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Although Information Theory concepts have been successfully applied in hydrology and other 
fields to quantify the amount of information contained in singular variables and shared by 
multiple variables, the valuation of these quantities is sensible to different parameters. In 
particular, the bin size of histograms and the Pearson correlation coefficient to estimate 
probabilistic measures such as Joint Entropy and Total Correlation are of interest when 
evaluating a monitoring network. This work extends the ensemble entropy method developed 
by the authors to take into consideration the uncertainty coming from these parameters in the 
assessment of the North Sea’s water level network for large number of sensors. The main idea 
is to represent entropy of random variables through their probability distribution, instead of 
considering entropy as a deterministic value. The method considers solving multiple scenarios 
of Multi-Objective Optimization in which information content (Joint Entropy) of a set of 
stations is maximized and redundancy (Total Correlation) is minimized. These scenarios are 
generated with parameter sampling methods such as the Latin Hypercube. Results include 
probabilistic Pareto fronts generated by parameter sampling, which provided additional criteria 
on the selection of the final set of monitoring points and the elimination of redundant/non-
informative points. 
 
INTRODUCTION 

 
In hydrology and water resources data collection is an important task. Among other problems, 
both the lack and the imprecision of data series may cause inaccuracy in hydraulic modelling. 
Therefore, methods to design networks of sensors are of great relevance to collect reliable data 
series. Many authors have dealt with the issue of determining the best sensor layout on the base 
of statistical analysis as regression techniques [1] and cross correlation reduction [2].  
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Information Theory has been used for monitoring network design and assessment of various 
water systems [3-6]. Recently, the issue of determining the best sensors location has been faced 
using the two Information theory quantities of joint information (JH) and total correlation (C). 
The optimal sensors location is defined in such a way that their measurements cover as much as 
possible the area and that the redundancy of the data is minimum. The two requirements are 
satisfied through the contemporary maximization of JH (i.e. a measure of information content) 
and minimization of C (i.e. a measure of information redundancy). The methodology has been 
applied to analyse pair-wise station, to evaluate the distribution of water level monitors in 
polders and in river systems [7,8]. Since entropy quantities involve the determination of the 
marginal and joint probabilities of the considered random vectors (RVs), their determination is 
of crucial importance. In a previous work [9] investigate the sensitivity of Information Theory 
quantities to the assumptions made to calculate probabilities as the bin size of histograms. The 
authors introduced the concept of ensemble entropy that is given by the envelope of possible 
entropy values. The aim of this work is to evaluate the uncertainty of the entropy–based 
approach and most of all its effect on the sensors network design..  
 
ENTROPY-BASED METHODOLOGY 
 
In recent years the issue of monitoring sensors location has been investigated through the 
entropy concept [e.g. 7,8]. The main idea is to determine which sensors layout and number is 
the most representative of the network. The optimized sensors have to provide the highest 
amount of information about the variable of interest and at the same time, the information 
should be essential, without repetition. In terms of Information Theory quantities it means that 
sensors location should fulfill the following objectives: 
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JH is the joint entropy of the M discrete RVs:  
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where pi1...iM is the joint probability of the M variables. C is the total correlation: 
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H(Xi) is the marginal entropy of the discrete RV X: 
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where px is the probability that Xi equals the outcome x, P(Xi = x). 
The problem of determining the best monitors location is, then, posed as a multi-objective 
(MO) problem, where the two objectives are presented in Eq.(1) and it is solved through the 
Non-dominated Sorting Genetic Algorithm (NSGA-II; [10]). The algorithm searches for the set 
of solutions that simultaneously optimize the two independent objective functions. The solution 
of the MO problem is the set Yi (i = 1,2,...,M) chosen among all sets Xi (i = 1,2,...,M) that is 
then, plotted on a Pareto front of quasi-optimal solutions. 
 
THE ENSEMBLE ENTROPY CONCEPT 
 

The concept of ensemble entropy was presented in a previous work [9] in order to 
investigate the sensitivity of Information Theory quantities to the assumptions made to calculate 
probabilities as the bin size of histograms. Several authors have dealt also with this issue, 
studying the differences raised when using different bin size and defining the bin size as a 
function of the RV length. 
Specifically, for discrete type RVs we investigate the quantization method suggested in [7], 
which converts an analog (i.e., continuous) sign into a discrete pulse using mathematical floor 
function. For continuous type RVs we investigate the effect of choice of the copula function to 
describe the correlation structures among variables. Both procedures lead to estimate JH and C 
not as punctual values, but as an envelope of values: the so-called ensemble quantities.  
 
Discrete type RVs 

The conversion of an analog value x to a quantized value xq, rounded to the nearest 
multiple of a, is given by: 
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where a is the quotient of the difference between the maximum and the minimum of the time 
series and the bin-size used in frequency analysis, γ is a numeric parameter to normalise data 
series deriving from multiple sources. Therefore, RVs are transformed through Eq.(5) so that 



11th International Conference on Hydroinformatics 
HIC 2014, New York City, USA 

 

 

series from different sensors are normalised for fair comparison. Probabilities are computed 
evaluating the frequency of occurrence of each normalised value.  
This work investigates how the assumptions of parameters γ and a affect results of sensors 
network design. Details on the procedure can be found in [9], and it is summarized as follows: 
1) assume a value for parameters γ and a; 2) normalise data series of each sensor following Eq. 
(5); 3) solve the MO problem as in Eq. (1), obtaining the Pareto front of quasi-optimal vector Yi 
of sensor locations; 4) assume S different sample combinations for parameters γ and a; 5) 
normalise quasi-optimal Yi data series using the S sample combinations and obtain the 
transformed time series Dij*; 6) evaluate JH and C of the time series Dij* through Eq.(2) and 
Eq.(3), respectively; 7) obtain the Pareto of two-dimensional distributions of JH and C; 8) find 
the optimal combination of sensors location from the analysis of the last Pareto front. 
 
Continuous type RVs 

 
This section presents the analysis made through copula functions to determine JH and C 
envelopes. The procedure follows the one presented previously, but the JH and C values are 
computed using copula functions of the Archimedean family: Gumbel, Clayton and Frank [10]. 
The copula function [11] is a bivariate function C:[0,1]x[0,1] [0,1] with properties, in which 
C(u,v) is a non-decreasing function for each u, v. Also, for every u, v  [0,1], 
C(u,0)=C(0,v)=0,C(u,1)=u, C(1,v)=v and for every u1, v1, u2, v2  [0,1] so that u1≤u2 and v1≤v2. 
In addition, C(u2,v2)-C(u1,v2)-C(u2,v1)+C(u1,v1)≥0. If u and v are independent, the copula is 
C(u,v)=u x v, where u x v is the copula product (u,v). The joint cumulative distribution 
function of two RVs X and Y (i.e, F(X,Y)), with marginal distribution F(X) and G(Y), is defined 
as: 
 
F(X,Y)=C[F(X),G(Y)]        (6) 

If the marginal functions are continuous, C is unique; otherwise C is determined by 
Ran Fi x Ran Gi, where Ran is the range of the marginals. By definition, the copula is a 
distribution with marginals U(0,1), so that it is necessary to transform a RV Xi i=1, 2 with a 
given continuous distribution F(Xi) in a RV with distribution U(0,1). This transformation is 
made through the Probability Inverse Transformation (PIT), so that Ui=F(Xi). Thus Eq. (6) 
becomes F(X,Y)=P[X≤x, Y≤y]=C(u,v)=C(F(x),G(y). Eq. (6) is the key to the Sklar theorem. 
Under the assumption that the two marginal distributions are univariate, the joint probability 
density function is given by: 
 
f(x,y)=c(F(x),G(y)) f(x) g(y)       (7) 

 
where c is the density function of C, and it is: 
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where u and v are two dependent cumulative distribution functions, F(X) and G(Y). A generic 
Archimedean 2-copula is written as: 
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where  is the function that generates the copula. It is a strictly decreasing function from [0,1] 
to [0, ∞): (0)=∞ and (1)=0, and its inverse is completely monotone on [0, ∞). 

 
CASE STUDY 

 

Figure 1. North Sea and the Netherlands delta and location of one of the most robust sensors set 
found (blue dots). 
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Figure 2. Pareto front of quasi-optimal solutions considering several number of monitoring 
sensors. 
 
The case study is the North Sea area, where a network of 47 water level sensors is deployed as 
represented in Figure 1. Specifically, the network monitors territories below the sea level and 
the delta of The Netherlands, because it is the location of one of the most important ship transit 
port in the world, the harbor of Rotterdam. However, as the maintenance of the sensors network 
is expensive, it is necessary to optimize their number. To this end, the data series used in the 
MO problem are the water stage values gauged by sensors, collected with 10 minutes resolution 
time and covering the period from 2007 to 2008. 
 
RESULTS AND DISCUSSION 
 
The aim of this study is to investigate the effects of the assumptions made to determine the 
probabilities of variables on the Information Theory quantities. Following the procedure 
previously presented, values of  and a are hypothesized and the corresponding Pareto front of 
quasi-optimal solutions is plotted, Figure 2.  
 
The optimal number of sensors is 8, because corresponding set have a high value of JH and 
simultaneously a restrained C value. Indeed, considering more sensors, JH slightly increases, 
while C consistently raised. This means that it not worthy adding a relevant number of sensors 
because the gain in terms of information (i.e. JH) is not as high as the loss due to the 
redundancy (i.e. C). Quasi-optimal sets of 8 and 10 sensors are then analysed to evaluate their 
ensemble entropy. As previously explained quasi-optimal sets are normalised using several 
values of  and a parameters and corresponding JH and C values are computed. The resulting 
Pareto fronts for 8 and 10 sensors are presented in Figure 3 (a) and  (b) respectively. 
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Figure 3. Pareto envelope plots for 8 sensors (a) and 10 sensors (b), built considering different 
bin size values. The envelop for copulas for two variables is presented in (c) 

The dark red area, Figure 3, corresponds to the most robust sensor networks (i.e., a variation in 
entropy parameters would not greatly change their location). Indeed, in this area, although  and 
a change, JH and C values are the same. One of these robust configurations of sensors network 
is presented in Figure 1. As we can see the majority of the sensors are located in the lower part 
of the delta. This result is in agreement with the one presented by [9], where an optimal network 
of three sensors was deployed in the same area case of study. This means that the most sensitive 
area to water level changes is the one located in the lower area, where the presence of the 
Rotterdam port makes delicate the water level monitoring issue. Envelope values are also 
presented for the copula functions case, Figure 3(c). As previously mentioned, these results can 
be extended to a multidimensional case. In this case, using different copula functions (i.e. a 
different correlation structure) values of JH and C do not change consistently.  
 
CONCLUSIONS 
 
In this work a methodology to estimate the uncertainty related to the Information Theory 
quantities of joint entropy and total correlation is presented. The issue is set in the framework of 
a water level monitoring sensors design: monitoring sensors are optimized maximizing their JH 
and minimizing their C. The multi-objective problem is solved using a genetic algorithm and 
the resulting Pareto front is plotted. The main idea is to consider entropy as a probability 
distribution, rather than a deterministic value. Therefore, when dealing with the issue of 
choosing the best set of sensors, the best solution is the one with the most probable values of JH 
and C in the Pareto envelope. 
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The methodology is applied in the case of both the discrete and continuous random vectors. For 
the former, discrete probability values are estimated, for the latter the joint probability 
distributions functions are evaluated through the use of copula functions. It can be concluded 
that the entropy uncertainty highly influences the deployment of the sensors over the area, 
therefore, the estimation of all possible entropy values scenarios and the determination of the 
most robust values make the network deployment more objective. 
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