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Abstract

This paper addresses model reduction and extends balanced truncation to the class of switched affine systems with endogenous
switching. The switched affine system is rewritten as a switched linear one with state resets that account for the affine terms.
Balanced truncation can then be applied to each mode dynamics, independently. As a result, different reduced state vectors
are associated with the different modes, and reset maps are here appropriately redefined so as to account and compensate
for this mismatch, possibly preserving the continuity of the output. The overall behavior of the reduced switched system is
determined by both the selected reduction per mode and the adopted reset maps. In this paper, we consider a stochastic
setting and propose a randomized method for the selection of the reduced order. The performance of the proposed approach
is illustrated through a multi-room temperature control example.
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1 Introduction

This paper addresses the design of an approximate
model for a hybrid system (see e.g. [12–14,17,23,28,29]).
The study of hybrid systems is typically challenging
since they are characterized by intertwined continuous
and discrete dynamics, [21]. Indeed, many problems
that have been solved for purely discrete or purely con-
tinuous systems still lack an effective solution for hybrid
systems. In particular, this is the case for the design of
a reduced model.
In this paper, we focus on continuous-time Switched
Affine (SA) systems with endogenous switching, and
address the problem of obtaining a model that is sim-
pler to analyze than the original system, and that is
able to mimic its output behavior over a finite horizon
T . This is of interest when dealing with verification of
properties that depend on the behavior of the system
output over a finite horizon. Verification of properties
related to the system response, like, e.g., safety and
reach/avoid properties, is typically addressed in the
literature through numerical methods in both the deter-
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ministic, [8,11,19,31], and the stochastic, [1,2], settings.
These methods scale exponentially with the dimension
of the continuous state space component. One can then
conceive a two-step procedure where an approximate
abstraction with a reduced order continuous state space
component is built first, and then a numerical verifica-
tion method is applied to this abstraction in place of
the original system.
When the input signal of the system is stochastic, the
notion of approximate simulation introduced in [17] for
stochastic hybrid systems [22] can be used to quantify
the model performance over the output realizations. A
randomized approach for assessing the performance of
a given abstracted model according to this notion was
proposed in [28]. The approach also extends to model
design. However, no constructive procedure is given on
how to select and parameterize the model class. On the
contrary, in this paper we provide a constructive proce-
dure to build an approximate model of a SA system in
the form of a reduced order Switched Linear (SL) sys-
tem with appropriately defined state reset maps. The
SA system is first rewritten as a SL one with state reset,
and then Balanced Truncation (BT) [4] is adopted for
reducing the order of the linear dynamics governing the
evolution of the continuous state component in each
mode. State reset maps are suitably redefined account-
ing for the mismatch in the continuous state vectors
associated with different modes. A randomized method
is also proposed to determine the order of the reduced
linear dynamics in each mode, while accounting for
the effect of discrete transitions and state resets on the
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hybrid system evolution. The overall methodology is ex-
tended to the case when a Dwell Time (DT) is present.
Note that BT is applied to switched linear systems
in [27] which however deals with the case of externally
induced switching. Our approach is inspired by [23]
which uses BT for hybrid systems with linear dynam-
ics and endogenous switching. The main advances with
respect to [23] are: 1) the extension to the class of SA
systems, 2) the introduction of novel state reset maps
that provide better performance than the one adopted
in [23], and of variants of these maps able to preserve
continuity. Correspondingly, different initializations of
the approximate model are derived based on the same
logic underlying the reset maps definition, 3) the intro-
duction of a randomized approach to select the order of
the reduced linear dynamics in each mode, when the in-
put is stochastic, and 4) the extension to the case of SA
systems with DT. As a matter of fact, mode transitions
and resets may strongly affect the system evolution.
Indeed, the state reset map determines the new value of
the continuous state after a discrete transition between
modes has just occurred; while for a linear asymptoti-
cally stable system the contribution of the initial state
becomes negligible in the long run, in a SA system this
is generally not the case. One would in fact need to
guarantee that the time between discrete transitions is
sufficiently large to make the zero-input response (ZIR)
vanish, which cannot be guaranteed a-priori, unless a
suitable DT triggering the discrete transitions is en-
forced.
The choice of the order of the approximate model should
then account for the influence of the state reset map
on the quality of the approximation. Hence it cannot
be based only on the analysis of the Hankel Singular
Values (HSVs) of the linear dynamics in each mode, as
suggested in [23]. The proposed randomized approach
serves this purpose, since it accounts for the hybrid evo-
lution of the candidate approximate model including
mode transitions and resets. The quality of the approxi-
mation is determined also by the domains triggering the
mode transitions of the SA system. Notably, redesigning
the domains is quite a complex issue, [10], and it is not
addressed in this paper but left for further investigation.
A preliminary version of this work appeared in [24].
Additional contributions are the introduction of reset
maps that preserve the output continuity, the initializa-
tion of the approximate model derived from these maps,
the extension to the case of SA systems with DT, and a
more thoughtful benchmark example that includes the
analysis of the new reset maps and the effect of the DT.
The scope of this work does not include the problem
of minimal realization. To the best of our knowledge,
minimal realization theory has been mainly developed
for linear and bilinear switched and hybrid systems
with externally induced switching, while it is still an
open problem for continuous-time hybrid systems with
endogenous switching [25].

2 Switched affine systems modeling framework

A SA system is an instance of a hybrid system, whose dy-
namics are characterized through a discrete state com-
ponent qa (mode) taking values inQ = {1, 2, . . . ,m} and
a continuous component ξa ∈ Ξa = R

n evolving accord-
ing to affine dynamics that depend on the value taken
by qa. The output ya ∈ Ya = R

p of the systems is an
affine function of the state and of the input u ∈ U = R

m

that depends on qa as well. The continuous dynamics of
a SA system within a given mode qa ∈ Q are given by

Sa :

{

ξ̇a(t) = Aqaξa(t) + Bqau(t) + fqa
ya(t) = Cqaξa(t) + gqa .

(1)

Assumption 1 For any i ∈ Q, matrix Ai is Hurwitz,
(Ai,Bi) is controllable, and (Ai, Ci) is observable. ✷

As for the discrete state evolution, a collection of poly-
hedra {Doma,i ⊆ Ya × U, i ∈ Q} is given, which cov-
ers the whole set Ya × U , i.e., ∪i∈QDoma,i = Ya × U .
Doma,i is defined through ri linear inequalities, i.e.,
Doma,i = {(ya, u) ∈ Ya ×U : Gya

i ya +Gu
i u ≤ Gi}, with

Gya

i ∈ R
ri×p, Gu

i ∈ R
ri×m and Gi ∈ R

ri .
Mode i ∈ Q is active as long as (ya, u) keeps evolving
withinDoma,i and a transition tomode j 6= i ∈ Q occurs
as soon as (ya, u) exits Doma,i and enters into Doma,j

(endogenous switching).

Assumption 2 The switched affine system (1) admits
a unique solution from any initial state. ✷

Note that the considered switched system can be
rephrased in the hybrid automata framework de-
scribed in [30], where a precise notion of execution is
given and conditions for well-posedness (existence and
uniqueness) are mentioned. Moreover, if the collection
{Doma,i, i ∈ Q} is a polyhedral subdivision of Ya×U

1 ,
then the SA system reduces to a standard piecewise
affine system.

Remark 1 If the transition condition depends on the
state ξa, then one can include ξa as output variable to
get back to the considered modeling framework where do-
mains are defined as a function of the output (and input).

3 System reduction: an approach based on BT

The proposed procedure unfolds into the following steps:
1) the SA system is rewritten as a SL system with state
reset (Section 3.1); 2) a reduced order model of the SL
system is introduced by first applying BT to the con-
tinuous dynamics in each mode (Section 3.2), and then
introducing appropriate maps for the reset of the re-
duced continuous state component when a mode transi-
tion occurs (Section 4); 3) the output of the SA system
is reconstructed based on the reduced SL system output
(Section 3.3).

1 This requires that each polyhedronDoma,i is of dimension
p+m, and the intersection Doma,i∩Doma,j , i 6= j, is either
empty or a common proper face of both polyhedra.
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3.1 Reformulation as a SL system with state reset

We next build a SL system with state reset that is equiv-
alent to the original SA system, in that (ξa, qa) and ya
can be recovered exactly from the state and output vari-
ables of the SL system.
Let y ∈ Y = Ya, and ξ ∈ Ξ = Ξa evolve according to lin-
ear dynamics that depend on the operating mode q ∈ Q
as follows:

S :

{

ξ̇(t) = Aqξ(t) + Bqu(t)

y(t) = Cqξ(t)
(2)

Set ȳa,q = Cq ξ̄a,q + gq, where ξ̄a,q = −A−1
q fq, with Aq

invertible by Assumption 1. A transition from mode i ∈
Q to mode j ∈ Q occurs as soon as (y + ȳa,i, u) exits
Domi and entersDomj , whereDomq = Doma,q, q ∈ Q.
When a discrete transition from mode i ∈ Q to mode
j ∈ Q occurs at time t−, then, ξ is reset as follows

ξ(t) = ξ(t−) + ∆ξ
ji, with ∆ξ

ji = ξ̄a,i − ξ̄a,j . (3)

Proposition 1 Suppose that the SA and SL systems
are initialized with initial conditions ξa(0), qa(0), and
ξ(0) = ξa(0) − ξ̄a,qa(0), q(0) = qa(0), respectively, and
are both fed by the same input u(t), t ∈ [0, T ]. Then, the
executions of ξa, qa and ya over [0, T ] can be recovered
from those of ξ, q and y as follows:

qa(t) = q(t),

ξa(t) = ξ(t) + ξ̄a,q(t), (4)

ya(t) = y(t) + ȳa,q(t).

Remark 2 The reset condition (3) is such that ξa recon-
structed from ξ according to (4) is continuous. Continu-
ity of ξa is generally not guaranteed if ξ is approximated
through a reduced order model of the SL system.

3.2 Reduction of the SL system

A reduced order model of the SL system with state reset
defined in Section 3.1 can be obtained by applying BT
with the state residualization approach [4], to each single
linear dynamics in (2). If the mode of the system were
fixed, then, BT would be effective in reproducing the
response y, at least in the long run, when the ZIR has
vanished.
We associate with each mode q ∈ Q a reduced model of
order nr,q < n:

Sr :

{

ẋr,q(t) = Ar,qxr,q(t) +Br,qu(t)

ŷ(t) = Cr,qxr,q(t) +Dr,qu(t)
(5)

and define transitions between modes, say from mode i
to mode j, by evaluating when (ŷ + ȳa,i, u) exits from
domain Domi and enters into Domj . Indeed, ŷ + ȳa,i
represent the output ya reconstructed using (4). As for

the state reset map (3) associatedwith amode transition
from i ∈ Q to j ∈ Q, we shall reformulate it as

xr,j(t) = Ljixr,i(t
−) +Mjiu(t

−) +Nji∆
ξ
ji, (6)

where xr,i(t
−) ∈ R

nr,i is the value of the reduced state in
mode i, prior to the transition to mode j, xr,j(t) ∈ R

nr,j

is the updated reduced state value, and Lji, Mji, Nji

are matrices of appropriate dimensions. In Section 4, we
present different methods to define them.

3.3 Reconstruction of the SA system output

The output of the SA system is reconstructed based
on (4) using the output ŷ of the SL reduced system as an
estimate of the output y of the SL system. This leads to

ŷa(t) = ŷ(t) + ȳa,q(t). (7)

4 State reset maps: alternative choices

In this section we introduce different reset maps that
can be used for the approximate model. The choice of
the reset map is of utter importance, since it strongly
affects the quality of the approximated solution.

4.1 Preliminary definitions

Consider a transition from mode i ∈ Q to mode j ∈ Q.

One can determine an expression for ξ̂j , representing the
SL system state associated with mode j as reconstructed
from the reduced state xr,i.

Recall first that ξ̂i can be obtained by applying the
balanced transformation matrix Ti to the reconstructed
continuous state x̂i of the SL system, i.e., ξ̂i = T−1

i x̂i.

In turn, x̂i can be reconstructed as x̂i =
[

x′r,i x
′
nr,i

]′
,

where xnr,i is the part of the state that is neglected in
the reduced model (5), and that can be recovered as a
function of xr,i and u by assuming an equilibrium con-
dition in the original not-reduced linear dynamics (BT
with state residualization) [4]. This leads to:

x̂i = Hixr,i +Kiu,

whereHi andKi are suitable defined matrices [24]. Plug-

ging the expressions of ξ̂i and x̂i into (3), yields

ξ̂j(t) = ξ̂i(t
−) + ∆ξ

ji (8)

= T−1
i Hi xr,i(t

−) + T−1
i Ki u(t

−) + ∆ξ
ji.

We next shall define the reset maps for the state of the
reduced SL system when a mode transition occurs from
i ∈ Q at time t− to j ∈ Q at time t.
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4.2 SR map: a reset map based on state reconstruction

The State Reconstruction-based reset map (SR map for
brevity) was proposed in [23] and relies the following
idea: reconstruct the whole state x̂j(t) in balanced form
and then extract its first nr,j components correspond-
ing to the reduced order state in mode j. In formulas,
xr,j(t) = Enr,j

x̂j(t), where Enr,j
is a matrix that ex-

tracts the first nr,j rows from x̂j(t), nr,j being the di-
mension of xr,j in mode j. Now, x̂j(t) can be obtained

as x̂j(t) = Tj ξ̂j(t).Plugging the expression of xr,j(t) into
the expression of x̂j(t), and using (8), we finally obtain

xr,j(t) = Enr,j
Tj

(

T−1
i Hixr,i(t

−) + T−1
i Kiu(t

−) + ∆ξ
ji

)

.

(9)
Matrices Lji, Mji, and Nji can be obtained by direct
comparison with (6). According to a similar reasoning,
the system is initialized as follows

qr(0) = qa(0) = q0, xr,q0(0) = Enr,q0
Tq0

(

ξa(0)− ξ̄a,q0
)

,

with the understanding that (ya(0), u(0)) is an interior
point of Doma,q0 , for any admissible u(0).

4.3 OG map: a reset map to reproduce the output ZIR

Model reduction techniques for asymptotically stable
linear systems aim at finding a model that best repro-
duce the forced response of the system, while neglecting
the ZIR. However, in SA systems, the system response
depends on the mode transitions, which, in turn, de-
pends on the continuous output behavior (forced plus
ZIR). We here introduce a reset map that minimizes the
L2-norm of the error when reproducing the ZIR of the
output y. As we shall see next, its expression depends on
the Observability Gramians (OG) of the linear systems
associated with the different modes.
In formulas, we set xr,j = Ψj ξ̂j and choose Ψj so as to
minimize

J(Ψj) =
∫ +∞

0
‖yzir,j(t)− ŷzir,j(t)‖

2 dt, (10)

where yzir,j and ŷzir,j respectively denote the ZIR of

the original linear dynamics (2) initialized with ξ̂j and
that of the reduced order dynamics (5) initialized with

xr,j = Ψj ξ̂j . The solution to this optimization problem
can be found analytically as shown in Proposition 2,
which proof can be found in [24].

Proposition 2 Suppose that the reduced order model (5)
with q = j is observable. Then, matrix Ψ⋆

j minimiz-

ing (10) for any ξ̂j is given by Ψ⋆
j = W−1

r,o,jW×,j , where

Wr,o,j =
∫ +∞

0 (eAr,jt)′C′
r,jCr,je

Ar,jt dt

W×,j =
∫ +∞

0 (eAjt)′C′
jCr,je

Ar,jt dt.

Remark 3 Note that the observability assumption in
Proposition 2 is satisfied under mild conditions as de-
tailed in [4].

Matrix Wr,o,j can be obtained by solving the Lyapunov
equation

Ar,jWr,o,j +Wr,o,jA
′
r,j + C′

r,jCr,j = 0,

while matrix W×,j is the solution to the Sylvester equa-
tion

A′
r,jW×,j +W×,jAj + C′

r,jCj = 0.

Now, plugging the expression (8) for ξ̂j(t) into xr,j =

Ψj ξ̂j and setting Ψj = Ψ⋆
j , we get

xr,j(t) = Ψ⋆
j

(

T−1
i Hixr,i(t

−) + T−1
i Kiu(t

−) + ∆ξ
ji

)

(11)
Matrices Lji, Mji, and Nji can be obtained by direct
comparison of with (6). As for the system initialization,
we set

qr(0) = qa(0) = q0, xr,q0(0) = Ψ⋆
q0

(

ξa(0)− ξ̄a,q0
)

.

(12)

Instead of considering an infinite horizon when evaluat-
ing the ZIR output error, one can take into account the
switching nature of the system and consider the error
only during the finite horizon [0, τ ]. Correspondingly, the
error function to be minimized becomes

Jτ (Ψ
τ
j ) =

∫ τ

0
‖yzir,j(t)− ŷzir,j(t)‖

2 dt.

The resulting optimal Ψτ⋆
j matrix is given by Ψτ⋆

j =

W−1
r,o,j(τ)W×,j(τ), where

Wr,o,j(τ) =
∫ τ

0
(eAr,jt)′C′

r,jCr,je
Ar,jt dt

W×,j(τ) =
∫ τ

0
(eAj t)′C′

jCr,je
Ar,jt dt.

The proof of this result is analogous to that in the infi-
nite horizon case. Still, observability of the reduced or-
der model (5) with q = j is required for Wr,o,j to be
invertible and Remark 3 applies.
The finite horizon quantities involved in the expression
of Ψτ⋆

j can be computed as

Wr,o,j(τ) =Wr,o,j −
∫ +∞

τ
(eAr,jt)′C′

r,jCr,je
Ar,jt dt

=Wr,o,j −W
(τ,∞)
r,o,j ,

W×,j(τ) =W×,j −
∫∞

τ
(eAjt)′C′

jCr,je
Ar,jt dt

=W×,j −W
(τ,∞)
×,j ,

where W
(τ,∞)
r,o,j and W

(τ,∞)
×,j can be obtained as the solu-

tion of the Lyapunov and Sylvester equations

Ar,jW
(τ,∞)
r,o,j +W

(τ,∞)
r,o,j A′

r,j +
(

eAr,jτ
)′
C′

r,jCr,je
Ar,jτ = 0,

A′
r,jW

(τ,∞)
×,j +W

(τ,∞)
×,j Aj +

(

eAr,jτ
)′
C′

r,jCje
Ajτ = 0.
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Note that well-posedness of the above equations is guar-
anteed by the fact that Aj and Ar,j are Hurwitz.
The matrices in the reset map (6) and the system ini-
tialization are analogous to the case of infinite horizon,
but with Ψτ⋆

j in place of Ψ⋆
j .

The choice for τ depends on the settling times of the dif-
ferent mode dynamics. A sensible choice is to set τ equal
to the settling time of the neglected dynamics.
To distinguish between the two OG reset maps, we shall
refer to the one with the infinite horizon as OG∞ and
the one with finite horizon [0, τ ] as OGτ .

4.4 Variants that preserve the output continuity

In certain application contexts, it may be desirable to
preserve the continuity of the output of the original sys-
tem. This is not guaranteed when adopting the reset
maps defined above and motivates the derivations here-
after.
To get continuity, the value of the output ŷa(t) recon-
structed based on (7) before and after the reset should
be identical. This leads to the following equation

Cr,jxr,j(t)+Dr,ju(t)+ȳa,j = Cr,ixr,i(t
−)+Dr,iu(t

−)+ȳa,i.

Under the assumption that the input u is a continuous
signal, and letting ∆y

ji = ȳa,i − ȳa,j , this simplifies to

Cr,jxr,j(t) = Cr,ixr,i(t
−) + (Dr,i −Dr,j)u(t

−) + ∆y
ji.

The values of xr,j(t) that satisfy the above condition can
be expressed as xr,j(t) = x̃r,j(t) + wj , with

x̃r,j(t) = C†
r,j

(

Cr,ixr,i(t
−) + (Dr,i −Dr,j)u(t

−) + ∆y
ji

)

where C†
r,j is the pseudo-inverse of Cr,j and wj ∈ R

nr,j

is in the null space of Cr,j , here denoted as ker(Cr,j).
If ker(Cr,j) 6= {0}, we have some degrees of freedom
to spend and we can choose wj so that the resulting
value for xr,j(t) best matches some given reference value
x̄r,j(t). If instead ker(Cr,j) = {0}, then, wj = 0, and
the reset matrices are derived by a direct comparison
with (6).
Let us consider now the case when ker(Cr,j) 6= {0}. If
we let {v1, v1, . . . , vnv,j

} be a basis of ker(Cr,j), and set

Vj =
[

v1 v2 . . . vnv,j

]

, then, wj = Vjα with α ∈ R
nv,j

and we can select α by solving the least squares problem

α⋆ = argmin
α

‖x̃r,j(t) + Vjα− x̄r,j(t)‖,

which leads to α⋆ = V †
j x̄r,j(t), since it holds that

V †
j C

†
r,j = 0. We then finally have:

xr,j(t) = x̃r,j(t) + VjV
†
j x̄r,j(t), (13)

which, depending on the chosen x̄r,j(t) leads to different
expressions for the matrices Lji,Mji, and Nji in the re-
set map (6).
If we adopt the expression in the SR map (9) for x̄r,j(t),
then we can define the Continuous State Reconstruction-
based reset map (CSR map). If we instead set x̄r,j(t)
equal to the OG∞ map expression (11), we obtain the
Continuous Observability Gramian-based map with in-
finite horizon (COG∞ map). Analogously, we can define
the Continuous Observability Gramian-based map with
finite horizon [0, τ ] (COGτ ).
As for the initialization, q(0) = qa(0) = q0, whereas the
value for xr,q0(0) is obtained by setting the value of the
output ŷa(0) reconstructed based on (7) equal to that of
ya(0) obtained based on the system initialization. This
leads to the following equation

Cr,q0xr,q0(0) +Dr,q0u(0) + ȳa,q0 = ya(0),

where ya(0) is given by the initial conditions of the sys-
tem, i.e., ya(0) = Cqaξa(0) + gq0 .
From this equation, by following similar steps than those
used for deriving (13), we get that

xr,q0(0) =

{

x̃r,q0(0), ker(Cr,j) = {0}

x̃r,q0(0) + Vq0V
†
q0
x̄r,q0 (0), ker(Cr,j) 6= {0},

where we set x̃r,q0(0) = C†
r,q0

(−Dr,q0u(0)−ȳa,q0+ya(0)),
and x̄r,q0 (0) is the initialization of the SR, OG∞, or OGτ

reset map.

5 A randomized method for order selection

In [23], following an approach that is quite standard for
linear systems [4], a threshold value γ is chosen, and the
order of the reduced SL system (5) in mode q ∈ Q is set
equal to

nr,q = min{i ∈ {1, 2, . . . , n} : ψq(i) < γ}, (14)

where ψq : {1, 2, . . . n} → [0, 1) is given by ψq(i) =

1−
∑i

j=1 σj,q/
∑n

j=1 σj,q, σ1,q ≥ σ2,q ≥ · · · ≥ σn,q being

the HSVs of the SL system dynamics (2) in mode q.
Our goal here is to introduce a sound method for mak-
ing an appropriate selection of the threshold value γ,
when the input u is stochastic and one has to verify a
property that depends on the behavior of the SA sys-
tem output ya along a finite time horizon T . For the
resulting stochastic hybrid system and its executions to
be well-defined according to the notion in [16], we shall
assume in the following that input u is a white noise
with a given power spectral density.
A randomized method for order selection is proposed,
which involves feeding the candidate reduced order
models and the system with the same realizations of the
stochastic input and comparing their outputs over T . If
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the number of realizations is appropriately chosen, then
the quality of the model assess over them generalizes to
the unseen instances, except for a set of a-priori defined
probability ǫ. Notably, this can be reinterpreted as an
ǫ-robust assessment result.
Let us denote by Γ the (finite) set of possible thresh-
old values γ, those that result in a different choice for
{nr,q, q ∈ Q}, and by ŷγa the estimate of ya obtained
through the reduced SL system when the threshold
value is set equal to γ.
The approximation error can be quantified through
a function dT (·, ·) that maps each pair of trajectories
ya(t), t ∈ T , and ŷγa(t), t ∈ T , into a positive real num-
ber dT (ya, ŷ

γ
a) that represents the extent to which the

output ya of the SA system differs from its estimate
ŷγa along the time horizon T . Function dT (·, ·) satisfies
dT (ya, ŷ

γ
a) = 0 if γ = 0, since in that case no reduction

is performed and, hence, ŷγa (t) = ya(t), t ∈ T .
In order to make an appropriate selection of γ, we adopt
the notion of approximate simulation in [3, 9, 17, 28]
to assess the quality of the reduced order model with
threshold value γ. This involves computing the maxi-
mal value ρ⋆γ taken by dT (ya, ŷ

γ
a) over all realizations of

the stochastic input u(t) and the (possibly) stochastic
initialization ξa(0) of the SA system, except for a set
of probability at most ǫ ∈ (0, 1). An ‘optimal’ value
for γ can then be chosen by inspecting the values of ρ⋆γ
as a function of γ ∈ Γ and selecting the appropriate
compromise between quality of the approximation and
tractability of the resulting reduced order model.
More precisely, we introduce the following family of
chance-constrained optimization problems (CCPs)
parametrized by γ ∈ Γ:

CCPγ : min
ρ
ρ (15)

subject to: P{dT (ya, ŷ
γ
a) ≤ ρ} ≥ 1− ǫ.

By directly inspecting the solution of (15) as a function
of γ, one can then select the appropriate compromise be-
tween accuracy and simplicity of the model, respectively
expressed through ρ⋆γ , and nr,q, q ∈ Q, in (14).

Remark 4 As argued in [3], the directional Hausdorff
distance dT (ya, ŷ

γ
a ) = supt∈T infτ∈T ‖ya(t) − ŷγa (τ)‖ is

a sensible choice for dT (ya, ŷ
γ
a) when performing proba-

bilistic verification, e.g., when estimating of the proba-
bility that ya will enter some set within T .

Solving CCPs like (15) is known to be difficult, and
even NP-hard in some cases, [5].We then head for an
approximate solution where instead of considering all
the possible realizations for the stochastic uncertainty,
we consider only a finite number N of them called
“scenarios”, extracted at random, and treat them as
if they were the only admissible uncertainty instances.
This leads to the formulation of Algorithm 1, where the
chance-constrained solution is determined based on the
extracted scenarios and a empirical violation parameter
η ∈ (0, ǫ). Notably, in Proposition 3 it is proven that,

Algorithm 1

1: extract N realizations of the stochastic input
u(i)(t), t ∈ T , i = 1, 2, . . . , N , and N samples of
the initial condition ξa(0)

(i), i = 1, 2, . . . , N , and
let k = ⌊ηN⌋;

2: for all γ ∈ Γ do
2.1: determine the N realizations of the output sig-

nals y
(i)
a (t) and ŷ

γ,(i)
a (t), t ∈ T , i = 1, 2, . . . , N ,

when the SL system and the reduced order
model with parameter γ are fed by the ex-
tracted u(i)(t);

2.2: compute ρ̂(i) := dT (y
(i)
a , ŷ

γ,(i)
a ), i =

1, 2, . . . , N , and determine the indexes
{h1, h2, . . . hk} ⊂ {1, 2, . . . , N} of the k largest
values of {ρ̂(i), i = 1, 2, . . . , N}

2.3: set ρ̂⋆γ = maxi∈{1,2,...,N}\{h1,h2,...,hk} ρ̂
(i).

if the number N of extractions is appropriately chosen,
the obtained estimate of ρ⋆γ is chance-constrained feasi-
ble, uniformly with respect to γ ∈ Γ, with a-priori spec-
ified (high) probability. The proof of Proposition 3 can
be found in [24], and rests on results from the scenario
approach [5, 6].

Proposition 3 Select a confidence parameter β ∈
(0, 1), and an empirical violation parameter η ∈ (0, ǫ).
If N satisfies

∑⌊ηN⌋
i=0

(

N
i

)

ǫi(1− ǫ)N−i ≤ β
|Γ| , (16)

where |Γ| denotes the cardinality of Γ, then, the solution
ρ̂⋆γ, γ ∈ Γ, to Algorithm 1 satisfies P{dT (ya, ŷ

γ
a) ≤ ρ̂⋆γ} ≥

1− ǫ, ∀γ ∈ Γ, with probability at least 1− β. ✷

If we discard the confidence parameter β for a moment,
this proposition states that for any γ ∈ Γ, the random-
ized solution ρ̂⋆γ obtained through Algorithm 1 is feasible
for the chance-constrained problem (15). As η tends to
ǫ, ρ̂⋆γ approaches the desired optimal chance constrained
solution ρ⋆γ . In turn, the computational effort grows un-

bounded since N scales as 1
ǫ−η

, [5], therefore, the value

for η depends in practice from the available computa-
tional resources. As for β, one should note that ρ̂⋆γ is
a random quantity that depends on the randomly ex-
tracted input realizations and initial conditions. It may
happen that the extracted samples are not representa-
tive enough, in which case the size of the violation set
will be larger than ǫ. Parameter β controls the proba-
bility that this happens and the final result holds with
probability 1−β. N satisfying (16) depends logarithmi-
cally on |Γ|/β, [5], so that β can be chosen as small as
10−10 (and, hence, 1 − β ≃ 1) without growing signifi-
cantly N .
Interestingly, the guarantees provided by Proposition 3
are valid irrespectively of the underlying probability dis-
tribution of the input, which may even not be known ex-
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plicitly, e.g., when running Algorithm 1 with historical
time series as realizations of the stochastic input u.

Remark 5 Note that even in the case of stable continu-
ous dynamics, switching can produce unstable behaviors.
However, if some reduced order model presents an unsta-
ble behavior, which makes the distance between ya and ŷ

γ
a

large, that model is not selected.

6 Numerical example

In this section, a multi-room heating system with a
switching control policy is presented. The example is
inspired to a benchmark for hybrid system verification
presented in [7].
Consider the problem of controlling the temperature
in a number of rooms of a building. Each room has
one heater, but there is a constraint on the number of
heaters in the building that can be “active” (i.e., that
can be used and turned on if needed) at the same time.
Differently from the original benchmark in [7], we model
also the dynamics of the heaters.
The temperature Ti in a room i ∈ {1, . . . , Nr} depends
on Ti itself, on the temperature of the adjacent rooms Tj
with j 6= i, on the outside temperature Text, and on hi, a
boolean variable that is 1 when the heater is on in room
i, and 0 otherwise. The heat transfer coefficient between
room i and room j is kij , and the one between room i
and the external environment is ke,i. We assume that
the heat exchange is symmetric, i.e., kij = kji. Rooms i
and j are adjacent when kij > 0, otherwise kij = 0.
The volume of the room is Vi, and the wall surface be-
tween room i and room j is Sr,ij , while that between
room i and the environment is Se,i. Air density and heat
capacity are ρa = 1.225kg/m3 and c = 1005J/(kgK),
respectively. Letting φi = ρacVi, we can formulate the
following dynamic model for room i and its heater:

φiṪi =
∑

j 6=i

Sr,ijkij (Tj − Ti) + Seike,i (Text − Ti) + κiθi

τh,iθ̇i = −θi + hi · pi − χiText

which is an affine system, with κi representing the max-
imum heat flow rate that the heater can provide, while
pi ∈ {0, 1} is a binary variable indicating if the heater
is active in room i (pi = 1) or not (pi = 0). The heater
dynamics is represented by a first-order system with a
time constant τh,i. If we neglect the term −χiText in the
heater dynamics and set hi = pi = 1, the heater state
variable θi will tend to 1 so that the heater will provide
its maximum heat flow rate κi to the room when it is ac-
tive and on. The term −χiText is introduced to account
for the influence of the external temperature on the
heating system. Notice that pi = 1 just indicates that
the heater is active in room i, while hi is the variable
that indicates whether it is actually turned on (hi = 1).
The physical nature of the considered system is not
switching. However, the switching control policy pre-
sented in [7] is used to control the temperature in the

rooms.
A room policy decides whether to switch the heater on
in the room: each room has a thermostat that switches
the heater on if Ti ≤ oni, and off when Ti ≥ offi.
A building policy decides and limits the number of
heaters that are jointly active, by setting the constraint
∑Nr

i=1 pi = P , with P ≤ Nr. The heater of room i is
turned active, and the heater of room j becomes not
active when: 1) the heater of some room, say room i, is
not active, i.e., pi = 0, 2) room j is adjacent to room i
and has an active heater, i.e., pj = 1, 3) temperature
Ti ≤ geti, and 4) the difference Tj − Ti ≥ difi.
Each room is identified by an integer index, and when-
ever a room has more than one adjacent room fulfilling
the above condition, the heater is always set active in
the room with higher index.
In the following we consider Nr = 4 adjacent rooms,
with the constraint that only P = 3 heaters can be ac-
tive at the same time. The values of the physical system
parameters for the considered instance of the problem
are reported in Table 1. The external temperature Text
is modeled as a sinusoidal source of period 24 hours with
an offset of 4◦C, affected by an additive white noise.
Note that the resulting stochastic hybrid system and its
execution are still well-defined (see [18]).
We assume deterministic initial conditions, i.e., Ti(0) =
20, θi(0) = 0, i = 1, . . . , Nr, h(0) = p(0) = [0 1 1 1]

′
.

The condition that only 3 out of 4 heaters are active at
the same time is satisfied by p(0) . As for the control
policy parameters, we set offi = 21, oni = 20, geti = 18,
difi = 1, with i = 1, . . . , Nr. Due to the switching pol-
icy, the control system can be described as a SA system
with continuous state ξa = [T ′ θ′]

′
, input u = Text, and

output ya = T :

{

ξ̇a = A ξa + B u+ fqa
ya = Cξa.

(17)

As for the mode qa, it is identified by the values of the
binary variables hi and pi, which determine the affine
term fqa entering the dynamics of ξa. The polyhedral
sets Doma,qa are determined by the building and room
control policies through the chosen thresholds. Note that
only the affine term fqa in (17) depends on the discrete
mode qa ∈ Q, while the state-space matrices (A,B, C)
are constant. Therefore, the BT can be computed only
once, and applied identically for each discrete mode.
Still, when selecting the order of the reduced model

Table 1
The multi-room physical system parameters.

Sr,ij 12m2 ke,i 1W/(m2K) τh,3 45.00s

Se,i 24m2 κ1 0.373 τh,4 47.25s

Vi 48m3 κ2 0.395 χ1 1.0 × 10−4

φi 59094 J/K κ3 0.417 χ2 2.0 × 10−4

k12 2W/(m2K) κ4 0.439 χ3 3.0 × 10−4

k23 5W/(m2K) τh,1 40.50s χ4 4.0 × 10−4

k34 2W/(m2K) τh,2 42.75s
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one should consider the impact of the selected order on
the switched system approximation, which involves also
mode transitions. Using standard approaches for the or-
der selection, as the one used in [23] relying on clas-
sical HSV analysis, can be misleading. Indeed, the ob-
tained HSVs are σ1 = 0.993, σ2 = 0.026, σ3 = 0.001,
σ4 = 4.514×10−5, σ5 = 1.897×10−6, σ6 = 6.995×10−7,
σ7 = 1.805× 10−8, σ8 = 3.534× 10−10. The HSV analy-
sis suggests that most of the dynamics can be caught by
reducing the continuous dynamics of the SA system to
a first-order one. Indeed, computing the distance ψ(nr)
used in [23] results in ψ(1) · 100 = 2.64%.
Care has to be taken when applying HSV analysis to
the context of SA systems. In fact, classical BT tech-
niques are typically based on the assumption that the
ZIR of the system can be neglected since it vanishes in
an asymptotically stable linear system, a fact that noto-
riously does not always hold when dealing with switch-
ing systems. Moreover, HSV analysis does not take into
account the impact of the reset map.
Themulti-room control system is next reduced bymeans
of the constructive methodology proposed in this paper,
and the randomized approach for order selection based
on the directional Hausdorff distance evaluated over a fi-
nite horizon T = [0, 200]min is applied. In particular, we
set ǫ = 0.1 in the CCP (15) and solve it via Algorithm 1.
The number of extractions in Algorithm 1 is N = 778
and is obtained through the implicit formula (16) with
η = 0.05, β = 10−6 and |Γ| = 7.
Since we adopt the same order for the reduced dynamics
in each mode, 7 model order reductions are examined,
and, according to Proposition 3, the results on the qual-
ity assessment of the reduced order models hold with
probability 1− 10−6.
The length τ of the finite horizon [0, τ ] adopted in OGτ

and COGτ is set to the settling time of the neglected dy-
namics. Equation (14) maps each threshold value γ ∈ Γ
into the order nr,q of the reduced dynamics within mode
q ∈ Q of the SL system with state reset. In this exam-
ple, we adopt the same order for the reduced dynamics
in each mode. Hence, we can simplify the notation to
nr, dropping the dependence from mode q. The values
for ρ̂⋆γ obtained with the different reset methods are pre-
sented in Figure 1 as a function of nr. Some interesting

0

2

4

6

ρ̂
⋆ γ

SR OG∞ OGτ

1 2 3 4 5 6 7 8
0

2

4

6

nr

ρ̂
⋆ γ

CSR COG∞ COGτ

Figure 1. Performance of different reduced models as a func-
tion of the order nr and of the adopted reset maps.

considerations can be made by analyzing the results pre-
sented in Figure 1. First of all, one can compare the re-
set maps that do preserve continuity with those that do
not. The plots in Figure 1 show that preserving continu-
ity leads to worse performance in terms of accuracy of
the approximation. This holds despite of the fact that,
for the maps that do not preserve output continuity, a
drastic order reduction may yield discontinuities in the
state reset that possibly produce chattering behaviors.
Furthermore, Figure 1 shows that the OG reset maps ex-
hibit better performance with respect to the SR maps.
In particular, for the OGτ map ρ̂⋆γ is reduced on average
over nr by 10.03% in the discontinuous map case, and
by 2.68% in the continuous map case.
Notice also that when a reduced order nr ≤ p = 4 is
used and the output continuity is enforced, then, the
same results are obtained with the different reset maps.
This is due to the fact that whenever nr ≤ p, there are
no degrees of freedom left by the continuity constraint
to match the originally introduced SR or OG reset maps
(see the derivations in Section 4.4), so that all maps just
enforce continuity and become identical.
From the randomized analysis in Figure 1, it appears
that one can push the reduction up to a fifth order with-
out significantly deteriorating the accuracy of the model
when the goal of the approximation is the analysis of
reachability properties for which the directional Haus-
dorff distance is a suitable accuracy measure. Reducing
the system to a first-order approximation as suggested
by the analysis based on the HSV only would instead
result in a quite significant degradation of the reduced
model performance.

7 Extension to SA systems with DT

The approach that we proposed in Section 6 for model
order reduction can also be applied to the case when the
mode transitions of the SA system are subject to a DT
constraint, which means that a transition from mode
i ∈ Q to mode j 6= i ∈ Q is enabled when (ya, u) exits
Doma,i and enters into Doma,j , but can actually occur
only if a certain minimum amount of time δ̄i ∈ R

+ (the
so-called dwell time) has elapsed. Note that DT can be
present in a system for two different reasons: either is due
to an intrinsic characteristic of the system that presents
some delay/inertia when commuting, or it is introduced
when designing a control strategy, as in DT switching
control, see e.g. [15, 20].
An extension of the SA modeling framework is needed if
a DT constraint is present. If we start from a SA system
of the form (1), we can introduce the DT constraint
as described next. DT can be accounted for by adding
to each mode a continuous state variable δ ∈ R that
represents a clock with the dynamics of an integrator.
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The dynamics (1) then is augmented as follows:

[

ξ̇a(t)

δ̇(t)

]

=

[

Aqa 0

0 0

] [

ξa(t)

δ(t)

]

+

[

Bqa 0

0 1

][

u(t)

v(t)

]

+

[

fqa

0

]

[

yδ(t)

ya(t)

]

=

[

0 1

Cqa 0

][

ξa(t)

δ(t)

]

+

[

0

gqa

]

with v(t) = v̄ = 1 ∀t ≥ 0, and the extended domain of a
discrete mode qa ∈ Q is modified as

Dome
a,qa

= R
+×Doma,qa ×{1} ∪

[

0, δ̄qa
]

×R
p×m×{1}

so as to impose the DT constraint.
Within this extended framework, mode i ∈ Q is active as
long as ([yδ y

′
a]

′, [u′ v]′) keeps evolving within Dome
a,i,

and a transition to mode j 6= i ∈ Q occurs as soon as
([yδ y

′
a]

′, [u′ v]′) exits Dome
a,i, and enters into Dome

a,j .

The reset map δ(t) = 0 needs to be added as soon as a
mode transition occurs at time t−.
Note that the augmented dynamics within each mode
is still affine. However, the resulting dynamic matrix is
not Hurwitz due to the presence of the clock. Yet, un-
der Assumption 1, the procedure in Section 3 for model
order reduction can be still adopted, in that it can be
applied to the original SA system. The clock dynamics
and its reset can be considered separately, and only af-
fect the mode transitions of the reduced system via the
extended domains definition.
As a consequence to the introduction of the DT, dy-
namics that decay in a time scale that is larger than
the DT itself will be unlikely to be removed when se-
lecting the model order through the proposed random-
ized approach: This is because of their contribution at
the switching times when the state is reset. Finally, the
length τ of the time horizon in OGτ and COGτ can be
tailored to the DT value.

7.1 Numerical example: the multi-room heating system

We consider the example of the multi-room heating sys-
tem in Section 6 and introduce aDT to the switching pol-
icy. This means that, we require that the time elapsing
between two subsequent switches (heater activated/de-
activated and heater turned on/off when active) must be
greater than or equal to the DT. We thus increase the
state vector with a clock δ(t) with dynamics δ̇ = 1, that
is reset to 0 whenever a switch occurs.
Note that since the unstable dynamics of the clock do not
affect the dynamics of the remaining state variables, one
can apply BT to the original system without the clock.
Therefore, even if the (augmented) continuous state vari-
able of the multi-room heating system has dimension 9,
the reduction must be performed only on the original
state of dimension 8 as in the example of Section 6.
The results obtained when the neglected dynamics has

SR OG∞ OGτ CSR COG∞ COGτ

0

0.5

1

1.5

0.92 0.87 0.86

1.13 1.12 1.08

0.49 0.48 0.47

0.88 0.87 0.83

ρ̂
⋆ γ

without DT with DT

Figure 2. Quality of the reduced order model when a DT is
introduced in the control policy (light bars) and when it is
not adopted (dark bars).

order 1 are reported in Figure 2. The value of the optimal
directional Hausdorff distance ρ̂⋆γ is computed through
Algorithm 1 for the different reset maps, but just for a
value of γ corresponding to an unitary order reduction of
the asymptotically stable part of the system. The same
parameter values of Section 6 are here adopted. The DT
is set equal to 5 minutes (which is also the settling time
of the continuous dynamics) and the time horizon length
τ in the OGτ reset map is set equal to the DT. The OGτ

map gives the best performance in terms of ISE with re-
spect to the other reset maps (see Figure 2). Indeed, the
DT is long enough to let the ZIR of the asymptotically
stable continuous component vanish.
Not surprisingly, a comparative analysis with the val-
ues of the directional Hausdorff distance obtained with-
out the adoption of the DT in the switching policy (see
Figure 2) reveals that the quality of the reduced order
model deteriorates when the DT is present, and this oc-
curs irrespectively of the adopted reset map.

8 Conclusions

In this work, we proposed to extend BT to the model re-
duction of SA systems with endogenous switching. This
involved introducing appropriate state reset maps and
integrating the reduced order model design with a ran-
domized procedure for model order selection. A compar-
ative analysis of different maps, possibly preserving the
output continuity, was performed on a benchmark exam-
ple of a multi-room heating system. The approach was
extended to the case of switched affine systems with DT.
The proposed order selection is based on the discrep-
ancy between the real and approximated output trajec-
tories. If the obtained discrepancy is zero, then the re-
duced order model exactly reproduces the input-output
behavior of the system, and it is possibly a minimal re-
alization. A rigorous approach to exact model reduction
for piecewise-affine hybrid systems is proposed in [26].
The considered class of switched systems is character-
ized by an endogenous switching signal. However, our
method can be applied also to the case when transitions
are determined by some exogenous switching signal, pos-
sibly probabilistic as in the case of Markov jump linear
systems.

9



References

[1] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. S.
Sastry. Computational approaches to reachability analysis of
stochastic hybrid systems. In Hybrid Systems: Computation

and Control, volume 4416, pages 4–17. 2007.

[2] A. Abate, J. P. Katoen, J. Lygeros, and M. Prandini.
Approximate model checking of stochastic hybrid systems.
European Journal of Control, 16(6):624–641, 2010.

[3] A. Abate and M. Prandini. Approximate abstractions of
stochastic systems: a randomized method. In 50th IEEE

Conf. on Decision and Control and European Control Conf.,
pages 4861–4866, 2011.

[4] A. C. Antoulas. Approximation of large-scale dynamical

systems, volume 6. Society for Industrial Mathematics, 2005.

[5] M. C. Campi and S. Garatti. A sampling-and-discarding
approach to chance-constrained optimization: Feasibility and
optimality. Journal of Optimization Theory and Applications,
148(2):257–280, 2011.

[6] M. C. Campi, S. Garatti, and M. Prandini. The scenario
approach for systems and control design. Annual Reviews in

Control, 33(2):149–157, 2009.

[7] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems
verification. In Hybrid Systems: Computation and Control,
volume 2993, pages 326–341. 2004.

[8] G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past hytech. In Hybrid Systems: Computation and

Control, volume 3414, pages 258–273. 2005.

[9] S. Garatti and M. Prandini. A simulation-based approach to
the approximation of stochastic hybrid systems. In Analysis

and Design of Hybrid Systems, pages 406–411, 2012.

[10] T. Geyer, F. D. Torrisi, and M. Morari. Optimal complexity
reduction of polyhedral piecewise affine systems. Automatica,
44(7):1728–1740, 2008.

[11] A. Girard and C. Guernic. Zonotope/hyperplane intersection
for hybrid systems reachability analysis. In 11th international

workshop on Hybrid Systems: Computation and Control,
pages 215–228, 2008.

[12] A. Girard, A. Julius, and G. J. Pappas. Approximate
simulation relations for hybrid systems. Discrete Event

Dynamic Systems, 18(2):163–179, 2008.

[13] A. Girard and G. J. Pappas. Approximation metrics for
discrete and continuous systems. IEEE Trans. on Automatic

Control, 52(5):782–798, 2007.

[14] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar
symbolic models for incrementally stable switched systems.
IEEE Trans. on Automatic Control, 55(1):116–126, 2010.

[15] J. P. Hespanha and A. S. Morse. Stability of switched systems
with average dwell-time. In 38th IEEE Conf. on Decision

and Control, volume 3, pages 2655–2660, 1999.

[16] J. Hu, J. Lygeros, and S. S. Sastry. Towards a theory
of stochastic hybrid systems. Lecture Notes in Computer

Science LNCS, 1790:160–173, 2000.

[17] A. A. Julius and G. J. Pappas. Approximations of stochastic
hybrid systems. IEEE Trans. on Automatic Control,
54(6):1193–1203, 2009.

[18] X. Koutsoukos. Optimal control of stochastic hybrid systems
based on locally consistent Markov Decision Processes. In
Proceedings of the 2005 IEEE International Symposium on

Intelligent Control, pages 435–440, June 2005.

[19] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for
hybrid dynamics: the reachability problem. InNewDirections

and Applications in Control Theory, volume 321, pages 193–
205. 2005.

[20] D. Liberzon. Switching in systems and control. Birkhäuser
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