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Estimating the Probability of Clonal
Relatedness of Pairs of Tumors in Cancer

Patients

Audrey Mauguen, Venkatraman E. Seshan, Irina Ostrovnaya, and Colin B. Begg

Abstract

Next generation sequencing panels are being used increasingly in cancer research
to study tumor evolution. A specific statistical challenge is to compare the mu-
tational profiles in different tumors from a patient to determine the strength of
evidence that the tumors are clonally related, i.e. derived from a single, founder
clonal cell. The presence of identical mutations in each tumor provides evidence
of clonal relatedness, although the strength of evidence from a match is related to
how commonly the mutation is seen in the tumor type under investigation. This
evidence must be weighed against the evidence in favor of independent tumors
from non-matching mutations. In this article we frame this challenge in the con-
text of diagnosis using a novel random effects model. In this way, by analyzing a
set of tumor pairs, we can estimate the proportion of cases that are clonally related
in the sample as well as the individual diagnostic probabilities for each case. The
method is illustrated using data from a study to determine the clonal relationship
of lobular carcinoma in situ with subsequent invasive breast cancers where each
tumor in the pair was subjected to whole exome sequencing. The statistical prop-
erties of the method are evaluated using simulations, demonstrating that the key
model parameters are estimated with only modest bias in small samples.
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Abstract 

Next generation sequencing panels are being used increasingly in cancer research to study 

tumor evolution. A specific statistical challenge is to compare the mutational profiles in 

different tumors from a patient to determine the strength of evidence that the tumors are 

clonally related, i.e. derived from a single, founder clonal cell. The presence of identical 

mutations in each tumor provides evidence of clonal relatedness, although the strength of 

evidence from a match is related to how commonly the mutation is seen in the tumor type 

under investigation. This evidence must be weighed against the evidence in favor of 

independent tumors from non-matching mutations. In this article we frame this challenge in 

the context of diagnosis using a novel random effects model. In this way, by analyzing a set of 

tumor pairs, we can estimate the proportion of cases that are clonally related in the sample as 

well as the individual diagnostic probabilities for each case. The method is illustrated using data 

from a study to determine the clonal relationship of lobular carcinoma in situ with subsequent 

invasive breast cancers where each tumor in the pair was subjected to whole exome 

sequencing. The statistical properties of the method are evaluated using simulations, 

demonstrating that the key model parameters are estimated with only modest bias in small 

samples.  

 

Key Words: clonal relatedness; conditional likelihood; diagnostic probability; mutational testing; 

random effects. 
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1. Introduction 

In recent years there have been increasing numbers of studies evaluating the clonal relatedness 

of distinct tumors in the same patient to determine whether the tumors arise from a common 

ancestral cell or if they developed entirely independently. Examples include studies that 

compared patterns of losses of heterozygosity (e.g. Imyanitov et al. 2002) and studies involving 

comparisons of genome-wide copy number arrays (e.g. Bollet et al. 2008).  Clonality testing of 

this nature seeks to determine if the tumors share somatic mutations or copy number changes, 

providing evidence that the tumors arose from the same precursor, clonal cell. The technology 

for conducting these investigations has changed as genetic technology has evolved, from 

studies of a few markers of loss of heterogeneity to genome-wide studies of copy number 

profiling to, more recently, comparisons of mutational profiles from next generation 

sequencing. Based on such data, the determination of clonal relatedness is fundamentally 

statistical since many of the somatic changes in the tumors may have occurred after the tumors 

have evolved separately, so that the somatic fingerprints of the tumors may be quite different 

even if the tumors are truly clonal. Our group has developed statistical tests for clonal 

relatedness for use in various settings, including studies comparing patterns of losses of 

heterozygosity and genome-wide copy number changes (Begg et al. 2007; Ostrovnaya et al. 

2010a,b).     

Ostrovnaya et al. (2015) recently proposed a statistical test for clonal relatedness based 

on a comparison of the patterns of mutations observed in the two tumors from a sequencing 

panel. A likelihood ratio test was constructed, conditioned on the observed mutations in the 
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two tumors being compared, taking into account the distinct, and widely varying marginal 

probabilities of the specific mutations. These marginal probabilities are important since a 

shared mutation that is very rare, i.e. where the marginal probability of the mutation is very 

small, provides much stronger evidence that the tumors are related than a shared mutation at a 

common locus, where independent occurrence of the same mutation in the tumors is more 

likely. The test was constructed as a classical significance test, where the null hypothesis is that 

the tumors are independent. An important practical characteristic of the test is that it can be 

applied to stand-alone cases, without the need for a larger sample of cases, as long as we have 

information on the marginal probability of occurrence of each specific observed mutation. 

However, an important drawback of using significance testing in this way is that, while the test 

can provide strong evidence against the null, i.e. in favor of clonal relatedness, it does not 

capture the strength of evidence in favor of the null hypothesis, i.e. the hypothesis that the 

tumors are independent. In particular, if no shared mutations are observed, there is no 

evidence for clonality. This is an important issue, since absence of detected matches does not 

define independent tumors. Clonal tumors must possess some matching somatic events, but 

the sequencing panel may simply not cover the genes in which the matches have occurred. 

Logic suggests that the more non-matching events observed the stronger the evidence that the 

tumors are independent, yet the p-value of the test is always 1 when no matches are observed, 

regardless of how many non-shared mutations are observed. The goal of this article is to 

propose a model quantifying the evidence of clonal relatedness for every case, with or without 

observed shared mutations. We use the entire sample of cases to estimate population 

parameters that permit us to assess the strength of evidence for and against clonal relatedness 
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for each individual case. The proposed approach involves using a random effects model to 

capture the variation in the mutational profiles in pairs of clonally related tumors, and using 

this information to estimate the probabilities of clonality for each individual case. The statistical 

properties of the method are examined using simulations.   

The method is illustrated using a recently published study that examined the clonal 

relatedness of pre-malignant lobular carcinoma in situ (LCIS) with subsequent invasive breast 

cancers (Begg et al. 2016). The tumors in the study were profiled using exome sequencing. We 

emphasize that although exome sequencing searches for somatic mutations in the coding 

regions of all genes, matching mutations could exist in the non-coding regions of the genome, 

or could be gains or losses of segments of an allele, i.e. copy number changes. Consequently, 

absence of shared mutations in the exome does not guarantee that the tumors are 

independent. Our analysis is focused on the estimation of the overall proportion of cases that 

are truly clonal, and the diagnostic probabilities of each individual case. 

2. Methods 

2.1 Basic Formulation and Notation 

We consider a sample consisting of n cases (j = 1, … , n) with each case having two 

anatomically distinct tumors. There are G potential genetic loci at which somatic mutations can 

occur. We note that typically G will be a very large number. It is difficult to define it precisely 

since more than one type of substitution can occur at each nucleotide and since there is an 

innumerable number of potential insertions and deletions. However, essentially all of the 
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information regarding the classification of the case as clonal versus independent is contained in 

the somatic mutations that are actually observed to occur (Ostrovnaya et al. 2015). 

Consequently we can adopt an analysis that is conditioned on observed mutations and as a 

result precise definition of G is unnecessary. We therefore define �𝐺𝑗� as the set of mutations 

observed in either or both of the two tumors of the jth case. The marginal probabilities of these 

individual mutations are influential, as the probability of the same mutation being observed in 

two independent tumors decreases as the marginal probability decreases. We define {𝑝𝑖} to be 

the known marginal probabilities of the mutations in the dataset, where 𝑖 indexes the specific 

mutation. 

For each case the observed mutations can be classified as either shared or private. A 

shared mutation is one that is present in both tumors while a private mutation is one that has 

been observed in only one of the tumors. Let 𝐴𝑗 denote the set of observed mutations in the jth 

case that are shared and let  𝐵𝑗 be the set of private mutations. Thus 𝐺𝑗 = 𝐴𝑗 ∪ 𝐵𝑗.  

The proposed method relies on a case-specific parameter, the clonality signal 𝜉𝑗. This 

represents, in the context of the evolution of the tumors, the relative duration of the period in 

which the original clonal cell accumulated mutations, prior to the period where the two tumors 

evolved separately and accrued additional independent mutations (see Figure 1). Thus 𝜉𝑗 

represents the probability that an observed mutation occurred during the clonal phase as 

opposed to the independent phase of tumor development. For independent tumors, 𝜉𝑗 = 0. It 

follows that for a case with a given clonality signal the probabilities of observing shared and 

private mutations at each locus are given by:- 
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�
𝑃�𝑖 ∈ 𝐴𝑗� 𝜉𝑗� =  𝜉𝑗𝑝𝑖 + �1 −  𝜉𝑗�𝑝𝑖2               
𝑃�𝑖 ∈ 𝐵𝑗� 𝜉𝑗� = 2�1 − 𝜉𝑗�𝑝𝑖(1 − 𝑝𝑖)              
𝑃�𝑖 ∈ 𝐺𝑗� 𝜉𝑗� =  𝜉𝑗𝑝𝑖 +  �1 −  𝜉𝑗�𝑝𝑖(2 − 𝑝𝑖)

�  (1) 

We further define 𝜋 to be the proportion of clonal cases in the population, i.e. the 

proportion of cases for which 𝜉𝑗 > 0. Finally, we denote by 𝐶𝑗 the event {case 𝑗 is clonal} and by 

𝐶𝑗̅ the event {case 𝑗 is not clonal}. The primary goals of our analysis are to estimate 𝜋, and to 

determine the individual probabilities that the tumor pairs in each case are clonally related 

tumors.  

2.2 Parameter Estimation 

Let 𝑌𝑗 = (𝐴𝑗, 𝐵𝑗) denote the data from the jth case. We use a likelihood conditional on the 

observed mutations. Let 𝐿𝑗(𝜋,  𝜉𝑗) be the contribution to the conditional likelihood of an 

individual case, defined by: 

𝐿𝑗(𝜋,  𝜉𝑗) = 𝜋𝑃�𝑌𝑗� 𝜉𝑗, 𝐶𝑗� +  (1 − 𝜋)𝑃�𝑌𝑗�𝐶𝑗̅� 

where  

𝑃�𝑌𝑗�𝜉𝑗, 𝐶𝑗� = ∏ �  𝜉𝑗+ (1− 𝜉𝑗)𝑝𝑖
 𝜉𝑗+ (1− 𝜉𝑗)(2−𝑝𝑖)

�
𝐼[𝑖 ∈𝐴𝑗]

� 2 (1− 𝜉𝑗)(1−𝑝𝑖)
 𝜉𝑗+ (1− 𝜉𝑗)(2−𝑝𝑖)

�
𝐼[𝑖 ∈𝐵𝑗]

𝑖∈𝐺𝑗              

and 

𝑃�𝑌𝑗|𝐶𝑗̅� =  ��
𝑝𝑖

2 − 𝑝𝑖
�
𝐼[𝑖 ∈𝐴𝑗]

�
2 (1 − 𝑝𝑖)
(2 − 𝑝𝑖)

�
𝐼[𝑖 ∈𝐵𝑗]

𝑖∈𝐺𝑗
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The marginal likelihood for the entire sample is obtained by integrating the individual 

contributions over the distribution of the random effects as follows: 

𝐿(𝜋, 𝜇, 𝜎) =  ∏ ∫ 𝐿𝑗�𝜋,  𝜉𝑗�g�𝜉𝑗�
1
0 𝑑𝜉𝑗𝑛

𝑗=1                                              (2) 

where g�𝜉𝑗� denotes the probability density of the random effect 𝜉𝑗. We assume that 𝜉𝑗 = 0 

with probability 1 − 𝜋 and that 𝜙𝑗 = −log (1 − 𝜉𝑗)  follows a 𝑙𝑜𝑔𝑁(𝜇, 𝜎2) distribution with 

probability 𝜋. The corresponding density of the clonality signal among clonal cases thus 

depends on 𝜇 and 𝜎, corresponding to the mean and variance of 𝜙𝑗 on the log scale. The model 

parameters 𝜋, 𝜇 and 𝜎 are estimated by maximizing the likelihood 𝐿(𝜋, 𝜇, 𝜎). The integral in (2) 

is approximated using adaptive quadrature. The function is maximized using a Newton-like 

method (Byrd et al. 1995). 

Finally, using the parameter estimates and the data from each individual case, we can 

obtain the diagnostic probability that the tumors of a given case are clonally related, i.e.  

𝑃(𝐶𝑗|𝑌𝑗). This probability can be estimated using Bayes formula: 

𝑃�𝐶𝑗�𝑌𝑗� =
𝜋� ∫ 𝑃�𝑌𝑗�𝜉𝑗,𝐶𝑗�g�𝜉𝑗�

1
0 𝑑𝜉𝑗

𝜋� ∫ 𝑃�𝑌𝑗�𝜉𝑗,𝐶𝑗�g�𝜉𝑗�
1
0 𝑑𝜉𝑗+ (1−𝜋�)𝑃(𝑌𝑗|𝐶𝑗̅)

                                           (3) 

The R code for the function fitting the model, as well as the example presented in the 

application, is available as Supplementary Materials. 
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3. Application: evaluation of LCIS as a precursor of invasive breast 

cancer 

We illustrate the method using data from a recently published study that was designed to 

investigate the hypothesis that LCIS is a frequent precursor of invasive breast cancer, as 

opposed to merely a marker of increased risk, the prevailing hypothesis for the past 40 years 

(Begg et al. 2016). The study included cases with LCIS lesions, some of which also had ipsilateral 

invasive breast cancers. We focus on the 22 examples of invasive breast cancers for which 

exome sequencing data were available for both the invasive lesion and an index LCIS lesion. The 

median number of mutations per tumor was 33 (range, 15 to 56). 

The results are summarized in Table 1. Columns 2-4 display the numbers of mutations 

observed in each tumor and the numbers of these that were shared. Details of the individual 

mutations observed and their marginal probabilities of occurrence are supplied in 

Supplementary Table 1 of Begg et al. (2016). The marginal probabilities were estimated based 

on their observed relative frequencies in breast cancers in the Cancer Genome Atlas (Cancer 

Genome Atlas Network 2012) combined with our current study.  Among the 22 studied pairs, 

14 pairs (64%) had evidence favoring clonality from the whole-exome sequencing (identified by 

an asterisk in Table 1). These cases had at least one shared mutation. Using the methods from 

Section 2 the proportion of clonal cases in the population was estimated at 75%. The 

parameters of the normal distribution were estimated to be 𝜇̂ = −2.26 and 𝜎� = 1.47, 

representing a density function that is positively skewed, i.e. for the preponderance of clonal 

cases the clonality signal is considerably less than 0.5. In cases with at least one observed 
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shared mutation, the estimated probabilities of clonal relatedness ranged from 0.87 to >0.99. 

The probabilities of clonal relatedness in cases with no observed shared mutations range from 

0.31 to 0.38.  

We also analyzed the data using the previously proposed clonality test (Ostrovnaya et al. 

2015). These p-values are in the final column of Table 1. We see that all cases with at least one 

match are significant at the 5% level. In this sense the two methods are consistent, classifying 

these patients as clonal. However, the p-value is always 1 when no matches are observed, while 

the random effects model provides individual probability estimates in these cases. 

In this example, all pairs with a single shared mutation have a high probability of being 

clonal (>85%). The reason is that the shared mutation is a rare mutation, i.e. a mutation with an 

estimated marginal probability of occurrence of 0.001 (pairs 47c, 48b, 53b) and 0.003 (pair 

47d). To illustrate the influence of this marginal probability we have recalculated the probability 

of clonal relatedness for case 47c by replacing the marginal probability of the shared mutation 

with the values 0.01 and 0.1, representing the frequencies of more commonly occurring 

mutations. In these circumstances the probability of clonality would be reduced from 94% to 

68% and 42%, respectively.  

Similarly, we can assess the sensitivity of the probability to the total number of 

mutations when no shared mutations are observed. Let’s consider case 26, with 32 and 29 

observed mutations in the two tumors (61 total), but none shared. In this case the probability 

of clonality is 35%. This probability would be 26% if 100 mutations were observed. By contrast, 
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the probability would be 61% if only 10 mutations were observed, and it becomes closer to the 

estimated 𝜋�  as the number decreases. 

Finally, we acknowledge that each of the 22 cases analyzed involves a unique invasive 

lesion but in fact some tumor pairs actually come from the same case (indicated by the case 

numbers). For example in case #24 there were two distinct LCIS lesions, and we tested these 

separately for clonal relatedness with the same invasive lesion. The model is based on the 

implicit assumption that these pairs are independent. 

4. Statistical Properties  

Our data analysis in Section 3 was based on a relatively small sample size with a modest 

proportion of cases determined to be clonal. Further, since the model parameters, especially 

those defining the random effects distribution of clonality signals, are derived primarily from 

the subset of cases that are clonal, evaluation of the statistical properties of the method is 

essential, especially for datasets with small sample sizes.  

Analyses of this type will inevitably involve large numbers of genetic loci, most of which 

will have a very small probability of experiencing a mutation in any given tumor, and a much 

smaller number of hot spot mutations with relatively large mutation probabilities. We 

simulated data using the framework of the breast cancer data in Section 3 to construct the 

distribution of marginal mutation probabilities. These probabilities of mutation 𝑝𝑖, 𝑖 = 1, … , 𝐺, 

were sampled with replacement from the set of observed mutations in the breast cancer study. 

We set 𝐺 = 19000 mutational loci, representing in theory the set of distinct mutations that 
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could occur. In reality there are billions of loci in the exome that could experience a mutation. 

The use of G = 19000 was chosen to produce a mean of 34 mutations per case, similar to the 

mean observed in our LCIS study. We varied the true values of the parameters, 𝜋, 𝜇 and 𝜎, and 

the sample size n. Each of 200 simulation runs was then generated as follows. For each case, we 

determined randomly with probability 𝜋 whether or not the case was clonal. For each clonal 

case, we simulated its clonality signal 𝜉𝑗 =1-exp(-𝜙𝑗), where 𝜙𝑗  is sampled from a log-normal 

distribution with parameters (𝜇, 𝜎). Figure 2 displays the selected distributional scenarios used 

in our simulations. These scenarios were chosen to reflect settings where the typical signals 

produce few matches (scenarios 1 and 2), where the typical signals lead to mutations being 

predominantly matches (scenarios 4 and 5), and one scenario (3) where there is typically a 

more even distribution of matches and non-matches. For each distinct potential mutation 𝑖, we 

determined if a clonal or a private or no mutation was observed by sampling from trinomial 

probabilities (𝑝𝐴, 𝑝𝐵, 1 − 𝑝𝐴 − 𝑝𝐵), where 𝑝𝐴 = 𝑃�𝑖 ∈ 𝐴𝑗 | 𝜉𝑗� and 𝑝𝐵 = 𝑃�𝑖 ∈ 𝐵𝑗 | 𝜉𝑗� as 

defined in (1). If the case involved independent tumors then the trinomial sampling 

probabilities were replaced with 𝑝𝐴 = 𝑃�𝑖 ∈ 𝐴𝑗 | 𝜉𝑗 = 0� and 𝑝𝐵 = 𝑃�𝑖 ∈ 𝐵𝑗 | 𝜉𝑗 = 0�. The 

resulting dataset was then analyzed using the method from Section 2 and the results 

summarized as described below. 

In Table 2 we display results for three sample size settings: n=25, representing the 

approximate size of our breast cancer example, n=100 and n=1000. For each configuration, 

biases of the parameter estimates were calculated by subtracting the true parameter value 

from the mean of the parameter estimates from the 1000 simulations. We see that the clonal 

prevalence parameter π is estimated with essentially no bias in large sample sizes and very 
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modest bias in small sample sizes, except for the extreme scenario 1 where somewhat larger 

biases are observed. The high number of small values for the signal 𝜉𝑗 in this scenario makes it 

difficult for the model to distinguish between clonal cases with low signals and non-clonal cases 

with a null signal. The parameters of the random effects distribution of the clonality signals, 𝜇 

and 𝜎, are estimated with nearly no bias for large sample sizes, and with modest biases for 

medium and small sample sizes. These parameters are, however, not of intrinsic importance. 

What is important is their effect on the estimates of the predicted probabilities of clonal 

relatedness for each individual case.  

The predicted probabilities are estimated using (3) while true probabilities were 

calculated using (3) with 𝜋 and the true parameters for the distribution of 𝜉𝑗  replacing the 

corresponding estimates. The prediction error is defined as the mean absolute difference 

between the two measures. Prediction errors computed during the simulations, using 100 new 

cases that were not involved in the model estimation, are relatively small for small sample size 

and almost null for large sample sizes, except for scenario 1 where it can reach 14% when n=25.  

We also studied alternative models for the random effects distribution, notably the beta 

model. However, although π was estimated typically with modest bias the estimates for the 

distribution parameters α and β were heavily biased (data not shown). To assess the robustness 

of the lognormal model to model misspecification we simulated data according to a Beta 

distribution and estimated the model assuming the lognormal distribution. Results are 

displayed in Table 3. The biases are substantially higher than when the models are aligned as in 

Table 1. However the biases are generally modest for π except when π is very large, and the 
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prediction errors are modest, demonstrating that model mis-specification has limited adverse 

consequences on the key parameter estimates.     

5. Discussion 

In this work we aimed at assessing clonal relatedness based on comparisons of somatic 

mutational profiles of two tumors. We have framed the problem as one of differential 

diagnosis, rather than significance testing. The proposed method estimates three quantities of 

importance: the proportion of clonal cases in the population of interest, the distribution of the 

clonality signal, and individual probabilities of clonality for each case. This addresses the 

problem that the significance testing approach does not provide quantitative evidence in favor 

of the (null) hypothesis that the tumors are independent, regardless of the numbers of non-

matching mutations observed (Ostrovnaya et al. 2015). We resolved this problem by modeling 

the data from the entire sample of cases using a random effects model with a marginal 

likelihood, estimating the proportion of cases that are clonal, and reframing the problem as one 

of diagnosis. In our illustrative example based on a relatively small sample of cases with LCIS 

paired with an invasive breast cancer in which exome sequencing was performed on all of the 

tumors we were able to successfully obtain estimates of all of the relevant probabilities. Our 

simulations demonstrate that the method has good properties even for relatively small sample 

sizes as in the example.  

Our study of LCIS and invasive cancers addressed a theoretical question of interest to 

breast cancer specialists: is LCIS a precursor of invasive cancer or merely a marker of elevated 
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risk? Clonality studies are clearly useful for addressing specific scientific questions of this 

nature. Moreover these methods are likely to have much broader clinical applicability as 

sequencing of tumors becomes more common practice in the clinic. Although formal testing for 

clonal relatedness is not yet commonly used in clinical practice, its potential value is clear. For 

example, in breast cancer it has been found that the patient’s survival probability is lower for 

patients with a locoregional recurrence compared to patients with a second primary cancer, 

emphasizing the importance of distinguishing local recurrences from ipsilateral second 

primaries (Witteveen et al. 2015). In this and numerous other clinical settings, determining 

whether two tumors are clonally related can have important clinical implications, since the 

presence of distinct, clonally related tumors represents metastasis and the consequent need 

for systemic therapy, while two independent tumors might both be effectively treated by local 

therapy, such as surgery, depending on the clinical context (Klevebring et al. 2015). Recent 

publications have demonstrated that pathologists’ judgment can frequently be wrong, notably 

when diagnosing multiple lung tumors (Girard et al. 2009; Wang et al. 2009). Increasingly, 

cancer hospitals are introducing genetic tests to sequence tumors as a routine clinical tool 

(Wagle et al. 2012). The primary goal is to identify “actionable” mutations that could serve as 

targets for drugs specially designed to act against the identified mutations. The routine 

availability of information on mutations in such gene panels will inevitably provide data that 

can potentially be used for clonality testing when a new tumor is identified in the patient and 

there is doubt as to whether this represents an independent primary cancer or a recurrence of 

the initial tumor. However, gene panels for clinical use typically contain far fewer genes than 

the whole exome panel used in our study. As a result the numbers of observed mutations will 
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necessarily be much smaller, and it is intuitive that there is a greater chance that shared 

mutations will not be observed in tumor pairs that are truly clonal. Consequently, it will be 

necessary to examine more carefully the properties of the method in the setting where 

candidate gene panels are employed.   

Our proposed method makes a number of assumptions. First, we assume that the 

marginal mutation probabilities are known, when in fact they are estimated. Second, we 

assume that the order in which mutations occur is random, when in fact it is plausible that 

common mutations are more likely to occur earlier in tumor evolution. Third, uncertainty exists 

with respect to the accuracy of mutation calling. Further research is needed to explore the 

impact of these assumptions on the properties of the method. Our approach is conceptually 

similar to other mixture models that have been developed to account for an excess of zeros in 

count data, notably using Poisson regression (see for example Lam et al. 2006, Ma et al. 2009, 

and Wong and Lam 2013 for application in medical studies), although the model structure and 

estimation strategies we have used are novel in this context.  

In summary, we have developed a practical statistical modeling approach to a complex 

problem involving the use of genomic data to diagnose tumor pairs as related (clonal) or 

independent. Our method involves a novel application of well known statistical strategies, 

including random effects modeling and zero inflated distributions, applied to sparse data. Our 

simulations demonstrate that the method has good statistical properties in relatively large 

samples. In the small sample setting, although the parameters of the random effects 
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distribution are estimated with bias, the method succeeds in estimating the key diagnostic 

parameters with only modest bias. 
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Table 1: Data and Diagnostic Probabilities 

Pair LCIS Invasive Shared Probability Pair 
is Clonal 

P-Value from the 
Hypothesis Test 

24a* 36 34 25 >0.99 <10-4 
24b* 29 34 2 >0.99 4. 10-4 
26 29 32 0 0.35 1 
46a 46 15 0 0.35 1 
46b 37 15 0 0.38 1 
47a* 29 25 7 >0.99 <10-4 
47b* 22 25 7 >0.99 <10-4 
47c* 29 30 1 0.94 0.02 
47d* 22 30 1 0.87 0.03 
48a* 33 40 20 >0.99 <10-4 
48b* 22 40 1 0.94 0.03 
53a* 21 23 2 >0.99 2. 10-4 
53b* 17 23 1 0.97 0.02 
55* 31 36 6 >0.99 <10-4 
68 44 33 0 0.31 1 
69* 56 31 18 >0.99 <10-4 
73 26 42 0 0.33 1 
74a 34 34 0 0.33 1 
74b 37 34 0 0.32 1 
74c* 43 34 3 >0.99 <10-4 
75a* 46 39 15 >0.99 <10-4 
75b 22 29 0 0.38 1 
Model parameter estimates: 𝜇̂ = −2.26, 𝜎� = 1.47, 𝜋� = 0.75. 
*Asterisks identify patients with evidence favoring clonality.  

http://biostats.bepress.com/mskccbiostat/paper33



21 
 

Table 2: Simulation results - lognormal distribution 

Scenario 
 π   𝜇  σ Prediction 

Error  Estimate (sd) Bias  Estimate Bias  Estimate Bias 
N=25 cases           

𝜋 (𝜇 ; σ)           
0.10 Sc 1: (-2.0 ; 1.5) 0.139 (0.218) 0.039   -1.62 0.38   1.06 -0.44 0.103 

 Sc 2: (-1 ; 1) 0.122 (0.139) 0.022   -1.08 -0.08   0.74 -0.26 0.046 
 Sc 3: (-0.25 ; 0.50) 0.108 (0.069) 0.008   -0.38 -0.13   0.45 -0.05 0.013 
 Sc 4: (0.55 ; 0.45) 0.104 (0.062) 0.004   0.40 -0.15   0.43 -0.02 0.009 
 Sc 5: (0.7 ; 0.3) 0.104 (0.061) 0.004   0.56 -0.14   0.36 0.06 0.009 

0.25 Sc 1: (-2.0 ; 1.5) 0.273 (0.189) 0.023   -1.91 0.09   1.08 -0.42 0.105 
 Sc 2: (-1 ; 1) 0.262 (0.115) 0.012   -1.10 -0.10   0.82 -0.18 0.035 
 Sc 3: (-0.25 ; 0.50) 0.250 (0.090) 0.000   -0.28 -0.03   0.41 -0.09 0.003 
 Sc 4: (0.55 ; 0.45) 0.249 (0.088) -0.001   0.53 -0.02   0.38 -0.07 0.001 
 Sc 5: (0.7 ; 0.3) 0.249 (0.087) -0.001   0.69 -0.01   0.26 -0.04 0.000 

0.50 Sc 1: (-2.0 ; 1.5) 0.528 (0.211) 0.028   -2.04 -0.04   1.32 -0.18 0.137 
 Sc 2: (-1 ; 1) 0.506 (0.116) 0.006   -1.06 -0.06   0.95 -0.05 0.034 
 Sc 3: (-0.25 ; 0.50) 0.499 (0.100) -0.001   -0.27 -0.02   0.47 -0.03 0.002 
 Sc 4: (0.55 ; 0.45) 0.498 (0.100) -0.002   0.54 -0.01   0.42 -0.03 0.000 
 Sc 5: (0.7 ; 0.3) 0.498 (0.100) -0.002   0.69 -0.01   0.27 -0.03 0.000 

0.75 Sc 1: (-2.0 ; 1.5) 0.747 (0.168) -0.003   -1.97 0.03   1.35 -0.15 0.122 
 Sc 2: (-1 ; 1) 0.759 (0.103) 0.009   -1.04 -0.04   0.96 -0.04 0.037 
 Sc 3: (-0.25 ; 0.50) 0.754 (0.087) 0.004   -0.26 -0.01   0.47 -0.03 0.002 
 Sc 4: (0.55 ; 0.45) 0.754 (0.087) 0.004   0.54 -0.01   0.43 -0.02 0.000 
 Sc 5: (0.7 ; 0.3) 0.754 (0.087) 0.004   0.69 -0.01   0.28 -0.02 0.000 

N=100 cases           
𝜋 (𝜇 ; σ)           

0.10 Sc 1: (-2.0 ; 1.5) 0.121 (0.122) 0.021   -1.98 0.02   1.17 -0.33 0.051 
 Sc 2: (-1 ; 1) 0.105 (0.040) 0.005   -1.10 -0.10   0.90 -0.10 0.013 
 Sc 3: (-0.25 ; 0.50) 0.100 (0.031) 0.000   -0.27 -0.02   0.44 -0.06 0.001 
 Sc 4: (0.55 ; 0.45) 0.100 (0.031) 0.000   0.54 -0.01   0.40 -0.05 0.000 
 Sc 5: (0.7 ; 0.3) 0.100 (0.031) 0.000   0.69 -0.01   0.26 -0.04 0.000 

0.25 Sc 1: (-2.0 ; 1.5) 0.266 (0.101) 0.016   -2.09 -0.09   1.42 -0.08 0.058 
 Sc 2: (-1 ; 1) 0.251 (0.050) 0.001   -1.04 -0.04   0.96 -0.04 0.013 
 Sc 3: (-0.25 ; 0.50) 0.250 (0.043) 0.000   -0.27 -0.02   0.48 -0.02 0.001 
 Sc 4: (0.55 ; 0.45) 0.250 (0.043) 0.000   0.54 -0.01   0.43 -0.02 0.000 
 Sc 5: (0.7 ; 0.3) 0.250 (0.043) 0.000   0.69 -0.01   0.29 -0.01 0.000 

0.50 Sc 1: (-2.0 ; 1.5) 0.508 (0.113) 0.008   -2.05 -0.05   1.47 -0.03 0.069 
 Sc 2: (-1 ; 1) 0.497 (0.054) -0.003   -1.01 -0.01   0.98 -0.02 0.013 
 Sc 3: (-0.25 ; 0.50) 0.498 (0.049) -0.002   -0.26 -0.01   0.49 -0.01 0.001 
 Sc 4: (0.55 ; 0.45) 0.498 (0.049) -0.002   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.499 (0.049) -0.001   0.69 -0.01   0.30 0.00 0.000 

0.75 Sc 1: (-2.0 ; 1.5) 0.764 (0.115) 0.014   -2.07 -0.07   1.48 -0.02 0.081 
 Sc 2: (-1 ; 1) 0.750 (0.051) 0.000   -1.03 -0.03   0.99 -0.01 0.014 
 Sc 3: (-0.25 ; 0.50) 0.750 (0.044) 0.000   -0.27 -0.02   0.50 0.00 0.001 
 Sc 4: (0.55 ; 0.45) 0.751 (0.044) 0.001   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.751 (0.044) 0.001   0.69 -0.01   0.30 0.00 0.000 

N=1000 cases           
𝜋 (𝜇 ; σ)           

0.10 Sc 1: (-2.0 ; 1.5) 0.104 (0.022) 0.004   -2.07 -0.07   1.50 0.00 0.014 
 Sc 2: (-1 ; 1) 0.100 (0.011) 0.000   -1.01 -0.01   0.99 -0.01 0.003 
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 Sc 3: (-0.25 ; 0.50) 0.101 (0.010) 0.001   -0.26 -0.01   0.50 0.00 0.000 
 Sc 4: (0.55 ; 0.45) 0.101 (0.010) 0.001   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.101 (0.010) 0.001   0.69 -0.01   0.30 0.00 0.000 

0.25 Sc 1: (-2.0 ; 1.5) 0.249 (0.028) -0.001   -2.01 -0.01   1.48 -0.02 0.016 
 Sc 2: (-1 ; 1) 0.248 (0.015) -0.002   -1.01 -0.01   0.99 -0.01 0.004 
 Sc 3: (-0.25 ; 0.50) 0.249 (0.014) -0.001   -0.26 -0.01   0.50 0.00 0.000 
 Sc 4: (0.55 ; 0.45) 0.250 (0.014) 0.000   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.250 (0.014) 0.000   0.69 -0.01   0.30 0.00 0.000 

0.50 Sc 1: (-2.0 ; 1.5) 0.496 (0.031) -0.004   -2.00 0.00   1.48 -0.02 0.019 
 Sc 2: (-1 ; 1) 0.498 (0.019) -0.002   -1.01 -0.01   0.99 -0.01 0.004 
 Sc 3: (-0.25 ; 0.50) 0.500 (0.017) 0.000   -0.26 -0.01   0.50 0.00 0.000 
 Sc 4: (0.55 ; 0.45) 0.500 (0.017) 0.000   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.500 (0.017) 0.000   0.69 -0.01   0.30 0.00 0.000 

0.75 Sc 1: (-2.0 ; 1.5) 0.744 (0.033) -0.006   -2.00 0.00   1.48 -0.02 0.023 
 Sc 2: (-1 ; 1) 0.748 (0.016) -0.002   -1.01 -0.01   1.00 0.00 0.005 
 Sc 3: (-0.25 ; 0.50) 0.750 (0.014) 0.000   -0.26 -0.01   0.50 0.00 0.000 
 Sc 4: (0.55 ; 0.45) 0.750 (0.014) 0.000   0.54 -0.01   0.45 0.00 0.000 
 Sc 5: (0.7 ; 0.3) 0.750 (0.014) 0.000   0.69 -0.01   0.30 0.00 0.000 

Data are generated with an average number of mutations per cases ≈34, to correspond to the LCIS study. 
Number of loci = 19,000; 1000 simulations per scenario. 
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Table 3: Simulation results - data simulated according to a Beta distibution, estimation 
assuming a log-normal distribution. 

Scenario 
 π   𝜇  σ Prediction 

Error  Estimate (sd) Bias  Estimate  Estimate 
N=25 cases         

𝜋 (𝜶 ; β)         
0.10 Sc 1: (0.8 ; 0.8) 0.114 (0.114) 0.014   -0.56   0.85 0.041 

 Sc 2: (1 ; 1) 0.116 (0.109) 0.016   -0.57   0.79 0.037 
 Sc 3: (2 ; 2) 0.112 (0.108) 0.012   -0.58   0.63 0.028 
 Sc 4: (0.9 ; 3.0) 0.111 (0.142) 0.011   -1.42   0.87 0.063 

0.25 Sc 1: (0.8 ; 0.8) 0.244 (0.101) -0.006   -0.50   0.96 0.034 
 Sc 2: (1 ; 1) 0.246 (0.097) -0.004   -0.50   0.87 0.027 
 Sc 3: (2 ; 2) 0.254 (0.086) 0.004   -0.47   0.62 0.011 
 Sc 4: (0.9 ; 3.0) 0.259 (0.171) 0.009   -1.64   0.74 0.082 

0.50 Sc 1: (0.8 ; 0.8) 0.474 (0.110) -0.026   -0.44   1.07 0.040 
 Sc 2: (1 ; 1) 0.483 (0.111) -0.017   -0.43   0.97 0.030 
 Sc 3: (2 ; 2) 0.497 (0.103) -0.003   -0.44   0.68 0.012 
 Sc 4: (0.9 ; 3.0) 0.466 (0.147) -0.034   -1.56   0.84 0.082 

0.75 Sc 1: (0.8 ; 0.8) 0.714 (0.101) -0.036   -0.42   1.08 0.046 
 Sc 2: (1 ; 1) 0.727 (0.099) -0.023   -0.43   0.98 0.036 
 Sc 3: (2 ; 2) 0.742 (0.088) -0.008   -0.42   0.70 0.013 
 Sc 4: (0.9 ; 3.0) 0.693 (0.130) -0.057   -1.53   0.88 0.091 

N=100 cases         
𝜋 (𝜶 ; β)         

0.10 Sc 1: (0.8 ; 0.8) 0.096 (0.034) -0.004   -0.40   0.99 0.012 
 Sc 2: (1 ; 1) 0.098 (0.033) -0.002   -0.44   0.91 0.009 
 Sc 3: (2 ; 2) 0.099 (0.032) -0.001   -0.44   0.66 0.004 
 Sc 4: (0.9 ; 3.0) 0.105 (0.094) 0.005   -1.61   0.80 0.033 

0.25 Sc 1: (0.8 ; 0.8) 0.234 (0.046) -0.016   -0.38   1.06 0.019 
 Sc 2: (1 ; 1) 0.240 (0.045) -0.010   -0.41   0.97 0.014 
 Sc 3: (2 ; 2) 0.247 (0.044) -0.003   -0.42   0.70 0.005 
 Sc 4: (0.9 ; 3.0) 0.227 (0.057) -0.023   -1.52   0.88 0.034 

0.50 Sc 1: (0.8 ; 0.8) 0.470 (0.054) -0.030   -0.39   1.10 0.031 
 Sc 2: (1 ; 1) 0.477 (0.053) -0.023   -0.42   0.99 0.022 
 Sc 3: (2 ; 2) 0.493 (0.052) -0.007   -0.42   0.71 0.008 
 Sc 4: (0.9 ; 3.0) 0.450 (0.060) -0.050   -1.51   0.91 0.050 

0.75 Sc 1: (0.8 ; 0.8) 0.707 (0.050) -0.043   -0.39   1.11 0.041 
 Sc 2: (1 ; 1) 0.721 (0.048) -0.029   -0.42   1.01 0.029 
 Sc 3: (2 ; 2) 0.739 (0.044) -0.011   -0.42   0.72 0.009 
 Sc 4: (0.9 ; 3.0) 0.680 (0.062) -0.070   -1.51   0.91 0.069 
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Figure 1: Shema of two tumors from the same clone versus two independent tumors. 
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Figure 2: Different scenarios for the simulations. 
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