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Abstract— This paper deals with the problem of steering an
aircraft along a reference trajectory while counteracting the
wind disturbance. We develop a control strategy where the
aircraft nonlinear dynamics, physical limitations on the aircraft
maneuverability, and passengers comfort are accounted for
by feedback linearization and a suitable convex relaxation of
constraints. A probabilistic constraint is introduced to account
for the tracking error introduced by the stochastic wind
disturbance. Since wind is represented by a Gaussian random
field and its characteristics depend on both time and space, we
identify on-the-fly a local autoregressive model via recursive
least squares with forgetting factor. The probabilistic constraint
formulation, the wind model update, and the re-computation
of the control action jointly allow to account for the spatial
variability of the random field and to obtain recursive feasibility
in the receding horizon solution. A randomized method is
adopted to obtain a convex relaxation of the resulting chance-
constrained optimization problem, which can then be solved
on-line, at low computational effort.

I. INTRODUCTION

In this paper, we address the problem of steering an aircraft
along a given reference trajectory by counteracting the action
of the wind disturbance, while satisfying constraints related
to aircraft physical limitations. To this purpose we develop a
stochastic control strategy which rests on the formulation
of a chance-constrained optimization problem and on its
approximate solution via randomization. The main issues
are i) the non linearity of the aircraft dynamics, ii) the
stochastic nature of the wind, which is the main source of
uncertainty affecting the aircraft motion [3], [15], [9]. We
apply feedback linearization so as to obtain a simpler linear
model of the aircraft dynamics to embed in the optimization
problem formulation. Since the state and input constraints
representing aircraft physical limitations become non-convex
when expressed in the new coordinates frame, suitable con-
vex relaxations are introduced. The idea of adopting feedback
linearization followed by constraint convexification has been
studied in [25], [23] and applied to aircraft motion control
in [12]. Compared to [12], here, we use a more accurate
model of the aircraft dynamics, include the stochastic wind
disturbance, and adopt a stochastic approach to address
tracking of a reference trajectory. Aircraft motion control
is addressed also in [14], [17], [16], where the presence
of constraints is only partially accounted for. The issue of
counteracting the stochastic wind disturbance compatibly
with the other constraints is addressed by introducing suitable
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probabilistic constraints on the tracking error as suggested
in [11], [13], and by adopting a receding horizon imple-
mentation of the solution to the resulting chance-constrained
optimization problem, leading to a Model Predictive Control
(MPC) scheme, [18]. Wind velocity presents a spatial and
temporal correlation structure and is described by a Gaussian
random field [16], [14], which makes harder to tackle the
introduced probabilistic constraints. We then develop a local
wind model that provides an accurate description of the wind
disturbance in the region around the current aircraft position
and that can be adjusted on-line based on the available wind
measurements. At each time step, the identified model is
used to generate as many sample wind realizations as needed
by the scenario theory [5], [7], [8], to provide feasibil-
ity guarantees for the randomized solution to the chance-
constrained optimization. Eventually, we obtain a convex
finite horizon optimization problem which is computationally
appealing, whose solution satisfies aircraft motion constraints
and is able to track the reference trajectory by counteracting
the wind disturbance when applied according to a receding
horizon strategy.

II. MODELING FRAMEWORK

A. Aircraft dynamics
The following flat earth, point mass model of the aircraft
dynamics is considered:

ẋ =V cosψ cosγ +wx V̇ =−D
m −gsinγ + T cosα

m
ẏ =V sinψ cosγ +wy ψ̇ = L+T sinα

mV cosγ
sinφ

ż =V sinγ +wz γ̇ = L+T sinα

mV cosφ − g
V cosγ

The state variables are the positions x, y, z of the aircraft, the
aircraft True Air Speed (TAS) V , the heading angle ψ , the
path angle γ . The inputs are the Angle of Attack (AoA) α ,
the bank angle φ and the engine thrust T . The presence of
the wind is accounted for by means of the additive stochastic
disturbances wx, wy, wz on the aircraft velocity. Eventually,
D = 1

2 ρ(z)SV 2Cd(1 + b1α + b2α2) is the drag force that
opposes the aircraft motion in the direction of the TAS,
L = 1

2 ρ(z)SV 2Cl(1+ aα) is the lift that provides the force
to oppose gravity, ρ is the air density, S is the wing surface,
m is the aircraft mass which is assumed to be constant, g is
gravitational acceleration, and Cd , Cl , b1, b2, a are suitable
positive aerodynamics coefficients. Though standing on some
simplifying assumptions, models like the one here considered
are often adopted when addressing air traffic management
application [19], [1], [4], [21].

B. Constraints
Following [1], constraints on the state and input variables
are enforced in order to account for physical limitations of
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the aircraft, comfort of passengers and safety requirements.

Vertical Acceleration z̈: −aN ≤ z̈≤ aN

True Air Speed V : Vmin ≤V ≤Vmax

Longitudinal Acceleration: −aL ≤ V̇ ≤ aL

Path angle γ: γmin ≤ γ ≤ γmax

Bank Angle φ : −φmax ≤ φ ≤ φmax

Engine Thrust T : Tmin ≤ T ≤ Tmax.

(1)

C. Wind model
The wind velocities wx, wy, wz are modelled as a time varying
vector field, obtained as the sum of two contributions: a
deterministic term that represents the forecast of the wind,
and a stochastic term accounting for the mismatch between
forecast and the actual wind faced by the aircraft, that is:

wx = wx f +wxs wy = wy f +wys wz = wz f +wzs.

According to [14], [16], the stochastic wind components
wxs, wys, wzs are modelled as a random field where for every
x, y, z, t, the wind components wxs(x,y,z, t), wys(x,y,z, t),
wzs(x,y,z, t) are zero mean Gaussian random variables with
the following spatio-temporal correlation structure:

E[wxs(x,y,z, t)wxs(x′,y′,z′, t ′)] = E[wys(x,y,z, t)wys(x′,y′,z′, t ′)]

= k(z)k(z′)e−σ1|t−t ′|e−σ2‖[x−x′ y−y′]‖e−σ3|z−z′|

E[wzs(x,y,z, t)wzs(x′,y′,z′, t ′)]

= kz(z)kz(z′)e−σ1z|t−t ′|e−σ2z‖[x−x′ y−y′]‖e−σ3z|z−z′|

E[wxs(x,y,z, t)wys(x′,y′,z′, t ′)] = E[wxs(x,y,z, t)wzs(x′,y′,z′, t ′)]
= E[wys(x,y,z, t)wzs(x′,y′,z′, t ′)] = 0 (2)

where k(z) and kz(z) represent the variance of the wind
velocities at a given altitude z and the coefficients σ1, σ2,
σ3 and σ1z, σ2z, σ3z regulate the exponential decrease of
the correlation between wind velocities at different positions
and time instants as their corresponding spatial and temporal
distance increases. According to the correlation structure in
(2), wind is isotropic with respect to x, y, and wind velocities
along different axes are independent. Note that according to
this model the wind disturbance has unbounded support. An
approach to generate samples of a random field that satisfy
the correlation structure in (2) is described in [14], [16].

III. FEEDBACK LINEARIZATION

In this section, a feedback linearizing control law is com-
puted. Feedback linearization was applied also in [24] but
to simpler models of the aircraft. A similar approach to that
in [12] is adopted. Here, however, the presence of the angle
of attack α in the aircraft dynamics (which is neglected in
[12]) and the more accurate description of the aerodynamics
forces require an extension of the results in [12], and lead
to a more complex feedback linearizing control law. The
obtained linear model is then discretized so as to make it
readily usable in the MPC framework.
First, we set

T = (D+mgsinγ + τm) 1
cosα

, (3)

so obtaining V̇ = τ . If we adopt the change of state variables

x1 = x x2 = y x3 = z
x4 =V cosψ cosγ x5 =V sinψ cosγ x6 =V sinγ

the equations governing the system evolution become:

ẋ1 = x4 +wx ẋ2 = x5 +wy ẋ3 = x6 +wz (4a)
ẋ4 = τ cosγ cosψ−V sinγ cosψγ̇−V cosγ sinψψ̇ = u1 (4b)
ẋ5 = τ cosγ sinψ−V sinγ sinψγ̇ +V cosγ cosψψ̇ = u2 (4c)
ẋ6 = τ sinγ +V cosγγ̇ = u3 (4d)

where u1, u2, u3 are the new input of the system. Solving
(4b) and (4c) for τ and φ gives

τ = 1
cosγ

(cosψu1 + sinψu2 +V sinγγ̇) (5)

(L+T sinα)sinφ = m(−sinψu1 + cosψu2). (6)

From (4d) and (5) we obtain:

τ = cosγ(cosψu1 + sinψu2 + tanγu3). (7)

From (4d), (5), (6) the bank angle φ can be computed as:

φ = arctan
(

ν2 cosγ sign(ν1)
|ν1|

)
, (8)

where we set

ν1 = u3−τ sinγ +gcos2
γ ν2 =−sinψu1+cosψu2, (9)

to ease the notation. As for the angle of attack α , we get:

sign(ν1)m

√
ν2

1
cos2 γ

+ν2
2 =L(α)+tanα(D(α)+mgsinγ+τm) (10)

For fixed value of ν1, ν2, γ , τ , V , equation (10) can be solved
numerically to obtain α . Indeed, it can be shown that, for
sensible values of the aerodynamics parameters a, Cl , Cd , b1,
b2, α is uniquely defined, see [10]. Thus, altogether (3), (7),
(8), and the numerical solution of (10) give the nonlinear
feedback that makes the dynamics of x1, x2, x3, x4, x5, x6
linear with respect to the new inputs u1, u2, u3 (see (4a)-(4d)).
Note that the state (x1, x2, x3), (x4, x5, x6) and input (u1, u2,
u3) are the Cartesian components of the aircraft position, the
Cartesian components of the aircraft true air velocity and
of the accelerations respectively. The original state variables
can be recovered from the new ones as follows

x = x1 y = x2 z = x3

V =
√

x2
4 + x2

5 + x2
6 ψ = arctan

(
x5

x4

)
γ = arcsin

(x6

V

)
.

System (4a)-(4d) is discretized so as to eventually obtain

xt+1 = Axt +But +Bwwt , (11)

where A=
[

I3 TsI3
03×3 I3

]
B=
[

T 2
s
2 I3
TsI3

]
C=
[

TsI3
03×3

]
, and Ts is the

sampling period.

IV. CONSTRAINTS REFORMULATION

Fix time t ∈ N and let us consider the look-ahead time
horizon [t, t +M]. In this section the constraints introduced
in Section II-B are rewritten as constraints on the new state x
and input u variables over t+1, . . . , t+M and t, . . . , t+M−1,
respectively. For those constraints that were already treated
in [12], their convex approximations are just reported without
derivations, while as for those constraints that depend on α ,
the derivation of their convex reformulations is given. Overall
the introduced convex constraint reformulations are such that



the original constraints are satisfied at least at the first time
instant (t for u and t +1 for x), so as to guarantee that they
are always satisfied along a receding horizon.
• Vertical Acceleration

−aN ≤ u3,t+i ≤ aN i = 0, . . . ,M−1. (12)

• True Air Speed

x2
4,t+i + x2

5,t+i + x2
6,t+i ≤V 2

max i = 1, . . . ,M (13)[
−1 0 0

]
RyRz

[
x4,t+i x5,t+i x6,t+i

]T ≤−Vmin

where the rotation matrices Rz(ψt), Ry(γt) are defined as:

Rz =

[
cosψt sinψt 0
−sinψt cosψt 0

0 0 1

]
Ry =

[
cosγt 0 sinγt

0 1 0
−sinγt 0 cosγt

]
.

• Longitudinal Acceleration

−aL ≤cosγt(cosψtu1,t+i + sinψtu2,t+i (14)
+ tanγtu3,t+i)≤ aL i = 0, . . . ,M−1,

• Path Angle

V wc−
t+i sinγmin ≤ x6,t+i ≤V wc−

t+i sinγmax i = 1, . . . ,M, (15)

where V wc−
t+i = max{Vt − iTsaL,Vmin}, i = 0, . . . ,M.

• Bank Angle
In view of (6), the constraint on the bank angle in (1) can
be rewritten as:

|−u1,t+i sinψt+i +u2,t+i cosψt+i| ≤ (16)

≤ sin φ̄
Lt+i +Tt+i sinαt+i

m
i = 0, . . . ,M−1.

Taking the squares and recalling (10), (9), we get:

ν
2
2,t+i

cos2 φ̄

sin2 φ̄
cos2

γt+i ≤ ν
2
1,t+i i = 0, . . . ,M−1.

Due to the limitations on vertical and longitudinal acceler-
ations, and on γ , it can be easily seen than ν1 and cosγ are
always positive. Taking the square root we have

|−u1,t+i sinψt+i +u2,t+i cosψt+i| cos φ̄

sin φ̄
cosγt+i ≤ (17)

≤ u3,t+i +gcos2
γt+i− sinγt+i cosγt+i(u1,t+i cosψt+i+

+u2,t+i sinψt+i +u3,t+i tanγt+i) i = 0, . . . ,M−1.

Similarly to [12], convexity is recovered replacing ψt+i and
γt+i in (17) with their initial value γt and ψt :

|− sinψtu1,t+i + cosψtu2,t+i| cos φ̄

sin φ̄
cosγt ≤ (18)

≤ u3,t+i +gcos2
γt − sinγt cosγt(u1,t+i cosψt+

+u2,t+i sinψt + tanγtu3,t+i) i = 0, . . . ,M−1.

Note that, for each i constraint (18) is linear, and for i = 0
it is exactly equivalent to the original constraint.
• Engine Thrust
Recalling (3), (7), and sinγ = x6

V , the constraint on the
engine thrust can be written as:

Tmin ≤
(

mcosγt+i(u1,t+i cosψt+i +u2,t+i sinψt+i+ (19)

+u3,t+i tanγt+i)+D(x3,t+i,Vt+i,αt+i)+

+mg x6,t+i
Vt+i

)
1

cosαt+i
≤ Tmax i = 0 . . .M−1.

As for Vt+i, ψt+i, γt+i, x3,t+i, following [12], we can replace
them with their initial value Vt , ψt , γt , x3,t . The resulting
constraint is still non-convex because of its dependence on
the angle of attack αt+i which is a control input and cannot
be set equal to αt . We then enforce the constraint robustly
with respect to all the possible values that α can take as u1,t ,
u2,t , u3,t vary while satisfying the other constraints. More
precisely, we first compute the admissible range of values
for α , [αmin(xt), αmax(xt)], where αmin(xt) and αmax(xt)
are the minimum and the maximum value for α achieved
by solving equation (10) when the state is kept fixed to the
current value xt and the inputs u1,t , u2,t , u3,t take all the
feasible values in accordance to the constraints (12), (14),
(15), and (18). We can then enforce on the engine thrust
the robust constraint with respect to the values that can be
possibly taken by α:

T̃min ≤mg x6,t+i
Vt

+mcosγt(u1,t+i cosψt +u2,t+i sinψt+

+u3,t+i tanγt)≤ T̃max i = 0, . . . ,M−1, (20)

where we set

T̃min = max
α∈[αmin(xt ), αmax(xt )]

{Tmin cosα−D(x3,t ,Vt ,α)}

T̃max = min
α∈[αmin(xt ), αmax(xt )]

{Tmax cosα−D(x3,t ,Vt ,α)} .

Constraints (20) are linear, and the introduced approxima-
tions are such that the original constraints (19) are satisfied
for i = 0. Further details can be found in [10].

Note that all the derived convex constraints (12),(13), (14),
(15), (18), (20) do not depend on the wind disturbance, which
affects only x1, x2, and x3 (see (11)).

V. CONTROL STRATEGY DESIGN

A. Finite horizon optimization problem

Let (xR
1 (t),x

R
2 (t),x

R
3 (t)), and (ẋR

1 (t), ẋ
R
2 (t), ẋ

R
3 (t)) denote po-

sition and velocity associated to the reference trajectory
that the aircraft should track. We assume that the reference
trajectory has been suitably designed so as to be compatible
with the aircraft motion capabilities, see [10]. The aircraft
may deviate from the reference trajectory because of wind.
We devise a control strategy to steer the aircraft back and
make it track the reference trajectory robustly with respect to
the wind disturbance. To this purpose, we formulate a finite
horizon optimization problem that embeds the linear aircraft
dynamics in Section III, the convex aircraft motion con-
straints in Section IV and additional probabilistic constraints
on the tracking error to account for wind. The solution to
this optimization problem is then applied over a receding
horizon so as to obtain an MPC scheme.
Given the current time t, we define the position error ξt+i
as the difference between the aircraft actual position x1,t+i,
x2,t+i, x3,t+i and the reference position xR

1,t+i, xR
2,t+i, xR

3,t+i,
expressed in longitudinal, lateral and vertical components
with respect to the reference trajectory:

ξt+i=

 cos(ψR,t+i) sin(ψR,t+i) 0
−sin(ψR,t+i) cos(ψR,t+i) 0

0 0 1

x1,t+i
x2,t+i
x3,t+i

−
xR

1,t+i
xR

2,t+i
xR

3,t+i





where ψR,t+i is the reference heading angle and can be
easily computed as ψR,t+i = arctan( ẋR,t+i

ẏR,t+i
). The components

of the position error ξt+i should be ideally kept below some
thresholds. However the error ξ depends additively on the
wind disturbance w through x1, x2, x3 (see equation (11)) and
w has unbounded support. Hence, it is not possible to enforce
a constraint which holds robustly, for all possible disturbance
realizations of w. We, instead, resort to a probabilistic
constraint, namely a constraint that has to be satisfied with
a given (high) probability 1− ε .

P{|ξt+i| ≤ [hL,i hl,i hv,i]
T , i = 1, . . . ,M} ≥ 1− ε, (21)

where ξt+i is a function of wt , . . . ,wt+i−1, and the inequality
within the brackets must hold component-wise. Constraint
(21) may not be feasible: indeed thresholds hL,i, hl,i, hv,i,
i = 1, . . . ,M may be not compatible with the disturbance
characteristics, the other constraints on the input and on the
state, the system initial condition, and the allowed violation
ε . Moreover, verifying compatibility a-priori is too difficult
and it would strongly depend on the choice of the model for
wind disturbance. To address this feasibility issue, we follow
the approach of [11], [13], where hL,i, hl,i, hv,i, i = 1, . . . ,M,
are regarded as variables to be minimized, possibly together
with other objectives. In our setting, the cost function J of
the finite horizon optimization problem is defined as the sum
of two terms: one that depends on the input acceleration
u only and accounts for fuel consumption and passenger
comfort, and a second term that accounts for the tracking
error components hL,i, hl,i, hv,i, i = 1, . . . ,M:

J=
M−1

∑
i=0

µ
i
uduT

t+iRut+i+
M

∑
i=1

µLcµ
i
LdhL,i+µlcµ

i
ldhl,i+µvcµ

i
vdhv,i (22)

where R, µLc, µlc, µvc, µ i
ud , µ i

Ld , µ i
ld , µ i

vd , i = 1, . . . ,M,
are appropriate weights. Matrix R is chosen as R =
RT

rotR
T
norRcRnorRrot , with

Rrot =

[
cosψt sinψt 0
−sinψt cosψt 0

0 0 1

]
, Rnor =


1
aL

0 0
0 1

g tan φ̄
0

0 0 1
aN

 .
Note that Rrot is a rotation matrix that transforms u1 and
u2 (namely, the accelerations along the x and y axes) into
the longitudinal and lateral accelerations with respect to the
initial heading angle ψt , whereas Rnor is a normalization
matrix, chosen according to the limits on the accelerations.
Eventually, matrix Rc allows one to weight the longitudinal,
lateral and vertical accelerations, which are directly related to
fuel consumption and comfort. Matrix Rc together with µLc,
µlc, µvc regulate the relative importance given to input and
position error components, so as to achieve a proper trade-
off between saving the control input and keeping the position
error small, while µ i

ud , µ i
Ld , µ i

ld , µ i
vd , i = 1, . . . ,M, take value

in (0 1] and can be used to weight more the first time steps,
which are the most important for the actual aircraft behavior
because of the adopted receding horizon implementation of
the finite horizon control solution.
Finally, given the discrete-time model of Section III, the
convex constraints discussed in Section IV, the probabilistic

constraint in (21), and the cost function (22), we can formu-
late the finite horizon optimization problem as follows:

min
ut+i i = 0 . . .M−1

hL,i,hl,i,hv,i i = 1 . . .M

J (23)

s.t.
{

constraints (12) (13) (14) (15) (18) (20)
P{|ξt+i| ≤ [hL,i hl,i hv,i]

T , i = 1, . . . ,M} ≥ 1− ε

Note that problem (23) is very hard to solve because of the
presence of the probabilistic constraint and of the complex
probabilistic model of the wind, which altogether make it non
convex. Indeed, w depends on the aircraft position, which in
turn is a function of the input to be optimized. In Section
V-B we revisit the wind model so that it can be regarded as
a standard additive disturbance, then in Section V-C we use
it to solve problem (23) by means of the scenario approach.

B. Modelling wind in the optimization problem

Both the forecast that provides the wind deterministic com-
ponent, and the random field that models the wind stochastic
component introduce a non-linear dependence of the wind
velocity on the aircraft position (x1, x2, x3), which com-
promises the convexity of the optimization problem (23).
Indeed, the wind forecast is a look-up table that maps the
aircraft position into the wind velocities, and the covariance
structure of the wind random field in (2) depends on the
position of the aircraft as well. Note however that when the
look-ahead horizon is short, optimization at each time step
requires the model of the wind in a neighborhood of the
current aircraft position only. Since both the deterministic
and stochastic components typically show a weak variability
in space, the idea is then to build an approximated local
model of the wind that does not depend on x1, x2 and x3. This
model is updated at each time step so as to track the aircraft
change of position in accordance to the receding horizon
implementation of the control strategy.
As for the wind deterministic component w f ,t+i(x1,t+i,x2,t+i,
x3,t+i), i = 0, . . . ,M, we approximate it with ŵ f ,t+i defined,
i by i, as the average of the forecast wind over an hyper-
rectangle placed around the current aircraft position and
oriented so as to cover the region of space that the aircraft
should fly into in the finite horizon M according to the current
values of TAS, heading and path angles. This way ŵ f ,t+i is a
function of time only and it is then straightforward to account
for it in the optimization problem. Despite its simplicity, this
approach works effectively given the limited variability of the
wind forecast over the distances traveled in the considered
finite prediction horizon.
As for the stochastic components of the wind, we model
ws,t+i(x1,t+i,x2,t+i,x3,t+i) over the finite horizon [t, t + M]
by means of discrete time stochastic Auto-Regressive (AR)
processes, whose parameters at time t are identified based on
the past wind values experienced along the aircraft trajectory
up to time instant t−1. Based on (11), wind velocities along
the aircraft trajectory are easily recovered as follows:wx,l

wy,l
wz,l

= 1
Ts

x1,l+1
x2,l+1
x3,l+1

−
x1,l

x2,l
x3,l

−Ts

x4,l
x5,l
x6,l

−T 2
s

2

u1,l
u2,l
u3,l

 (24)



from which past stochastic wind components wxs,l , wys,l ,
wzs,l , l = 0,1, . . . , t−1, can be recovered by subtracting the
deterministic ones. In turn, these values can be used to
recursively identify the following AR models, one for each
wind stochastic component:

ŵxs,l = ϕ
T
xs,lθx + exs,l ŵys,l = ϕ

T
ys,lθy + eys,l (25)

ŵzs,l = ϕ
T
zs,lθz + ezs,l

where exs ∼ WGN(0,λ 2
x ), eys ∼ WGN(0,λ 2

y ), ezs ∼
WGN(0,λ 2

z ) (WGN stands for White Gaussian Noise),
ϕ js,l = [ŵ js,l−1, . . . , ŵ js,l−k,1]T , j = x,y,z, are the regressors,
k the model order, and θx, θy, θz the model parameter vectors.
Note that a 1 is introduced as last element in the regressors so
as to account for non zero mean processes, which may arise
due to the strong correlation of the wind both in time and
space. When a new wind data becomes available via (24),
the AR models are updated by using the Recursive Least
Square (RLS) algorithm with forgetting factor µ: θ j,t = θ j,t−1 +S j,tϕ js,t−1(w js,t−1−ϕT

js,t−1θ j,t−1)

S j,t =
1
µ
(S j,t−1−

S j,t−1ϕ js,t−1ϕT
js,t−1Si,t−1

µ+ϕT
js,t−1S j,t ϕ js,t−1

)

j = x,y,z. The white noise variances are also estimated as:

λ
2
j =

∑
t−1
i=1 µt−i(w js,i−ϕT

js,iθ j,t )
2

∑
t−1
i=1 µt−i , j = x,y,z.

Note that the dependence of the wind on the position in
space is neglected in the AR models. However, since the
identification is repeated at each time step and a forgetting
factor is introduced so as to discard past data that are no
more representative of the current situation, the model is
tuned to the wind characteristics in the region of space close
to the current aircraft position. Note also that the proposed
approach is not making any use of the stochastic wind field
model in (2), and it can account for further disturbances than
the wind such as model errors, noisy measurements or noisy
reconstructions of the state variables, etc. Its usage eventually
enforces additional robustness to control design.
The finite horizon optimization problem (23) can be refor-
mulated as follows by simply replacing w with ŵ = ŵ f + ŵs
as given by the proposed approximate wind model:

min
ut+i i = 0 . . .M−1

hL,i, hl,i, hv,i i = 1 . . .M

J (26)

s.t.
{

constraints (12) (13) (14) (15) (18) (20)
P{|ξ̂t+i| ≤ [hL,i hl,i hv,i]

T , i = 1, . . . ,M} ≥ 1− ε

where ξ̂t+i is the tracking error when ŵ is used in place of
w in the aircraft dynamics (11).

C. Randomized solution to the optimization problem
In order to enhance to computational tractability of problem
(26), we resort to the scenario approach, a randomized
method to approximately solve chance-constrained problems
that was introduced in [5], [7] and applied to stochastic
constrained control in [11], [6], [22]. This entails that
at each time t, N realizations of the wind disturbance
[ŵ( j)

t ŵ( j)
t+1 . . . ŵ( j)

t+M−1]
T , j = 1, . . . ,N, are generated accord-

ing to the latest identified wind model (25), initialized with

the wind observations wt−1,. . .,wt−k. Then, the probabilistic
constraint in (26) is replaced with the N constraints obtained
in correspondence of the extracted disturbance realizations:

min
ut+i i = 0 . . .M−1

hL,i, hl,i, hv,i i = 1 . . .M

J (27)

s.t.
{

constraints (12) (13) (14) (15) (18) (20)
|ξ ( j)

t+i| ≤ [hL,i hl,i hv,i]
T , i = 1 . . .M, j = 1 . . .N

where ξ
( j)
t+i is the tracking error when the aircraft dynamic

(11) is evaluated replacing w with the extracted realiza-
tion ŵ( j). Note that the new N constraints replacing the
probabilistic one are linear constraints, and, overall, (27)
is a quadratically constrained quadratic program which can
be very efficiently solved by means of standard solvers.
Moreover, despite its apparent naivety, the scenario approach
is grounded on a solid theory that links N to a precise
guarantee on the feasibility of the solution obtained solving
problem (27) for the original chance-constrained problem
(26), [7], [8], [2]. Here, we rely on the results of [22], which
account for the fact that the solution is recomputed at each
time step over a receding horizon and specialize the scenario
theory to the evaluation of the behavior of the obtained
closed-loop control. Specifically, let (u?

t ,h
?
L,t+1,h

?
l,t+1,h

?
v,t+1)

be that part of the solution to problem (27) that refers to the
first time instant and let x?t+1 and ξ ?

t+1 be the corresponding
closed-loop aircraft state and position error respectively.

Defining vt =

{
1 if ξ ?

t ≤ [h?L,t ,h
?
l,t ,h

?
v,t ]

T

0 otherwise
, it then holds

that limt→∞ inf 1
t ∑

t
j=0 v j ≥ 1− ζ

N+1 , where ζ is the so called
support rank, [22], of the constraints corresponding to the
first time instant only (in our setup ζ = 6). In words, the
above results means that the receding horizon violation of
the constraint, i.e. the proportion of times in which the
actual position error ξ ?

t is within the bounds h?L,t , h?l,t , h?v,t ,
is kept under control by wisely selecting N. In particular, to
guarantee that the receding horizon violation of the constraint
is ≥ 1− ε , it is enough to choose N ≥ ζ

ε
−1.

VI. NUMERICAL RESULTS

We suppose that the aircraft initial state is x0 = [−60 −
6 6 600 600 0]T (positions are in km, velocities in km/h),
which is also the beginning of the reference trajectory, and
we use the adopted control strategy for 900 steps with a
sampling time Ts = 2s. We set the prediction horizon M = 20,
and the weights: µLc = 8, µlc = 6, µvc = 6, µLd = µld = µvd =
µud = 0.72, Rc = diag(0.125, 1, 0.25). The desired ε is set to
0.1, the corresponding number of sample wind realizations
is N = 59. The bounds for the constraints on aircraft physical
limitations are set as: Vmax = 910km/h, Vmin = 600km/h,
γmax = 5◦, γmin = −3◦, Tmax = 2 · 276kN, Tmin = Tmax/200,
aN = 1.5m/s2, aL = 0.6m/s2, φ̄ = 40◦. The stochastic wind
random field parameters are set as: σ1 = σ1z = 610−4,
σ2 = 1.610−5, σ3 = 1.510−4, σ2z = 1.510−4, σ3z = 1.610−5,
k(z) = z

3 +5, kz(z) = 0.5( z
3 +5).

In the simulation the wind faced by the aircraft is generated
according to the wind model in Section II-C. As for the
wind forecast wx f , wy f , wz f , we rely on the NOAA Rapid
Refresh (RAP) model [20]. The controller recovers the past
wind values from the knowledge of the state according to



(24). The so obtained wind data are exploited to recursively
identify three AR models of order k = 3, as described in
Section V-B, which are used to generate the wind sample
realizations as required for the application of the scenario
approach.
The results achieved by implementing the proposed approach
are reported in Figure 1, where a 3-D view of the actual
trajectory of the aircraft, along with the reference trajectory,
is depicted. The reference trajectory is well followed by the
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Fig. 1: Aircraft trajectory: receding horizon solution (blue
stars), reference trajectory (red circle).

aircraft and the position error keeps almost always below
100m (see Figure 2) and it is usually even smaller especially
on the lateral and vertical components. The computed h?L,t ,
h?l,t , h?v,t provides a good bound on the actual position error:
the first step position constraint is violated, namely |ξt | is
greater than the corresponding bound [h?L,t h?l,t h?v,t ] computed
at time t−1, only in the 5.2% of the steps.
Considering the same set-up, we perform a simulation where
the same wind realization acts on the aircraft, but the wind is
not accounted for in the control design, namely we set ŵ = 0
in the finite horizon optimization problem. The comparison
between the position error ξ obtained accounting for the
wind presence or neglecting it in the optimization problem
is reported in Figure 2. The position error obtained without
accounting for the wind is greater than the one obtained
accounting for the wind presence in the optimization prob-
lem, indeed we get that neglecting the wind ∑

900
t=1 |ξt | results

[60.47 27.40 7.80], while accounting for the wind we achieve
a much better performance [8.74 2.98 0.93].
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