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Abstract. We define a new protocol rule, Now or Never (NoN), for
bilateral negotiation processes which allows self-motivated competitive
agents to efficiently carry out multi-variable negotiations with remote
untrusted parties, where privacy is a major concern and agents know
nothing about their opponent. By building on the geometric concepts
of convexity and convex hull, NoN ensures a continuous progress of the
negotiation, thus neutralising malicious or inefficient opponents. In par-
ticular, NoN allows an agent to derive in a finite number of steps, and
independently of the behaviour of the opponent, that there is no hope to
find an agreement. To be able to make such an inference, the interested
agent may rely on herself only, still keeping the highest freedom in the
choice of her strategy.
We also propose an actual NoN-compliant strategy for an automated
agent and evaluate the computational feasibility of the overall approach
on instances of practical size.

1 Introduction

Automated negotiation among rational agents is crucial in Distributed Arti-
ficial Intelligence domains as, e.g., resource allocation [3], scheduling [16], e-
business [7], and applications where: (i) no agent can achieve her own goals
without interaction with the others (or she is expected to achieve more utility
with interaction), and (ii) constraints of various kinds (e.g., security or privacy)
forbid the parties to communicate their desiderata to others (the opponent or a
trusted authority), hence centralised approaches cannot be used.

We present a framework which allows two self-motivated, competitive agents
to negotiate efficiently and find a mutually satisfactory agreement in a particu-
larly hostile environment, where each party has no information on constraints,
preferences, and willingness to collaborate of the opponent. This means that also
the bounds of the domains of the negotiation variables are not common knowl-
edge. Our framework deals with negotiations over multiple constrained variables
over the type of real numbers, regarding integer or categorical variables as special
cases.

The present setting is very different from what is often assumed in the liter-
ature: the set of possible agreements is infinite and agents do not even know (or
probabilistically estimate) possible opponent’s types, variable domain bounds
or most preferred values. It is not a split-the-pie game as, e.g., in [6] although
with incomplete information, as in [11], and computing equilibrium or evaluating
Pareto-optimality is not possible.
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A major problem in our setting is that even termination of the negotiation
process is not granted: it is in general impossible for the single agent to recognise
whether the negotiation is making some progress, or if the opponent is just
wasting time or arbitrarily delaying the negotiation outcome.

We solve this problem by proposing a new protocol rule, Now or Never (NoN)
(Section 3), explicitly designed as to ensure a continuous progress of the nego-
tiation. The rule (whose fulfilment can be assessed independently by each party
using only the exchanged information) forces the agents to never reconsider
already taken decisions, thus injecting a minimum, but sufficient amount of effi-
ciency in the process. This leads to the monotonic shrinking of the set of possible
agreements, which in turn allows each agent to derive in a finite number of steps,
independently of the behaviour of the opponent, that there is no hope to find an
agreement.

Furthermore, we discuss the notion of non-obstructionist agents, i.e., agents
who genuinely aim at efficiently finding an agreement, even sacrificing their pref-
erences (among the agreements they would accept). If both agents are non-
obstructionist, the NoN rule guarantees that, whenever the termination con-
dition arises, then no agreement actually exists. Hence, in presence of non-
obstructionist agents, our approach is both complete and terminates.

We also propose (Section 4) a full NoN-compliant strategy for an agent which
ensures termination independently of the behaviour of the opponent. The strat-
egy, which takes into full account the presence of a utility function on the set of
acceptable deals, is inspired to the well-known mechanism of Monotonic Conces-
sions (MC) [13] and allows the agent to perform a sophisticated reasoning, based
on the evidence collected so far on the behaviour of the opponent, to select the
best deals to offer at each step and keep the process as efficient as possible.

Section 5 specialises NoN to discrete and categorical variables and Section 6
presents experimental results showing that enforcing the NoN rule in practical
negotiation instances is computationally feasible.

2 Preliminaries and Negotiation Framework

In the following, we denote with R the set of real numbers and with N+ the set
of strictly positive integers.

Our framework deals with (possibly multi-deal) negotiations between two
agents (agent 0 and agent 1) over multiple constrained variables. Agents do not
have any information about constraints, goals, preferences, reasoning capabili-
ties, willingness to collaborate, and strategy of the opponent. The only knowledge
common to both agents is the set of negotiation variables and the protocol rules.

Definition 1 introduces the main concepts of our framework. Some of them are
standard in the literature and are adapted to our framework to ease presentation
of the following definitions and results.

Definition 1 (Negotiation process). A negotiation process is a tuple π =
〈V, s, k,R〉 where V is a finite set of negotiation variables, s ∈ {0, 1} is the
agent starting the negotiation, and R is the set of protocol rules.

The negotiation space is the multi-dimensional real vector space R|V|. Each
point D ∈ R|V| is a deal. A proposal for π is a set of at most k deals or the
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distinguished element ⊥. Value k ∈ N+ is the maximum number of deals that
can be included in a single proposal.

Negotiation proceeds in steps (starting from step 1) with agents (starting
from agent s) alternately exchanging proposals. The proposal exchanged at any
step t ≥ 1 is sent by agent ag(t), defined as s if t is odd and 1− s if t is even.

The status of negotiation process π at step t ≥ 1 is the sequence P =
P1,P2, . . .Pt of proposals exchanged up to step t.

At each step, the status of π must satisfy the set R of procotol rules, a set
of boolean conditions on sequences of proposals.

A strategy for agent A ∈ {0, 1} for π is a function σA that, for each step
t such that ag(t) = A and each status P = P1,P2, . . .Pt−1 of π at step t − 1,
returns the proposal Pt to be sent by agent A at step t, given the sequence of
proposals already exchanged (σA is constant for t = 1 and A = s).

Our alternating offers [14] based framework primarily focuses on real vari-
ables. In Section 5 we discuss how more specialised domains (e.g., integers, cate-
gories) can be handled as special cases, and which is the added value of primarily
dealing with real variables. Also, as each proposal can contain up to k deals, our
framework supports multi-deal negotiations when k > 1. Section 4 discusses the
added value given by the possibility of exchanging multi-deal proposals.

Protocol rules are important to prevent malicious or inefficient behaviour.
Well-designed rules are of paramount importance when the process involves self-
motivated and/or unknown/untrusted opponents. For protocol rules to be effec-
tive, agents must be able at any time to verify them using the current negotiation
status only.

We will use Example 1 as a running example throughout the paper.

Example 1 (Alice vs. Bob). Alice wants to negotiate with her supervisor Bob to
schedule a meeting. At the beginning, agents agree on the relevant variables V:
(i) the start day/time t; (ii) the meeting duration d.

Deals are assignments of values to variables, as, e.g., D = 〈t = “Mon 11 am”,
d = “30 min”〉. Deals can be easily encoded as points in R2.

Definition 2 (Negotiation outcomes). Let π = 〈V, s, k,R〉 be a negotiation
process whose status at step T > 1 is P = P1,P2, . . .PT . We say that π ter-
minates at step T if and only if T is the smallest value such that one of the
following two cases holds:

– success: PT = {D} ⊆ PT−1 (ag(T ) accepts deal D proposed by ag(T − 1) at
step T − 1)

– opt-out: PT =⊥ (ag(T ) opts-out).

If no such a T exists, then π is non-terminating ( non-term).
Success, opt-out and non-term are the possible negotiation outcomes.

A negotiation process can be infinite (case non-term) or terminate in a finite
number of steps, either with an agreement found (case success, where point D is
the agreement) or with a failure (case opt-out, where one of the agents proposes
⊥, which aborts the process).

For a deal to be acceptable to an agent, some constraints must be satis-
fied. Such constraints, which are private information of the single agent, are
formalised by Definition 3.
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Definition 3 (Feasibility region). Let π = 〈V, s, k,R〉 be a negotiation pro-
cess. The feasibility region of agent A ∈ {0, 1}, denoted by RA, is the subset of
the negotiation space R|V| of deals acceptable to A.

For agent A, any deal in RA is better than failure. An agreement is thus any
deal D ∈ R0 ∩R1.

Example 2 (Alice vs. Bob (cont.)). Alice wants the meeting no later than Wednes-
day. Normally she needs at least 30 minutes and does not want the meeting to
last more than one hour; however, if she has to wait until Wednesday, she would
have time during her Tuesday’s trip to prepare new material to show; in this case
she wants the meeting to last at least one hour, but no more than 75 minutes.
Conversely, Bob has his own, private, constraints.

Fig. 1a shows Alice’s feasibility region in a 2D space, as the areas delimited
by the three polygons. The region takes into account duties in her agenda (e.g.,
Alice is busy on Monday from 1pm to 4pm).

Agents may have preferences on the deals in their feasibility region. Such
preferences are often represented by a private utility function. Fig. 1a shows
that, e.g., Alice prefers a long meeting on Monday. We will handle the agent
utility function in Section 4 when we present a full strategy for an agent.

We assume (as typically done, see, e.g., [5,12]) that agents offer only deals
in their feasibility region (i.e., agents do not offer deals they are not willing to
accept). This does not limit our approach, as suitable ex-post measures (e.g.,
penalties) can be set up to cope with the case where a deal offered by an agent
(but not acceptable to her) is accepted by the other.

3 Now or Never

We are interested in negotiations which are guaranteed to terminate in a finite
number of steps (note that, being negotiation variables real-valued, the set of po-
tential agreements is infinite), so we want to avoid case non-term of Definition 2.
In this section we define a protocol rule, the Now or Never (NoN) rule, which is
our key to drive a negotiation process towards termination, avoiding malicious
or inefficient agents behaviour. The rule relies on the notions of Definition 4.

Definition 4 (Convex region, convex hull, operator
⋃
♦ ). Let Rn be the

n-dimensional real vector space (for any n > 0). Region R ⊆ Rn is convex if,
for any two points D1 and D2 in R, the straight segment D1D2 is entirely in R.

Given a finite set of points D ⊂ Rn, the convex hull of D, conv(D), is the
smallest convex region of Rn containing D.

Given a collection of finite sets of points D,
⋃
♦D is the union of the convex

hulls of all sets in D:
⋃
♦D =

⋃
D∈D{conv(D)}.

Convexity arises often in feasibility regions of agents involved in negotiations.
An agent feasibility region is convex if, for any two acceptable deals D1 and D2,
all intermediate deals (i.e., those lying on D1D2) are acceptable as well. In some
cases [2,12,4] the feasibility region of an agent is entirely convex (consider, e.g.,
a negotiation instance over a single variable, the price of a good). In other cases
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this does not hold. However, a feasibility region may always be considered as
the union of a number of convex sub-regions. Furthermore, in most real cases,
this number is finite and small. Also, in most practical situations, the closer two
acceptable deals D1 and D2, the higher the likelihood that intermediate deals
are acceptable as well.

Example 3 (Alice vs. Bob (cont.)). Knowing that deals 〈t = “Mon at 11am”,
d = “30 min”〉 and 〈t = “Wed at 3pm”, d = “1 hour”〉 are both acceptable
to Bob would not be a strong support for Alice to assume that also 〈t =
“Tue at 1pm”, d = “45 min”〉 would be acceptable to him. On the other hand,
if 〈t = “Mon at 9am”, d = “40 min”〉 and 〈t = “Mon at 9.30am”, d = “20 min”〉
are both acceptable to Bob, it would not be surprising if also 〈t = “Mon at 9.15am”,
d = “30 min”〉 is acceptable.

Before formalising the NoN rule (Definition 6), we introduce it using our
example.

Example 4 (Alice vs. Bob (cont.)). Steps below are shown in Fig. 1.

Steps 1 and 2. Alice starts the negotiation by sending proposal P1 = {Aa1 , Ab1}. As
a reply, she receives P2 = {Ba2 , Bb2} (see Fig. 1b). As none of Bob’s counteroffers,

Ba2 and Bb2, belong to conv({Aa1 , Ab1}) = Aa1A
b
1, all such deals are removed from

further consideration (by exploiting NoN). The rationale is as follows:

(a) Bob had no evidence that conv({Aa1 , Ab1}) includes deals outside RAlice
(i.e., at the end of step 1 Bob had no evidence that this portion of RAlice is not
convex).

(b) Given that Bob has not proposed any such deal therein, then either
RBob∩conv({Aa1 , Ab1}) = ∅ (in which case, Bob has no interest at all in proposing
there), or Bob has chosen not to go for any such a deal now (as, e.g., he currently
aims at higher utility).

(c) In the latter case, NoN forbids Bob to reconsider that decision anymore
(never).

Step 3. Alice, having no evidence that conv({Ba2 , Bb2}) includes deals outside
RBob, proposes P3 containing deal Aa3 ∈ conv({Ba2 , Bb2}) ∩ RAlice (see Fig. 1c):
by proposing Aa3 she aims at closing the negotiation successfully now, believing
that such a deal (intermediate to Ba2 and Bb2) is likely to be acceptable also to
Bob. Alice also includes in P3 deal Ab3.

Step 4. It’s Bob’s turn again. By receiving P3 = {Aa3 , Ab3}, Bob knows that such
deals belong to RAlice. Assume that Bob rejects P3 by sending a counteroffer. As
there is no evidence that conv({Aa1 , Aa3 , Ab3}), conv({Ab1, Ab3}), or conv({Ab1, Aa3})
(the 3 light-grey areas in Fig. 1c) include deals outside RAlice, NoN forces him
to take a decision: either his counteroffer P4 contains some deals in one of such
regions, or he must forget those regions forever. Note that NoN does not apply
to, e.g., conv({Ab1, Aa3 , Ab3}), as this region contains Bb2, which was part of a Bob’s
proposal already rejected by Alice. Hence, there is already evidence that some of
the deals in conv({Ab1, Aa3 , Ab3}) are acceptable to Bob and NoN does not forbid
agents to further explore that region.
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Fig. 1: Alice vs. Bob (Example 4)

Definition 5 (Sets Never and NoN ). Let π = 〈V, s, k,R〉 be a negotiation
process and P = P1,P2, . . .PT its status at step T ≥ 1. For each agent A ∈ {0, 1}
and each step 1 ≤ t ≤ T , let dealsA(t) be the set of all the deals in P proposed
by A up to step t (included). Sets Never (t) and NoN (t) are defined inductively
for each t ≥ 1 as follows:

t=1: Never (1) = ∅, NoN (1) = {P1}
t>1:

Never (t) =

{
Never (t−2)∪NoN (t−1) if Pt∩

⋃
♦ NoN (t−1)=∅

Never (t−2)∪{{D} | D∈NoN (t−1)} otherwise

NoN (t) =
{
D ⊆ dealsag(t)(t)| conv(D) ∩⋃♦ Never (t) = ∅

}

where Pt is the proposal sent by ag(t) at step t and Never (0) = ∅.

At each step t,
⋃
♦ NoN (t) represents the region, defined by ag(t)’s deals, for

which the other agent 1 − ag(t) needs, in the next step (t + 1) to take a NoN
decision: to offer a deal therein (showing to ag(t) that she is potentially interested
to that region) or to neglect that region forever. Similarly,

⋃
♦ Never (t) represents

the region, defined by (1 − ag(t))’s deals, for which ag(t) has taken a never
decision. Deals therein cannot be offered any more. Note that

⋃
♦ Never (t) ⊇⋃

♦ Never (t−2) for all t ≥ 2 (i.e., sequences Never (t) for odd and even values of t
are monotonically non-decreasing). Fig. 1 shows NoN and Never regions at all
steps of the previous example.

Definition 6 formalises our NoN protocol rule, which forbids agents to recon-
sider never decisions already taken.

Definition 6 (Now or Never rule). Status P = P1,P2, . . .PT of negotiation
process π = 〈V, s, k,R〉 satisfies the NoN protocol rule if, for all steps 2 ≤ t ≤ T ,
Pt ∩

⋃
♦ Never (t− 2) = ∅.

Proposition 1 shows that the NoN rule of Definition 6 allows agents to infer
when no further agreements are possible. All proofs are omitted for lack of space.

Proposition 1 (Termination condition). Let π = 〈V, s, k,R〉 be a nego-
tiation process where the NoN rule is enforced and let P = P1,P2, . . .PT be the
status of π at step T ≥ 2.

If Rag(T ) ⊆
⋃
♦ Never (T − 1) ∪ ⋃♦ Never (T − 2) and PT is not a singleton

{D} ⊆ PT−1, then:
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(a) there exists no extension P ′ = P1,P2, . . . , PT−1, PT , . . . , PT ′ of P to
step T ′ > T such that PT ′ ={D}⊆PT ′−1

(b) for all D ∈ R0 ∩R1, there exists 1 < tD < T such that D ∈ ⋃♦ NoN (tD −
1) ∩⋃♦ Never (tD).

A consequence of (a) is that, if at step T ≥ 2, Rag(T ) ⊆
⋃
♦ Never (T − 1) ∪⋃

♦ Never (T −2) and agent ag(T ) cannot or does not want to accept a deal offered
in the last incoming proposal PT−1, she can safely opt-out by proposing PT =⊥,
as she has no hope to reach an agreement in the future. Also, from (b), for
every mutually acceptable agreement D, there was a step tD < T in which agent
ag(tD) took a never decision on a NoN region containing D. This means that
ag(tD), although knowing that D ∈ Rag(tD) was likely to be acceptable also to
the opponent (because she had no evidence, at that time, that the portions of
the opponent region defined by deals in NoN (tD−1) were not convex), explicitly
decided not to take that chance and proposed elsewhere.

As a matter of fact, NoN can be thought as a deterrent, for each agent, to de-
lay the negotiation by ignoring plausible agreements which, although acceptable
to her, do not grant herself the utility she currently aims at. As NoN forbids the
agents to propose such deals in the future, any such “obstructionist” behaviour
has a price in terms of opportunities that must be sacrificed forever.

Definition 7 defines non-obstructionist agents.

Definition 7 (Non-obstructionist agent). Let π = 〈V, s, k,R〉 be a negotia-
tion process where the NoN rule is enforced. Agent A ∈ {0, 1} is non-obstructionist
if her strategy satisfies the following conditions for all t ≥ 2 such that ag(t) = A:

1. if Pt−1 ∩RA 6= ∅, then Pt = {D} ⊆ Pt−1
2. else if

⋃
♦ NoN (t−1)∩RA 6=∅, then Pt∩

⋃
♦ NoN (t−1) 6=∅.

A non-obstructionist agent A accepts any acceptable deal D ∈ RA and takes
a now decision at all steps t when

⋃
♦ NoN (t−1) intersects RA. Non-obstructionist

agents genuinely aim at finding an agreement efficiently, even sacrificing their
preferences among deals they would accept. However, they are not necessarily
collaborative, as they do not disclose to the opponent their constraints and
preferences.

Proposition 2 shows that, in a negotiation process between two non-obstruct-
ionist agents, if one of the parties reaches the termination condition of Proposi-
tion 1, then no agreement exists (i.e., R0 ∩R1 = ∅).

Proposition 2 (Completeness). Let π = 〈V, s, k,R〉 be a negotiation
process between two non-obstructionist agents where the NoN rule is enforced.

If π reaches, at step T − 1 ≥ 2, status P = P1,P2, . . .PT−1 s.t. Rag(T ) ⊆⋃
♦ Never (T − 1) ∪⋃♦ Never (T − 2), then R0 ∩R1 = ∅.

4 A Terminating Strategy Based on Monotonic
Concessions

Propositions 1 and 2 show that the Now or Never (NoN) rule allows each agent
to detect when the negotiation process can be safely terminated, as no agree-
ment can be found in the sequel. However, still the termination condition may
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not arise in a finite number of steps. In this section we show that, with NoN,
termination can be enforced by any agent alone, without relying on the willing-
ness to terminate of the counterpart. To this end, from now on we focus on one
agent only, which we call agent A (A can be either 0 or 1). To ease presentation,
the other agent, agent 1−A, will be called agent B.

We make some assumptions on the feasibility region of agent A: (a) RA is
bounded and defined as the union P1 ∪ · · · ∪ Pq of a finite number q of convex
sub-regions; (b) each convex sub-region Pi (1 ≤ i ≤ q) of RA is defined by linear
constraints, hence is a (bounded) polyhedron in R|V|. Any bounded feasibility
region can be approximated arbitrarily well with a (sufficiently large) union of
bounded polyhedra. However, in many practical cases, a finite and small number
of polyhedra suffices.

Deals in RA may not be equally worth for agent A, who may have a (again,
private) utility function uA to maximize. We assume that uA is piecewise-linear
and defined (without loss of generality) by a linear function uiA for each poly-
hedron Pi of RA (1 ≤ i ≤ q). For this definition to be well founded, if a deal D

belongs to two different polyhedra Pi and Pj of RA, it must be uiA(D) = ujA(D).
Note that, again, any differentiable utility function can be approximated ar-
bitrarily well with a piecewise-linear utility, provided RA is decomposed in an
enough number of polyhedra.

In this setting, we define a full strategy for agent A for negotiation processes
π = 〈V, s, k,R〉 for which k ≥ 2, i.e., in which exchanged proposals can contain
multiple deals. Although our strategy is correct independently of the opponent
region shape, it is designed for the common cases where agent A believes that
the opponent feasibility region is the union of a small number of convex sub-
regions (not necessarily polyhedra). Hence, a task of agent A while following the
strategy is to discover non-convexities of the opponent region during negotiation
and take them into account.

Our strategy is inspired by (but different from) the well-known mechanism
of Monotonic Concessions (MC) [13]. It has three phases, utility-driven, non-
obstructionist, and terminating phases, which are executed in the given order.

4.1 Utility-Driven Phase

Agent A keeps and dynamically revises two utility thresholds, α and u, which
are, respectively, the responding and the proposing threshold. At each step t such
that ag(t) = A, agent A uses: (a) threshold α to decide whether to take a now
decision (if t > 1), by including, in the proposal Pt she will propose next, a deal
in
⋃
♦ NoN (t − 1) (possibly accepting one deal in Pt−1), and (b) threshold u to

select the other deals to include in Pt (t ≥ 1).
By generalising [6,12], α is a function of the agent A utility of the best deal

Dnext that would be chosen in step (b). In particular, α is uA(Dnext)− span · ξ,
where span is the absolute difference of the extreme values of uA in RA and
0 ≤ ξ ≤ 1 is a parameter (possibly varying during the negotiation) called respond
policy. Hence, if ξ = 1, agent A accepts all acceptable deals and takes a now
decision whenever possible, behaving in a non-obstructionist way (Definition 7).
On the other extreme, if ξ = 0 the agent accepts only incoming deals D ∈ RA
that are not worse than the best proposal Dnext that would be chosen next in
step (b), upon rejection of D.
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Our strategy for this phase is decomposed into responding, proposing and
conceding sub-strategies as in [8], after an initialisation phase where agent A
sets u to the highest utility of deals in RA (as in the spirit of MC).

Responding. At step t ≥ 2, after that agent A has received proposal Pt−1 6=⊥,
proposal Pt is chosen as follows. Let RαA = {D ∈ RA | uA(D) ≥ α}.

(1) If Pt−1 contains deals in RαA −
⋃
♦ Never (t− 2), then Pt = {D}, where D

is one such a deal giving agent A the highest utility (i.e., agent A accepts the
best deal D among those acceptable in Pt−1 granting herself at least utility α).
Otherwise:

(2) Pt contains a deal in (
⋃
♦ NoN (t− 1) ∩ RαA)−⋃♦ Never (t− 2) if and only

if this region is not empty (now decision taken).
Given that the closer deals in a set D defining NoN (t− 1) (see Definition 5)

the more likely they belong to a single convex sub-region of RB , as for (2) agent
A selects a deal with the highest utility in a set D having the minimum diameter.

Proposing. At any step t ≥ 1 such that ag(t) = A, if agent A has not accepted
an incoming deal (case (1) of the responding sub-strategy), proposal Pt contains
additional deals (as to make |Pt| = k ≥ 2). Let RuA = {D ∈ RA | uA(D) ≥ u}
(which is again a union of bounded polyhedra, as uA is piecewise-linear). Deals
to be proposed in Pt are carefully selected among vertices of RuA (some of them
can be vertices of the overall region RA) which do not belong to

⋃
♦ Never (t− 2),

as agent A needs to comply with the NoN rule. If t > 1, vertices of RuA to be
proposed will be carefully selected by reasoning on the evidence provided by the
past opponent behaviour. The reasoning is as follows.

Let n̂(t) be the minimum number of convex sub-regions that must compose
RB −

⋃
♦ Never (t − 1), i.e., the opponent region minus the regions for which

the opponent has taken a never decision (and in which, by the NoN rule, no
agreements can be found in the sequel): n̂(t) is the minimum value such that
there exists a n̂(t)-partition {D1, . . . ,Dn̂(t)} of dealsB(t− 1) (i.e., a mapping of
each opponent deal to one sub-region) such that for all 1 ≤ j ≤ n̂(t), conv(Dj)∩⋃
♦ Never (t− 1) = ∅.

Agent A temporarily focuses on n̂(t), assuming that RB −
⋃
♦ Never (t − 1)

is the union of exactly n̂(t) convex sub-regions. We call this assumption Non-
obstructionist Opponent Assumption (NOA). Under NOA, agent A tries to re-
gard the past opponent behaviour as non-obstructionist, hence interprets the
already taken never decisions as an admission that RB ∩

⋃
♦ Never (t − 1) = ∅

(Proposition 2). Value n̂(t) is the minimum number of convex sub-regions that
must compose RB which is consistent with this (optimistic) hypothesis.

Agent A computes the subsets D of the opponent deals that might belong
to the same convex sub-region of RB −

⋃
♦ Never (t − 1), provided that NOA is

correct. We call these sets of deals Possible Opponent Clusters (POCs):

K(t)=

{
D⊆dealsB(t−1)

∣∣∣∣
∃ n̂(t)-partition

{
D1, . . . ,Dn̂(t)

}
of dealsB(t−1)

s.t. ∀j∈[1, n̂(t)] conv(Dj)∩
⋃
♦ Never (t−1)=∅

}
(1)

Let proj(R,R′) (the projection of region R onto R′) be the set of points X for
which there exists Y ∈ R such that XY intersects R′ [2]. Region proj(R,R′) is
an unbounded polyhedron if both R and R′ are polyhedra (see Fig. 2a, where
proj(R,R′) is the unbounded grey area) and proj(R,R′ ∪ R′′) = proj(R,R′) ∪
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proj(R,R′′). Provided that NOA is correct, agent A can derive (Proposition 3)
that region

Π(t) =
⋂
D∈K(t)

proj(conv(D),
⋃
♦ Never (t− 1))

does not contain agreements that can be still reached.

Proposition 3. If, at step t ≥ 3 s.t. ag(t) = A, NOA is correct, then Π(t) ∩
(RB −

⋃
♦ Never (t− 1)) = ∅.

Example 5 (Alice vs. Bob (cont.)). Consider Fig. 2b. At step 4 Bob sent Alice
proposal P4 = {Ba4}. At step 5 (Alice’s turn), n̂(5) is 3, as it is clear that Ba2 , Bb2,
and Ba4 belong to all-different convex sub-regions of RBob −

⋃
♦ Never (4). POCs

are K(5) = {{Ba2}, {Bb2}, {Ba4}}. Region Π(5) is the area in light-grey: if NOA
is correct (RBob−

⋃
♦ Never (4) or, equivalently, RBob if Bob is non-obstructionist,

consists of exactly 3 convex sub-regions), then no X ∈ Π(5) can belong to
RBob −

⋃
♦ Never (4).

Besides always ignoring vertices in
⋃
♦ Never (t−2) (as to comply with the NoN

rule), as a result of Proposition 3 agent A (exploiting NOA) can temporarily
ignore vertices of RuA in Π(t) while choosing deals to propose at step t. By
exploiting the fail-first principle, we define the following criterion (best vertex
under NOA) to select the next vertices in RuA−Π(t) (and not in

⋃
♦ Never (t−2))

to propose: those that, if rejected, would make the highest number of vertices
be excluded in the next step, under NOA.

Conceding. When no more vertices in RuA −Π(t) (and not in
⋃
♦ Never (t− 2))

can be proposed, agent A reduces threshold u, if possible, by a given amount
∆u, whose value, possibly varying during time (see, e.g, [5]), depends on the
application. Reducing u is in the spirit of MC (where the agent increases during
time the opponent utility of the proposed deals). Differently from MC, here agent
A reduces own utility of the deals she proposes (with the goal of approaching
opponent’s demand), as she has no information about opponent utility.

Let T̂ (ag(T̂ ) = A) be the step in which agent A reduces u and RuA becomes

equal to RA (i.e., u cannot be further reduced). From step T̂ onwards, the
strategy of agent A moves to the non-obstructionist phase.

4.2 Non-Obstructionist Phase

Our strategy for this phase is decomposed into responding and proposing sub-
strategies. As utility threshold u has already reached its minimum, in this phase
there is no conceding sub-strategy.

Responding. The responding sub-strategy is identical to that of the utility-
driven phase with α = u. Given that in the non-obstructionist phase u is at
its minimum, agent A accepts any incoming acceptable deal and takes a now
decision whenever possible. Thus, the agent is now certainly non-obstructionist,
independently of the value of her respond policy ξ.

Proposing. As a result of acting in a non-obstructionist way, from step T̂ on-
wards the following result holds:
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Proposition 4. For each step t ≥ T̂ such that ag(t) = A, RA∩
⋃
♦ Never (t−2) =

RA ∩
⋃
♦ Never (T̂ − 2).

Hence, for each step t ≥ T̂ such that ag(t) = A, if agent A has not accepted
an incoming deal, the region in which the additional deals to propose will be
selected (as to make |Pt| = k ≥ 2 whenever possible), i.e., RA −

⋃
♦ Never (t− 2),

is steadily equal to RA −
⋃
♦ Never (T̂ − 2).

In this phase, agent A aims at proposing vertices of RA −
⋃
♦ Never (T̂ − 2)

with the goal of eventually covering it within the never set of the opponent,
as to reach the termination condition of Proposition 1. Unfortunately, as both
RA and

⋃
♦ Never (T̂ − 2) are unions of polyhedra, their difference might not be

represented as a union of polyhedra. Anyway, it can be always represented as
a union of Not Necessarily Closed polyhedra (i.e., polyhedra possibly defined
by some strict inequalities, with some of their faces and vertices not belonging
to them). In order to comply with the NoN rule, the agent must not propose

vertices of RA −
⋃
♦ Never (T̂ − 2) not belonging to that region, as they would

belong to
⋃
♦ Never (T̂ −2). The problem is solved by computing a suitable under-

approximation bRA −
⋃
♦ Never (T̂ − 2)c ⊆ RA −

⋃
♦ Never (T̂ − 2) which can be

defined as a union of bounded (and closed) polyhedra. Note that such an under-
approximation can be computed in order to make the error

Rerr
A = (RA −

⋃
♦ Never (T̂ − 2))− bRA −

⋃
♦ Never (T̂ − 2)c

arbitrarily small. As a special case, if agent A was non-obstructionist from the
beginning of the negotiation process, RA ∩

⋃
♦ Never (T̂ − 2) = ∅ and Rerr

A = ∅.
Agent A continues to use both NOA and Π(t) as defined in the utility-

driven phase. In particular, the agent proposes vertices of bRA−
⋃
♦ Never (T̂−2)c

which are not in Π(t). When no more such vertices can be proposed, NOA is
gradually relaxed (i.e., n̂(t) is gradually increased) and the remaining vertices of

bRA −
⋃
♦ Never (T̂ − 2)c are enabled. By construction, n̂(t) cannot grow beyond

the number of deals proposed by the opponent so far. If also in that case Π(t)

covers bRA −
⋃
♦ Never (T̂ − 2)c, the agent sets Π(t) to

⋃
♦ Never (t − 1), hence

assumes that RB consists of at least one convex sub-region not yet disclosed by
the opponent (i.e., not containing any of the past incoming deals).

As it happens in the utility-driven phase, given that multi-deal proposals are
allowed (k ≥ 2), all vertices will be proposed within a finite number of steps inde-
pendently of the number of now decisions taken. When all vertices have been pro-
posed and no agreement has been reached, agent A enters the terminating phase.

4.3 Terminating Phase

In this phase, agentA continues by sending empty proposals until she receives and
accepts an acceptable deal or infers RA−Rerr

A ⊆
⋃
♦ Never (T−1)∪⋃♦ Never (T−2).

Proposition 5 states that also this condition will arise in a finite number of steps.

Proposition 5. Let π = 〈V, s, k,R〉 be a negotiation process (k ≥ 2) where the
NoN rule is enforced. If any agent A ∈ {0, 1} uses the strategy above, then, within

a finite number of steps T ≥ T̂ ≥ 2 such that ag(T ) = A, either an agreement is
found or condition RA −Rerr

A ⊆ ⋃♦ Never (T − 1) ∪⋃♦ Never (T − 2) is satisfied.
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(c) Categorical variables

Fig. 2

Condition of Proposition 5 can be considered the termination condition of
Proposition 1 in case agent A had admissible region RA − Rerr

A . Given that
region Rerr

A can be chosen as to be arbitrarily small, agent A can terminate the
negotiation when this condition is reached. Any possible remaining acceptable
deals would be in the (arbitrarily small) region Rerr

A .
We stress again that, in case agent A is non-obstructionist from the begin-

ning, for all t ≥ T̂ such that ag(t) = A, Rerr
A can be made empty. Hence, as it

happens for any acceptable deal in RA ∩
⋃
♦ Never (t− 2) = RA ∩

⋃
♦ Never (T̂ − 2),

any acceptable deal in Rerr
A can be considered as an opportunity (with arbitrarily

small Euclidean distance to RA ∩
⋃
♦ Never (T̂ − 2)) that agent A had to sacrifice

for having behaved in an obstructionist way (at most) up to step T̂ − 2.

5 Handling Discrete and Categorical Variables

The NoN rule works also when (some of) the variables are discrete (e.g., integer),
if we consider the union of the integer hulls [15] of the polyhedra in the NoN and
Never sets of Definition 5. Integer Linear Programming results tell us that the
integer hull of a polyhedron can still be represented with linear (plus integrality)
constraints. Vertices of this new polyhedron have integer coordinates. Hence, the
NoN rule as well as the strategy above and the underlying projection-based rea-
soning can be adapted to prune the space of the possible agreements: only the
branches that deal with now decisions need to be refined (deals in

⋃
♦ NoN (t− 1)

proposed at step t need to have integer coordinates). Also, RA−
⋃
♦ Never (T̂ −2)

can always be represented by an union of closed polyhedra, hence Rerr
A can be

always made empty. Categorical variables can be tackled by fixing an ordering of
their domain (common to both parties) and mapping them onto integers. Fig. 2c
shows Alice’s region in a variation of Example 1 where variables are categorical.

6 Implementation and Experiments

Our framework has at its core well-studied tasks in computational geometry and
(integer) linear programming [15]. However, to our knowledge, the exact com-
plexity of the agent’s reasoning is unknown, as these core tasks must be repeated
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on sets of exchanged deals. Still, existing libraries of computational geometry al-
gorithms can manage the size of instances needed for practical scenarios. We
have implemented a system that uses the Parma Polyhedra Library (PPL) [1]
to compute polyhedra, convex hulls, and projections, and an all-solutions SAT
solver [9] to revise n̂(t) and Possible Opponent Clusters (POCs) (the problem is
reduced to hypergraph-colouring). Performance on these sub-problems are very
good: PPL completes most of the required tasks within very few seconds (on a
reasonably small set of variables, e.g., 3–4) and the generated SAT instances are
trivial. Although the number of sets in NoN and Never can grow exponentially,
by keeping only (depending on the case) their ⊆-maximal or ⊆-minimal members
(which is enough to enforce the NoN rule and to perform the needed reasoning),
the overall memory requirements become, in the instances we consider below,
compatible with the amount of RAM available on an ordinary PC.

In the following we present an empirical evaluation of the computational
feasibility of the approach. Negotiations have been performed between two iden-
tical agents. We evaluated our implementation on both random and structured
instances using a single computer (a PC with a dual-core AMD Opteron 3GHz
and 8GB RAM) for both agents. At each step, agents can exchange contracts of
at most k = 2 deals. Note that, as our approach requires agents to comply with
the NoN rule, it cannot be evaluated against other negotiators.

Random Instances. We generated 100 random negotiation instances over 3
variables. Feasibility regions are unions of 3 random polyhedra, each with at
most 10 vertices. In about 44% of the instances R0 ∩ R1 6= ∅. The average vol-
ume of the intersection is 2.19% of the volume of each agent’s region (stddev
is 4.5%). Agents have random piecewise-linear utilities and concede constant
∆u = 0.2span each time all vertices of Rua (a ∈ {0, 1}) belong to Π.

Such negotiations terminate in < 5 minutes and 20–30 steps. Agreements
were found in > 95% of the instances for which R0∩R1 6= ∅. Fig. 3 shows average
time, success rate (i.e., number of negotiations closed successfully / number of
negotiations such that R0∩R1 6= ∅), and average quality of the agreement found
for each agent (the quality of an agreement D for agent a ∈ {0, 1} is (ua(D) −
La)/(Ha−La), where Ha and La are, respectively, the highest and lowest values
of agent a utility in R0∩R1) as a function of the respond policies used (ξ0 and ξ1).

It can be seen that moderate respond policies (intermediate values of ξ) lead
to very high probabilities (> 97%) of finding an agreement if one exists; more-
over, the quality of such agreements for the two agents is similar if their respond
policies are similar (fairness). Conversely, if agents use very different values for ξ,
the more conceding agent unsurprisingly gets lower utility with the agreement,
but negotiations are more often aborted by the other, more demanding, agent.

Structured Instances. We evaluated our system on the 6 scenarios in Table 1a:
two scenarios (AB1, AB2) of the Alice vs. Bob example, two scenarios (SU1,
SU2) of a negotiation problem regarding the rental of a summerhouse, and two
scenarios (EZ1, EZ2) of a variation of the England-Zimbabwe problem of [10]
adapted to our domain (real variables and no known bounds for their domains).
A description of these negotiation scenarios is omitted for space reasons.

Table 1a shows also some relevant properties of these negotiation scenarios.
Column “vars” gives the number of negotiation variables. Columns “polys” and
“con” give, respectively, the number of polyhedra and the overall number of
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Fig. 3: Experimental results for random instances

Scenario vars
R0 R1 vol(R0∩R1)

vol(R0)
vol(R0∩R1)

vol(R1)
polys con. polys con.

AB1 2 3 12 3 12 < 10−8% < 10−8%
AB2 2 3 12 5 20 – –
SU1 3 3 12 4 16 1.5% 2.0%
SU2 3 3 12 4 16 – –
EZ1 4 2 8 2 8 0.10% 0.05%
EZ2 4 2 8 2 8 0.15% 0.04%

(a) Properties of negotiation scenarios

Scenario ξ0 ξ1
agr.

steps
time

polys
found (sec)

AB1 1 1 Y 20 1.09 321
AB1 0 0 N 24 1.21 450
AB2 1 1 N 20 1.33 466
SU1 0 0 N 417 38.44 20 413
SU1 0.4 0 Y 347 15.22 5679
SU2 1 1 N 513 63.12 29 148
EZ1 0 0 Y 80 1237 3 115 508
EZ2 0 0 Y 92 2836 8 057 011

(b) Experimental results

Table 1: Structured instances

linear constraints defining each agent feasibility region, R0 and R1. The two last
columns give the ratio of the volume of R0 ∩R1 (i.e., the volume of the space of
the possible agreements) with respect to the volume of the feasibility region of
each agent (“–” means that R0 ∩R1 is empty, hence no agreement is possible).

Table 1b shows some results on the above negotiation scenarios, under dif-
ferent values of the respond policies of each agent (ξ0 and ξ1). All instances have
been run with k (the maximum number of deals in a proposal) equal to 2. For
each instance, column “agr. found” tells whether an agreement has been found
(an agreement exists if and only if R0 ∩ R1 6= ∅, see Table 1a), column “steps”
gives the number of negotiation steps needed to conclude the negotiation pro-
cess, column “time” gives the overall negotiation time, and column “polys” gives
the overall number of polyhedra computed by PPL during the process. For each
negotiation instance, the number of all-SAT instances solved to compute POCs
(see formula (1)) is equal to the number of negotiation steps.

Our results show that enforcing NoN is computationally feasible: negotiation
processes with hundreds of interaction steps could be performed in minutes, even
when NoN enforcement and agents reasoning require the computation of millions
of polyhedra and the resolution of hundreds of all-SAT instances.

7 Conclusions

In this paper we defined a new protocol rule, Now or Never (NoN), for bi-
lateral negotiation processes which allows self-motivated competitive agents to
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efficiently carry out multi-variable negotiations with remote untrusted parties,
where privacy is a major concern and agents know nothing about their oppo-
nent. NoN has been explicitly designed as to ensure a continuous progress of the
negotiation, thus neutralising malicious or inefficient opponents.

We have also presented a NoN-compliant strategy for an agent that, under
mild assumptions on her feasibility region, allows her to derive, in a finite number
of steps and independently of the behaviour of her opponent, that there is no
hope to find an agreement. We finally evaluated the computational feasibility of
the overall approach on random and structured instances of practical size.
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