
Combined On-line Lifetime-Energy
Optimization for Asymmetric Multicores

Cristiana Bolchini, Matteo Carminati
Dipartimento di Elettronica, Informazione e Bioiongegneria

Politecnico di Milano – Milano, Italy
name.surname@polimi.it

Tulika Mitra, Thannirmalai Somu Muthukaruppan
School of Computing

National University of Singapore – Singapore
{tulika|tsomu}@comp.nus.edu.sg

Abstract—In this paper we present an architectural and on-
line resource management solution to optimize lifetime reliability
of asymmetric multicores while minimizing the system energy
consumption, targeting both single nodes (multicores) as well as
multiple ones (cluster of multicores). The solution exploits the
different characteristics of the computing resources to achieve the
desired performance while optimizing the lifetime/energy trade-
off. The experimental results show that a combined optimization
of energy and lifetime allows for achieving an extended lifetime
(similar to the one pursued by lifetime-only optimization solu-
tions) with a marginal energy consumption detriment (less than
2%) with respect to energy-aware but aging-unaware systems.

I. INTRODUCTION AND RELATED WORK

Over the past decade the trend in microprocessor design has
shifted towards parallel architectures, such as multi/manycores,
and more recently, towards asymmetric architectures, integrat-
ing cores with different power/performance characteristics, to
be exploited based on the current execution context (e.g.,
workload, energy budget or architecture status). This flexibil-
ity introduces many possibilities as well as new challenges
and issues, including an increased complexity for application
mapping and resource management, to be optimized at runtime
to adapt to the working conditions that may not necessarily
be known in advance. Asymmetric architectures have already
been proven to be beneficial in improving performance and
power/energy consumption [22]. However, if the adopted poli-
cies do not take into account how they affect the system life-
time, the architecture reliability might be significantly affected.
On the other hand, those solutions that focus only on lifetime
improvement ([11, 15, 14, 18, 6]) are typically characterized
by high energy consumption. This work proposes an approach
for designing systems with combined on-line lifetime/energy
optimization by exploiting the architecture asymmetry.

It may seem that the optimization of the energy consump-
tion would naturally lead to the improvement of the system
lifetime, being both aspects mainly related to temperature.
However, as shown in [14], optimizing for temperature (and
eventually energy) does not necessarily achieve a benefit on
the lifetime reliability of the system, also considering how it is
computed. In particular, as it will be shown by the experimental
campaigns, the side-effects of the strategies purely devoted to
the energy minimization have a negative impact on lifetime,
and vice-versa.

This work proposes a resource management framework
designed as an evolution of the solution presented in [22],

which is focused on a power management technique for asym-
metric multicores that can provide satisfactory user experience
while minimizing energy consumption. We aim at building
our lifetime optimization framework on the top of it, to
make it aware of the components aging and exploit resource
management so to extend the overall system lifetime without
negatively impacting energy consumption. In particular, among
all the wear-out phenomena affecting components, we explic-
itly target electromigration (EM) and thermal cycling (TC),
even if the adopted model can be extended to integrate other
effects by means of the sum of failure rates (SOFR) of wear
mechanisms. The knobs used to pursue the optimization goal
are the selection of the resource where to map the application
and of the dynamic voltage/frequency scaling (DVFS) of the
available resources.

There are a few recent approaches aimed at resource
management for either power consumption and/or lifetime
optimization in symmetric [1, 5, 11, 4, 14, 6] or asymmet-
ric [10, 21, 18] architectures. The authors in [4] propose
an off-line technique to improve the lifetime reliability of
MPSoCs, while [11] describes a combination of design-time
and runtime techniques to optimize it. It is commonly agreed
upon that online adaptation is essential when dealing with
aging, temperature, or energy related optimization, due to the
lack of significant information that could drive a design-time
solution space exploration. Thus, when moving to on-line
optimization, [1] is one of the first approaches considering
both lifetime reliability and energy consumption in MPSoCs;
however, the two dimensions are optimized separately. Energy
and reliability optimization is considered in [5] as well: the
proposed hybrid approach does not consider computational
energy optimization and DVFS-enabled architectures. Among
recent works, [14] introduces an approach based on core
utilization as a figure of merit to be balanced among homoge-
neous multicores, in order to improve the liferime reliability
of the system. A homogeneous architecture is considered also
in [6], where different techniques are evaluated and compared
with the aim of improving lifetime reliability based on aging,
on multicore homogeneous architectures, with no consideration
for energy. Moreover, in both works, no DVFS is taken into
account.

All the above-mentioned works deal with symmetric archi-
tectures. On the asymmetric side, in [21], the authors introduce
dynamic reliability aware task scheduling without taking into
account energy consumption optimization. Finally, among all
the approaches proposed in literature, [10] is the one that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80334943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

offers a solution similar to ours; however, it does not consider
combined energy and lifetime reliability optimization and the
reference architecture does not support DVFS, an important
asset to improve energy consumption.

With respet to the current state of the art solutions, the key
contributions of this work are:

• a combined lifetime/energy management framework that
maximizes lifetime and minimizes energy consumption,
under performance constraints. It is hierarchical, to avoid
scalability issues, and lightweight, to allow on-line adap-
tation with a negligible overhead;

• the extension of the proposed framework from a single
asymmetric node to a multi-node high performance em-
bedded computing platform (such as [23] or [20]);

• an extensive experimental evaluation, proving the effi-
ciency of the proposed approach based on simulations of
performance and power traces collected from executions
on a real ARM big.LITTLE architecture [2].

The remainder of the paper is organized as follows. Section
II sets the background and defines all models for the proposed
approach to be clear, while Section III presents the state of
the art framework on top of which the proposed work is de-
signed. Section IV describes the proposed runtime optimization
framework, the main contribution of this work. Experimental
results are shown and discussed in Section V, followed by the
concluding remarks.

II. SYSTEM MODELS

Architecture. The adopted reference architecture model
is a two-level platform. At the first level, there is a grid of
processing units, called nodes, each one considered to be an
asymmetric multicore, consisting of different clusters com-
posed of symmetric cores. The interconnection/communication
infrastructure can be a bus, a crossbar, or a NoC, not affecting
the proposed solution. Communication within a node is per-
formed through a shared memory, allowing the applications to
be seamlessly migrated across the clusters at runtime. DVFS
is supported per cluster (as in [2]) therefore all the cores in a
cluster run at the same frequency. The cores across the clusters
are asymmetric in terms of performance, while the cores
within a cluster are symmetric. We specifically target single-
ISA asymmetric multicores, which exhibit power-performance
heterogeneity as in ARM big.LITTLE and Tegra [17].

Applications. Serial applications only are considered in
this work, possibly characterised by various phases. Each
application i is characterized by an expected performance con-
straint qosi, expressed by means of a Quality of Service (QoS)
measure, for which we exploited the concept of heartrate [7].
It is defined as the throughput of the critical kernel in an ap-
plication, such as the number of frames per second for a video
encoder application. This value is provided together with the
application at its arrival time Ti, assumed not to be known a-
priori. The architecture must try to meet the given performance
constraint, according to the soft real-time paradigm. Multiple
instances of the same application and different applications are
allowed to be executed simultaneously, partially or completely
overlapping. However, we assume that only one application is
allowed to be executed on a core at each instant of time.

Reliability. Reliability of a system or component at time t,
R(t), is the probability that the system has been operational up
to time t. When considering wear-out phenomena, the Weibull
distribution is the one that better describes the reliability of a
single processor [13]:

R(t) = e−(t
α(T))

β

(1)

where T is the processor temperature and β is the Weibull
slope parameter (considered independent of T). The α(T)
parameter formulation depends on the considered wear-out
effects [13]. Here, electromigration (EM) and thermal cy-
cling (TC) are considered. The former has an impact on the
architecture wear-out that directly depends on the working
temperature (high values should be avoided); the latter is
negatively affected by frequent temperature variations (to be
considered when dealing with DVFS). The defined model
can integrate other effects either as standalone contribution
or by using Sum-of-Failure Rate (SOFR) model [12] for any
combination of the above failure effects. When considering
EM, Black’s equation [13] is used and α(T) is defined as:

α(T)EM =
A0(J − Jcrit)

−ne
Ea
kT

Γ
(

1 + 1
β

) (2)

where A0 is a constant acceleration factor strongly process
dependent, J is the current density, Jcrit the critical density, Ea
the activation energy, k the Boltzmann’s constant, n a material-
dependent constant, and Γ() refers to the gamma function.
Coffin-Manson equation [13] can be used to model TC:

α(T)TC = C0(∆T −∆T0)−qf (3)

where ∆T is the temperature cycling range and ∆T0 the
elastic portion of the thermal cycle (typically, ∆T0 << ∆T ,
thus ∆T0 can be dropped from Equation 3); C0 is a material
dependent constant, q is the Coffin-Manson exponent, and f is
the frequency of thermal cycles. In conclusion, by exploiting
the SOFR model, α(T) will be considered, from now on, as
the sum of α(T)EM and α(T)TC .

Mean Time To Failure (MTTF) is the adopted metric
for evaluating the components lifetime. MTTF of a core is
computed as the area underneath its reliability function R(t):
MTTF =

∫∞
0
R(t)dt. We adopt a hierarchical approach in

estimating the MTTF of the entire system. The MTTF of the
node is estimated by using a framework that exploits Monte
Carlo simulations, random walks and the approach proposed
in [11]; the MTTF of the entire system is estimated by using
the first failure model, which offers a pessimistic estimation,
since the system could still survive although with a lower QoS.

Energy Consumption. Two contributions are usually con-
sidered: computation and communication energy. In this work
we aim at optimizing computation energy only, because of
the sequential nature of the applications. Within a node, for
each core, the energy consumption depends on the specific
core characteristics and on the voltage levels related to the
operating points it has been working at (particularly relevant
when DVFS is enabled), in addition to the execution time. The
energy consumption of a node is given by summing each core’s
contribution, and the overall energy consumption is computed
by adding the contributions for all the nodes.

D
V
FS

Co
nt

ro
lle

r

bi
g

LI
T
T
LE

Ba
la
nc

er

M
ig
ra

to
r

Fig. 1. Block diagram for the reference energy
optimization framework.

D
V
FS

C
on

tr
ol
le
r

bi
g

LI
T
T
LE

A
ge

B
al
an

ce
r

H
el
pe

r

Fig. 2. Block diagram for the proposed lifetime
and energy optimization framework.

bL
bL

bL
bLEn

tr
y

Le
ve

l
D

is
pa

tc
he

r

Fig. 3. Extension of the proposed framework to a
mult-node architecture.

III. STATE OF ART FRAMEWORK

We here briefly introduce the architecture of the framework
presented in [22], on top of which our proposal is built. The
original solution manages energy consumption at the node
level, where the node has an ARM big.LITTLE architecture,
integrating two high performing, complex, out-of-order ARM
Cortex-A15 and three energy-efficient, simple, in-order ARM
Cortex-A7 cores on the same chip.

There are three relevant components for discussion. At
the node level there are a Balancer and a Migrator. The
former guarantees that the cores within the clusters are evenly
balanced with respect to the load, by mapping incoming
tasks based on the resources past utilization. The latter is in
charge of migrating the applications from one cluster to the
other one, when the present mapping is not the best choice
in terms of energy/performance trade-off. More precisely, it
moves applications that do not achieve their target QoS at
the maximum frequency on the A7 cluster to the A15 cluster.
Dually, it moves applications from the A15 cluster to the A7
one when the measured QoS is above the maximum target QoS
at the minimum frequency in the A15 cluster.

Finally, a per-cluster DVFS Controller is employed. This
controller manipulates the voltage-frequency levels to meet the
target performance goals of all the applications in the cluster
while minimizing the energy consumption. This component is
based on a PID controller using a control-theoretic approach.
Since the cores working points can be manipulated only at the
cluster level, the target QoS of the PID controller is determined
by the application with the highest computational demand. By
meeting the performance target at the lowest possible voltage-
frequency level, the energy consumption is minimized.

IV. LIFETIME-ENERGY MANAGEMENT

The decision taken by the components of the base frame-
work are completely aging unaware. We aim at introducing
aging-aware resource management to improve the lifetime of
the system with a limited impact from the energy point of
view. The approach consists of two actions, one at the single
node level and another one considering a multi-node scenario.
While the first one is an extension of the existing architecture
for incorporating the combined lifetime-energy optimization,
the latter is a completely innovative solution.

A. Single Node Scenario

For the single node scenario, as shown in Figure 2, the
Balancer and the Migrator have been modified and merged
into a single component, the Age Balancer, which considers
components wear-out when moving the applications between

Algorithm 1 Age Balancer algorithm
1: mappings = {0}
2: clusters = getClusters()
3: for all c in clusters do
4: cores = getCores(clusters[c])
5: apps = getApplications(clusters[c])
6: for all a in apps do
7: bestCluster = getBestCluster(apps[a])
8: if bestCluster! = clusters[c]

and isFree(bestCluster) then
9: bestCluster.addApp(apps[a])

10: apps.remove(apps[a])
11: end if
12: end for
13: sortedC = coreAgeSort(cores)
14: sortedA = appsInverseAgeSort(apps)
15: for all i in sortedA do
16: mappings[clusters[c]].add(sortedA[i], sortedC[i])
17: end for
18: end for
19: return mappings

cores and clusters. A new component, the Helper Controller,
has been introduced to support the DVFS controller decisions.

Age Balancer. The first mapping of each application is
computed according to its worst-case QoS; the less energy-
hungry resource able to satisfy the worst-case performance
requirement is selected. However, the required average QoS
of an application is typically much lower than the worst-case
QoS, which can be gathered by looking at the applications
execution traces. Thus, the initial mapping usually represents
a over-provisioned design decision; for example, during phases
of low computational requirements, the application could be
migrated to a different cluster type and still meet the perfor-
mance requirements with a much lower energy consumption.
The Age Balancer merges the Balancer and the Migrator tasks
into a single component, in charge of periodically adjusting
the applications mapping, considering both their current QoS
(with reference to the desired one) and the aging of the cores.

Algorithm 1 shows the pseudo-code of the Age Balancer
heuristics. The algorithm iterates through all the clusters in
the node and within each cluster, through all the applications,
to find a different cluster where to move the application
so that the performance requirement is satisfied and energy
consumption is minimized. At the same time, within the
cluster, the application that contributed the most to the aging
in the previous interval is mapped onto the core aged the least.
By doing this, the algorithm achieves a balanced aging across
all the cores.

Helper Controller. The aim of this controller is to assist
the DVFS controller in manipulating the voltage-frequency

levels of the cores; one controller for each cluster is needed,
since the DVFS is available per-cluster.

As mentioned, the PID controller is in charge of guar-
anteeing the performance target to be met at the lowest
voltage-frequency level. However, the dynamic phases of an
application can make the PID controller switch aggressively
between these levels. Although aggressive scaling improves
energy consumption, it also has significant negative impact on
the lifetime reliability through thermal cycling. To avoid this
phenomenon, we propose a Helper Controller that prevents
the drastic modification in voltage-frequency level as follows.
By reading the power sensors, this controller can measure
the actual power consumption of the cluster. It estimates the
power consumption at different voltage-frequency levels by
using equation P = A×C × V 2×F , where A is the activity
factor, C is the load capacitance, V is the voltage and F is
the frequency. The target power consumption can be estimated
given the target voltage and frequency. Using the estimated
power consumption, the helper controller employs the widely
used thermal RC model [8] to estimate the temperature at
various voltage-frequency levels. From the current temperature
measurement and Equation 3, the helper controller can prune
the set of voltage-frequency levels that can potentially affect
the lifetime reliability of the system by a certain threshold. In
our work, we assume the threshold to be 10% of the actual
MTTF of the system. More precisely, to prevent TC, when the
PID controller is transitioning from higher to lower frequency,
the DVFS controller selects the highest values between the
PID controller and the minimum of the frequencies computed
by helper controller. When the transition is from lower to
higher frequency, the DVFS controller selects the lowest
value between the PID controller and the maximum frequency
computed by the helper controller.

Invocation Frequency. In the proposed framework, the
different components have to be properly coordinated and
invoked at different frequencies. The per-cluster DVFS con-
troller is invoked at a higher frequency compared to the Age
balancer. There are three major reasons behind the aforemen-
tioned choice. First, the age balancer focuses primarily on
improving the lifetime reliability of the system. It has been a
well-established phenomenon that the lifetime reliability of a
microprocessor is significantly related to the temperature. As
the temperature changes occur slowly [8], the age balancer
can be invoked at a much lower frequency. Second, the
overhead of invoking the age balancer is high if compared
to the one of DVFS controller. In ARM big.LITTLE, the
overhead of migrating application across clusters is in the
order of milliseconds (from 2 to 4 ms) [22]. Therefore, the
age balancer has to be invoked very infrequently. Lastly, the
overhead of changing voltage-frequency levels is quite minimal
[22]. Changing voltage-frequency levels can positive impact
the energy consumption of the system; therefore, the DVFS
controller is invoked at a higher frequency.

B. Multi-Node Scenario

When moving from a single ARM big.LITTLE node archi-
tecture to a multiple node one, a new component for managing
the overall architecture is introduced. The aim of this entity,
dubbed Entry Level Dispatcher (as shown in Figure 3), is to
select the best initial mapping for the incoming applications;

Application
Arrived

get best cluster
and frequency

free &
powered on

cluster?

free
cluster?

NO

select cluster
with similar freq.

YES

YES

more
than one?

other
clusters meet

req.?

NO wait for a
free core

NO

select
new cluster

YES

select least
aged cluster

YES Application
Dispatched

NO

Fig. 4. Control flow chart for the dispatching algorithm.

it must take nodes aging into consideration and, if possible,
select the best energy-aware solution as well. The dispatcher
takes decisions based on the:

• application profiles, consisting of its worst-case required
QoS and its average power consumption, for each differ-
ent core type;

• system status, i.e. the number of active and free clus-
ters/nodes.

These profiles are obtained using off-line analysis. The worst-
case required QoS and average power consumption are mea-
sured at the maximum voltage-frequency level for each core
type. Assuming a linear relationship between QoS and voltage-
frequency level, we can estimate the performance at different
frequency levels; similarly, the power consumption can be
estimated as well, as already explained. We assume that
the asymmetric multicore is equipped with per-core sensors
measuring power, energy, voltage, frequency and temperature.
We also assume that each core is equipped with wear sensors
similar to the ones exploited in [10]. The dispatcher can
access the sensors information to determine the system status.
The dispatcher schedules the incoming applications to the
appropriate node and cluster, aiming at improving the lifetime
reliability while minimizing the energy, with performance as
a constraint. The flow chart is shown in Figure 4.

The arriving applications are enqueued in a FIFO queue.
Using the application profile, the dispatcher can estimate the
best cluster type and its voltage-frequency level that can satisfy
the applications performance constraint at a minimal energy
consumption. First, the dispatcher identifies already powered-
on clusters of the same type having free cores: these are the
ideal candidates. For a lifetime reliability-aware mapping, the
dispatcher selects the cluster that is least aged among the
clusters with similar voltage-frequency levels. However, if the
dispatcher does not find any powered-on cluster with free
cores, it powers up a free cluster similar to the type previously
estimated. If no such cluster is available, the dispatcher selects
another cluster type that can meet the performance at the
lowest possible energy cost. Last, if no free clusters are
available, it waits until a core becomes free.

V. EXPERIMENTAL EVALUATION

The experimental sessions here described aim at demon-
strating how the proposed framework i) improves the results
obtained by the base framework in terms of architecture
lifetime without heavily impacting on energy consumption,
ii) can be extended for managing the resources of a multiple

node architecture by introducing a new smart application
dispatcher able to improve lifetime keeping the same (almost
negligible) energy consumption overhead, and, iii) achieves
almost the same lifetime improvements as a dedicated lifetime
optimization framework, also improving energy consumption.

More precisely, we take as reference for our compari-
son two single objective frameworks optimizing energy (i.e,
Energy-only [22]) or lifetime (a heuristic for MTTF maxi-
mization inspired by [5], MTTF-only). We have extended such
reference policies also to the multi-node scenario although
they have been designed for the single node one, to have
comparative values.

A. Experimental Setup

The experimental platform is a four-node architecture,
where each node is an ARM big.LITTLE. A single node is
considered for the first experimental session. We collected
applications power and performance traces by running appli-
cations on a real ARM big.LITTLE core using a Versatile
Express development platform [2], built at 45nm GP tech-
nology. The test chip consists of two core Cortex-A15 (big)
cluster and three core Cortex-A7 (LITTLE) cluster. Since no
per-core thermal sensors are available on-board, we developed
a simulation environment, based on SystemC/TLM, integrating
the models of collected real data characterizing both the
applications and the board. The simulator is fundamental in
estimating the architecture thermal profile: it implements a
steady-state temperature model, validated by means of HotSpot
[8], that takes into account the self-activity of each core, the
operating frequencies and the neighbor cores’ temperature. The
obtained temperatures are processed and used to compute the
cores’ reliability according to Equations 1–3. We referred to
[11] for choosing the values of the parameters related to EM,
and to [16] for the ones related to TC.

Real-life applications have been used to run the experi-
ments, selected from well-known benchmarking suites, namely
PARSEC [3] (blackscholes, bodytrack, swaption, x264), SPEC
[19] (h264), and Vision [9] (disparity, texture). These applica-
tions have been selected to represent a good mix of heteroge-
neous behaviors. All the applications have been executed on
both the A15 and on the A7 core for each of the available
working frequencies; from 500MHz to 1.2GHz, with a
100MHz step, for A15; from 600MHz to 1.0GHz, with
a 100MHz step, for A7. Most of the applications executing
under 600MHz on A7 experienced very poor performance,
therefore we discarded the related traces. For each <app,
freq> pair a trace file is computed and stored, containing
the application’s power consumption and its performance at
regular time intervals. The power sensors in ARM big.LITTLE
have been used to measure power consumption. The QoS of
the applications are expressed in terms of heartrate; we inserted
the heartbeat register points as mentioned in [22].

Ideally, each single application has to be profiled individu-
ally to estimate the speedup for various voltage-frequency lev-
els, resulting in complex off-line analyses. To avoid extensive
profiling, we assume a linear relationship between frequency
and heartrate for all the applications. The invocation frequency
of age balancer is 200ms; the DVFS controller one is 50ms,
which is much higher than the Linux scheduling epoch (10ms).

Both frequencies have been empirically selected to obtain the
best accuracy/overhead trade-off. The overhead of changing
voltage-frequency levels is assumed to be 50µs; application
re-mapping within the same cluster takes 200µs, 4ms across
clusters [22].

B. Single-Node Evaluation

For the first execution scenario, we defined five different
use cases (UCsx) consisting of 50 applications, randomly
selected among the applications previously presented. For each
application: i) the arrival time is computed according to a
Poisson distribution (described by its parameter λ) and ii) the
expected heartrate is computed as the average heartrate of a
randomly selected trace among the available ones. The λ value
is constant and chosen such that the architecture is fully loaded
with no waiting queues.

Figure 5 shows the results for this first campaign. In the
top graph, we report the ratio between the computed MTTF
and the MTTF achieved by the lifetime-only optimization
approach (dashed horizontal line, [5]). As expected, both the
energy-only and the proposed approach are not as effective,
however on average they reach 80.6% and 92.3% of the
MTTF-only lifetime, respectively. The bottom part of the graph
reports the corresponding energy ratio with respect to the
energy consumption of the energy-only optimization approach
(dashed horizontal line, [22]). In this case, the energy overhead
for Proposed is, on average, 1.8% higher, while the lifetime
optimization framework deteriorates the best results by 25.4%.

C. Multi-Node Evaluation

As mentioned, we have extended the policies of the refer-
ence framework to the multi-node scenario in a straightforward
manner, to have a baseline reference. The same application
scenario has been adopted, while the value of λ has been tuned
again to have the architecture constantly busy, but to avoid
waiting queues. The results, plotted in Figure 6, show almost
the same trend of the previous experimental session. The
proposed technique proves to still be able to mimic the optimal
results in terms of lifetime, achieving, on average, 90.6% of
the optimal lifetime. On the other hand, the lifetime obtained
by the aging unaware solution drops to 47.8%. Results for
energy consumption are more similar to the previous scenario.
The Proposed solution maintains an average 1.3% overhead
with respect to the best energy consumption values, while the
overhead of the energy unaware solution is 21.1%.

D. Discussion

As expected, the frameworks optimizing a single objective
(energy or lifetime) excel with respect to the metric they adopt,
being characterized by high impact on the other aspect; the
energy-optimization framework also has some limitations in
terms of scalability. On the other hand, the combined solution
we propose achieves results that are more similar to the optimal
ones, for both lifetime and energy consumption; it shows a
negligible overhead in energy consumption and a significant
lifetime extension. More precisely, we can also note that
although lifetime is related to temperature as well as energy-
optimization policies, it is necessary to consider lifetime reli-
ability as a first-class citizen to actually obtain optimal results

Energy-only Proposed MTTF-only
N

or
m

al
iz

ed
 E

ne
rg

y
MTTF

Energy

only

only

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
TT

F

0

0.5

1.0

UCs1 UCs2 UCs3 UCs4 UCs5

Fig. 5. The proposed approach compared with the baseline frame-
work in a single node architecture.

Energy-only Proposed MTTF-only
MTTF
only

only
Energy

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.5

1.0

N
or

m
al

iz
ed

 M
TT

F

0

0.5

1.0

UCm1 UCm2 UCm3 UCm4 UCm5

Fig. 6. The proposed approach compared with the baseline frame-
work in a multi node architecture.

with respect to such aspects. Furthermore, experimental results
show that the combined optimization introduces only marginal
overheads on the independent metrics, marginally reducing
the potential optimal condition of a single-goal optimization.
Altogether, the introduction of a second relevant optimization
objective has a very limited overhead with respect to the
benefits it introduces.

It is also worth noting how, when moving from the single
to the multi-node scenario, the combined approach shows good
scalability: energy overhead from 1.8% to 1.3% and lifetime
from 92.3% to 90.6% with respect to the optimization policy
that focuses on one goal at the time.

VI. CONCLUSION

In this paper we presented the design and implementation
of a framework for the combined optimization of lifetime
and energy consumption in asymmetric and high performance
embedded architectures. The framework is built on top of a
state of art energy optimization solution and aims at making it
aging-aware. Experimental results, on an architecture built with
ARM big.LITTLE cores, confirm that the proposed framework,
without any a-priori information, can achieve results that are
comparable with those obtained by approaches that perform
single objective optimization, both in the single node scenario
and in the multi-node one.

ACKNOWLEDGEMENT

This work was partially funded by the European Com-
mission in the context of the FP7 SAVE project (#610996-
SAVE) and by the Singapore Ministry of Education Academic
Research Fund Tier 2 MOE2015-T2-2-088.

REFERENCES

[1] A.K. Coskun et al. Evaluating the impact of job scheduling and power
management on processor lifetime for chip multiprocessors. In Int. Conf.
Measurement and Modeling Computer Systems, pages 169–180, 2009.

[2] ARM Ltd. http://www.arm.com/products/tools/develop-
ment-boards/versatile-express/index.php, 2011.

[3] C. Bienia et al. The PARSEC benchmark suite: Characterization and
architectural implications. In Int. Conf. Parallel Architectures and
Compilation Techniques, pages 72–81, 2008.

[4] A. Das, A. Kumar, and B. Veeravalli. Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained applications
on multimedia MPSoCs. In Conf. Design, Automation & Test in Europe,
pages 1–6, 2014.

[5] C. Bolchini et al. Run-time mapping for reliable many-cores based on
energy/performance trade-offs. In Symp. Defect and Fault Tolerance,
pages 58–64, 2013.

[6] C. Bolchini et al. Lifetime-aware load distribution policies in multi-core
systems: an in-depth analysis. In Conf. Design, Automation & Test in
Europe, pages 804–809, 2016.

[7] H. Hoffmann et al. Application heartbeats: A generic interface for
specifying program performance and goals in autonomous computing
environments. In Int. Conf. Autonomic Computing, pages 79–88, 2010.

[8] K. Skadron et al. Temperature-aware microarchitecture: Modeling and
implementation. Trans. Architecture Code Optimization, 1(1):94–125,
2004.

[9] S.K. Venkata et al. SD-VBS: The San Diego vision benchmark suite.
In Int. Symp. Workload Characteriz., pages 55–64, 2009.

[10] A.S. Hartman and D.E. Thomas. Lifetime improvement through runtime
wear-based task mapping. In Int. Conf. Hw/Sw codesign and system
synthesis, pages 13–22, 2012.

[11] L. Huang, F. Yuan, and Q. Xu. On task allocation and scheduling for
lifetime extension of platform-based MPSoC designs. Trans. Parallel
Distributed Systems, 22(12):2088–2099, 2011.

[12] J. Srinivasan et al. The case for lifetime reliability-aware microproces-
sors. In Int. Symp. Comp. Arch., pages 276–287, 2004.

[13] JEDEC Association. Failure mechanisms and models for semiconductor
devices. JEDEC Publication JEP122G, 2010.

[14] Yue Ma, Thidapat Chantem, X. Sharon Hu, and Robert P. Dick. Improv-
ing lifetime of multicore soft real-time systems through global utilization
control. In Great Lakes Symposium on VLSI, pages 79–82, 2015.

[15] P. Mercati, A. Bartolini, F. Paterna, T.S. Rosing, and L. Benini. Workload
and user experience-aware dynamic reliability management in multicore
processors. In Design Automation Conf., pages 2:1–2:6, 2013.

[16] H.V. Nguyen. Multilevel interconnect reliability: On the effects of
electro-thermomechanical stresses. Ph.D. dissertation, University of
Twente, Netherland. 2004.

[17] NVidia Corp. The benefits of multiple cpu cores in mobile devices.,
2011.

[18] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili. Amdahl?s law for
lifetime reliability scaling in heterogeneous multicore processors. In Int.
Symp. High-Performance Computer Architecture, 2016.

[19] SPEC CPU Bench. www.spec.org/benchmarks.html, 2014.
[20] STMicroelectronics and CEA. Platform 2012: A many-core pro-

grammable accelerator for Ultra-Efficient Embedded Computing in
Nanometer Technology. In STM Platform 2012 Workshop, 2010.

[21] T. Chantem et al. Enhancing multicore reliability through wear compen-
sation in online assignment and scheduling. In Conf. Design, Automation
& Test in Europe, pages 1373–1378, 2013.

[22] T. Somu Muthukaruppan et al. Hierarchical power management for
asymmetric multi-core in dark silicon era. In Design Automation Conf.,
pages 174:1–174:9, 2013.

[23] Teraflux. Definition of ISA extensions, custom devices and External
COTSon API extensions. In Teraflux: Exploiting dataflow parallelism in
Tera-device Computing, 2011.

