BB8 24 local_24 = PHI<local_5, local_23>;

} }
avg[i] = local/rl; BB9 25 local_25 = PHI<local_12, local_24>;

26 t_26 = local_25/rl_6;
27 avg[i_2] = t_26;
28 i_28 = i_i2 + 1;

} 29 goto OuterLoop;
}

BB10 /* After the loop*/

Figure 1: Example of parallel loop and corresponding compiler intermediate representation.

3. Preliminaries

This section presents the code of the parallel loop which will be used in the
rest of the paper to show an example of application of the proposed methodol-
ogy and some preliminary definitions which are used in the description of the
proposed methodology. The code of the parallel loop is shown in Figure 1: its
number of iterations is not fixed (NumRows is a variable) and it contains a nested
loop whose number of iterations is also variable (RowLength(i)) and depends
on the particular iteration i of the outer loop.

The methodology does not work directly on the source code of the appli-
cations to be synthesized but on an intermediate representation which must
satisfies the following properties:

• it must adhere to the Static Single Assignment (SSA) Form [14]: each
scalar variable must be assigned only once in the code.

• complex instructions must be decomposed in a sequence of simpler in-
structions.
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Figure 2: The Control Flow Graph of loop of example of Figure 1. The feedback edges are
dashed.
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Figure 3: The Control Dependence Graph of loop of example of Figure 1.
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The right part of Figure 1 reports the intermediate representation of the
considered example. The intermediate representation is in SSA form: for exam-
ple, the variable local has been replaced with local_5, local_12, local_16,
local_23, local_24, and local_25 each of which is assigned by only one in-
struction. The for and the while instructions have been expanded in combi-
nation of if, goto, and label. Finally complex instructions which cannot be
directly synthesized on a single functional unit have been split into multiple
instructions. For example instruction avg[i] has been expanded in a division
(t_26 = local_25/rl_6) and in a store (avg[i_2] = t_26).

The code just presented will be used in the following sections to show the ap-
plication of the proposed methodology, while in this section is exploited to show
which kind of information can be extracted from the intermediate representation
of a code. In particular, the information is:

• Control Flow Graph (CFG) [15]: a directed graph CFG = (BBs,ECFG),
which is an abstract representation of the paths (i.e., the sequences of
branches) that might be traversed during the execution of the code. A
Control Flow Graph is said to be Structured [16] if the corresponding
program can be written using only simple condition branches (if) and
single exit loop (while without break) without any jump to arbitrary
position (goto). The Control Flow Graph of Figure 1, which is shown in
Figure 2, is structured.

• Feedback Edges [17]: the edges which close cycles in Control Flow Graph.
In the example BB5 − BB4 and BB9 − BB1 are feedback edges. For
the sake of simplicity in the rest of the paper only reducible loops are
considered (i.e., loops with a single entry point).

• Headers: the entry points of reducible loops. In the example, the headers
are BB1 and BB4.

• Landing Pads: the destination basic blocks of branches which exit from
loops. In the example they are BB9 and BB10.

• OutDegree(BBv): the number of outgoing edges of vertex BBv. In the
example the OutDegree of BB1, BB2, BB4, and BB6 is 2 while the
OutDegree of all the remaining basic blocks is 1.

• Control Dependence Graph (CDG) [18], a directed graph CDG = (BBs,
ECDG), which represents the control dependences of the basic blocks. For
example BB6 controls BB7.

• Controller(BBv): the BBu which controls the execution of BBv, i.e.,
(BBu, BBv) ∈ ECDG. In a structured CFG the controller of each basic
block is unique. For example the Controller of BB7 is BB6.

• Condition(BBv): if BBb ends with a conditional construct, the condition
of it. For example Condition(BB2) is c_7.
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• EndIf(BBv): given a BBu ending with a conditional construct and which
is not a loop Header, the immediate post dominator [15] of BBu, i.e., the
first basic block in which all the paths crossing BBv reconverge. In the
example EndIf(BB2) is BB9 and EndIF(BB6) is BB8.

• Then(BBv): given a basic block BBv which ends with a conditional con-
struct if(cond), the successor of BBv when cond is evaluated to true.
In the example Then(BB1) is BB2, Then(BB2) is BB3, Then(BB4) is
BB5, and Then(BB6) is BB7.

• Else(BBv): given a basic block BBv which ends with a conditional con-
struct if(cond), the successor of BBv when cond is evaluated to false. In
the example Else(BB1) is BB10, Else(BB2) is BB6, Else(BB4) is BB9,
and Else(BB6) is BB8.

• ThenBBs(BBv): given the basic blocks BBv, the set of BBi such that
there is a path from ThenBB(BBv) to BBi in CDG (i.e., the set of basic
blocks controlled by Then(BBv). Then(BBb) is considered part of this
set. For example ThenBBs(BB2) is BB3, BB4, and BB5.

4. Proposed Methodology Flow

The proposed methodology aims at synthesizing a parallel hardware accel-
erator by means of outer loop vectorization integrated in High Level Synthesis.
A fixed number P of iterations of the loop is coupled and merged so that the
execution of an iteration of the transformed loop corresponds to the execution
of P iterations of the original loop. Each copy will be executed sequentially, but
the different copies will be executed in parallel and in a completely synchronized
way. P identifies the degree of introduced parallelism: different loops can be
parallelized with different degrees of parallelism and different implementations
of the same loop can be obtained by varying its degree of parallelism.

The vectorization is obtained by modifying the intermediate representation
of the specification during the High Level Synthesis flow. The methodology
only exploits the possibility of a High Level Synthesis flow of synthesizing vector
variables and vector functional units: differently from GPU implementation [19]
special hardware support to control the vector execution is not required. The
scheduling of the memory accesses is fully deterministic and it is completely
computed at this time. For this reason, the proposed methodology does not
require complex memory controller to arbitrate the parallel memory accesses
as in [8], [10], [9]. Moreover, in principle it is possible to exploit the proposed
methodology even if the rest of the flow does not support vectorization at all.

Differently from the methodology presented in[6], the only requirement is
that the loop to be optimized must be a DoAll loop (i.e., all iterations can be
executed in parallel). No further preconditions about the loop are required: the
number of its iterations can be not multiple of the degree of parallelism and it can
contain conditional constructs and irregular loops (i.e., loops with variable num-
ber of iterations). Allowing the presence of conditional constructs in the parallel
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loop implies to allow control divergences: the different elements of the vector
execution can require the execution of different basic blocks which are in mutual
exclusion. For example, in the code of Figure 1, if P is 2, RowLength[0] == 0,
and RowLength[1] != 0, the execution of the first two iterations, which are
merged by vectorization, diverges since it requires to execute BB3 and BB6 which
are in mutual exclusions. In the following, it will be shown how the intermediate
representation is modified to address this issue.

The proposed methodology flow is composed of these steps:

1. Generation of Intermediate Representation: the intermediate representa-
tion which will be manipulated by the proposed methodology is generated.

2. DoAll loop analysis: the intermediate representation is analyzed to iden-
tify DoAll loops.

3. Control Flow Graph Linearization: the Control Flow Graph [15] of the
loops to be parallelized is transformed to remove mutual exclusions in
execution of basic blocks.

4. Guard Conditions Computation: for each basic block of DoAll loops, the
Guard Condition associated with it is computed.

5. Instructions Predication: each instruction which cannot be speculated is
transformed in a predicated instruction.

6. Conditional Assignments Insertion: the code to correctly manage data in
case of control divergence is added.

7. Instructions classification: each instruction of the loops is analyzed to
identify if it is a control construct and, if not, if it has to be transformed
in a vector instruction or in a set of scalar instructions.

8. Instructions transformation: instructions which control the execution of
loops are transformed to support parallel execution of iterations; other
instructions are transformed in vector instructions or in sets of scalar
instructions according to how they have been classified.

9. Synthesis: the transformed loops are synthesized by means of High Level
Synthesis flow.

In the following each of these steps will be detailed and its application to the
example of Figure 1 will be shown.

4.1. Generation of Intermediate Representation

The intermediate representation which will be exploited in the design flow
is generated. The intermediate representation must have the properties which
have been described in Section 3: SSA form and absence of complex instructions.
Note that most of the state of the art High Level Synthesis tools (e.g., [8], [9],
[20]) already adopt an internal intermediate representation which satisfies these
requirements.

4.2. DoAll loop analysis

The intermediate representation is analyzed to identify DoAll loops. How
this analysis is performed is out of the scope of this paper: all state of the art
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techniques such as polyhedral analyses [21] can be exploited. However, since
not all the DoAll loops can be actually identified by static analyses, loops which
have to be parallelized by means of vectorization can be directly annotated by
the designer with annotations like OpenMP pragma simd [22].

The outmost loop of Figure 1 has been annotated with OpenMP pragma
simd to be synthesized with the proposed methodology.

4.3. Control Flow Graph Linearization

The presence of basic blocks whose execution is in mutual exclusion poten-
tially prevents the vectorization of a loop since the destination of a branch for
different parallel iterations grouped in the same vector can be different. To
overcome this issue, the Control Flow Graph is linearized ([5], [12]): the graph
is transformed in such a way that basic blocks which were in mutual exclusions
are now connected by a directed path. For example, the then and the else blocks
of a if instruction are executed in sequence.

Before applying the linearization, the Control Flow Graph is transformed to
make it structured. Note that the Control Flow Graph of an intermediate rep-
resentation can be unstructured even if the starting code is structured. Some of
the possible causes are the presence of short-circuit conditions and the compiler
optimizations. If the intermediate representation contains unstructured Control
Flow subgraphs, they are transformed by applying the technique described in
[12]: the basic blocks of the unstructured subgraph are topological sorted and
then transformed in a sequence of basic blocks. To guarantee that only the
correct subset of these basic blocks is executed, a new basic block is associated
with each of them to control their execution. Structured subgraphs contained in
unstructured subgraphs are not modified in this phase, but they are considered
as they were atomic nodes.

After that the starting Control Flow Graph has been transformed in a struc-
tured graph, linearization can be applied. Differently from techniques presented
in [5] and [12], the linearization applied in this methodology flow does not flatten
all the basic blocks of a loop in a single sequence. On the contrary, the hier-
archy of nested conditional constructs is preserved: linearization is only locally
applied to group of subgraphs controlled by the same basic block.

The details of how linearization is performed are described by Algorithm 1.
For the sake of simplicity it is assumed that the then block of a conditional
construct is not empty. If a then basic block does not satisfy this condition,
then and else are switched and the condition of the conditional construct is
negated.

All the basic blocks of the Control Flow Graph (line 1) are analyzed looking
for basic blocks ending with conditional constructs (line 2). Conditional con-
structs which determine the exit from the loops (line 5) have to be ignored as
well as conditional constructs without else block (line 11). On the contrary sub-
graphs corresponding to if(cond) ThenBB else ElseBB has to be restructured
as if(cond) ThenBB if(not cond) ElseBB. This is obtained by removing the
edges BB-ElseBB and the edges from the ThenBBs(BB) subgraph to EndIfBB
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Algorithm 1: Linearization

input: CFG
1 foreach BB ∈ BBs do
2 if OutDegree(BB) < 2 then
3 Continue

4 end
5 if IsExitLoop(BB) then
6 Continue

7 end
8 ThenBB = Then(BB)
9 ElseBB = Else(BB)

10 EndIfBB = EndIf(BB)
11 if ElseBB == EndIfBB then
12 Continue

13 end
14 newBB = CFG.AddNegBlock(BB)
15 CFG.AddEdge(BB, newBB)
16 CFG.RemoveEdge(BB, ElseBB)
17 CFG.AddEdge(newBB, EndIfBB)
18 CFG.AddEdge(newBB, ElseBB)
19 foreach SourceBB ∈ InEdges(EndIfBB) do
20 if SourceBB ∈ ThenBB(BB) then
21 CFG.RemoveEdge(SourceBB, EndIfBB)
22 CFG.AddEdge(SourceBB, NewBB)

23 end

24 end
25 FixPhis(newBB)
26 FixPhis(EndIfBB)

27 end

(lines 16 and 21). Then the newly added basic block (i.e., newBB - the basic
block containing if(not cond)) has to be inserted (line 14) and connected with
BB (line 15) and the last basic blocks of the ThenBBs(BB). Finally the PHIs
of newBB and of EndIfBB has to be fixed to update the reaching definitions from
the different basic blocks. At end a structured Control Flow Graph without
mutual exclusions is obtained.

A further transformation is performed on the Control Flow Graph to simplify
the Conditional Assignments Insertion step. If a landing pad of a loop has more
than one incoming edge, an empty basic block is inserted between the exit of
the loop and the landing pad. This basic block becomes the new landing pad
of the loop.

Figure 4 shows the linearized Control Flow Graph of the example of Figure
1 while Figure 5 shows the corresponding intermediate representation. BB11
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Figure 4: The linearized Control Flow Graph of the example of Figure 1

12



BB1 1 OuterLoop:
2 i_2 = PHI<0, i_28>;
3 c_3 = i_2 < RowsNumb;
4 if(c_3) {

BB2 5 local_5 = 0;
6 rl_6 = RowLength[i_2];
7 c_7 = rl_6 != 0 {
8 if(c_7) {

BB3 9 j_9 = 0;
BB4 10 InnerLoop:

11 j_11 = PHI<j_9,j_18>
12 local_12 = PHI<local_5, local_17>
13 c_13 = j_11 < rl_6;
14 if(c_13) {

BB5 15 t_15 = Matrix[i_2][j_11];
16 local_16 = local_12 + t_15;
17 j_17 = j_11 + 1;
18 goto InnerLoop;

}
BB12 /* empty */

}
BB11 30 local_30 = PHI<local_5, local_12>;

31 c_31 = ! c_7;
32 if(c_31) {

BB6 19 t_19 = old_row[i_2];
20 c_20 = t_19 > 0;
21 if(c_20) {

BB7 22 t_22 = old_sum[i_2];
23 local_23 = t_22;

}
BB8 24 local_24 = PHI<local_5, local_23>;

}
BB9 25 local_25 = PHI<local_30, local_24>;

26 t_26 = local/rl_6;
27 avg[i_2] = t_26;
28 i_28 = i_2 + 1;
29 goto OuterLoop;

}
BB10 /* After the loop */

Figure 5: The intermediate representation of the example of Figure 1 after linearization. The
added and modified instructions are highlighted.
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g(BB1) =PHI<true,g(BB9)> g(BB7) = g(BB6)∧ c_20

g(BB2) = g(BB1)∧ c_3 g(BB8) = g(BB11)∧ c_31

g(BB3) = g(BB2)∧ c_6 g(BB9) = g(BB1)∧ c_3

g(BB4) =PHI< (g(BB3)∧c_7,g(BB5)> g(BB11) = g(BB1)∧ c_3

g(BB5) = g(BB4)∧ c_13 g(BB12) = g(BB2)∧ c_7

g(BB6) = g(BB11)∧ c_31

Table 1: Guards of the basic block of example of Figure 5.

has been added and instruction 32, which is a conditional construct with the
opposite condition of instruction 8, has been inserted into it. Moreover PHI 30
has been added and PHI 25 has been fixed to correctly manage the propagation
of different definitions of local. Finally, since the new landing pad BB11 has
two incoming edges, a new empty basic block BB12 is inserted between BB4
and BB12 becoming the new landing pad.

4.4. Guard Conditions Computation

In this step, a Guard Condition [23] for each basic block is computed. A
Guard Condition is a boolean expression which specifies if the instructions of
the corresponding basic block have to be executed or not. Differently from [23]
and [5] the predicates are not exploited to completely remove control constructs
from the parallel loop. These expression will indeed be used in the following
steps as operand of predicated instructions and to correctly manage reaching
definitions.

To compute the guards, the basic blocks of the DoAll loop and of the nested
loops are analyzed in topological order. The guard g(BBi) of a basic block BBi

is:

• if BBi is the header of the parallel loop, g(BBi)=PHI<true, g(BBj)>
where BBj is (are) the source(s) of the feedback edges of the loop.

• if BBi is the header of a loop nested in the parallel loop, g(BBi=PHI<cond,

g(BBj)> where BBj is (are) the source of the feedback edges of the loop
and cond = g(Controller(BBi)) ∧ Condition(Controller(BBi)).

• if BBi is not an header, g(BBi) = g(Controller(BBi) ∧ Condition(Controller(BBi)).

Note that the guards can be computed as described because the Control
Flow Graph is structured and linearized. Computation of guards in case of
arbitrary Control Flow Graphs is more complex.

The guards for the basic blocks of the code of Figure 5 are listed in Table 1.
The intermediate representation of the example of Figure 1 enriched with guard
computation is reported in Figure 6. The instructions for computing the guards
have been reported without any optimizations for the sake of readability.
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BB1 1 OuterLoop:
33 gBB1 = PHI<true, gBB9>
2 i_2 = PHI<0, i_28>;
3 c_3 = i_2 < RowsNumb;
4 if(c_3) {

BB2 34 gBB2 = gBB1 && c_3;
5 local_5 = 0;
6 rl_6 = RowLength[i_2];
7 c_7 = rl_6 != 0 {
8 if(c_7) {

BB3 35 gBB3 = gBB2 && c_7;
9 j_9 = 0;

BB4 10 InnerLoop:
36 gBB4 = PHI<gBB2 && c_7, gBB5>
11 j_11 = PHI<j_9,j_18>
12 local_12 = PHI<local_5, local_17>
13 c_13 = j_11 < rl_6;
14 if(c_13) {

BB5 37 gBB5 = gBB4 && c_13;
15 t_15 = Matrix[i_2][j_11];
16 local_16 = local_12 + t_15;
17 j_17 = j_11 + 1;
18 goto InnerLoop;

}
BB12 38 gBB12 = gBB2 && c_7;

}
BB11 30 local_30 = PHI<local_5, local_12>;

39 gBB11 = gBB1 && c_3;
31 c_31 = ! c_7;
32 if(c_31)

{
BB6 40 gBB6 = gBB11 && c_31;

19 t_19 = old_row[i_2];
20 c_20 = t_19 > 0;
21 if(c_20) {

BB7 41 gBB7 = gBB6 && c_20;
22 t_22 = old_sum[i_2];
23 local_23 = t_22;

}
BB8 24 local_24 = PHI<local_5, local_23>;

42 gBB8 = gBB11 && c_31;
}

BB9 25 local_25 = PHI<local_30, local_24>;
43 gBB9 = gBB2 && c_3;
26 t_26 = local/rl_6;
27 avg[i_2] = t_26;
28 i_27 = i_2 + 1;
29 goto OuterLoop;

}
BB10 /* After the loop */

Figure 6: Intermediate representation of example of Figure 1 enriched with guards computa-
tion (highlighted instructions).
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4.5. Instructions Predication

The vectorization of the basic blocks which have to be conditionally executed
implies the execution of instances of instructions which would not be performed
in the non vectorized code. While the effects of arithmetic instructions can be
nullified by introducing conditional assignments as it will be shown in the next
section, the effects of other types of instructions cannot be easily reverted. For
this reason, the instructions with side effects (e.g., function calls and stores) are
predicated: a boolean expression is associated with the instruction specifying if
that instruction has to be actually executed or not. In particular, the predicate
to be associated with an instruction is the guard condition computed in the
previous section. This flag will be then transformed into a mask during the
vectorization.

The instructions with the side effects are not the only to be predicated. Also
load instructions for example can require to be predicated: the vectorization can
introduce an access to a not allocated memory addresses potentially provoking
stalling of the hardware implementation. Ad-hoc analysis techniques such as
out of bound analyses can help in reducing the number of loads that have to
be predicated, but this analysis is out of the scope of this paper. Note that
in the proposed methodology the predication does not imply the removal of
any conditional construct nor the speculation of the predicated instructions.
The predication indeed is introduced to selectively prevent the execution of
some elements of vector instructions because of the control divergences. In
Section 4.9 it will be shown how the proposed methodology can be exploited
even if the rest of the High Level Synthesis flow does not support synthesis of
predicated instructions.

The intermediate representation of the example after this step of the method-
ology is reported in Figure 7: the predicated instructions are the store (i.e.,
instruction 27) and all the loads (i.e., instructions 6, 15, 19, 22). For example
if P (degree of parallelism) is 2 and RowsNumb and the size of RowLength are
even, during the last iteration of the vectorized loop instruction 6 will try to
access to RowLength[Rowsnumb-1] and RowLength[Rowsnumb] but the second
element is not allocated in memory. Since this can result in an infinite run of the
generated circuit, since there is not any device memory replying to a memory re-
quest for that address, predication has been added for this type of instructions.
On the contrary, the division operation (26) has not been transformed into a
predicate instruction because usually modules implementing division produced
by High Level Synthesis flows can execute division by 0 without blocking the
computation, even if the produced values will be not significant.

4.6. Conditional Assignments Insertion

The presence of conditional constructs in the loop to be vectorized can cause
control divergence between the different parallelized iterations which have been
grouped together in the same vector (i.e., some iterations execute a given basic
block while other iterations do not). This divergence is not an issue for predi-
cated instructions, since only the actually required instances are executed, but
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BB1 1 OuterLoop:
33 gBB1 = PHI<true, gBB9>
2 i_2 = PHI<0, i_28>;
3 c_3 = i_2 < RowsNumb;
4 if(c_3) {

BB2 34 gBB2 = gBB1 && c_3;
5 local_5 = 0;
6 rl_6 = gBB2 ? RowLength[i_2] : 0;
7 c_7 = rl_6 != 0 {
8 if(c_7) {

BB3 35 gBB3 = gBB2 && c_7;
9 j_9 = 0;

BB4 10 InnerLoop:
36 gBB4 = PHI<gBB2 && c_7, gBB5>
11 j_11 = PHI<j_9,j_18>
12 local_12 = PHI<local_5, local_17>
13 c_13 = j_11 < rl_6;
14 if(c_13) {

BB5 37 gBB5 = gBB4 && c_13;
15 t_15 = gBB5 ? Matrix[i_2][j_11] : 0;
16 local_16 = local_12 + t_15;
17 j_17 = j_11 + 1;
18 goto InnerLoop;

}
BB12 38 gBB12 = gBB2 && c_7;

}
BB11 30 local_30 = PHI<local_5, local_12>;

39 gBB11 = gBB1 && c_3;
31 c_31 = ! c_7;
32 if(c_31)

{
BB6 40 gBB6 = gBB11 && c_31;

19 t_19 = gBB6 ? old_row[i_2] : 0;
20 c_20 = t_19 > 0;
21 if(c_20) {

BB7 41 gBB7 = gBB6 && c_20;
22 t_22 = gBB7 ? old_sum[i_2] : 0;
23 local_23 = t_22;

}
BB8 24 local_24 = PHI<local_5, local_23>;

42 gBB8 = gBB11 && c_31;
}

BB9 25 local_25 = PHI<local_30, local_24>;
43 gBB9 = gBB2 && c_3;
26 t_26 = local/rl_6;
27 if(gBB9) avg[i_2] = t_26;
28 i_27 = i_2 + 1;
29 goto OuterLoop;

}
BB10 /* After the loop */

Figure 7: Intermediate representation of example of Figure 1 with highlighted predicated
instructions.
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requires to correctly manage the merging in reconvergence points of the data
produced by non predicated instructions. In particular, given a basic block with
more than one incoming edge, if this is a reconvergence point for a set of paral-
lelized iterations (i.e., if the previously executed basic block is not the same for
all the parallelized iterations), the vector PHIs contained would have to select
the single elements from the different input vectors. For example, if P = 2
and gBB6 is 0 for the first iteration and 1 for the second iteration, the PHI

25 should take the first element from local_30 and the second element from
local_24. Synthesizing such type of vector PHI would be possible, but it would
require to modify part of the High Level Synthesis flow. A possible different
solution is to replace the PHI with a conditional assignment, but in this case
the intermediate representation would not be anymore in strict SSA form [24]
(i.e., there would be a definition of a SSA which does not dominate its use).
For example local_25 = PHI<local_29, local_24> could be replaced with
local_25 = c_31 ? local_30 : local_24, but in this case the definition of
local_30 (instruction 30) would not dominate its use in instruction 25. For
this reason a different solution has been adopted. Given a piece of code with
this structure:

/*BB_i*/

if(cond)

{

/*BB_j*/

gBB_j = gBB_i && cond;

ssa_2 = ...

}

/*BB_k*/

ssa_0 = PHI<ssa_1, ssa_2>

where ssa_1 is the definition coming from BB_i and ssa_2 is the definition
coming from BB_j, for each PHI of BB_k two transformations are performed.
The first is the insertion of a conditional assignment at the end of BB_j: ssa_3
= gBB_j ? ssa_2 : ssa_1. Then the PHI is updated to use the new definition:
ssa_0 = PHI<ssa_1, ssa_3>. The resulting code is finally:

/*BB_i*/

if(cond)

{

/*BB_j*/

gBB_j = gBB_i && cond;

ssa_2 = ...

ssa_3 = gBB_j ? ssa_2 : ssa_1;

}

/*BB_k*/

ssa_0 = PHI<ssa_1, ssa_3>

In this way the convergence has been implicitly anticipated in the conditional
assignment added in BB_j, but this solution does not require special vector PHI
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nor break the strict SSA form. The PHIs in loop headers have to be modified in a
similar way with the exception of the PHI computing the guard conditionis which
do not require changes. It is worth noting that the proposed methodology flow
until this step does not yet introduce any vector instruction in the intermediate
representation. All the steps performed up to now are preparatory for the actual
vectorization which will be described in 4.8.

The intermediate representation of the example of Figure 1 produced after
this step is shown in Figure 8. The conditional assignment which have been
introduced are the instructions 45, 46, 47, 48 while the modified PHIs are the
instructions 11, 30, 24, and 25.

4.7. Instruction Classification.

During this step of the methodology each instruction which is part of the
DoAll loop or of a nested loop is classified into five different classes:

• Vector instructions: they will be transformed into vector instructions.

• MultiScalar instructions: they will be transformed into P scalar instruc-
tions.

• DoAll loop instructions: they are the instructions that have to be managed
ad hoc in order to control the execution of the vectorized DoAll loop.

• Control instructions: they are the conditional constructs instructions in-
cluded in the DoAll loop.

• Scalar instructions: they will not be transformed.

The reason for which the second class has been introduced depends on how
a vector instruction can be implemented:

1 Single scalar unit, i.e., a single scalar functional unit which executes P
scalar operations in sequence; this is the worst solution in terms of clock
cycles, but the best in terms of area.

2 Single pipeline unit, i.e., a single pipeline functional unit which executes P
scalar operations in pipelined way; for complex operations (i.e., operations
which require more than one cycle) it provides good performances (better
than 1 ) with a slight area increment.

3 Multiple scalar units, i.e., P scalar functional units which execute P scalar
operations in parallel; this is the best solution in terms of clock cycles, but
the worst in terms of area.

4 Vector parallel unit, i.e., a single vector functional unit; it provides the
same performances of 3 but better area savings because of better resource
sharing [25] [26] and smaller controller complexity [27].

If the second class of instructions was not introduced, all the data computation
instructions would be synthesized as 4 , producing the best solution in terms
of performance, but the increment of area with respect to the non parallelized
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BB1 1 OuterLoop:
33 gBB1 = PHI<true, gBB9>
2 i_2 = PHI<0, i_44>;
3 c_3 = i_2 < RowsNumb;
4 if(c_3) {

BB2 34 gBB2 = gBB1 && c_3;
5 local_5 = 0;
6 rl_6 = gBB2 ? RowLength[i_2] : 0;
7 c_7 = rl_6 != 0 {
8 if(c_7) {

BB3 35 gBB3 = gBB2 && c_7;
9 j_9 = 0;

BB4 10 InnerLoop:
36 gBB4 = PHI<gBB2 && c_7, gBB5>
11 j_11 = PHI<j_9,j_45>
12 local_12 = PHI<local_5, local_17>
13 c_13 = j_11 < rl_6;
14 if(c_13) {

BB5 37 gBB5 = gBB4 && c_13;
15 t_15 = gBB5 ? Matrix[i_2][j_11] : 0;
16 local_16 = local_12 + t_15;
17 j_17 = j_11 + 1;
45 j_45 = gBB5 ? j_17 : j_11;
18 goto InnerLoop;

}
BB12 38 gBB12 = gBB2 && c_7;

46 local_46 = gBB12 ? local_12 : local_5;
}

BB11 30 local_30 = PHI<local_5, local_46>;
39 gBB11 = gBB1 && c_3;
31 c_31 = ! c_7;
32 if(c_31)

{
BB6 40 gBB6 = gBB11 && c_30;

19 t_19 = gBB6 ? old_row[i_2] : 0;
20 c_20 = t_19 > 0;
21 if(c_20) {

BB7 41 gBB7 = gBB6 && c_21;
22 t_22 = gBB7 ? old_sum[i_2] : 0;
23 local_23 = t_22;
47 local_47 = gBB7 ? local_23 : local_5;

}
BB8 24 local_24 = PHI<local_5, local_47>;

42 gBB8 = gBB11 && c_21;
48 local_48 = gBB8 ? local_24, local_30;

}
BB9 25 local_25 = PHI<local_30, local_48>;

43 gBB9 = gBB2 && c_30;
26 t_26 = local/rl_6;
27 if(gBB9) avg[i_2] = t_26;
28 i_27 = i_2 + 1;
44 i_44 = gBB9 ? i_27 : i_2;
29 goto OuterLoop;

}
BB10 /* After the loop */

Figure 8: Intermediate representation of example of Figure 1 after conditional assignments
insertion. Highlighted instructions are the changes with respect to the outcome of the previous
step of the methodology.
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BB1 1 S OuterLoop:
33 V gBB1 = PHI<true, gBB9>
2 D i_2 = PHI<0, i_44>;
3 V c_3 = i_2 < RowsNumb;
4 C if(c_3) {

BB2 34 V gBB2 = gBB1 && c_3;
5 V local_5 = 0;
6 M rl_6 = gBB2 ? RowLength[i_2] : 0;
7 V c_7 = rl_6 != 0 {
8 C if(c_7) {

BB3 35 V gBB3 = gBB2 && c_7;
9 V j_9 = 0;

BB4 10 S InnerLoop:
36 V gBB4 = PHI<gBB2 && c_7, gBB5>
11 V j_11 = PHI<j_9,j_45>
12 V local_12 = PHI<local_5, local_17>
13 V c_13 = j_11 < rl_6;
14 C if(c_13) {

BB5 37 V gBB5 = gBB4 && c_13;
15 M t_15 = gBB5 ? Matrix[i_2][j_11] : 0;
16 V local_16 = local_12 + t_15;
17 V j_17 = j_11 + 1;
45 V j_45 = gBB5 ? j_17 : j_11;
18 S goto InnerLoop;

}
BB12 38 V gBB12 = gBB2 && c_7;

46 V local_46 = gBB12 ? local_12 : local_5;
}

BB11 30 V local_30 = PHI<local_5, local_46>;
39 V gBB11 = gBB1 && c_3;
31 V c_31 = ! c_7;
32 C if(c_31)

{
BB6 40 V gBB6 = gBB11 && c_31;

19 M t_19 = gBB6 ? old_row[i_2] : 0;
20 V c_20 = t_19 > 0;
21 C if(c_20) {

BB7 41 V gBB7 = gBB6 && c_20;
22 V t_22 = gBB7 ? old_sum[i_2] : 0;
23 V local_23 = t_22;
47 V local_47 = gBB7 ? local_23 : local_5;

}
BB8 24 V local_24 = PHI<local_5, local_23>;

42 V gBB8 = gBB11 && c_31;
48 V local_48 = gBB8 ? local_24, local_47;

}
BB9 25 V local_25 = PHI<local_30, local_48>;

43 V gBB9 = gBB2 && c_3;
26 M t_26 = local/rl_6;
27 M if(gBB9) avg[i_2] = t_26;
28 D i_27 = i_2 + 1;
44 V i_44 = gBB9 ? i_27 : i_2;
29 S goto OuterLoop;

}
BB10 /* After the loop */

Figure 9: Classification of instructions of example of Figure 8. V are the Vector instructions,
M are the MultiScalar instructions, D are the DoAll loop instructions, C are the Control
instructions, S are the Scalar instructions.

21



solution would be too large. Moreover some operations cannot be implemented
in this way (e.g., non aligned memory accesses).

On the contrary, the introduction of the second class of instructions provides
more flexibility to the High Level Synthesis design flow because allows to per-
form outer loop vectorization of loops containing instructions which cannot be
vectorized. Moreover the choice between 1 , 2 and 3 allows to explore differ-
ent possible trade-offs between area and performance in the produced solutions.

Note that classifying an instruction as Vector or MultiScalar determines only
if an instruction will be synthesized as 4 or not. Since the choice between 1 ,
2 and 3 does not concern vector functional units, this can be demanded to
the rest of the High Level Synthesis design flow. The proposed methodology
classifies as MultiScalar all the instructions which cannot be implemented by
vector functional units (e.g., predicated load and stores) and all the instructions
that require more than one clock cycle to be executed.

The classification of the instruction of example of Figure 1 is shown in Fig-
ure 9. In particular, all the predicated instructions have been classified as Multi-
Scalar instructions since vector functional units which implement these types of
operations (predicated load and predicated store) are not available. Instruction
27 which is a division has been classified as Multiscalar instruction since it takes
more than one clock cycle to be executed.

4.8. Instructions Transformation

In this step the actual vectorization of the DoAll loop is performed. Different
types of transformations are applied to the different classes of instructions iden-
tified in the previous phase. Before applying the instruction transformations,
all the scalar SSAs defined inside the DoAll loop, included all the induction
variables, have to be transformed in vector variables. Aggregate variables (i.e.,
structures and arrays) whose scope is in the DoAll loop have to be vectorized
as well by transforming them in vector of the original type. Finally, all the
remaining variables have not to be modified. In the following the vectorized
variables will be identified by overlining them.

In the presented example, all the variables but RowsNumb, RowLength, Matrix,
old_row, old_sum, and avg have to be vectorized.

How to transform the DoAll instructions depends on the characteristics of
the parallel loop. For the sake of brevity, it will be presented only how to
transform DoAll instructions in case of for loops, but the proposed methodology
can be applied even with different patterns (e.g., while loops). Note that the
presented transformations are applied also to uncountable loops, i.e., when the
number of iterations is not known at design time. The transformations to be
applied are the following:

• the primary induction variable is initialized with the values that it takes
during first the P iterations of the loop by modifying the values in the PHI
in the header of the DoAll loop; in the presented example it is initialized
to {0,1}.
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• increment instruction is transformed in a vector instruction; the added
constant is the increment of the sequential loop multiplied by P ; in the pre-
sented example i_27 = i_2 + 1 is transformed in i_27 = i_2 + {2,2}

since P = 2.

If secondary induction variables are present, further changes can be necessary.
Control instructions have to be transformed to support the execution of

conditioned basic block when at least one of the element of the vector execution
requires it. The conditional constructs have to be transformed in such way that
their condition is true if at least one of the element of the vector version of the
original condition is true. For example if(c_31) has to be modified in such way
that the new condition is true if at least one of the element of the vector version
of c 31. This is obtained by creating a new condition c 31[0] || c 31[1].

Each Vector instruction is transformed in a single vector instruction which
directly writes a whole vector variable. Finally, each MultiScalar instruction is
transformed in P scalar instructions, each of which writes a different element of
a vector variable or performs a scalar store.

Figure 10 shows the final intermediate representation after that vectorization
has been applied.

4.9. Synthesis

After that the previous steps of the proposed methodology flow have been
applied, state-of-the-art High Level Synthesis flows can be applied. Since the
transformed intermediate representation contains vector instructions, the de-
sign flows have to support synthesis of vector functional units. If the intermedi-
ate representation contains a predicated instruction not supported by the High
Level Synthesis flow, this can still be synthesized by reintroducing an ad-hoc
basic block containing it. For example given an intermediate representation
containing some conditional stores:

/* Code before predicated stores */

predicate[0] ? array[0] = value[0] : (void) 0;

predicate[1] ? array[1] = value[1] : (void) 0;

/* Code after predicated stores

if the High Level Synthesis does not support the synthesis of such type of in-
structions, the intermediate representation can be modified by inserting two
new basic blocks each one containing one of the two stores:

/* Code before predicated stores */

if(predicate[0])

{

/* New basic block */

array[0] = value[0];

}

if(predicate[1])

{
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BB1 1 OuterLoop:

33 gBB1 = PHI<true, gBB9>

2 i 2 = PHI<{0,1}, i 44>;

3 c 3 = i 2 < RowsNumb;

4 if(c 3[0] || c 3[1]) {

BB2 34 gBB2 = gBB1 && c 3;

5 local 5 = {0,0};

6A rl 6[0] = gBB2[0] ? RowLength[i 2[0]] : 0;

6B rl 6[1] = gBB2[1] ? RowLength[i 2[1]] : 0;

7 c 7 = rl 6 != 0

8 if(c 7[0] || c 7[1]) {

BB3 35 gBB3 = gBB2 && c 7;

9 j 9 = {0,0};
BB4 10 InnerLoop:

36 gBB4 = PHI<gBB3 && c 7 , gBB5>

11 j 11 = PHI<j 9,j 45>

12 local 12 = PHI<local 5, local 17 >

13 c 13 = j 11 < rl 6;

14 if(c 13[0] || c 13[1]) {

BB5 37 gBB5 = gBB4 && c 13;

15A t 15[0] = gBB5[0] ? Matrix[i 2[0]][j 11[0]] : 0;

15B t 15[1] = gBB5[1] ? Matrix[i 2[1]][j 11[1]] : 0;

16 local 16 = local 12 + t 15;

17 j 17 = j 11 + {1, 1};

45 j 45 = gBB5 ? j 17 : j 11;
18 goto InnerLoop;

}

BB12 38 gBB12 = gBB2 && c 7;

46 local 46 = gBB12 ? local 12 : local 5;
}

BB11 30 local 30 = PHI<local 5, local 12>;

39 gBB11 = gBB1 && c 3;

31 c 31 = ! c 7;

32 if(c 31[0] || c 31[1]) {
{

BB6 40 gBB6 = gBB11 && c 31;

19A t 19[0] = gBB6[0] ? old_row[i 2[0]] : 0;

19B t 19[1] = gBB6[1] ? old_row[i 2[1]] : 0;

20 c 20 = t 19 > 0;

21 if(c 20[0] || c 20[1]) {

BB7 41 gBB7 = gBB6 && c 20;

22A t 22[0] = gBB7[0] ? old_sum[i 2[0]] : 0;

22B t 22[1] = gBB7[1] ? old_sum[i 2[1]] : 0;

23 local 23 = t 22;

47 local 47 = gBB7 ? local 23 : local 5;
}

BB8 24 local 24 = PHI<local 5, local 23>;

42 gBB8 = gBB11 && c 31;

48 local 48 = gBB8 ? local 24, local 30;
}

BB9 25 local 25 = PHI<local 30, local 24>;

43 gBB9 = gBB1 && c 3;

26 t 26 = local/rl 6;

27A if(gBB9[0]) avg[i 2[0]] = t 26[0];

27B if(gBB9[1]) avg[i 2[1]] = t 26[1];

28 i 27 = i 2 +{2, 2};

44 i 44 = gBB9 ? i 27 : i 2;
29 goto OuterLoop;

}
BB10 /* After the loop */

Figure 10: Intermediate representation of example of Figure 1 after application of vectoriza-
tion.
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/* New basic block */

array[1] = value[1];

}

/* Code after predicated stores */

The same type of transformation can be applied to whatever type of predicated
instructions.

The methodology assumes also that vector variables are synthesized as regis-
ters: if vector variables were mapped on BRAM, the methodology is still appli-
cable, but the memory accesses overhead would completely nullify the benefits
of the vectorization. It is worth noting that the rest of the High Level Synthesis
flow can still modify the structure of the Control Flow Graph and the contents
of the different basic blocks. After that the proposed methodology has been
applied, indeed is not required anymore to maintain the Control Flow Graph
structured, so Control Flow Graph optimizations and instructions speculation
can be applied.

5. Experimental Results

The proposed methodology has been implemented in Bambu [28], a modular
framework for High Level Synthesis developed at Politecnico di Milano. Since
the identification of the DoAll loops is out of the scope of this paper, this type
of analysis has not been implemented: benchmarks have to be annotated by
hand with a #pragma omp simd [22] to be vectorized. The degree of parallelism
of each loop can be specified by the designer by means of the safelen clause
associated with each #pragma omp simd.

The proposed methodology has been verified on a set of parallel benchmarks
distributed with Legup [8]. In OpenMP benchmarks each #pragma omp for has
been replaced with #pragma omp simd, while pthread benchmarks have to be
re-factorized to replace pthread parallelism with #pragma omp simd. Different
degrees of parallelism have been considered: 1 (absence of parallelism), 2, 3, 4
and 8. The degree of parallelism of 3 in particular has been chosen to show the
application of the proposed methodology when the degree of parallelism is not a
multiple of the number of iterations of the DoAll loop. For each degree and for
each benchmark a different hardware accelerator is produced by Bambu. The
tool has been configured with default options: the level of optimization is O2,
input and output data are stored on dual port block RAM memories and the
target frequency is 100MHz. Two target platforms have been considered: the
Xilinx Virtex 7 xc7vx690t and the Altera Stratix-V 5SGXEA7N2F45C1.

The solutions produced by High Level Synthesis have been finally synthe-
sized with Xilinx Vivado [20] and Altera Quartus II [29]. The synthesis results
obtained after place and route on different benchmarks with different degrees
of parallelism are presented in Table 2 and Table 3. The hardware accelera-
tors for Mandelbrot with parallel degree of 8 have not been generated since the
number of iterations of the DoAll loop contained in it is 4. The synthesis of
Blackschoels on the Stratix V with P = 3,4,8 was not been possible because
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Benchmark P Area(Ratio) Cycles(Speedup) FMax (Ratio) Product Ratio
LUT FF Pairs DSPs

Add 1 133 (1) 0 20018 (1) 429.37 (1) 1
2 118 (0.88) 0 10010 (2.00) 364.56 (0.85) 0.51
3 352 (2.64) 0 7511 (2.66) 294.55 (0.69) 1.45
4 118 (0.88) 0 5008 (4.02) 421.94 (0.98) 0.21
8 127 (0.95) 0 2507 (8.02) 430.66 (1.00) 0.12

Blackscholes 1 10755 (1) 71 (1) 798351 (1) 102.18 (1) 1
2 17022 (1.58) 154 (2.16) 431548 (1.84) 107.33 (1.05) 0.81
3 23993 (2.23) 232 (3.26) 530518 (1.50) 102.22 (1.00) 1.47
4 29129 (2.70) 343 (4.83) 237724 (3.35) 100.98 (0.99) 0.81
8 52619 (4.89) 846(11.92) 261382 (3.05) 99.12 (0.97) 1.66

Boxfilter 1 3809 (1) 0 266947 (1) 106.41 (1) 1
2 7221 (1.90) 0 139979 (1.91) 114.32 (1.07) 0.92
3 10449 (2.74) 0 131974 (2.02) 114.32 (1.07) 1.25
4 13967 (3.67) 0 87989 (3.03) 107.77 (1.01) 1.20
8 28649 (7.52) 0 61994 (4.30) 106.35 (1.00) 1.73

Dotproduct 1 839 (1) 3(1) 12027 (1) 115.83 (1) 1
2 1067 (1.27) 6 (2) 9019 (1.33) 110.29 (0.95) 1.00
3 1411 (1.68) 9 (3) 9020 (1.33) 106.11 (0.92) 1.37
4 1346 (1.60) 12(4) 7514 (1.60) 107.33 (0.93) 1.06
8 1817 (2.17) 24 (8) 6774 (1.77) 107.43 (0.93) 1.31

Hash 1 994 (1) 0 192027 (1) 144.72(1) 1
2 1715 (1.73) 0 96019 (2.00) 135.32 (0.94) 0.92
3 2230 (2.24) 0 99020 (1.93) 133.72 (0.92) 1.26
4 2274 (2.29) 0 66017 (2.91) 127.99 (0.88) 0.88
8 3539 (3.56) 0 57024 (3.37) 121.07 (0.87) 1.22

Histogram 1 2585 (1) 0 158752 (1) 140.08 (1) 1
2 3729 (1.44) 0 88029 (1.80) 120.61 (0.86) 0.92
3 5148 (1.99) 0 80935 (1.96) 118.62 (0.84) 1.20
4 6004 (2.32) 0 54102 (2.93) 117.44 (0.84) 0.94
8 11156 (4.31) 0 36140 (4.39) 108.50 (0.77) 1.29

Mandelbrot 1 1053 (1) 12(1) 852239 (1) 114.32 (1) 1
2 1761 (1.62) 24(1) 426123 (2.00) 112.57 (0.98) 0.82
3 2669 (2.53) 36(1) 434317 (1.96) 110.40 (0.97) 1.30
4 3033 (2.88) 48(1) 217162 (3.92) 106.59 (0.93) 0.77
8 - - - - -

Table 2: Experimental Results of applying the proposed methodology targeting Xilinx Virtex
7 xc7vx690t.

the device does not contain enough DSPs to implement the vectorized version
of the benchmarks. The area results refer only to the synthesized accelerators
since the produced parallel hardware architectures, differently from the ones
presented in [8], do not require any external processor nor external controller to
be integrated in a system. Memory utilization has not been reported since it is
independent from the degree of parallelism.

The results obtained on the different platforms are similar, so that the pro-
posed methodology can actually be considered as applicable to different families
of FPGAs. Moreover the results show how it is effectively able to save resources
with respect to the complete duplication of loop implementation: the area of
the produced solutions indeed growths less that the parallel degree. In a single
case (with P = 3 and Stratix-V as target), the growth in terms of resources
of the parallelized accelerator is more than linear. On the opposite side, the
maximum area saving has been obtained for Add on the Xilinx board where
the number of used LUT FF pairs is almost the same for most of the parallel
degrees. When the parallel degree grows, the number of LUTs does not grow
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Benchmark P Area(Ratio) Cycles(Speedup) FMax Product Ratio
ALMs DSPs

Add 1 59 (1) 0 20018 (1) 594.88 (1) 1
2 58 (0.98) 0 10010 (2.00) 578.03 (0.97) 0.51
3 123 (2.08) 0 7511 (2.66) 465.98 (0.78) 1.00
4 75 (1.27) 0 5008 (4.00) 619.20 (1.04) 0.31
8 76 (1.28) 0 2507 (7.98) 599.16 (1.01) 0.16

BlackSchoels 1 6301 (1) 78 (1) 1460847 (1) 93.60 (1) 1
2 9729 (1.54) 173 (2.20) 780908 (1.87) 108.94 (1.16) 0.71
3
4 Not Available
8

Boxfilter 1 2186 (1) 0 322947 (1) 127.93 (1) 1
2 4102 (1.88) 0 167979 (1.92) 117.36 (0.92) 1.06
3 6752 (3.08) 0 152974 (2.11) 119.66 (0.94) 1.55
4 8554 (3.91) 0 101989 (3.16) 113.22 (0.89) 1.39
8 16492 (7.54) 0 68994 (4.68) 113.55 (0.89) 1.81

Dotproduct 1 375 (1) 2 (1) 12027(1) 127.06 (1) 1
2 473 (1.26) 4 (2.00) 9019 (1.33) 131.56 (1.04) 0.91
3 640 (1.71) 6 (3.00) 9020 (1.33) 128.83 (1.01) 1.27
4 589 (1.57) 8 (4.00) 7517 (1.60) 137.01 (1.08) 0.90
8 854 (2.27) 16 (8.00) 6774 (1.78) 124.61 (0.98) 1.30

Hash 1 880 (1) 0 192027 (1) 135.70 (1) 1
2 1405 (1.60) 0 96019 (2.00) 132.36 (0.98) 0.81
3 1678 (1.91) 0 99020 (1.93) 137.70 (1.01) 0.98
4 1637 (1.86) 0 66017 (2.91) 137.38 (1.01) 0.63
8 2137 (2.43) 0 57024 (3.37) 124.64 (0.91) 0.79

Histogram 1 1343 (1) 2 (1) 158752 (1) 140.92(1) 1
2 2094 (1.56) 4 (2.00) 88029 (1.80) 129.13 (0.92) 0.94
3 2893 (2.15) 6 (3.00) 80935 (1.96) 131.13 (0.93) 1.17
4 3439 (2.56) 8 (4.00) 54102 (2.93) 134.10 (0.95) 0.92
8 7189 (5.35) 16 (8.00) 36140 (4.39) 114.31 (0.81) 1.50

Mandelbrot 1 389 (1) 6 (1) 852239 (1) 140.34 (1) 1
2 549 (1.41) 12 (2.00) 426123 (2.00) 136.35 (0.97) 0.72
3 873 (2.24) 18 (3.00) 434317 (1.96) 136.57 (0.97) 1.17
4 884 (2.27) 24 (4.00) 217162 (3.92) 134.41 (0.96) 0.60
8 - - - - -

Table 3: Experimental Results of applying the proposed methodology targeting Altera Stratix-
V 5SGXEA7N2F45C1.

because their are better exploited (i.e., more of their inputs are used): in par-
ticular the number of 6 inputs LUTs is increased while the number of 2 inputs
LUTs is decreased. The resource saving however is not effective on the usage
of DSPs: their number growths linearly in Dotproduct and Mandelbrot bench-
mark while in case of Blackscholes benchmark with target the Virtex 7 device,
their number grows even more than linearly since Bambu has more difficulties
in sharing DSPs among operations in produced accelerators.

Differently from [6], the speed-up obtained on Boxfilter and on Histogram is
not more than linear (i.e., larger than parallel degree) since there is not the gain
due to the if-conversions which are not required by this methodology. On the
contrary, for most of the benchmarks the real speed-up grows less than parallel
degree. There are two main causes of this reduction: the considered memory
architecture and the control divergence. The first cause consists of adopting
a memory architecture which has only two ports which limits the exploitation
of parallelism since limits to two the number of simultaneous memory accesses.
Memory partitioning, like the approach considered in [9], can mitigate in a sen-
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sible way this issue but requires an ad-hoc memory architecture. The effect of
the limit on the number of ports is more sensible when comparing the results of
P = 2 and P = 3. In this case, the benefit of the increment of the paralleliza-
tion can be nullified by the requirement of serializing the third load or store
when memory operations cannot be executed in a vectorized way. Moreover,
these added load and store operations introduce a penalty in terms of execution
latency even if their predicate is false (i.e., they have not to be really executed).

For most of the benchmarks there is not any significant difference in terms
of frequency when vectorization is applied, even by considering P = 8. For
some combinations of benchmark, target and P the frequency of the vectorized
accelerator is even better than the frequency of the scalar version (e.g., Boxfilter
on Virtex 7 with P = 2 and P = 3). In a single case (Add benchmark imple-
mented on Xilinx board with P = 3) the vectorization reduces the frequency
by 31%, but the obtained frequency is still much larger than target, so it can
be expected that the synthesis tool has not fully optimized the designed accel-
erator. It is worth noting that the generated accelerators meet almost always
the target frequency (100MHz). The timing constraint is violated by a single
accelerator (Blackscholes on Virtex 7 with P = 8), but the obtained frequency
(99.12MHz) is very close to the target.

There is a gain in terms of area-delay product for most of the benchmarks
with P = 2 and P = 4 up to 40% (Mandelbrot with P = 4 on the Stratix V)
since the performances grow faster than resource utilization because of sharing
and logic synthesis optimizations applied to the generated accelerators. On the
contrary, because of the performances limitations due to memory accesses, the
solutions with P = 3 presents worse results. The accelerators characterized by
P = 8 are penalized in terms of area-delay product by the limited speed-up due
to the effects of control divergence, which are more evident on them than on
the other accelerators. The area-delay gain on the Add benchmark is very large
because of its characteristics: the area of vectorized versions does not grow (or
grows in a very limited way) because the logic synthesis optimizations allow to
use the same number of LUTs exploiting more their inputs. On the contrary,
the speed-up grows almost in a linear way, so the combination of these two
effects is a linear decrement of the area-delay product.

Finally, it has to be highlighted that direct comparison of the results of the
proposed methodology and the results presented in [8] is not possible, not only
for the different analyzed benchmarks but also for the different types of exper-
imental setup (tool and devices) and types of built architectures. Differently
from [8] indeed, the parallel accelerators built with the proposed methodology
do not require to be coupled with a controller processor.

6. Conclusions

In this paper a methodology for the synthesis of parallel accelerators based
on vectorization has been presented. This methodology is able to synthesize by
means of outer loop vectorization also irregular loops: nested loops, conditional
constructs and operations which cannot be vectorized are supported. Since it
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transforms high level specifications, it can be easily integrated in existing design
flows if they support synthesis of vector functional units. Experimental results
show the effectiveness of the proposed methodology: the parallel produced so-
lutions present a significant speed-up with a limited resource usage growth with
respect to non vectorized solutions.
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