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Abstract—This paper addresses control input design for a
discrete time linear system. The goal is to satisfy a reachability
specification and, at the same time, minimize the number of
inputs that need to be set (influential inputs). To this purpose,
we introduce an appropriate input parametrization so that,
depending on the parameter values, some of the inputs act as
control variables, while the others are treated as disturbances
and can take an arbitrary value in their range. We then enforce
the specification while maximizing the number of disturbance
inputs. Two approaches are developed: one based on an open
loop scheme and one based on a compensation scheme. In the
former, we end up solving a linear program. In the latter, the
parametrization is extended so as to allow the influential inputs to
depend on the non-influential ones, and the problem is reduced to
a mixed integer linear program. A comparison between the two
approaches is carried out, showing the superiority of the latter.
Possible applications to system design and security of networked
control systems are briefly discussed in the introduction.

I. INTRODUCTION

The goal of system verification is to evaluate if a system
behaves as desired. Commonly, the desired behavior is referred
to as a specification and is associated to the evolution in time
of some variables of the system (state or output). In partic-
ular, reachability and safety verification problems have been
extensively studied in the literature. They consist of checking
if the state can reach a desired target set (reachability) or can
keep evolving within some given safe set (safety), and possibly
designing the control input enforcing such behavior.

In this work, we address a finite horizon reachability ver-
ification problem for a system with multiple control inputs.
Among the possible solutions to the problem, we look for the
one that corresponds to the maximal number of non-influential
inputs, i.e., inputs that can take an arbitrary value in their range
without compromising the satisfaction of the specification. The
presence of this requirement makes the verification problem
non standard and calls for novel techniques to tackle it.

Detecting non-influential inputs can be particularly useful in
system design, when one has to verify the correct functioning
of some complex system, subject to multiple inputs. In this
context, it is common to model an undesired behavior of
the system in terms of a specification and then to detect
if there is some assignment of the inputs that causes that
behavior. Based on the identified assignment (the witness of
the malfunctioning), one can make a diagnosis of the faulty
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behavior and appropriately redesign the system. A possible
approach to identify a witness is model checking, [1], which
relies on a model of the system to explore in some efficient
way all its possible evolutions. For complex systems with
many inputs, it is typically the case that only a limited number
of inputs is influential and hence the number of witnesses is
infinite. Model checking techniques would then provide one of
the many witnesses, chosen out of the pool without any explicit
criterion, which makes it difficult to understand the actual
cause of the undesired behavior and to improve the design. To
ease the diagnosis of the system misbehavior, it is hence useful
to identify the inputs that are actually influential. This is the
goal of our paper, which offers a novel approach with respect
to model checking to the detection of inputs assignments
satisfying a finite horizon reachability specification, in that
it contemporarily fulfills the requirement of identifying the
influential inputs.

The problem of designing the inputs of a dynamical system
so as to make its evolution satisfy some specification has been
extensively treated in literature, and effective solutions have
been developed for a variety of classes of systems. Many of
these techniques are simple derivation of the ones developed in
the model checking context. For a large class of specifications,
the problem of verifying if a discrete system S satisfies a
specification can be reduced to a reachability test on the
enlarged system obtained by making S interact with the test
automaton (see [2], [1], [3]) that translates that specification.
In the case of finite state space the resulting reachability test
can then be efficiently tackled by means of model checkers,
like SPIN [4], UPPAAL [5], NuSMV [6], to name a few. For
continuous state systems, these model checking techniques
are not directly applicable, due to the uncountable number
of values that the state can take. For this reason, alternative
methods have been proposed in literature. Some of them rely
on the computation (either exact or approximated) of the
reachable set of the system under test, so as to consider in a
compact way all its infinite possible evolutions (see [7] [8], [9],
[10], [11], [12], [13]). Other common approaches are based on
abstracting the continuous system to a discrete one (by means,
for example, of a bisimulation [14]), and then analyzing the
latter via model checking techniques (see [15], [16], [17]).
Many of these methods can be extended to the class of hybrid
systems, i.e., systems with interacting discrete and continuous
dynamics (see e.g. [18], [9], [19]).

Our resolution approach for the detection of non-influential
inputs has been strongly influenced by the optimization-based
works in [9] and [13]. Indeed, optimization appears to be
the most suitable approach to address the requirement of
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maximizing the number of non-influential inputs. We focus
on the class of linear systems and formulate an approach that
rests on an appropriate parametrization of the inputs so that the
influential inputs are treated as actual control variables and the
non-influential ones as disturbances taking an arbitrary value
in their range. We then enforce the reachability specification
while maximizing the number of disturbance inputs. Related
work can be found in [20] and [21], where the aim is to
appropriately set the range of some pre-specified inputs so
as to make them non-influential.

We start by presenting a technique based on the optimization
of an open loop control scheme, which leads to a linear
program to be solved. This technique was proposed in [22],
and extended in [23] to a class of hybrid systems with a
cascading structure that allows decomposability. The novel
part of this paper consists in the introduction of an alternative
technique inspired by the disturbance compensation scheme
introduced in [24], where we allow the influential inputs to
depend on the non-influential ones, and in a comparative
analysis between the two techniques. Differently from [24],
however, the disturbance here is not an exogenous signal,
but a subset of the control inputs whose cardinality has to
be maximized. We then show that the problem of designing
the compensation scheme that maximizes the number of non-
influential inputs while satisfying a reachability specification
can be solved by means of robust optimization, that, in the
case of polytopic target sets, reduces to a Mixed Integer Linear
Programming (MILP) problem. The comparison between the
open loop scheme and the compensation scheme shows that
both of them can be easily extended to further specifications
than reachability and that the latter scheme outperforms the
former in terms of number of non-influential inputs that are
detected.

Interestingly, the compensation scheme has some potential
for addressing security of networked control systems. In a
typical networked control system the plant is connected to
the controller through a communication network, that carries
the control input and the system output signals. Because the
data channels are usually unprotected, the control system is
vulnerable to threats (see [25], [26]). A typical approach to
minimize the risk is to protect the actuators data channels via
encryption (see [27]), so that the attacker can no longer have
access to the communication channel. Since carrying out the
encryption of many data channels can be expensive, one could
minimize the number of signals that need to be encrypted by
identifying the influential inputs that need to be protected so
as to guarantee the safe operation of the controlled system.
The rest of the paper is structured into two main parts related
to the open loop scheme (Section II) and the compensation
scheme (Section III), which include problem formulation
and resolution. Extensions of both schemes are presented in
Section IV. Section V is devoted to some numerical examples.
Section VI concludes the paper with some final remarks.

II. OPEN LOOP SCHEME

In this section, we propose a solution to the considered input
design problem that rests on an appropriate parametrization of

the input variables as set-valued signals, and show that this
parametrization allows to reformulate the problem as a robust
optimization program. In turn, if the target set is a polytope,
the robust optimization program reduces to an LP problem.

A. Problem formulation and resolution

Our goal is to steer the state x ∈ Rn of a system from
x(0) = x0 to a given convex set Xf ⊂ Rn at some time
T , i.e., x(T ) ∈ Xf . We suppose that x evolves affected by
m scalar control inputs ui, i = 1, . . . ,m, according to the
discrete-time linear dynamics

x(k + 1) = Ax(k) +B1u1(k) + · · ·+Bmum(k). (1)

Inputs ui, i = 1, . . . ,m, take values in the intervals [ui, ui],
i = 1, . . . ,m, and we aim at appropriately design them so
as to satisfy the reachability condition x(T ) ∈ Xf . Among
all the admissible solutions, we look for the one where the
number of inputs that have to be set to some specific value is
minimized, while the others are non-influential and can be set
to an arbitrary value within their range.

We next formulate the input design problem as an opti-
mization problem, where each input ui is treated as a set-
valued signal whose range is maximized while imposing the
reachability specification. To this purpose, let us introduce
the optimization variables βi and ũi, which are respectively a
scalar parameter taking values in [0, 1] (defining the amplitude
of the range of values for input ui) and a single-valued signal
taking values in [ui, ui] (defining the reference value for ui).
For each i = 1, ...,m and k = 0, ..., T − 1, the input ui at
time k is expressed as follows

ui(k) = (1− βi)ũi(k) +
ui + ui

2
βi +

ui − ui
2

βiwi(k), (2)

where wi is a set-valued auxiliary signal taking values in
[−1, 1]. The resulting range for ui(k) is given by

Ri(k) = [ũi(k) + βi(ui − ũi(k)), ũi(k) + βi(ui − ũi(k))],

which entails that ui(k) = ũi(k) when βi = 0, whereas, at
the opposite extreme, ui(k) ∈ [ui, ui] when βi = 1.

Let |C| denote the cardinality of some set C. Then, the
problem of determining the minimum number of influential
inputs and set them to an appropriate value for satisfying the
reachability condition can be rephrased as the following robust
optimization program:

max
{βi∈[0,1],ũi(k)∈[ui,ui],k=0,...,T−1}mi=1

|{i : βi = 1}| (3)

x(T ) ∈ Xf
x(k + 1) = Ax(k) +B1u1(k) + · · ·+Bmum(k)

ui(k) = (1− βi)ũi(k) +
ui + ui

2
βi +

ui − ui
2

βiwi(k)

∀wi(k) ∈ [−1, 1], i = 1, . . .m, k = 0, . . . , T − 1

where the number of βi’s that are set to 1 is maximized, subject
to some constraints representing the reachability condition, the
linear state evolution, and the set-valued parametrization of the
control inputs.

Problem (3) is hard to solve since the cost function and
the bilinear term in the parametrization (2) of input ui make



it non-convex. We can however reduce it to a robust convex
optimization problem. We first need to reparameterize ui in
(2) as follows

ui(k) = uβ,i(k) +
ui + ui

2
βi +

ui − ui
2

βiwi(k), (4)

where uβ,i(k) = (1 − βi)ũi(k) ∈ [(1 − βi)ui, (1 − βi)ui].
Then, ũi(k) can be recovered from uβ,i(k) and βi:

ũi(k) =

{
uβ,i(k)
1−βi if βi ∈ [0, 1)

0 if βi = 1.

Moreover, the range Ri(k) of ui(k) can be expressed as
Ri(k) = [uβ,i(k) + βiui, uβ,i(k) + βiui]. As for the cost
function, maximizing the cardinality of set {i : βi = 1}
coincides with considering vector γ = [γ1 γ2 . . . γm]′ with
γi = 1 − βi and enhancing its sparsity. The sparsity of γ
can be maximized by minimizing the number of its non-zero
elements, i.e., its `0-norm. Given that the `0-norm is non-
convex, we minimize the `1-norm ‖γ‖1 =

∑m
i=1 |1 − βi| in

place of it. Since βi ∈ [0, 1] and, hence, ‖γ‖1 = m−
∑m
i=1 βi,

minimizing ‖γ‖1 is equivalent to maximizing
∑m
i=1 βi, which

is a convex function of βi’s.

Remark 1. The idea of approximating the `0 norm with
the `1 norm is not new, and it is commonly adopted when
looking for a sparse solution to a system of linear equations
with fewer equations than unknowns for, e.g., sparse signal
recovery, image processing, statistical estimation, compressive
sensing, to name a few applications. In general, the `1 norm is
only an approximation to the `0 norm, and in fact reweighted
versions of the `1 norm that better approximate the `0-norm
are presented in [28]. The interested reader is referred to [28]
and the references therein for further details.

We can now formulate the robust optimization program

max
{βi∈[0,1],uβ,i(k),k=0,...,T−1}mi=1

m∑
i=1

βi (5)

x(T ) ∈ Xf
x(k + 1) = Ax(k) +B1u1(k) + · · ·+Bmum(k)

ui(k) = uβ,i(k) +
ui + ui

2
βi +

ui − ui
2

βiwi(k)

(1− βi)ui ≤ uβ,i(k) ≤ (1− βi)ui
∀wi(k) ∈ [−1, 1], i = 1, . . .m, k = 0, . . . , T − 1,

which is convex since x(T ) is linear as a function of the
optimization variables βi and uβ,i, i = 1, . . . ,m, and Xf is
convex.

We next show that (5) reduces to an LP problem when Xf
is a polytope or inner-approximated by a polytope, i.e.,

{x ∈ Rn : Hax ≤ Hb} ⊆ Xf . (6)

To this purpose we introduce some compact notations, i.e.,

U =


u(0)
u(1)

...
u(T − 1)

, Uβ =


uβ(0)
uβ(1)

...
uβ(T − 1)

, W =


w(0)
w(1)

...
w(T − 1)

,

where β = [β1, β2, . . . , βm]′, u = [u1, u2, . . . , um]′, uβ =
[uβ,1, uβ,2, . . . , uβ,m]′, w = [w1, w2, . . . , wm]′.
Then, x(T ) can be written as

x(T ) = ATx0 + BTU, (7)

where BT is obtained by extracting the last n rows of matrix

B =


B 0 0 0
AB B 0 0

...
...

...
...

AT−1B AT−2B . . . B

 , (8)

with B = [B1 B2 . . . Bm]. Also, (4) can be expressed as

U = Uβ + (DW +M)β, (9)

where

DW =

 diag([a1w1(0), . . . , amwm(0)])
...

diag([a1w1(T − 1), . . . , amwm(T − 1)])

 ,
M =

diag([µ1, . . . , µm])
...

diag([µ1, . . . , µm])

 ,
with ai =

ui−ui
2 and µi =

ui+ui
2 , i = 1, . . . ,m.

By plugging expression (9) into (7), and using the inner-
approximation (6), the optimization problem (5) can be rewrit-
ten as the following robust LP problem

max
{U(1−β)≤Uβ≤U(1−β), β∈[0,1]m}

1′mβ (10)

[
HaBT HaBT (DW +M)

] [Uβ
β

]
≤ Hb −HaA

Tx0, (11)

∀W ∈ [−1, 1]mT

where 1m is a column vector of m ones, and

U =

diag([u1, . . . , um])
...

diag([u1, . . . , um])

 , U =

diag([u1, . . . , um])
...

diag([u1, . . . , um])

 .
Problem (10) is a semi-infinite linear program with a finite
number of optimization variables but an infinite number of
constraints due to the fact that constraint (11) has to hold
for all realizations of the set-valued signal W . Solving semi-
infinite optimization problems is generally difficult, [29], [30],
[31], [32]. In the problem at hand, however, this is not the case
since it can be reduced to a finite LP problem, which can be
efficiently solved by means of standard LP solvers like CPLEX
[33].

Proposition II.1. The semi-infinite linear optimization pro-
gram (10) is equivalent to the following finite LP problem

max
{U(1−β)≤Uβ≤U(1−β), β∈[0,1]m}

1′mβ (12)

[
HaBT HaBTM + Ξ

] [Uβ
β

]
≤ Hb −HaA

Tx0,

where

(Ξ)ij = ‖aj [(HaBT )ij , (HaBT )i j+m, . . . , (HaBT )i j+m(T−1)]
′‖1.



Proof: Let us consider the i-th row of constraint (11), i.e.,

(HaBT )iUβ + (HaBTDW )iβ + (HaBTM)iβ

≤ (Hb −HaA
Tx0)i.

The set-valued signal W appears only in the term
(HaBTDW )i β of the left-hand-side of such an inequality.
We then just need to impose that the inequality is satis-
fied for those values of W that maximize (HaBTDW )iβ.
Given that β is non-negative, and that element (HaBTDW )ij
of (HaBTDW )i depends only on the values wj(k), k =
0, 1, . . . , T − 1, of the j-th component of w, we can inde-
pendently maximize each j-th entry of (HaBTDW )i. Since
(HaBTDW )ij = ξ′ij

[
wj(0) . . . wj(T − 1)

]′
, where

ξij = aj [(HaBT )ij , (HaBT )i j+m, . . . , (HaBT )i j+m(T−1)]
′,

we obtain maxW∈[−1,1]mT (HaBTDW )ij = ‖ξij‖1, which
finally leads to the constraint in (12).

III. COMPENSATION SCHEME

In this section, inspired by the disturbance compensation
scheme in [24], we propose an alternative approach to the
input design problem under investigation where the influential
inputs are allowed to depend on the non-influential ones. We
show that the problem of maximizing the number of non-
influential inputs while satisfying a reachability specification
can be solved by means of robust optimization, that reduces
to a MILP problem in the case of a polytopic target set. The
integer component in the MILP problem is represented by
the β’s parameters which are now binary variables setting the
range of an input either to a singleton (β = 0) or to the
full admissible interval (β = 1). The obtained non-influential
inputs are free to be set and can be chosen so as to optimize
some performance criterion. This way, one can obtain a multi-
objective control scheme with prioritized goals: reachability
first, then performance.
The rest of the section is organized as follows. In Section III-A
we formulate the problem for a discrete time linear system and
show how to rephrase it as a MILP problem. In Section III-B
we present a comparative analysis with the open loop with no
compensation scheme proposed in Section II.

A. Problem formulation and resolution

Consider the discrete time linear system (1), where x ∈ Rn
is the state vector and ui ∈ R, i = 1, . . . ,m, are m scalar
control inputs taking values in a bounded set: ui ∈ [ui, ui] ⊂
R, i = 1, . . . ,m. System (1) can be rewritten in the compact
form:

x(k + 1) = Ax(k) +Bu(k) (13)

where u(k) ∈ U = [u, u] ⊂ Rm with u = [u1, u2, . . . , um]′

and u = [u1, u2, . . . , um]′.
As in Section II, our goal is to design the system inputs

so as to steer the state of the system into a target set Xf ⊂
Rn, in some finite time T , while maximizing the number of
non-influential inputs that can take an arbitrary value in their
range while guaranteeing that the reachability specification is
satisfied. Differently from the open-loop scheme in Section
Section II, however, influential inputs are allowed to depend on

non-influential inputs, which entails that the former (control)
inputs can eventually compensate for the latter (disturbance)
inputs. Let M denote the set of all input indexes, i.e., M =
{1, . . . ,m}. The goal is to maximize the cardinality of the
set N ⊆ M of indexes of the non-influential inputs, while
allowing the influential ones to depend on the past values of
the non-influential ones. The problem can be formally stated
as follows:

max
N∈2M, {gi,k:|N |×k→R}k∈{0,...T−1}

i∈M\N

|N | (14)

x(T ) ∈ Xf ,
x(k + 1) = Ax(k) +Bu(k),

ui(k) = gi,k(uj1(0), ... , uj|N|(0), ... , uj1(k−1), ... , uj|N|(k−1)),

i ∈M \N , ∀ujh ∈
[
ujh , ujh

]
, jh ∈ N , h = 1, 2, . . . |N |,

k = 0, . . . , T − 1,

where 2C denotes the power set of set C.
Note that problem (14) reduces to the open loop scheme in
Section II if all functions gi,k : |N |×k → R, i ∈M\N , k ∈
{0, . . . T −1}, are constant and independent of non-influential
inputs. In the general case, problem (14) is intractable because
the optimization has to be performed over all subsets N of
M and over all functions gi,k : |N | × k → R, i ∈ M \ N
and k ∈ {0, . . . T − 1}. Moreover, problem (14) is also semi-
infinite, since the constraint on reaching the target set has to
be satisfied for any possible realization of the non-influential
inputs. We next propose a tractable formulation of problem
(14), which rests on an appropriate linear parametrization of
the gi,k functions.

1) Input parametrization: In order to partition the inputs
into two sets, one grouping together the influential inputs and
the other one the non-influential inputs, we introduce vector
β = [β1, . . . , βm]

′ ∈ {0, 1}m of boolean variables βi, i =
1, 2, . . . ,m, that identify the set to which each input belongs.
In particular, βi is set equal to 1 if input ui is non-influential
and it is set equal to 0 otherwise. The i-th input is composed of
an open loop and a compensation term, and is parameterized
as follows:

ui(k) = γk,i(β) +

k∑
t=0

m∑
j=0

θt,jk,i(β) uj(t), (15)

where γk,i(β) ∈ R is a constant that represents the open loop
component, whereas θt,jk,i(β) ∈ R, t = 0, . . . , k, j = 1, . . . ,m,
are the compensation coefficients that define the dependency of
ui(k) on the inputs samples uj(t), t = 0, . . . , k, j = 1, . . . ,m.

Remark 2. The input parametrization (15) recalls the one
proposed in [24]. There is however a main difference: here
the input does not depend on an exogenous signal acting on
the system, but instead on a subset of the inputs – the set
composed of the non-influential inputs – which is not known
a priori and whose cardinality has to be maximized.

Note that in (15) both the compensation and open loop
terms depend on β. This is needed to force input ui to
either compensate the non-influential inputs (if βi = 0) or be
independent of them (if βi = 1). In particular, we introduce the



following constraints on the dependence of the compensation
coefficients θt,jk,i and the open loop coefficient γk,i from β:

• t < k

−(1− βi)V ≤ θt,jk,i ≤ (1− βi)V
−βjV ≤ θt,jk,i ≤ βjV

}
if j 6= i, (16)

θt,jk,i = 0 if j = i

• t = k

θt,jk,i = 0 if j 6= i, (17)

θt,jk,i = βi if j = i

−(1− βi)V ≤ γk,i ≤ (1− βi)V, (18)

where V is a constant large enough, which can be set based
on the fact that all involved inputs are bounded (see [34]).
It is easy to verify that constraints (16), (17) and (18) jointly
guarantee that: i) if input ui is non-influential (βi = 1), then,
the compensation term and the open loop term in (15) vanish
(see constraints (16) and (18)); ii) if input ui is influential
(βi = 0), its value is determined by a linear combination of
the past values of the non-influential inputs (those inputs uj
with βj = 1), and the open loop term. None of the influential
inputs depends either on any other influential input or on a
synchronous value of the non-influential inputs; and iii) if all
inputs are influential, i.e. βi = 0, i = 1, . . . ,m, no compen-
sation will be performed. Finally, additional constraints are
introduced to enforce the parameterized inputs to belong to
their corresponding bounded interval:

ui ≤ γk,i(β) +

k∑
t=0

m∑
j=0

θt,jk,i(β)uj(t) ≤ ui, (19)

k = 0, . . . , T − 1, i = 1, . . . ,m.

Note that all the constraints introduced so far are linear in the
design parameters β, θt,jk,i, and γk,i.

2) Reformulation as a MILP problem: Problem (14) can be
formulated as:

max
{βi, γk,i, θt,jk,i}

k,t∈{0,...,T−1}
i,j∈{1,...,m}

m∑
i=0

βi (20)

Hax(T ) ≤ Hb

x(k + 1) = Ax(k) +Bu(k)

ui(k) = γk,i(β) +

k∑
t=0

m∑
j=0

θt,jk,i(β) uj(t)

Constraints (16), (17), (18), (19)
∀u(k) ∈ U , k = 0, . . . , T − 1,

where we use the polytopic description or inner approximation
(6) of the target set Xf , and the input parametrization in (15).

The optimization problem (20) is a robust MILP problem,
since x(T ) appearing in the reachability constraint and the
constraints (16), (17), (18), (19) are linear as a function of
the optimization variables, and all constraints have to hold for
any possible value taken by the inputs. Note that imposing the
satisfaction of the constraints for any possible value taken by
all the inputs, both the influential and the non-influential ones,

is consistent with the original problem formulation (14), since
the input parametrization is constructed in such a way so that
only the non-influential inputs are compensated for and hence
appear in the definition of the robust constraints.

Problem (20) is a semi-infinite problem and hence it is
in general not easy to solve. However, we can exploit the
particular structure of (20) to find a solution with a limited
computational effort. To this end, observe first that the input
parametrization in (15) can be written in the compact form

U = ΘU + Γ, (21)

where Γ = [γ′(0), . . . , γ′(T − 1)]
′, and matrix

Θ=


θ0

0 0 . . . 0
...

. . . . . .
...

...
. . . 0

θ0
T−1 . . . . . . θT−1

T−1

with θtk=

 θ
t,1
k,1 . . . 0
... . . .

...
θt,1k,m . . . θt,mk,m


has a lower triangular structure. Constraints in (19) can then
be rewritten as U ≤ ΘU + Γ ≤ Ū , where U = [u′, . . . , u′]

′

and Ū = [u′, . . . , u′]
′. In turn, by plugging (21) in (7) we

obtain x(T ) = ATx0 + BT (ΘU + Γ).
As a result, by properly rearranging terms, problem (20) can
be rewritten as follows:

max
β, Θ, Γ

1′mβ (22)

ZaU ≤ Zb, ∀U ∈ [U, Ū ] (23)
Constraints (16), (17), (18)

where Za, Zb have the following form:

Za =

HaBTΘ
Θ
−Θ

 , Zb =

Hb −HaA
Tx0 −HaBTΓ
Ū − Γ
−U + Γ

 .
(24)

We can now prove the following proposition:

Proposition III.1. Let M = Ū+U
2 and F = Ū−U

2 .
The robust MILP problem (22) is equivalent to the standard
MILP problem:

max
β, Θ, Γ

1′mβ

Ψ + ZaM ≤ Zb (25)
Constraints (16), (17), (18)

where Ψ is defined as a vector with i-th element given by
the F -weighted `1-norm of the i-th row of Za, that is Ψi =∑mT
j=1

∣∣Zai,jFj∣∣.
Proof: By introducing an auxiliary variable W ∈ W =

[−F, F ] and setting U = M +W , the robust constraint (23)
can be equivalently rewritten as:

max
W∈[−F, F ]

ZaW + ZaM ≤ Zb. (26)

The worst case value of the term on the left-hand-side in (26)
is attained on a vertex of W and, since each element of F is
positive, its value is given row-by-row by:

max
W∈[−F, F ]

[Za]iW = ‖ [Za]i diag(F )‖1 = ‖[Za]i‖1,F = Ψi,



where diag(F ) is the square diagonal matrix with vector F
on the diagonal.

Note that with respect to the approach described in Section
II, β is a binary-valued vector and the additional information
on the size of the range on which an input is influential
is lost. Indeed, the parametrization (15) determine a unique
value for the influential inputs, which are interpreted as set-
valued signals as in Section II. However, by introducing
the compensation scheme we can obtain more non-influential
inputs than that with the open loop term only. This is shown in
Section ??, where the compensation and open loop schemes
are compared on a benchmark numerical example.

B. Comparison with the open loop scheme

As for the number of detected non-influential inputs, the
technique proposed in this section leads to better results than
the one proposed in Section II. Given the same specification,
denote with J∗2 the optimal solution of (25), and with J∗1 the
optimal solution of (12) obtained by restricting the β variables
to be binary so that J∗2 and J∗1 represent the number of
non-influential inputs detected by the compensation scheme
approach, and the open loop scheme approach, respectively.

Proposition III.2. J∗2 ≥ J∗1
Proof: If we restrict the β variables in (12) to be binary,

then problems (25) and (12) share the same constraints and
cost function, and differ just in terms of the adopted input
parametrization. The proposition is then easily proved by
noticing that the input parametrization adopted in (25) is richer
than the one in (12), so that the optimal solution of the latter
is always feasible for the former.

Note that the compensation scheme gives better perfor-
mances than the open loop scheme but to the expense of
solving a MILP instead of an LP problem, which is generally
more computationally intensive.

IV. POSSIBLE EXTENSIONS

Both the techniques proposed in Sections II and
III easily extend to the case when system (1) is
time-varying. It suffices to replace matrices AT

and BT in (12) and (24) with
∏T−1
k=0 A

(k) and[∏T−1
k=1 A

(k)B(0)
∏T−1
k=2 A

(k)B(1) . . . B(T−1)
]
, where A(i)

and B(i) denote the matrices of the system at time i.
Interestingly, other specifications besides reachability can
be handled. In particular, the same methodology can be
used in the case of safety specifications where the entire
state evolution of the system has to be confined within
some possibly time-varying polyhedral safe set described by
Ha,kx(k) ≤ Hb,k, k = 1, . . . , T . In this case, one just needs
to replace BT with B, AT with [A′, . . . , AT

′
]
′
, and Ha with

diag([Ha,1, . . . ,Ha,T ]) in (20) and (12), and all results retain
their validity. Clearly, analogous slight modifications can be
used if the specification involves some output or some linear
combination of state and output. Moreover, the approach can
be applied to any specification given by some propositional
logic formula composed by linear clauses on the state or the
output (like, e.g., a reachability specification with two distinct

Fig. 1. Open loop scheme: target set Xf (red) and estimates of maximal
reachable set (green) and reachable set with the designed input ranges (blue).

target sets). To this purpose, one just need to translate the
formula into a set of mixed integer inequalities (see [34]).
Finally, the approach can handle the case when the initial
condition is uncertain and belongs to a box. One has simply
to add a set-valued signal to account for its variability and
incorporate this signal into the robust optimization problem.

V. NUMERICAL EXAMPLES

We next present two examples and compare the performance
achieved with the techniques presented in Sections II and III.
In the both cases, we used CPLEX [33] over YALMIP [35].

1) Synthetic example: Consider system (13) where x ∈ R3

is subject to six scalar inputs (m = 6) taking values in the
following intervals: [u1, u1] = [0.5, 1.5], [u2, u2] = [−1, 1],
[u3, u3] = [−1, −0.5], [u4, u4] = [−0.5, 0.2], [u5, u5] =
[−2, 3], [u6, u6] = [1, 4], and matrices A and B are given
by:

A=

 0.7 0.9 0.5
−0.2 0.8 −0.1

0 0.2 0.1

, B=

 5 1 1 1 2 1
1 2 −3 2 −1 −1

0.1 0 1 4 −1 −3

.
Let Ik denote the identity matrix of dimension k. State x has
to be steered to the target set

Xf =
{
x ∈ R3 :

[
I3
−I3

]
x ≤

[
50 10 5 −2 17 8

]′ }
,

at time T = 50, starting from x(0) = [1 1 1]′.
The open loop scheme of Section II has been applied by

solving (12), and the following optimal values for the β’s
parameters have been obtained: β∗1 = 0.33, β∗2 = 0, β∗3 = 1,
β∗4 = 1, β∗5 = 0, β∗6 = 0. This means that u3 and u4 are non-
influential inputs (β∗3 = β∗4 = 1), whereas inputs u2, u5 and u6

have to be precisely set to the corresponding optimal sequences
{u∗β,i(k)}T−1

k=0 , i = 2, 5, 6 since β∗2 = β∗5 = β∗6 = 0. As for in-
put u1, it can be set on a range R∗1(k), k = 0, . . . , T−1, whose
size is one third of its entire admissible range (β∗1 = 0.33) and
is specified by {u∗β,1(k)}T−1

k=0 and β∗1 . Values are not reported
here, due to space limitations.

Figure 1 represents the target set Xf and an approximation
of the maximal reachable set, i.e., the set of points that can



be reached at time T by applying all input sequences in UT
from x(0) = [1 1 1]′. The approximation is obtained by first
gridding UT and then determining x(T ) for some randomly
chosen grid points. Indeed, considering all points of the input
grid would lead to too many points plotted and would not add
any additional insight. The plot shows that just a small subset
of the maximal reachable set is within Xf , and in fact one
has to limit the admissible range of some of the inputs so as
to satisfy the reachability condition. As expected, the set of
values x(T ) reached from x(0) = [1 1 1]′ when applying all
input sequences in the computed optimal ranges is contained
within Xf (see Figure 1). Not surprisingly, the more the target
set become tighter, the more the inputs become influential.
This is confirmed by the results obtained with the (smaller)
target set

Xf =
{
x ∈ R3 :

[
I3
−I3

]
x ≤

[
50 10 5 −2 17 0

]′ }
.

In this case, the solution to (12) is β∗1 = 0.35, β∗2 = 0, β∗3 = 1,
β∗4 = 0, β∗5 = 0, β∗6 = 0, so that input u4 becomes now
influential. Figure 2 represents the set of values x(T ) reached
from x(0) = [1 1 1]′ when applying the admissible input
sequences of the computed optimal solution. Computation
were performed on a laptop equipped with an Intel Core i5
2.4 GHz processor and took less than 1 second for both cases.
In this example, the compensation scheme returns the same
number of non-influential inputs as the open loop scheme.

2) Benchmark example: In [36], the non-linear fourth order
model

ḣ1(t) = − a1

A1

√
2gh1(t) +

a3

A1

√
2gh3(t) +

γ1k1

A1
v1(t)

ḣ2(t) = − a2

A2

√
2gh2(t) +

a4

A2

√
2gh4(t) +

γ2k2

A2
v2(t)

ḣ3(t) = − a3

A3

√
2gh3(t) +

(1− γ2)k2

A3
v2(t) (27)

ḣ4(t) = − a4

A4

√
2gh4(t) +

(1− γ1)k1

A4
v1(t)

of a quadruple tank system is considered, and the problem
of keeping the tanks levels h = [h1 h2 h3 h4]′ below a
given threshold value by acting on two pumps through the
input v = [v1 v2]′ is addressed. The model is linearized in
correspondence of two operating points P− and P+ obtained
by feeding the non-linear system (27) with the constant inputs
v̄− = [3, 3]′ and v̄+ = [3.15, 3.15]′, respectively. In the lin-
earized dynamics ẋ(t) = Acx(t)+Bcu(t), x and u = [u1 u2]′

represent the difference between h, v and their corresponding
equilibrium values, and matrices Ac and Bc are given by

Ac =


− 1
τ1

0 a3
a1τ3

0

0 − 1
τ2

0 a4
a2τ4

0 0 − 1
τ3

0

0 0 0 − 1
τ4

 Bc =


γ1k1
a1

0

0 γ2k2
a2

0 (1−γ2)k2
a3

(1−γ1)k1
a4

0

,
whose coefficients are reported in Table I for both the operat-
ing points P− and P+.

The linearized system is discretized in time by applying a
constant input over each sampling interval of duration Ts = 4.

Fig. 2. Tighter specification: target set Xf (red) and estimates of maximal
reachable set (green) and reachable set with the designed input ranges (blue).

τ1 τ2 τ3 τ4 a1,3 a2,4 γ1 γ2 k1 k2

P− 62 90 23 30 28 32 0.7 0.6 3.33 3.35

P+ 63 91 39 56 28 32 0.43 0.34 3.14 3.29
TABLE I

COEFFICIENTS OF THE LINEARIZED MODELS

The safety specification is given by x(k) ∈ Xf , k =
0, . . . , T , where Xf :=

{
x ∈ R4 : ‖x‖∞ ≤ 5

}
and T = 50.

Both the inputs of the linearized system are bounded in the
range [−1.5, 1.5]. The open loop scheme for non-influential
inputs detection described in Section II provides β∗ = [0, 0]′

as solution in both the P− and P+ cases, so that both u1 and
u2 are influential. This means that there exists no open loop
sequence for u1 that keeps the state in the safe set Xf within
[0, T ] for any possible behavior of u2, and vice versa. Instead,
the compensation scheme in Section III leads to β∗ = [1, 0]′

for both the linearized models, meaning that if we set u2 to
the value given by the optimal parametrization Θ∗ and Γ∗, u1

is non-influential. This is shown in Figure 3 for the operating
point P− where we set input u1 to a specific realization that
would steer the state of the system outside the safe set if the
open loop solution for u2 were applied, as shown in Figure 4.
Computations took 1330 seconds (1155 to write the constraints
in YALMIP and 175 to solve the MILP via CPLEX).

VI. CONCLUSIONS

We have addressed the problem of detecting non-influential
inputs, i.e. those inputs that do not need to be properly set and
can take an arbitrarily value in their range while guaranteeing
the satisfaction of some reachability/safety specification. Ef-
fective solutions have been developed for the class of linear
systems. Two different methods have been developed, which
rely on different input parameterizations. In the first one, an
open loop sequence for the influential inputs that makes the
other inputs non-influential is designed. In the second one,
influential inputs are allowed to depend on the non-influential
ones, so as to partially compensate for them. The compensa-
tion method is amenable for application to networked control
systems security. This requires further investigation.



Fig. 3. Operating point P−: input u2 compensates for input u1.

Fig. 4. Operating point P−: input u1 steering the state of the system outside
the safe set when input u2 is set equal to zero.
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