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Evaluation of Progress Towards the UNAIDS
90-90-90 HIV Care Cascade: A Description of

Statistical Methods Used in an Interim
Analysis of the Intervention Communities in

the SEARCH Study

Laura Balzer, Joshua Schwab, Mark J. van der Laan, and Maya L. Petersen

Abstract

WHO guidelines call for universal antiretroviral treatment, and UNAIDS has set
a global target to virally suppress most HIV-positive individuals. Accurate es-
timates of population-level coverage at each step of the HIV care cascade (test-
ing, treatment, and viral suppression) are needed to assess the effectiveness of
“test and treat” strategies implemented to achieve this goal. The data available to
inform such estimates, however, are susceptible to informative missingness: the
number of HIV-positive individuals in a population is unknown; individuals tested
for HIV may not be representative of those whom a testing intervention fails to
reach, and HIV-positive individuals with a viral load measured may not be rep-
resentative of those for whom no viral load is obtained. We provide an in-depth
description of the statistical methods (target parameters, assumptions, statistical
estimands, and algorithms) used in an interim analysis of the intervention arm of
the SEARCH Study (NCT01864603) to analyze progress towards the UNAIDS
90-90-90 target at study baseline and after one and two years. We describe the
methods used to account for informative measurement in all analyses as well as
for informative censoring in longitudinal analyses. We use targeted maximum
likelihood estimation (TMLE) with Super Learning to generate semi-parametric
efficient and double robust estimates of the care cascade among a open cohort of
prevalent HIV-positive adults and among a closed cohort of baseline HIV-positive
adults. TMLE is also used to evaluate predictors of poor outcomes.
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1 Overview

In 2014, UNAIDS issued an ambitious new target for the HIV “care cascade” worldwide: by 2020, at
least 90% of HIV-positive individuals should be diagnosed, at least 90% of those diagnosed should be
receiving antiretroviral therapy (ART), and at least 90% of those on ART should have suppressed viral
replication, for an overall target of 73% of all HIV-positive individuals virally suppressed (UNAIDS, 2014).
The Sustainable East Africa Research in Community Health (SEARCH) Study is a cluster randomized
trial to evaluate the health, economic, and educational impacts of a “Universal Test and Treat” HIV
intervention compared to the country standard-of-care in 32 pair-matched communities in rural Kenya
and Uganda (NCT01864603). At study baseline, a household census was used to enumerate all commu-
nity residents. Immediately following the baseline census and annually thereafter, population-wide HIV
testing was conducted in the intervention communities through a hybrid testing model consisting of a
multi-disease community health campaign (CHC) followed by tracking and home-based testing for all enu-
merated residents who did not attend the CHC (Chamie et al., 2016). Plasma HIV RNA levels (viral
loads) were also measured on all HIV-positive adults during these hybrid testing campaigns. We esti-
mated progress towards the UNAIDS care cascade target among adult (≥ 15 years of age) residents of
the SEARCH intervention communities at study baseline and after one and two years of the interven-
tion. We also evaluated the extent to which specific subgroups were at risk of poor cascade outcomes. In
this document, we provide an in-depth description of the statistical methods (target parameters, assump-
tions, statistical estimands, and algorithms) used to generate these estimates. Full R code is available at
https://github.com/LauraBalzer/Estimating-90-90-90-in-SEARCH.

We conducted three sets of complimentary analyses. First, as described in Section 3, we evaluated
an open cohort of prevalent HIV-positive adult community residents at the time of the three annual
rounds of population-wide HIV antibody and plasma HIV RNA level testing. In this open cohort, we
estimated: 1) the proportion of HIV-positive individuals who had been previously diagnosed with HIV; 2)
the proportion of previously diagnosed HIV-positive individuals who had previously been or were currently
treated with ART; 3) the proportion of previously or currently treated HIV-positive individuals who were
virally suppressed (viral load < 500 copies/ml); and 4) the proportion of all HIV-positive individuals
who were virally suppressed. In these analyses, the number of HIV-positive individuals was estimated
accounting for incomplete and possibly informative HIV testing coverage, and the number of HIV-positive
individuals with viral suppression was estimated accounting for incomplete and possibly informative viral
load testing coverage. We repeated these analyses within a priori -specified subgroups of sex, age, and
country. Section 3.6 provides a worked example demonstrating the approach used to adjust for missing
measures.

Second, as described in Section 4, we evaluated a closed cohort of adult residents with an HIV diagnosis
at or before study baseline. In this cohort, we estimated the proportion who at baseline and after one
and two years 1) had died; 2) had out-migrated from the community; 3) were newly diagnosed; 4) had
never initiated ART; 5) had initiated but were unsuppressed; and 6) had initiated ART and were virally
suppressed. In these analyses, we adjusted for incomplete and possibly informative viral load testing
coverage among HIV-positive residents. We repeated these analyses within a priori -specified subgroups of
sex, age, and country.

Third, as described in Section 5, we again analyzed the closed cohort of adult residents with an HIV
diagnosis at or before study baseline. We estimated the proportion of this cohort who were virally un-
suppressed after one and two years, while treating death and out-migration as right-censoring events. We
adjusted for potentially informative censoring in addition to potentially informative missing viral load
measures. We repeated these analyses within a priori -specified subgroups defined by baseline prior HIV
diagnosis, ART use, and viral suppression. In the same cohort of baseline HIV-positive adults, analogous
analyses were performed to estimate the proportion of the cohort who had never initiated ART. In an
expanded closed cohort of all adult community residents without an HIV diagnosis prior to baseline test-
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ing, analogous analyses were performed to estimate the proportion of residents who were tested for HIV at
least once during follow-up. For each of these outcomes, we further evaluated univariable and multivariable
associations between demographic factors and poor cascade outcomes (failing to suppress viral replication,
never initiating ART, and never testing for HIV, respectively).

2 Observed data

We consider time points t = {0, 1, 2}, corresponding to the community-specific dates of the annual
population-wide HIV and viral load testing rounds at study baseline, follow-up year 1, and follow-up
year 2, respectively.

• Let B denote baseline variables measured on all individuals during the household census enumeration
conducted immediately prior to the first round of testing. These include age, sex, marital status,
education, occupation, mobility, household wealth index, community of residence, and country.

• Let Dt be an indicator that an individual has died by time t, and Mt be an indicator that an individual
has migrated out of the community by time t. We define Ct as an indicator of censoring by death or
out-migration by time t. At baseline, D0 = M0 = C0 = 0 deterministically.

• Let Y ∗
t and V LV ∗

t denote the underlying values of HIV serostatus and viral load at time t, irrespective
of whether these values are measured. Further, let Supp∗t be an indicator that an individual’s viral
load at time t is <500 copies/ml: Supp∗t = I(V LV ∗

t < 500). Throughout, we use viral loads measured
at CHC/tracking rather than those measured at clinic to minimize the potential for informative
missingess, as in-clinic measures inherently depend on an individual’s retention in HIV care.

• Let pDxt be an observed indicator that an HIV-positive individual has been diagnosed prior to
time t. Let eARTt be an observed indicator that an HIV-positive individual has ever initiated ART
prior to time t. Both variables are step functions, jumping to one as soon as there is evidence of
prior diagnosis or ART use, respectively, and remaining equal to one thereafter. Classification of an
individual as previously diagnosed or previously treated requires either health record documentation
or a suppressed viral load in an individual documented to be HIV-positive. If an individual does
not have evidence of prior diagnosis, then he or she is assumed not be previously diagnosed as HIV-
positive. Likewise, if an individual does not have evidence of ART use, then he or she is assumed
not to have initiated ART.

• Let CHCt and Trt denote indicators that an individual was seen at a CHC or at subsequent tracking
at time t, respectively.

• Let TstHIVt denote an indicator that HIV status is known at time t. HIV status is considered
“known” if an individual was tested for HIV by SEARCH at time t or already had a known HIV-
positive status from previous health records or documented tests.

• Let ∆t denote an indicator that a individual was contacted at the CHC/tracking and had a known
HIV status at time t: ∆t = I[(CHCt = 1 or Trt = 1) & TstHIVt = 1].

• Let Yt = TstHIVt × Y ∗
t denote observed HIV serostatus at time t.

• Let TstV Lt denote an indicator that a viral load was measured at CHC/tracking at time t.

• Let Suppt = TstV Lt × Supp∗t denote observed viral suppression (as measured at CHC/tracking) at
time t.
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• Let ever.suppt be an indicator of having at least one measured viral load < 500 copies/ml at or
after study baseline. This variable uses additional viral load measures made in the clinic, beyond the
annual measures made at CHC/tracking. This variable treats the absence of a measured suppressed
viral load as evidence of failure to suppress.

The observed data on a given individual at time point t are

Ot =(Dt,Mt, pDxt, eARTt, CHCt, T rt, T stHIVt,∆t,

T stHIVt × Y ∗
t , T stV Lt, T stV Lt × Supp∗t , ever.suppt)

=(Ct, pDxt, eARTt, CHCt, T rt, T stHIVt,∆t,

Yt, T stV Lt, Suppt, ever.suppt).

All variables in Ot are indicator variables. The observed data on a given individual consist of

O = (B,O0, O1, O2)

where for ease of notation, we assume that variables after censoring by death or out-migration are equal to
their last observed values. We use overbars to denote a variable’s history (e.g. Ōt ≡ (O0, ..., Ot) for t > 0).

Throughout we make use of the following relationships between variables. One can only have a previous
diagnosis if HIV-positive: P(pDxt = 1|Y ∗

t = 0) = 0. One can only initiate ART after receiving a diagnosis:
P(eARTt = 1|pDxt = 0) = 0. We also assume no HIV-positive individuals control viral replication below
500 copies/ml in the absence of treatment: P(Supp∗t = 1|eARTt = 0, Y ∗

t = 1) = 0.

3 Analysis of the open cohort of prevalent HIV-positive adults

3.1 Overview

For three time points t = {0, 1, 2}, we aim to estimate cascade coverage and population-level viral suppres-
sion in an open cohort consisting of all prevalent HIV-positive adult residents of the community at that time
point. In other words, our t-specific target population is all individuals who are alive, not out-migrated,
≥ 15 years of age at time t, and HIV-positive at time t. All parameters below are thus conditional on
Dt = Mt = 0, and aget ≥ 15 (in addition to Y ∗

t = 1). We suppress the former conditioning in our notation
to simplify presentation. In the primary analysis, we restrict our target population to baseline enumerated
stable (≥ 6 months of past year in the community during the census) residents. In sensitivity analyses, we
include non-stable residents and in-migrants.

When estimating serial cascade coverage in this open cohort, we leverage the full longitudinal data
structure to adjust for potentially informative missing measures of HIV status and viral load. For example,
individuals testing for HIV at baseline may also be more likely to be successfully contacted at CHC or
tracking in subsequent years than individuals who were not tested at baseline, potentially inflating cascade
coverage estimates unless we adjust for past attendance.

As detailed in the following sections, our general approach is to identify and estimate the following four
population-level proportions:

1. HIV prevalence:
P(Y ∗

t = 1)

2. Proportion who are HIV-positive and previously diagnosed:

P(pDxt = 1, Y ∗
t = 1)

3. Proportion who are HIV-positive, previously diagnosed, and ever on ART:

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)
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4. Proportion who are HIV-positive, previously diagnosed, ever on ART, and virally sup-
pressed:

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1)

As explicitly discussed below, probabilities #2 and #3 are estimated as empirical proportions, while prob-
abilities #1 and #4 are estimated with targeted maximum likelihood estimation (TMLE), a double robust
and semi-parametric efficient approach that allows adjustment for missing measurements and censoring
(van der Laan and Rubin, 2006; van der Laan and Rose, 2011). To minimize model misspecification bias
and optimize estimator performance, nuisance parameters are estimated using Super Learner, an ensemble
machine learning method (van der Laan et al., 2007). When implementing Super Learner, we use 5-fold
cross-validation and specify an algorithm library consisting of general additive models, stepwise regres-
sion, and logistic regression, all with and without pre-screening based on univariate outcome correlations.
Estimators are implemented using the ltmle v0.9-8-4 (Schwab et al., 2016) and SuperLearner v2.0-21
packages (Polley and van der Laan, 2014) in R (R Core Team, 2015). Code to implement these estimators
is available at https://github.com/LauraBalzer/Estimating-90-90-90-in-SEARCH.

Given estimates of probabilities #1-4, our population-level estimates of the 90-90-90 cascade and viral
suppression are obtained by taking the following ratios.

• Proportion of all HIV-positive individuals who have a prior diagnosis at time t:

P(pDxt = 1 | Y ∗
t = 1) =

P(pDxt = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals with a prior diagnosis who have ever started
ART at time t:

P(eARTt = 1 | pDxt = 1, Y ∗
t = 1) =

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(pDxt = 1, Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals with prior ART initiation who are virally
suppressed at time t:

P(Supp∗t = 1 | eARTt = 1, pDxt = 1, Y ∗
t = 1) =

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals who are virally suppressed at time t:

P(Supp∗t = 1 | Y ∗
t = 1) =

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

.

In unadjusted (secondary) analyses, we also implement simple estimators of each cascade step, equiv-
alent to the empirical proportions among individuals who have measured values and are contacted at the
CHC/tracking (Section 3.3). We also refer the reader to Section 3.6 for a worked example of our approach
and illustration of why other methods (e.g. unadjusted estimators) might fall short. Statistical inference,
including Wald-Type 95% confidence intervals, are based on influence curve standard error estimators that
treat households as the unit of independence (van der Laan and Rubin, 2006; van der Laan and Rose,
2011).
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3.2 Primary analysis

3.2.1 HIV prevalence

Our goal is to identify and then estimate the proportion of the target population who are HIV-positive at
time t:

P(Y ∗
t = 1).

To identify this parameter, we assume that within strata defined by baseline covariates, past testing,
and cascade history, the prevalence of HIV among those seen at CHC/tracking is representative of the
prevalence of HIV among those not seen:

∆t ⊥⊥ Y ∗
t | B, Ōt−1.

As our missingess indicator, we use ∆t rather than TstHIVt, because TstHIVt is a direct function of
underlying HIV status Y ∗

t . A previously diagnosed HIV-positive individual’s status can be ascertained
through records without attending the CHC/tracking, whereas an HIV-negative individual’s status cannot
be.

By definition, the above assumption holds for individuals known to be HIV-positive at the previous
time point (i.e. with Yt−1 = 1):

P(Y ∗
t = 1|Yt−1 = 1) = 1.

Furthermore, among those not previously known to be HIV-positive (Yt−1 = 0), there is only variability
in baseline demographics, past CHC/tracking attendance, and past HIV testing history. Therefore, for
the subgroup of individuals without a prior HIV diagnosis by the close of the previous year’s testing
(Yt−1 = 0), we assume that within strata defined by baseline demographics, past CHC/tracking contact,
and HIV testing history (e.g. number of prior negative tests), HIV prevalence among those tested at
CHC/tracking is representative of HIV prevalence among those not tested:

∆t ⊥⊥ Y ∗
t | Yt−1 = 0, ¯CHCt−1, T̄ rt−1, ¯TstHIV t−1, B.

We further assume positivity: there are no strata (defined by baseline demographics, CHC/tracking history,
and testing history) in which zero previously undiagnosed individuals are tested at the CHC/tracking at
time t:

P(∆t = 1|Yt−1 = 0, ¯CHCt−1, T̄ rt−1, ¯TstHIV t−1, B) > 0.

Let us denote these strata as Lt ≡ ( ¯CHCt−1, T̄ rt−1, ¯TstHIV t−1, B). Under the above assumptions
and using the above deterministic knowledge, we have the following identifiability result:

P(Y ∗
t = 1) = P(Y ∗

t = 1|Yt−1 = 1)P(Yt−1 = 1) + P(Y ∗
t = 1|Yt−1 = 0)P(Yt−1 = 0)

= P(Yt−1 = 1)

+ P(Yt−1 = 0)
∑
lt

[
P(Yt = 1|∆t = 1, Lt = lt, Yt−1 = 0)P(Lt = lt|Yt−1 = 0)

]
.

Our estimand can be interpreted as the proportion known to be HIV-positive at the prior time point
plus the adjusted proportion not previously known to be HIV-positive who are known to be HIV-positive
at t. The latter accounts for incomplete measurement of HIV status among this group. We stratify
the population not previously known to be HIV-positive on baseline demographics, past CHC/tracking
attendance, and HIV testing history; assume that within each stratum, HIV prevalence among individuals
tested at the CHC/tracking is the representative of prevalence among those without an HIV test result,
and then combine these stratum-specific estimates into a single standardized estimate.

For estimation, we use TMLE with ∆t as the single intervention node, with (Yt−1, Lt) as the adjustment
set, and knowledge that P(Yt = 1|∆t = 1, Lt = lt, Yt−1 = 1) = 1 for individuals known to be HIV-positive
at the close of the prior round of testing. The estimated number of prevalent HIV-positive individuals is
calculated as the estimated prevalence times the target population size at time t.
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3.2.2 Proportion HIV-positive, and previously diagnosed

Our goal is to identify and then estimate the proportion of the target population who are previously
diagnosed with HIV at time t.

P(pDxt = 1, Y ∗
t = 1) = P(pDxt),

where we use that prior diagnosis of HIV implies that an individual is HIV-positive at time t. Estimation
is based on the empirical proportion of the target population with evidence of a prior diagnosis at time t:
a positive HIV test prior to time t, a record of HIV care prior to time t, or a viral load < 500 copies/ml at
or before time t among individuals who are confirmed HIV-positive. The number of previously diagnosed
HIV-positive individuals is calculated as the proportion with evidence of a prior diagnosis times the target
population size at time t.

Failing to identify records of prior diagnosis among HIV-positive individuals will result in underesti-
mation of prior diagnosis. This motivates our use of a suppressed viral load in a confirmed HIV-positive
individual as evidence of being on ART at that time point and thus having been previously diagnosed. How-
ever, this approach assumes that no HIV-positive individuals control viral replication below 500 copies/ml
in the absence of treatment, and results in potentially differential reduction in misclassification (missed
ART records are only corrected among those individuals with suppressed viral loads). In secondary anal-
yses, we employ an alternative assumption that prior diagnosis among HIV-positive individuals seen at
the CHC/tracking is representative of prior diagnosis among HIV-positive individuals not seen. Finally, in
recognition of the increased potential for missing records of prior diagnosis at study baseline, we conduct
an additional sensitivity analysis in which self-report is used as evidence of prior diagnosis.

3.2.3 Proportion HIV-positive, previously diagnosed, and ever on ART

Our goal is to identify and then estimate the proportion of the target population who are HIV-positive,
previously diagnosed, and have initiated ART by time t.

P(eARTt = 1, pDxt = 1, Y ∗
t = 1) = P(eARTt = 1)

where we have used that ART initiation implies that an individual has been previously diagnosed and is
HIV-positive. Estimation is based on the empirical proportion of the target population who have evidence
ART initiation by time t: a health care record with an ART start date prior to time t, or a viral load
< 500 copies/ml at or before time t among individuals who are confirmed HIV-positive. The number of
HIV-positive individuals ever on ART is calculated as the proportion with evidence of prior ART initiation
times the target population size as time t.

Failing to identify records of ART use among HIV-positive individuals will result in underestimation
of the proportion ever on ART. This motivates our use of a suppressed viral load in a confirmed HIV-
positive individual as evidence of being on ART at that time point. Again, this approach assumes that
no HIV-positive individuals control viral replication below 500 copies/ml in the absence of treatment, and
results in potentially differential reduction in misclassification (missed ART records are only corrected
among those individuals with suppressed viral loads). In secondary analyses, we employ an alternative
assumption that ART use among HIV-positive individuals seen at the CHC/tracking is representative of
use among HIV-positive individuals not seen.

3.2.4 Proportion HIV-positive, previously diagnosed, ever on ART, and virally suppressed

Our goal is to identify and then estimate the proportion of the target population who are HIV-positive,
previously diagnosed, ever on ART, and virally suppressed at time t:

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1).

Now we have missing measures on both HIV status and viral load. To simplify notation, let

Z∗
t ≡ I(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗

t = 1)
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denote a binary indicator the outcome of interest, and let

Zt ≡ I(Suppt = 1, eARTt = 1, pDxt = 1, Yt = 1)

be its observed analog.
We formulate the identifiability of our target parameter P(Z∗

t = 1) as a longitudinal dynamic regime
(e.g. Hernán et al. (2006); van der Laan and Petersen (2007); Robins et al. (2008)). Other approaches are
also possible, and several alternative formulations result in the same estimand. Here, we consider a two
component hypothetical intervention on the missingness mechanism:

• d0: set ∆t = 1. In other words, ensure that all individuals attend the CHC or tracking at time t and
have known HIV status.

• d1(Yt): if (Yt = 1), set TstV Lt = 1; else set TstV Lt = 0. In other words, if an individual is known
to be HIV-positive at time t, ensure that his or her viral load is measured.

Under this hypothetical joint intervention, we would have complete measurement of underlying HIV status
and complete measurement of viral loads among all HIV-positive individuals.

To identify the probability of suppression under such a hypothetical intervention, we assume the fol-
lowing (sequential) randomization assumptions (Robins, 1986):

Z∗
t ⊥⊥ ∆t | Lt

Z∗
t ⊥⊥ TstV Lt | Yt,∆t = 1, Lt (1)

where Lt ≡ (B, Ōt−1, pDxt, eARTt). Together with the corresponding positivity assumptions, our target
parameter is identified as

P(Z∗
t = 1) =

∑
lt,yt

P(Zt = 1
∣∣TstV Lt = d1(yt), Yt = yt,∆t = 1, Lt = lt)P(Yt = yt

∣∣∆t = 1, Lt = lt)P(Lt = lt)

=
∑
b,ōt−1

P(Suppt = 1
∣∣TstV Lt = 1, Yt = 1,∆t = 1, eARTt = 1, pDxt = 1, ōt−1, b)

× P(Yt = 1
∣∣∆t = 1, eARTt = 1, pDxt = 1, ōt−1, b)

× P(eARTt = 1, pDxt = 1, ōt−1, b).

For the second equality, we use that the joint outcome Zt is deterministically 0 if Yt = 0 OR pDxt = 0 OR
eARTt = 0. Also in the second equality, we use our definition of dynamic treatment rule d1(Yt = 1) = 1.
The final equality is now in terms of the observed data distribution and can be estimated with longitudinal
TMLE with a dynamic treatment regime.

Instead, we simplify our approach by noting the following. Both randomization assumptions (Eq. 1)
hold deterministically among individuals never on ART (eARTt = 0). Likewise, ever ART use (eARTt = 1)
implies prior diagnosis (pDxt = 1) and an HIV-positive status (Y ∗

t = 1). Finally, having a viral load
measured at the CHC/tracking TstV Lt = 1 implies that the individual was known to be HIV-positive and
attended the CHC/tracking ∆t = 1. Therefore, our target parameter is identified1 as

P(Z∗
t = 1) =

∑
b,ōt−1

P(Suppt = 1
∣∣TstV Lt = 1, eARTt = 1, ōt−1, b)× P(eARTt = 1, ōt−1, b)

= P(eARTt = 1)×
∑
b,ōt−1

P(Suppt = 1
∣∣TstV Lt = 1, eARTt = 1, ōt−1, b)

× P(ōt−1, b|eARTt = 1).

1Our identifiability assumptions reduce to Supp∗t ⊥⊥ TstV Lt

∣∣eARTt = 1, Ōt−1, B. For HIV-positive individuals who
have initiated ART, we assume that within strata defined by baseline demographics, past HIV testing, and cascade history,
suppression among those with a viral load measured at CHC/tracking is representative of suppression among those with a
missing viral load. We assume the corresponding positivity assumption: P(TstV Lt = 1 | eARTt = 1, Ōt−1, B) > 0. We require
some positive probability of having viral load measured at the CHC/tracking, given the HIV-positive individual has initiated
ART, regardless of baseline demographics or the observed past.
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Thus, our estimand is the proportion of individuals known to have started ART multiplied by the adjusted
probability of being suppressed given prior ART initiation. The latter is estimated by stratifying the
population with prior ART initiation on baseline demographics and cascade history, assuming that within
each stratum the proportion suppressed among those with a viral load test available is representative of
the proportion suppressed without a viral load test, and combining these stratum-specific proportions into
a single standardized estimate.

Estimation is based on a TMLE with a intervention node as TstV Lt and adjustment set as (eARTt, Ōt−1, B).
During estimation, we use knowledge that the outcome is 0 if eARTt = 0. The estimated number of virally
suppressed HIV-positive individuals is calculated as the estimated proportion suppressed times the target
population size at time t.

3.2.5 The 90-90-90 cascade and population-level viral suppression

The previous subsections described our procedure for obtaining estimates of

1. The proportion of the target population who is HIV-positive: P(Y ∗
t = 1)

2. The proportion of the target population who is HIV-positive and previously diagnosed:
P(pDxt = 1, Y ∗

t = 1)
3. The proportion of the target population who is HIV-positive, previously diagnosed, and ever on ART:

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)

4. The proportion of the target population who is HIV-positive, previously diagnosed, ever on ART,
and virally suppressed: P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗

t = 1).

These estimates can be translated into estimates of the UNAIDS 90-90-90 cascade target by taking the
following ratios. Inference is obtained by the Delta Method.

• Proportion of all HIV-positive individuals who have a prior diagnosis at time t:

P(pDxt = 1 | Y ∗
t = 1) =

P(pDxt = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals with a prior diagnosis who have ever started
ART at time t:

P(eARTt = 1 | pDxt = 1, Y ∗
t = 1) =

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(pDxt = 1, Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals with prior ART initiation who are virally
suppressed at time t:

P(Supp∗t = 1 | eARTt = 1, pDxt = 1, Y ∗
t = 1) =

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(eARTt = 1, pDxt = 1, Y ∗
t = 1)

.

• Proportion of all HIV-positive individuals who are virally suppressed at time t:

P(Supp∗t = 1 | Y ∗
t = 1) =

P(Supp∗t = 1, eARTt = 1, pDxt = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

.

3.3 Unadjusted secondary analysis

In an unadjusted analysis, we estimate each 90-90-90 cascade step and overall population-level suppression
using simple empirical proportions among individuals seen at the CHC/tracking with known HIV status
(∆t = 1) and with viral load measured (TstV Lt = 1) for the suppression outcome. We make the following
assumptions and note that several alternative formulations result in the same estimands.
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1. We assume HIV prevalence among those with known HIV status seen at the CHC/tracking is repre-
sentative of HIV prevalence in the target population:

Y ∗
t ⊥⊥ ∆t.

2. In these secondary analyses, we assume that prior diagnosis is completely measured only among HIV-
positive individuals seen at the CHC/tracking. We use pDx∗t to denote underlying prior diagnoses
and pDxt = ∆t× pDx∗t as its observed analog. We assume the proportion of individuals with a prior
diagnosis seen at the CHC/tracking is representative of the proportion of individuals with a prior
diagnosis in the target population:

pDx∗t ⊥⊥ ∆t.

3. In these secondary analyses, we assume that prior ART use is completely measured only among
HIV-positive individuals seen at the CHC/tracking. We use eART ∗

t to denote underlying prior ART
use and eARTt = ∆t× eART ∗

t as its observed analog. We assume the proportion of individuals seen
at the CHC/tracking who have ever used ART is representative of the proportion of individuals who
have ever used ART in the target population:

eART ∗
t ⊥⊥ ∆t.

4. Finally, we assume that for HIV-positive individuals who have initiated ART, suppression among
those with viral loads measured at the CHC/tracking is representative of suppression among those
with missing viral load measures:

Supp∗t ⊥⊥ TstV Lt | eART ∗
t = 1.

Under these assumptions, we estimate cascade coverage and population-level suppression in the sec-
ondary analysis as follows.

1. Proportion of all HIV-positive individuals who have a prior diagnosis at time t: Under
these assumptions and using that prior diagnosis implies an HIV-positive status, we have that

P(pDx∗t = 1|Y ∗
t = 1) =

P(pDxt = 1|∆t = 1)

P(Yt = 1|∆t = 1)

The right hand side is estimated as the empirical proportion of individuals seen at CHC/tracking who
have a prior diagnosis, divided by the empirical proportion of individuals seen at CHC/tracking who
are known to be HIV positive. This is equivalent to the number of previously diagnosed HIV-positive
individuals attending CHC/tracking, divided by the number of HIV-positive individuals attending
CHC/tracking.

2. Proportion of all HIV-positive individuals with a prior diagnosis who have ever started
ART at time t: Under these assumptions and using that prior ART initiation implies a prior
diagnosis and an HIV-positive status, we have

P(eART ∗
t = 1|pDx∗t = 1, Y ∗

t = 1) =
P(eARTt = 1|∆t = 1)

P(pDxt = 1|∆t = 1)
.

The right hand side is estimated as the empirical proportion of individuals seen at CHC/tracking who
have ever initiated ART, divided by the empirical proportion of individuals seen at CHC/tracking
who have a prior diagnosis. This is equivalent to the number of HIV-positive individuals attending
CHC/tracking who have ever initiated ART, divided by the number of HIV-positive individuals
attending CHC/tracking who have a prior diagnosis.
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3. Proportion of all HIV-positive individuals with prior ART initiation who are virally
suppressed at time t: Under these assumptions and using that prior ART initiation implies a prior
diagnosis and an HIV-positive status, we have

P(Supp∗t = 1|eART ∗
t = 1, pDx∗t = 1, Y ∗

t = 1) = P(Supp∗t = 1|TstV Lt = 1, eART ∗
t = 1)

= P(Suppt = 1|TstV Lt = 1, eARTt = 1)

(Recall having a viral load measured at the CHC/tracking TstV Lt = 1 implies the individual was
known to be HIV-positive and attended the CHC/tracking ∆t = 1.) The right hand side is estimated
as the empirical proportion of individuals with a measured viral load who are currently suppressed,
divided by the empirical proportion of individuals with a measured viral load who have ever initiated
ART. This is equivalent to the number of HIV-positive individuals with a measured viral load who
are currently suppressed, divided by number of HIV-positive individuals with a measured viral load
who ever initiated ART.

4. Proportion of all HIV-positive individuals who are virally suppressed at time t: As
detailed in the worked example (Section 3.6), we can identify the proportion of all HIV-positive who
are suppressed in this secondary analysis as

P(Supp∗t = 1|Y ∗
t = 1) = P(Suppt = 1|TstV Lt = 1).

The right hand side is estimated with the empirical proportion of all HIV-positive individuals with
a viral load measured at the CHC/tracking who are currently suppressed. This is equivalent to
the number of HIV-positive individuals with observed viral suppression, divided by number of HIV-
positive individuals with a measured viral load. See Section 3.6 for further details.

3.4 Stratified analysis

We estimate the same parameters as in Section 3.2, but now within the following strata defined by baseline
variables included in B.

1. Sex (Male vs. Female)
2. Age (Younger: 15-24 years vs. Older: > 24 years) at time t
3. Country of residence (Uganda vs. Kenya)

3.5 Additional sensitivity analyses

We implement the following sensitivity analyses:

1. Expanding the target population to include non-stable residents and in-migrants
2. Including self-report as evidence of prior diagnosis at baseline

3.6 Worked example: estimating population-level viral suppression

To illustrate the approach taken in the primary analysis and detailed in Section 3.2, we provide the following
worked example.

3.6.1 Target parameter

Our goal is to estimate the population-level viral suppression among HIV-positive adults:

P(Supp∗t = 1 | Y ∗
t = 1) =

P(Supp∗t = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

.
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The numerator is the joint probability of suppressed and being HIV-positive (irrespective of whether HIV
status or viral load is measured), and the denominator is the underlying prevalence of HIV. We first focus
on estimating the denominator and then the numerator. Finally, we combine these estimates to obtain an
estimate of population-level viral suppression among HIV-positive adults.

3.6.2 Unadjusted (secondary) analysis approach

Denominator - HIV Prevalence: Our goal is to estimate population-level HIV prevalence: P(Y ∗
t = 1).

One approach would be to assume HIV prevalence is the same among those with known status and those
with unknown status. Under this assumption, the estimated HIV prevalence at baseline (t = 0) is

P(Y ∗
0 = 1) = P(Y0 = 1|TstHIV0 = 1) =

# known to be HIV-positive at baseline

population with known status at baseline
=

7108

69283
= 10.3%

This approach is potentially problematic for the following reasons. First, the status of an HIV-uninfected
individual can only be ascertained through testing at the CHC/tracking, while the status of a previ-
ously diagnosed HIV-infected individual can be ascertained through health records without attending the
CHC/tracking. This assumption is further problematic at later time points. For t > 0, we are more likely
to know a previously HIV-infected individual’s status due to both health records and because he/she only
needed to be tested for HIV once. In other words, the missingness variable TstHIVt is a function of under-
lying HIV status Y ∗

t . Therefore, in all analyses we rely on HIV status as ascertained at the CHC/tracking.
This incorporates attendees who test for HIV (both with positive and negative results) and attendees who
are previously diagnosed as HIV-infected (and thus not retested).

In the secondary analyses (Section 3.3), we assume that the prevalence of HIV among those testing
at the CHC/tracking or attending the CHC/tracking with a documented prior HIV-positive test result
(∆t = 1) is representative of prevalence among those not (∆t = 0). (We relax this assumption below.)
With this assumption, we can identify HIV prevalence as

P(Y ∗
t = 1) = P(Yt = 1|∆t = 1) =

P(Yt = 1,∆t = 1)

P(∆t = 1)

By this approach (Table 1), the estimated baseline prevalence of HIV in SEARCH is

(# HIV-positive & seen with known status)/77774

(# seen with known status)/77774
=

6908

69083
= 10.0%.

∆0 = 0 ∆0 = 1 total

Y0 = 0 8491 62175 70666
Y0 = 1 200 6908 7108

total 8691 69083 77774

Table 1: Observed HIV status by CHC/tracking attendance with known status at baseline (t = 0)

Numerator - Suppression & HIV-positive: Now our goal is to estimate population-level probability
of being suppressed and HIV-positive: P(Supp∗t = 1, Y ∗

t = 1). This parameter is subject to missing
measures on both HIV status and viral load. To simplify notation, let us denote a binary indicator
the outcome of interest as Z∗

t ≡ I(Supp∗t = 1, Y ∗
t = 1). Likewise, let us denote its observed analog as

Zt ≡ I(Suppt = 1, Yt = 1).
Analogous to Section 3.2.4, we formulate the identifiability of the target parameter P(Z∗

t = 1) as a
longitudinal dynamic regime problem. Again, we consider a two component hypothetical intervention on
the missingness mechanism:

12 http://biostats.bepress.com/ucbbiostat/paper357



• d0: set ∆t = 1. In other words, ensure that all individuals attend the CHC/tracking at time t and
have known HIV status.
• d1(Yt): if (Yt = 1), set TstV Lt = 1; else set TstV Lt = 0. In other words, if an individual is known

to be HIV-positive at time t, ensure that his or her viral load is measured.

Under this hypothetical joint intervention, we would have complete measurement of underlying HIV status
and complete measurement of viral load among all HIV-positive individuals.

To identify the probability of suppression under such a hypothetical intervention, suppose we are willing
assume

1. HIV status and suppression among those seen at the CHC/tracking and with HIV status measured
is representative of HIV status and suppression among those not seen;

2. Among HIV-positive individuals seen at the CHC/tracking, suppression among those with viral load
measured is representative of suppression among those missing a viral load measure.

These assumptions are equivalent to the following (sequential) randomization assumptions (Robins, 1986):

Z∗
t ⊥⊥ ∆t

Z∗
t ⊥⊥ TstV Lt | Yt,∆t = 1

Together with the corresponding positivity assumptions, we have

P(Z∗
t = 1) =

∑
yt

P(Zt = 1
∣∣TstV Lt = d1(yt), Yt = yt,∆t = 1)P(Yt = yt|∆t = 1)

= P(Zt = 1|TstV Lt = 1, Yt = 1,∆t = 1)P(Yt = 1|∆t = 1)

= P(Suppt = 1|TstV Lt = 1)P(Yt = 1|∆t = 1)

In the second equality, we have used that the outcome Zt is deterministically zero if Yt = 0. In the
final equality, we used that the only HIV-positive individuals have their viral loads measured the CHC or
tracking. In other words, TstV Lt = 1 implies (Yt = 1,∆t = 1). Therefore, our estimand for the probability
of being suppressed and HIV-positive P(Supp∗t = 1, Y ∗

t = 1) is the proportion of HIV-positive individuals
with measured suppression times the prevalence of HIV among those with a known status attending the
CHC/tracking.

As shown in Table 2, the first term can be estimated at baseline as

P̂(Supp0 = 1 | TstV L0 = 1) =
P̂(Supp0 = 1, T stV L0 = 1)

P̂(TstV L0 = 1)

=
(# HIV-positive w/ measured VL < 500 copies/ml)

(# HIV-positive w/ measured VL)
=

2549

4983
= 51.2%.

The second term is our estimand for baseline prevalence. (See above.)

TstV L0 = 0 TstV L0 = 1 total

Supp0 = 0 2125 2434 4559
Supp0 = 1 0 2549 2549

total 2125 4983 7108

Table 2: Table of viral load testing and observed suppression among known HIV-positive (Y0 = 1) at
baseline (t = 0).
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Proportion - Suppression among HIV-positives: Under these assumptions, we can write the
population-level probability of viral suppression among HIV-positive individuals as

P(Supp∗t = 1 | Y ∗
t = 1) =

P(Supp∗t = 1, Y ∗
t = 1)

P(Y ∗
t = 1)

=
P(Suppt = 1|TstV Lt = 1)P(Yt = 1|∆t = 1)

P(Yt = 1|∆t = 1)

= P(Suppt = 1|TstV Lt = 1)

With this approach, the estimated baseline viral suppression among HIV-positive is 51.2%.

3.6.3 Examining and relaxing assumptions

As discussed above, this approach to estimate HIV prevalence (i.e. the number of HIV-positive individuals
in the population) and population-level viral suppression requires on two potentially strong assumptions:

1. HIV prevalence among those attending the CHC/tracking with known status is representative of HIV
prevalence among those not attending;

2. For known HIV-positive individuals, suppression among those with a viral load measured at the
CHC/tracking is representative of suppression among those without a viral load measured.

However, certain groups may be over-represented and other groups under-represented. If factors affecting
CHC/tracking attendance are also associated with underlying HIV status, this will bias our estimates of
HIV prevalence. Likewise, if factors affecting viral load measurement are also associated with viral sup-
pression, this will bias our estimates of population-level suppression. In this subsection, we relax these
assumptions by assuming they hold within a binary strata. In the following Section 3.6.4, we present our
fully adjusted approach, corresponding to the primary analysis.

Denominator - HIV Prevalence: Suppose that we assume within country, HIV prevalence among those
testing at the baseline CHC/tracking or attending the baseline CHC/tracking with a documented prior
HIV-positive test result (∆t = 1) is representative of HIV prevalence among those not (∆t = 0). Then
we can control for missing HIV tests by estimating HIV prevalence for each country separately and then
standardizing to the distribution of these strata in the population:

P(Y ∗
t = 1) =

∑
country

P(Yt = 1 | ∆t = 1, country)P(country)

= P(Yt = 1|∆t = 1,Ugandan)P(Ugandan) + P(Yt = 1|∆t = 1,Kenyan)P(Kenyan).

With this approach, the estimated baseline prevalence of HIV in SEARCH is

(
# HIV-positive Ugandans & seen with known status

# Ugandans & seen with known status

)(
# Ugandans

# total pop

)
+

(
# HIV-positive Kenyans & seen with known status

# Kenyans & seen with known status

)(
# Kenyans

# total pop

)
=

(
2189

45033

)(
50134

77774

)
+

(
4719

24050

)(
27640

77774

)
= 10.1%

In this simple scenario, our estimator (G-computation with a saturated parametric regression model) is
identical to the inverse probability weighting approach (as used by BCPP in Gaolathe et al. (2016)) and
to the targeted maximum likelihood approach (used in this paper).
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Numerator - Suppression & HIV-positive: Along with the above assumption on HIV prevalence,
suppose that we assume for known HIV-positive individuals and within country, suppression among those
with a measured viral load is representative of suppression among those without a measured viral load.
Then our estimand is the strata-specific proportion of HIV-positive individuals with measured suppression
times the strata-specific prevalence of HIV and then standardized to the distribution of strata in the
population:

P(Z∗
t = 1) =

∑
country,yt

P(Zt = 1
∣∣TstV Lt = d1(yt), Yt = yt,∆t = 1, country)P(Yt = yt|∆t = 1, country)P(country)

=
∑

country

P(Zt = 1|TstV Lt = 1, Yt = 1,∆t = 1, country)P(Yt = 1|∆t = 1, country)P(country)

=
∑

country

P(Suppt = 1|TstV Lt = 1, country)P(Yt = 1|∆t = 1, country)P(country)

Each term can be estimated with the empirical proportion (i.e. contingency tables).

Proportion - Suppression among HIV-positives: To estimate the population-level viral suppression
among all HIV-positive adults, we control for missing HIV tests and viral loads by estimating suppression
among HIV-positive residents for each country separately and then standardizing to the distribution of
residency:

P(Supp∗t = 1 | Y ∗
t = 1) =

∑
country

P(Supp∗t = 1 | Y ∗
t = 1, country)P(country)

=
P(Suppt = 1|TstV Lt = 1,Ugandan)P(Yt = 1|∆t = 1,Ugandan)

P(Yt = 1|∆t = 1,Ugandan)
P(Ugandan)

+
P(Suppt = 1|TstV Lt = 1,Kenyan)P(Yt = 1|∆t = 1,Kenyan)

P(Yt = 1|∆t = 1,Kenyan)
P(Kenyan)

= P(Suppt = 1|TstV Lt = 1,Ugandan)P(Ugandan)

+ P(Suppt = 1|TstV Lt = 1,Kenyan)P(Kenyan)

With this approach, the estimated baseline viral suppression among HIV-positive is 48.9%:(
# HIV-positive Ugandans w/ measured VL < 500 copies/ml

# HIV-positive Ugandans w/ measured VL

)(
# Ugandan

# total pop

)
+

(
# HIV-positive Kenyans w/ measured VL < 500 copies/ml

# HIV-positive Kenyans w/ measured VL

)(
# Kenyan

# total pop

)
=

(
643

1377

)(
50134

77774

)
+

(
1906

3606

)(
27640

77774

)
= 48.9%.

Again in this simple scenario, our estimator (G-computation with a saturated parametric regression model)
is identical to the inverse weighting approach (as used by BCPP in Gaolathe et al. (2016)) and to the
targeted maximum likelihood approach (used in this paper).

3.6.4 Primary analysis approach

While stratifying on country weakened our assumptions on missing HIV tests and missing viral loads, they
remain quite strong. In practice, there are many potential adjustment variables that could impact the
probability of being tested, underlying HIV status, and viral suppression among HIV-positive individuals.
Examples include age, sex, occupation, education, socio-economic status, mobility, and community. As the
number of potential adjustment variables grow (or we consider continuous variables), the above approach
based on contingency tables breaks down due to sparse cells. This problem is further intensified after
baseline when the history of testing, care, or suppression could impact current testing, HIV status, and
suppression among HIV-positive individuals.
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As an alternative, one could use inverse weighting as illustrated in Gaolathe et al. (2016). Targeted
maximum likelihood estimation (TMLE), however, is more a efficient and robust approach (van der Laan
and Rose, 2011). TMLE combines estimates of expected outcome for potential strata with an estimate
of the propensity score (quantification of which types of people more or less represented). As a result,
TMLE is a double robust; we will have a consistent estimate if either the strata-specific expected outcome
is consistently estimated or the propensity score is consistently estimated. TMLE is also a substitution
(plug-in) estimator providing robustness under strong confounding or rare outcomes. Furthermore, rather
than rely on parametric regression models (e.g. main terms logistic regression), TMLE further improves
robustness by using the machine learning algorithm Super Learner (van der Laan et al., 2007). Super
Learner uses cross-validation (i.e. sample splitting) to build the best weighted combination of estimates
from a library of candidate algorithms.

Denominator - HIV Prevalence: We refer the reader to Section 3.2.1 for full details on estimating the
population-level HIV prevalence in the primary analysis. Our fully adjusted estimate of baseline prevalence
is 10.0%.

Numerator - Suppression & HIV-positive: We refer the reader to Section 3.2.4 for full details on
estimating the population-level probability of being suppressed and HIV-positive in the primary analysis.
Our fully adjusted estimate of the proportion of the population who are HIV-positive and suppressed is
4.5%.

Proportion - Suppression among HIV-positives: In our primary analysis, we estimate the population-
level viral suppression among HIV-positive residents by dividing of the estimated probability of being sup-
pressed by the estimated prevalence of HIV (Section 3.2.5). Both the numerator and denominator are fully
adjusted for missing tests. With this approach, the estimated baseline viral suppression among HIV-positive
is 44.7% - substantially more conservative than the secondary analysis making stronger assumptions about
HIV testing and viral load measurement (51.2%).

4 Analysis of the closed cohort of baseline HIV-positive adults

Among enumerated stable residents who are ≥ 15 years of age and known to be HIV-positive at the close
of baseline testing (n = 7108), we conduct longitudinal analyses evaluating the change in cascade status
over time. Specifically, we estimate the probability that such a individual falls into one of six exhaustive
and mutually exclusive categories at each time t = {0, 1, 2}:

1. Dead.
2. Alive and out-migrated.
3. Alive, not out-migrated, and newly diagnosed.
4. Alive, not out-migrated, previously diagnosed, but never on ART.
5. Alive, not out-migrated, with previous ART initiation, but not currently virally suppressed.
6. Alive, not out-migrated, with previous ART initiation, and currently virally suppressed.

Specifically, we estimate the following quantities:

1. Died.
P(Dt = 1 | Y0 = 1).

By definition of the target population, the probability of being dead at t = 0 is 0.

2. Out-migrated.
P(Mt = 1, Dt = 0 | Y0 = 1).

By definition of the target population, the probability of being out-migrated at t = 0 is 0.
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3. New Diagnosis:
P(pDxt = 0,Mt = 0, Dt = 0 | Y0 = 1).

By definition of the target the population as individuals with known baseline HIV-positive status,
the probability of being a new diagnosis for t > 0 is 0.

4. Diagnosed, never on ART:

P(eARTt = 0, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1).

5. Suppression failure:

P(Supp∗t = 0, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1).

6. Suppression success:

P(Supp∗t = 1, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1).

The only missingness in these analyses arises from incomplete measurement of viral loads. (Our target
population conditions on known baseline HIV-positive status, and death and out-migration are not treated
as forms of missingness.) Therefore, the first four quantities can be estimated as empirical proportions. As
detailed below, estimators of the probability of suppression failure or success, however, must account for
missing viral load measures. As for the open cohort analysis, we use TMLE with Super Learning (with the
same library and cross-validation scheme) to adjust for the potentially informative measurement of viral
loads. Statistical inference is based on the estimated influence-curve, treating the household as the unit
of independence. The corresponding number of HIV-positive individuals in each category is estimated by
multiplying the estimated probability times the population size (n = 7108).

4.1 Suppression success and failure among baseline known HIV-positive adults

Suppression success: We first focus on identification of the probability of being alive, not out-migrated,
previously diagnosed, on ART, and currently virally suppressed. Let

Z∗
t = I(Supp∗t = 1, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0).

We assume

Z∗
t ⊥⊥ TstV Lt|eARTt, pDxt,Mt, Dt, Ōt−1, B.

This assumption and the resulting estimation scheme can be simplified by noting the following. First, the
outcome Z∗

t is deterministically 0 if Dt = 1 or Mt = 1 or pDxt = 0 or eARTt = 0. Furthermore, ever ART
use (eARTt = 1) implies previous diagnosis (pDxt = 1). Our randomization assumption thus simplifies to

Supp∗t ⊥⊥ TstV Lt | eARTt = 1,Mt = 0, Dt = 0, Ōt−1, B.

For individuals who are not dead, not out-migrated and who have previously initiated ART by time
t, we assume that within strata defined by baseline demographics, past testing and cascade history (e.g.
suppression history), current suppression among individuals who have viral load measured is representative
of current suppression among those who are missing viral load measures. We also assume the following
positivity assumption:

P(TstV Lt = 1
∣∣eARTt = 1,Mt = 0, Dt = 0, Ōt−1, Y0 = 1, B) > 0.

We require individuals who are baseline HIV-positive, not dead, not out-migrated and who have previ-
ously initiated ART by time t to have some positive probability of having viral load measured during
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CHC/tracking at time t, regardless of covariate values. With these assumptions, our target parameter is
identified using the G-computation formula (Robins, 1986):

P(Z∗
t = 1|Y0 = 1) =

∑
lt

P(Zt = 1|TstV Lt = 1, Lt = lt, Y0 = 1)× P(Lt = lt|Y0 = 1)

=
∑
ōt−1,b

P(Suppt = 1|TstV Lt = 1, eARTt = 1,Mt = 0, Dt = 0, ōt−1, b, Y0 = 1)

× P(eARTt = 1,Mt = 0, Dt = 0, ōt−1, b | Y0 = 1)

=
∑
ōt−1,b

P(Suppt = 1|TstV Lt = 1, eARTt = 1,Mt = 0, Dt = 0, ōt−1, b, Y0 = 1)

× P(ōt−1, b|eARTt = 1,Mt = 0, Dt = 0, Y0 = 1)P(eARTt = 1,Mt = 0, Dt = 0|Y0 = 1).

where Lt ≡ (eARTt, pDxt,Mt, Dt, Ōt−1, B). Estimation is based on point treatment TMLE with single
intervention node as TstV Lt and adjustment set as (eARTt,Mt, Dt, Ōt−1, B). During estimation, we use
knowledge that the joint outcome Zt is deterministically zero if eARTt = 0 OR Dt = 1 OR Mt = 1.

Suppression failure: Identification and estimation of the probability of suppression failure among indi-
viduals known to be HIV-positive at baseline can be implemented analogously. Instead, we estimate this
probability by using that these quantities are exhaustive and mutually exclusive:

P(Supp∗t = 0, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

= 1− P(Dt = 1 | Y0 = 1)− P(Mt = 1, Dt = 0 | Y0 = 1)− P(pDxt = 0,Mt = 0, Dt = 0 | Y0 = 1)

− P(eARTt = 0, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

− P(Supp∗t = 1, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

We take the latter approach and use the Delta Method for inference.

4.2 Unadjusted secondary analysis

As a secondary analysis, we control for missing viral load measures by estimating the following 7 proba-
bilities

1. Died: P(Dt = 1 | Y0 = 1)

2. Out-migrated: P(Mt = 1, Dt = 0 | Y0 = 1)

3. New Diagnosis: P(pDxt = 0,Mt = 0, Dt = 0 | Y0 = 1)

4. Diagnosed, never on ART: P(eARTt = 0, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

5. On ART, but missed viral load measure:
P(TstV Lt = 0, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

6. Measured suppression failure:
P(Suppt = 0, T stV Lt = 1, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

7. Measured suppression success:
P(Suppt = 1, T stV Lt = 1, eARTt = 1, pDxt = 1,Mt = 0, Dt = 0 | Y0 = 1)

All seven probabilities can be estimated with empirical proportions. For example, the probability of dying
is estimated as the number of baseline HIV-positive subjects who died by time t divided by the population
size (n = 7108).
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4.3 Stratified analysis

We implement the same estimators, but now within the following strata defined by baseline variables
included in B.

1. Sex (Male vs. Female)
2. Age (Younger: 15-24 years vs. Older: > 24 years) at baseline
3. Country of residence (Uganda vs. Kenya)

5 Closed cohort analyses treating death and outmigration as right-
censoring events

In the previous section, death and out-migration are treated as outcomes. As an alternative, we conduct
complimentary longitudinal analyses with right-censoring at death or out-migration. These analyses adjust
for the potentially informative nature of this censoring in addition to informative missingness of viral load
measures where applicable. First, in a closed cohort of baseline enumerated, stable adult residents without
an HIV diagnosis prior to the baseline testing round, we estimate the proportion who are tested at least
once by the close of two and three rounds of testing (t = {1, 2}). Second, among adults diagnosed as HIV-
positive by the close of baseline testing, we estimate the proportion who have initiated ART by t = {1, 2}.
Third, among the cohort of adults diagnosed as HIV-positive by the close of baseline testing, we estimate
the proportion virally suppressed at t = {1, 2}, while accounting for missing viral load measures. We
further evaluate evolution in post-baseline viral suppression within subgroups defined by baseline cascade
status (prior diagnosis, ART use, and viral suppression). Finally, we consider univariate and multivariate
predictors of these outcomes. Adjustment employs TMLE with Super Learning (as described previously).

5.1 Target population and outcomes of interest

We consider the following outcomes.

1. ever.testt: indicator that an individual has ever had an HIV test (i.e. any TstHIVj = 1, j ≤ t).
This is a counting process that jumps at most once (i.e. if ever.testj = 1, then ever.testt = 1
deterministically for t > j). If an individual has no record of having tested, he or she is assumed not
to have tested.

2. eARTt: indicator that an individual has ever been on ART. This is a counting process that jumps at
most once (i.e. if eARTj = 1, then eARTt = 1 deterministically for t > j). If an individual has no
record of having initiated ART, he or she is assumed not to have initiated ART.

3. Supp∗t : indicator that an HIV-positive individual has achieved viral suppression at year t CHC/tracking
(i.e. if V LV ∗

t < 500 copies/ml then Supp∗t = 1). This variable is not a counting process and is mea-
sured only if TstV Lt = 1 (i.e. Suppt = Supp∗t × TstV Lt).

We define the following outcome-specific target populations:

• We restrict the target population for all outcomes to baseline enumerated stable, adult (≥ 15 years
of age) residents.

• For outcome ever.testt, we further restrict the target population to exclude those with a prior diag-
nosis at baseline (pDx0 = 1).

• For outcomes (eARTt, Supp
∗
t ), we restrict the target population to known baseline HIV-positive

individuals (Y0 = 1).
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5.2 Target parameters

5.2.1 Cascade probabilities over time

We consider the following hypothetical interventions of interest. For all outcomes, we aim to evaluate the
counterfactual proportion that would have been observed in the absence of death/out-migration. In other
words, we intervene to set Dt = 0 and Mt = 0. For suppression outcome Supp∗t , we further intervene to set
TstV Lt = 1 to ensure that viral load is measured at the CHC/tracking at time t. We generically denote
these interventions of interest as d.

For each outcome, we aim to estimate its time point-specific mean under an intervention to prevent
censoring and for suppression, to ensure viral load measurement. Let Zt refer generically to each outcome
above, and let Zt(d) refer to the counterfactual value of this outcome under regime d. We consider the
following target parameters:

• For all outcomes, we estimate the intervention-specific mean outcome E[Zt(d)] for t = {1, 2}.

• Additionally for suppression outcome Supp∗t , we estimate the post-baseline (t = {1, 2}) probability
of suppression within the following subgroups defined by baseline cascade status.

– Baseline new diagnoses: Among baseline new diagnoses (i.e. those with no record of prior
care at baseline), we estimate the overall post-baseline suppression probability

E[Supp∗t (d)|pDx0 = 0].

– Baseline prior diagnosis without ART: Among individuals with a record of prior diag-
nosis but no record of prior ART initiation at baseline, we estimate the overall post-baseline
suppression probability

E[Supp∗t (d)|pDx0 = 1, eART0 = 0].

– Prior ART initiation: Among individuals with a record of ART initiation prior to baseline,
we estimate the overall post-baseline suppression probability

E[Supp∗t (d)|eART0 = 1].

We further estimate post-baseline suppression probability within subgroups defined by viral
suppression at baseline (measured suppression success, measured suppression failure, or missing
baseline viral load).

5.2.2 Predictors of cascade failures

For all outcomes at t = 2, we estimate variable importance measures on an absolute scale (statistical
analog of the causal risk difference), treating each variable in B in turn as the intervention variable, and
the remainder as the adjustment set. We consider hypothetical interventions as above to prevent censoring
for all outcomes; for Supp∗t we consider the additional hypothetical intervention to ensure that viral load
is measured (TstV Lt = 1).

5.3 Identification

In the primary analyses, we assume that within strata defined by past testing, cascade history, and baseline
covariates, those who remain alive and resident in the community are representative of those who are
censored with respect to each of the outcomes considered.

Zt(d) ⊥⊥ Cj | B, Ōj−1, Cj−1 = 0, for j ≤ t and t = {1, 2}.
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We further assume positivity; there are no strata (defined by testing history, cascade history and baseline
demographics) in which all individuals are censored:

P(Cj = 0|B, Ōj−1, Cj−1 = 0) > 0, for j ≤ t.

For the suppression outcome Supp∗t , we also assume that within strata defined by past testing, cascade
history (including current ART use), and baseline demographics, suppression among individuals with a
viral load measured at CHC/tracking is representative of suppression among those missing a viral load
measurement:

Zt(d) ⊥⊥ TstV Lt | B, Ōj−1, eARTt, Ct = 0, for t = {1, 2}.
Finally, we assume that among individuals who remain alive and resident in the community, there are no
substrata (defined by baseline covariates, past testing and cascade history) in which all individuals are
missing a viral load test:

P(TstV Lt = 1 | B, Ōt−1, eARTt, Ct = 0) > 0.

5.4 Estimators

• For target parameters corresponding to the intervention-specific mean (overall and within the pre-
specified subgroups), we implement the following estimators.

– Adjusted estimators, which control for informative censoring (and informative missing viral
load for the suppression outcome) using longitudinal TMLE. Adjustment sets are implied by
independence assumptions above. Nuisance parameters are estimated using Super Learner, with
5-fold cross-validation and library as specified in the open cohort analysis.

– Unadjusted estimators correspond to simple empirical proportions among uncensored individuals
(i.e. conditioning on Ct = 0) as well as measured viral loads (TstV Lt = 1) for the suppression
outcome.

• We estimate univariate and multivariate predictors of each outcome an absolute risk scale (corre-
sponding to unadjusted and adjusted risk differences, respectively).

– We consider each of the following variables included in the baseline characteristics B in turn as
the predictor of interest:

∗ Age: 4-level categorical variable
∗ Sex
∗ Mobility: > 1 mo/past year away from community or not
∗ Marital Status: ever vs. never married
∗ Education: less than primary, primary, secondary or higher
∗ Occupation: formal sector, high risk informal sector, low risk informal sector, other, no

job/disabled
∗ Household wealth quintile based on a principal components analysis of a baseline household

consumption survey (Chamie et al., 2016).

– Using longitudinal TMLE, multivariate predictors adjust for the remaining variables in B, in-
formative censoring, and informative missing viral load measures for the suppression outcome.
Again, adjustment sets for censoring and viral load testing are implied by independence assump-
tions above. Nuisance parameters are estimated using Super Learner, with 5 fold cross-validation
and library as specified in the open cohort analysis.

– Univariate predictors are evaluated conditional on being uncensored (Ct = 0), as well as condi-
tional on measured viral load (TstV Lt = 1) for suppression outcome, and without adjusting for
other variables in B.

Statistical inference is based on the estimated influence-curve, treating the household as the unit of
independence.

21 Hosted by The Berkeley Electronic Press



6 Acknowledgements:

Research reported in this presentation was supported by Division of AIDS, NIAID of the National Insti-
tutes of Health under award numbers (U01AI099959, R37AI051164, R01-AI074345) and in part by the
President’s Emergency Plan for AIDS Relief, Bill and Melinda Gates Foundation, and Gilead Sciences.
The content is solely the responsibility of the authors and does not necessarily represent the official views
of the NIH, PEPFAR, Bill and Melinda Gates Foundation, or Gilead. The SEARCH project gratefully
acknowledges the Ministries of Health of Uganda and Kenya, our research team, collaborators and advisory
boards, and especially all communities and participants involved.

References

G. Chamie, T.D. Clark, J. Kabami, K. Kadede, E. Ssemmondo, R. Steinfeld, G. Lavoy, D. Kwarisiima,
N. Sang, V. Jain, H. Thirumurthy, T. Liegler, L. Balzer, et al. A hybrid mobile HIV testing approach
for population-wide HIV testing in rural East Africa. Lancet HIV, January, 2016.

T. Gaolathe, K.E. Wirth, M.P. Holme, J. Makhema, S. Moyo, et al. Botswana’s progress toward achieving
the 2020 UNAIDS 90-90-90 antiretroviral therapy and virological suppression goals: a population-based
survey. Lancet HIV, Online, 2016. doi: 10.1016/S2352-3018(16)00037-0.

M.A. Hernán, E. Lanoy, D. Costagliola, and J.M. Robins. Comparison of dynamic treatment regimes via
inverse probability weighting. Basic & Clinical Pharmacology & Toxicology, 98(3):237–242, 2006.

E. Polley and M. van der Laan. SuperLearner: Super Learner Prediction, 2014. URL {http://CRAN.

R-project.org/package=SuperLearner}. R package version 2.0-15.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015. URL http://www.R-project.org.

J.M. Robins. A new approach to causal inference in mortality studies with sustained exposure periods–
application to control of the healthy worker survivor effect. Mathematical Modelling, 7:1393–1512, 1986.
doi: 10.1016/0270-0255(86)90088-6.

J.M. Robins, L. Orellana, and A. Rotnitzky. Estimation and extrapolation of optimal treatment and testing
strategies. Statistics in Medicine, 27(23):4678–4721, 2008.

Joshua Schwab, Samuel Lendle, Maya Petersen, and Mark van der Laan. ltmle: Longitudinal Targeted
Maximum Likelihood Estimation, 2016. URL http://CRAN.R-project.org/package=ltmle. R package
version 0.9-9.

UNAIDS. 90-90-90 an ambitious treatment target to help end the AIDS epidemic, 2014. URL http:

//www.unaids.org/en/resources/documents/2014/90-90-90.

M. van der Laan and S. Rose. Targeted Learning: Causal Inference for Observational and Experimental
Data. Springer, New York Dordrecht Heidelberg London, 2011.

M.J. van der Laan and M.L. Petersen. Causal effect models for realistic individualized treatment and
intention to treat rules. The International Journal of Biostatistics, 3(1):Article 3, 2007.

M.J. van der Laan and D.B. Rubin. Targeted maximum likelihood learning. The International Journal of
Biostatistics, 2(1):Article 11, 2006. doi: 10.2202/1557-4679.1043.

M.J. van der Laan, E.C. Polley, and A.E. Hubbard. Super learner. Statistical Applications in Genetics
and Molecular Biology, 6(1):25, 2007. doi: 10.2202/1544-6115.1309.

22 http://biostats.bepress.com/ucbbiostat/paper357


	text.pdf.1487709274.titlepage.pdf.CUpxd
	tmp.1487709274.pdf.uhF_2

