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ABSTRACT 

Background: A number of studies which have investigated isolation patterns in human populations 

rely on the analysis of intra- and inter-population genetic statistics of mtDNA polymorphisms. 

However, this approach makes it difficult to differentiate between the effects of long–term genetic 

isolation and the random fluctuations of statistics due to reduced sample size.  

Aim: Overcoming the confounding effect of sample size when detecting signatures of genetic 

isolation. 

Subjects and methods: A resampling based procedure was employed to evaluate reduction in intra-

population diversity, departure from surrounding genetic background and demographic stationarity 

in 34 Italian populations subject to isolation factors.  

Results: We detected signatures of genetic isolation for all three statistics in seven populations: 

Pusteria valley, Sappada, Sauris, Timau settled in the eastern Italian Alps and Cappadocia, Filettino 

and Vallepietra settled in the Appenines. On the other hand, we were unable to find signals for any 

of the statistics analysed in 19 populations. Finally, we found eight populations showing signals of 

isolation for two or one statistic.  

Conclusion: Our analysis revealed that the use of population genetic statistics combined with 

resampling procedure can help detect signatures of genetic isolation in human populations even 

using a single, although highly informative, locus like mtDNA. 

 

  



MAIN TEXT 

Introduction 

Human population isolates are of particular interest for population geneticists for two reasons. 

Firstly, the investigation of such groups of individuals makes it possible to gain a more detailed 

picture of the genetic structure and spatial patterns of genetic diversity of human populations (Lauc, 

2003; Brandstätter et al., 2007; Boattini et al., 2011; Esko et al., 2013; Capocasa et al., 2014). 

Secondly, genetic isolation in humans may be associated with differences in language, religion and 

ethnicity (e.g. see Rosenberg et al., 2002; Bosch et al., 2006; Capocasa et al., 2013), which gives the 

opportunity to study the influence of cultural factors on the genetic structure of populations (Laland 

et al., 2010). In addition, their high homogeneity and therefore high Linkage disequilibrium make 

them ideal initial candidates for Genome Wide Association studies. 

However, detecting signatures of genetic isolation in human populations is a challenging task. In fact, 

the recent origin of Homo sapiens and its high level of mobility and admixture have limited the 

overall impact of genetic isolation on genetic structure (Tishkoff and Kidd, 2004). Consequently, the 

effects of long-term isolation on population allele frequencies may be subtle, and hence, difficult to 

detect. 

A number of studies have used maternally inherited polymorphisms of mitochondrial DNA (mtDNA) 

to search for signatures of isolation in the genetic make-up of human populations subject to cultural 

and/or geographic isolation factors (e.g. Tolk et al., 2001; Bosch et al., 2006; Messina et al., 2010; 

Cilli et al., 2011; van Oven et al., 2011). These investigations have compared within- and among-

group diversity between candidate population isolates and large neighbouring outbred groups, with 

only a couple of exception (Brandstätter et al., 2007, Capocasa et al., 2013). More in particular, they 

employed specific population genetic statistics to look for lower intra-population diversity levels, 



departures from the surrounding genetic background and lack of signatures of demographic 

expansion (mainly by means of Haplotype Diversity, Fixation index and Fu’FS, respectively). 

However, two problems arise with this approach. Firstly, the relatively small census size and the high 

level of consanguinity of many isolated groups often reduce the availability of unrelated individuals 

(in the majority of these studies defined according to the grandparent rule), which limits the 

accuracy of population diversity estimates (Nei, 1987), especially when a single, although 

hypervariable, locus is employed. Secondly, there are no reference values which can help distinguish 

signatures of isolation effects from random fluctuations of population genetic statistics due to 

sample size variation. 

In an attempt to overcome the two limitations mentioned above, we have applied a resampling 

based analysis (Fernandes et al., 2003, Beja-Pereira et al., 2006, Veeramah et al., 2011, Coia et al., 

2012). Through this approach, we simulate a condition of small sample size in large outbred 

populations, and test the null hypothesis: “values of genetic isolation statistics observed in 

populations subject to geographic and/or cultural barriers fall within the range of values for broad 

and non-isolated groups with an equal sample size”. When this hypothesis is rejected, a more robust 

evidence for genetic isolation is obtained.  We decided to carry out our study on Italian populations, 

since their marked ethno-cultural heterogeneity makes them an optimal case study for the 

investigation of genetic isolation (see Destro Bisol et al., 2008). In fact, there are twelve linguistic 

minorities formally recognized by the Italian constitution, which represent 5% of the population 

(Toso, 2008, 2014). Furthermore, due to the presence of two main mountain chains, Alps and 

Apennines, and several islands, the territory may provide geographic conditions for further 

population isolation. 



The comparison between the observed values and unbiased expectations for non-isolated 

populations obtained by resampling made it possible to evaluate signatures of genetic isolation 

which are discussed in the light of the historical and demographic background of the populations 

under study. 

 

METHODS 

In order to test the above hypothesis, we built a large mtDNA dataset of populations subject to 

cultural and/or geographical isolation factors, all settled in Italy.  Finally, we collected data relative 

to 2632 individuals belonging to 57 Italian populations obtained from current literature and open 

online databases (Congiu et al., 2012). Of these, 34 populations (1692 individuals) are subject to 

geographic and/or cultural isolation factors (see Table I for the list of populations), whereas the other 

23 (940 individuals) are large outbred populations. We classified all these populations in four groups 

according to their geographical location (North-east, Central and South Italy and Sardinia) (see Table 

I and Supplementary Table S1 for the list of outbred populations). 

In order to avoid biases related to different sampling strategies, we selected only populations whose 

individuals were sampled with the standard “grandparents” criterion. Regarding the outbred 

populations, we selected only those whose individuals had all four grandparents born in a certain 

Italian province or a restricted geographical area. Furthermore, we considered only data regarding 

mitochondrial DNA hypervariable region 1 (mtDNA HVR-1; 16033-16365 np) in order to maximise 

the total number of human isolates analysed.  

In order to build a set of expectations for some population genetic diversity statistics we proceeded 

as follows. At first, we evaluated the genetic homogeneity within Italian geographic regions by 

means of AMOVA analysis. For all four geographic regions we found low and statistically not 

significant among population variation values (FST) (see Supplementary Table 2 for AMOVA results) 



which allowed us to pool the genetic data of these populations to assemble our reference 

populations. Thereafter, from each reference population we extracted 10,000 random sub-samples 

with no replacement, using an ad hoc script.  The whole process exploits R and BASH environment 

scripts; the former creates the desired number of samples of N randomly sampled sequences, using 

the functions “replicate” and “sample”, respectively. The latter then converts the resulting tab-

delimited output into Arlequin input files, which are loaded into the software using the “batch 

mode” option. We extracted samples with N={5...100} with incremental increases of 5 up to 50 and 

of 10 up to 100. For each sub-sample, we computed Haplotype Diversity (HD) and average genetic 

distances (A-Fst) (Reynolds et al., 1983). For each geographic region, this latter statistic was 

calculated against the neighbouring populations (North-east Italy, South Italy and Sardinia vs Central 

Italy; Central Italy vs South Italy).  

The following procedure was repeated for each geographic region. In order to define the threshold 

for rejecting the null hypothesis, for the HD and A-Fst statistics we calculated the 95% confidence 

interval for each - distribution. We then used these values in a regression analysis in order to 

understand how they change as the sample size increases and identify the best regression function. 

In order to evaluate whether the null hypothesis could be accepted or not, for each candidate 

population isolate, we employed the standard deviations of HD and A-Fst – calculated as for the 

reference population - to compute standard scores (Z-scores) using the formula: 

 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥𝑁 − 𝑥

𝜎
 

where XN is the value of the threshold at a given sample size, x is the observed value for each 

population isolate and σ is the latter’s standard deviation. We employed the z-scores to compute 

the probability, set at a 66.7% level, to reject the null hypothesis. To verify signals of demographic 



stationarity, we calculated the Fu’s FS (FS) (Fu, 1997). We chose this statistic because, as highlighted 

by simulation analyses, differently from both Tajima’s D and mismatch distribution, it provides 

higher statistical power with low sample sizes and it performs equally well with both population 

growth and bottlenecks (Ramos-Onsins and Rozas, 2002; Ramírez-Soriano et al., 2008). Therefore, 

we applied the same resampling method to Fu’s FS in order to evaluate its robustness regarding 

variations of sample sizes. All statistics of intra- and inter-population genetic diversity were 

calculated using the Arlequin software (version 3.5.1.2, Excoffier and Lischer, 2010) whereas the 

regression analysis were performed with SPSS v. 19.0 (IBM Corp. Released 2010. IBM SPSS Statistics 

for Windows, Version 19.0. Armonk, NY: IBM Corp). 

RESULTS AND DISCUSSION 

There are two ways of looking at the results obtained with our resampling approach which may help 

us distinguish between likely signatures of genetic isolation and results biased by small sample size: 

(i) comparing the distribution of each single genetic statistic separately (HD, Fst, Fu’s FS) using 

empirical and simulated values: (ii) making inferences regarding genetic isolation in each candidate 

population taking into account all three statistics together.  

Test of the null hypothesis for genetic diversity statistics 

Our first concern has been to make sure that the procedure used to build our reference neutral 

populations did not produce values of genetic diversity statistics that were substantially different 

from what observed across populations. Therefore, we computed several intra-population and 

demographic statistics as well as genetic distances for all four reference populations and the relative 

Italian outbred groups. The results obtained from these analyses suggest that each reference 

population provide a good representation of the genetic diversity of each of the Italian geographic 

regions. In fact, we do not observe any significant difference between the values of the genetic 



diversity statistics tested in the reference population and the distributions of the same statistics in 

the open Italian population of the same region (see supplementary Table S1). As regard genetic 

distances, all the Fst values obtained comparing the reference populations with the open groups of 

the same region were not statistically significant. The above evaluation reassured us about the 

validity of our approach and allowed us to proceed with the testing of the null hypothesis for the 

three population genetic statistics. 

Haplotype diversity (HD) 

In order to detect signatures of intra-population diversity reduction in the populations subject to 

isolation factors we defined a threshold, as a function of sample size, representing the limit under 

which the null hypothesis could be rejected. The regression analyses showed that, for all reference 

populations, the threshold representing the lowest possible values of HD follow a trend which is an 

inverse function of sample size (R2 from 0.971 to 0.978 for South Italy and Sardinia, respectively; p-

value<0.001)(see supplementary Figure S1). As shown in Figure 1A, in the north-eastern region, we 

found 6 out of 18 populations with HD values falling below the threshold. Among them, we were 

able to reject the null hypothesis for a total of 5 populations as they provided a probability higher 

than 66.7% to have an HD value lower that what expected in a large outbred group at the same 

sample size (see Table II). As for the Central Italy region, we found 4 out of 9 populations with HD 

values falling below the threshold, all of them with probability higher than 66.7% (Figure 1B). None 

of the populations of the Southern Italy region provided HD falling below the threshold (Figure 1C), 

whereas we were able to reject the null hypothesis for only one Sardinia population (Figure 1D). 

Furthermore, the distribution of sample sizes of populations for which the null hypothesis could be 

accepted or rejected are not significantly different from each other (Mann-Whitney test; p=0.325), 

with the two groups showing the same median sample size (Supplementary Figure S2). This suggests 



that resampling methods represent a useful tool to evaluate signatures of genetic isolation for intra-

population diversity without being substantially biased by differences in sample size.  

 

Fixation index (Fst) 

To evaluate the divergence of populations subject to isolation factors from the surrounding genetic 

background, we used the Fst statistic. This is the most commonly used statistic to compute genetic 

distances using mtDNA data and it has been shown to have high discrimination power (Kalinowski, 

2005). The regression analyses showed that, for all four Italian regions, the best fitting line 

representing the higher possible A-Fst obtainable for an outbred populations at a given sample size 

is an inverse function of sample size itself (R2 from 0.984 to 0.999 for Central Italy and South Italy, 

respectivelly; p-value<0.001) (see supplementary Figure S3). As shown in Figure 2A, we found that 

6 out of 18 North-eastern Italian populations provided A-Fst point estimates higher than the 

threshold value, for which the null hypothesis could be rejected (see Table II). For the majority of 

these latter populations (4 out of 6) the probability to reject the null hypothesis was highly significant 

(>95%). As for the Central Italy region, most of the populations (7 out of 9) provided A-Fst values 

falling above the threshold, all of them with a probability higher than 66.7% to have higher values 

that expected in a large outbred group at the same sample size. On the other hand, none of the 

South Italian and Sardinia populations provided A-Fst values falling above the threshold. Similarly to 

what we observed for HD, the distributions of sample sizes of population showing or lacking signals 

of departure from the surrounding genetic background are not significantly different (Mann-

Whitney test; p=0.404), with the median sample size value of the latter group being slightly higher 

(Supplementary Figure S4). Therefore, the use of resamplings seems to be exempt from biases due 

to differences in sample size. 

Fu’s FS 



As concerns the analysis of this statistic though our resamplings we found that in North-east, Central 

and South Italy the expected signal of population expansion is always observed for sample sizes 

above 20, whereas for Sardinia for sample sizes above 25 (data not shown). It is worth noting that 

this limit is close to the one identified by Ramos-Onsins and Rozas (2002) who showed that the Fu’s 

FS test starts to lose statistical power with sample sizes of less than 15-20 (see figure 3 of the 

mentioned paper). Less than one fourth of populations (8 out of 34) subject to isolation factors 

analysed show a non significant value for Fu’s FS (p>0.02) (Table II) indicating a stationary 

demographic size. 

Evaluation of signals of genetic isolation 

In current literature the concept of human population isolate is usually used to refer to groups, 

subject to geographic and/or cultural isolation factors (Arcos-Burgos and Muenke, 2002), that have 

evolved following a specific demographic model in terms of size of the founder group, population 

growth and gene flow with other groups. Under this model populations arise “from the founder 

effect of a small number of individuals as a consequence of some type of bottleneck”, remain in 

“isolation over many generations without genetic interchange from other subpopulations” (Arcos-

Burgos and Muenke, 2002) and have been subject to slow expansion after their foundation (Neel, 

1992) or may have “experienced bottlenecks alternating with periods of rapid growth” (Peltonen et 

al., 2000). Populations that went through this kind of demographic history are expected to have 

increased levels of endogamy compared to large outbred groups (Peltonen et al., 2000; Varilo and 

Peltonen, 2004). Overall, their gene pools are more exposed to the effects of genetic drift and 

assortative mating, which results in population differentiation, lower heterozygosity and deeper 

gene genealogies compared to non-isolated populations (Schierup et al., 2000; Charlesworth and 

Wright, 2001; Arcos-Burgos and Muenke, 2002). Therefore, for populations evolved under such 



demographic model the null hypothesis is expected to be rejected for both A-Fst and HD statistics 

while the FS statistic should be insignificant.  

The analysis of results at population level revealed the presence of five patterns which differentiated 

according to the number and the type of statistics for which the null hypothesis could be rejected 

(Table II).  

The first pattern, found in 7 out of 34 populations, namely Cappadocia, Filettino, Pusteria valley, 

Sappada, Sauris, Timau, and Vallepietra, consists in the rejection of the null hypothesis for all three 

statistics, thus fully complying with what expected from a population evolved under the 

demographic model of human population isolates. With the exception of Pusteria valley, all these 

groups have very small census sizes (from 208 for Vallepietra to 1307 for Sappada) suggesting that 

their founder groups were also small. Notably, 4 out of 7 populations are settled in the Alpine 

mountain range (between 830 and 1217 meters above sea level for Timau and Sappada, 

respectively), an area which is characterized by physical barriers to gene flow, and three of them are 

also linguistic isolates (Sappada, Sauris and Timau; see Capocasa et al., 2013, 2014; Coia et al., 2012, 

2013). The remaining three populations (Filettino, 1075 m.a.s.l.; Cappadocia, 1108 m.a.s.l.; 

Vallepietra, 825 m.a.s.l.) are still located in a mountainous environment (Central Italian Apennines). 

Interestingly, a certain degree of isolation for Sappada and Sauris was detected through autosomal 

microsatellites (Montinaro et al., 2012). 

The most frequent of the other patterns (pattern 2) consists in the failure to reject the null 

hypothesis for all statistics and was observed in 19 out of 34 populations. Although it may indeed 

point to the lack of substantial barriers to gene flow in these populations, we cannot exclude 

completely the possibility that some of them may have experienced genetic isolation. Due to the 

rationale underlying the construction of the test, we can identify robust isolation signatures. 

However, we are unable to discriminate between random fluctuations of genetic statistics due to a 



reduced sample size and effects of isolation phenomena which have not been sufficiently intense or 

prolonged in time. In addition to the existence of this sort of grey area, we should also consider the 

limited power which comes from the use of a single locus. Undoubtedly, the analysis of a broad 

panel of independent loci and the application of methods to estimate gene flow could help shed 

light on most of these cases. 

Three other patterns are worthy of discussion. For the populations of Gardena valley Ladins and 

Jenne we could not reject the null hypothesis only for the FS statistic (pattern 3). The more obvious 

explanation is that these populations have probably been subject to some degree of demographic 

expansion. However, two alternative explanations are worth taking into account. The first implies a 

failure of the statistic (FS) to detect stationarity. In fact, very low effective population sizes, that 

would be reasonably expected in isolated populations which have originated from a small number 

of founders, may produce gene genealogies with very few mutations that can largely affect the 

power of haplotype-based demographic parameters (Ramírez-Soriano et al., 2008). The second 

scenario instead involves recent and severe bottleneck events, possibly followed by rapid growth, 

after which it is most likely that no lineages survive without coalescing resulting in a reduced 

genealogy size with a star-like shape (Ramírez-Soriano et al. 2008). As far as we know, none of the 

above populations experienced recent bottlenecks which means that the first of the two scenario is 

the most likely. For the populations of Isarco valley, Piglio, Saracinesco and Trevi we were able to 

reject the null hypothesis only as concerns the A-Fst statistic (pattern 4). One possible scenario is 

that these populations have evolved under a demographic model which differs from the one we 

considered here as regards the dimension of the founding group. In fact, the genetic diversity 

reduction for populations originated by a relatively large number of individuals will be less severe or 

even negligible. This will result in HD estimates comparable to that of large outbred groups. 

Furthermore, these populations will keep on expanding thus maintain signals of demographic 



expansion. On the other hand, the process of differentiation from their surrounding genetic 

background will be still ongoing, mediated by mutation and related to the time since foundation, 

and admixture dynamics which involve neighbour populations but not the “isolated” one. The above 

demographic model has been used in current literature to describe the evolutionary history of 

“primary isolates” isolates by Neel (1992). This latter scenario may be suitable for the populations 

of Isarco valley, Piglio, and Trevi but not for Saracinesco whose census size is the lowest of the entire 

dataset (164).  

A possible explanation for Saracinesco is related to the introgression of a small amount of haplotypes 

which are substantially different from those of the receiving population. In fact, the presence in this 

village of haplotypes belonging to haplogroups U3 and R0a suggests gene flow from the Eastern 

Mediterranean (Messina et al. 2015). We found one population (Luserna Cimbrians), for which the 

null hypothesis could only be rejected for FS but not for A-Fst and HD (pattern 5). A possible 

explanation for this pattern is that severe bottleneck events can produce an excess of rare frequency 

variants, an excess of haplotypes and an under-representation of major haplotypes, resulting in a 

higher level of haplotype diversity than what would be expected under a more relaxed bottleneck 

(Depaulis et al., 2005). Furthermore, the excess of haplotypes resulting from this mechanism may 

also help maintain a shared genetic diversity between the population undergone to the bottleneck 

and the parental one, resulting in low Fst values. This could be a reasonable explanation of the 

observed pattern for the Luserna Cimbrians, since historical records and previous genetic 

investigations suggests that this community was founded by reduced number of families (Coia et al., 

2013 and citations therein).  

 

Conclusion 



In conclusion, our study suggests that the use of population genetic statistics combined with 

resampling analysis can provide the means to detect signatures of genetic isolation in human 

populations even when using a single, although highly informative, locus such as mtDNA. This may 

turn out to be useful in two ways. Firstly, unambiguous evidence of genetic isolation may be 

retrospectively searched using the large body of data which are today available for mtDNA variation 

in human populations. This may be particularly important for groups whose DNA is difficult to 

resample or reanalyse, e.g. due to isolation breakdown, population dispersal or ethical concerns. 

Secondly, our approach may be used as a tool to select populations which are more likely to show 

strong signatures of genetic isolation also for autosomal loci and, which therefore, can be potentially 

more informative for gene mapping and gene-disease association studies. 
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Figure 1. Comparison of HD values in respect to sample size between populations subject to isolation 

factors and the lower observable value (continuous line) in (A) North-east Italy, (B) Central Italy, (C) 

South Italy and (D) Sardinia. Vertical bars indicate 95% confidence intervals and filled circles 

represent the populations for which the null hypothesis could be rejected.  Population labels as in 

Table I.  

 

 

 

 

 

 

 

 



 

Figure 2. Comparison of A-Fst values in respect to sample size between populations subject to 

isolation factors and higher observable value (continuous line) in (A) North-east Italy, (B) Central 

Italy, (C) South Italy and (D) Sardinia. Vertical bars indicate 95% confidence intervals and filled circles 

represent the populations for which the null hypothesis could be rejected.  Population labels as in 

Table I.  

  



Table I. List of populations subject to geographical and/or linguistic isolation under study. 

Abbreviations: N=sample size, G, geographic isolate; GL, geo-linguistic isolate; L, linguistic isolate. 

Population Label N Status Census size* Reference 

North-east Italy 

Badia valley Ladins LVB 56 GL 10644 Thomas et al., 2008 

Fassa valley Ladins LVF 47 GL 9894 Coia et al., 2012 

Fersina valley FER 25 G 2575 Coia et al., 2012 

Fiemme valley FIE 41 G 18990 Capocasa et al., 2014 

Gardena valley Ladins LVG 46 GL 10198 Thomas et al., 2008 

Giudicarie valley GIU 52 G 36282 Coia et al., 2012 

Isarco valley VIS 34 G 47492 Pichler et al., 2006 

Lessinia Cimbrians LES 40 GL 13455 Capocasa et al., 2013 

Luserna Cimbrians LUS 21 GL 286 Coia et al., 2012 

Non valley NON 48 G 37832 Coia et al., 2012 

Primiero valley PRI 40 G 9959 Coia et al., 2012 

Pusteria valey VPU 37 G 76149 Pichler et al., 2006 

Sappada SAP 59 GL 1307 Capocasa et al., 2013 

Sauris SAU 48 GL 429 Capocasa et al., 2013 

Sole valley SOL 63 G 15235 Coia et al., 2012 

Timau TIM 46 GL 500 Capocasa et al., 2013 

Upper Venosta valley VVA 50 G 8533 Thomas et al., 2008 

Lower Venosta valley VVB 52 G 5144 Thomas et al., 2008 

Central Italy 

Filettino FIL 43 G 554 Messina et al., 2015 

Cappadocia CAP 89 G 537 Messina et al., 2015 

Piglio PIG 96 G 4775 Messina et al., 2015 

Saracinesco SAR 35 G 164 Messina et al., 2015 

Trevi TRV 58 G 8447 Messina et al., 2015 

Vallepietra VAP 46 G 208 Messina et al., 2015 

Vagli VAG 22 G 995 Capocasa et al., 2014 

Jenne JEN 103 G 407 Messina et al., 2010 

Tocco da Casasuria TOC 50 G 2782 Verginelli et al., 2003 

South Italy 

Molise Croats CRM 41 L 1884 Babalini et al., 2005 

Circello CIR 27 G 2501 Capocasa et al., 2014 

Calabria Arberesh ARC 87 GL 28034 Capocasa et al., 2014 

Salento Grecanici GRC 47 L 40000 Brisighelli et al., 2012 

Sardinia 

Benetutti BEN 50 G 2010 Capocasa et al., 2014 

Carloforte CFT 51 GL 6420 Calò et al., 2012 

Sant'Antioco SNA 42 G 2919 Falchi et al., 2006 

* ISTAT (2011) (http://demo.istat.it) 

 

 



Table II. Genetic diversity, demographic statistics and probability of acceptance of the null 

hypothesis in the 34 populations subject to cultural and/or geographical isolation. Abbreviations: 

S.D.=standard deviation. 

  HD FS A-Fst 

Population Region 
Point 

estimate 
s.d. 

Prob. to 
reject null 
hypothesis 

Value p-value 
Point 

estimate 
s.d. 

Prob. to 
reject null 
hypothesis 

Pattern 1 
Cappadocia Central Italy 0.920 0.011 99.67% -3.714 0.125 0.049 0.013 99.97% 
Filetino Central Italy 0.920 0.018 79.50% -4.011 0.062 0.025 0.008 98.92% 
Pusteria valey North-east Italy 0.890 0.032 88.50% -3.831 0.065 0.028 0.009 94.62% 
Sappada North-east Italy 0.778 0.049 99.96% -1.624 0.297 0.083 0.022 99.95% 
Sauris North-east Italy 0.923 0.020 75.27% -4.293 0.067 0.047 0.009 100.00% 
Timau North-east Italy 0.901 0.026 91.47% -3.843 0.079 0.028 0.014 89.28% 
Vallepietra Central Italy 0.928 0.019 69.20% -4.573 0.067 0.026 0.007 99.73% 

Pattern 2 
Badia valley Ladins North-east Italy 0.945 0.017 39.77% -18.661 0.000 0.009 0.013 51.36% 
Calabria Arberesh South Italy 0.977 0.009 13.64% -25.791 0.000 0.000 0.000 0.00% 
Carloforte Sardinia 0.979 0.012 0.09% -25.764 0.000 0.003 0.007 0.34% 
Circello South Italy 0.960 0.023 44.92% -10.992 0.000 0.003 0.007 2.46% 
Fassa valley Ladins North-east Italy 0.933 0.026 55.67% -14.142 0.001 0.002 0.005 3.14% 
Fersina valley North-east Italy 0.930 0.030 28.87% -5.191 0.010 0.000 0.000 0.00% 
Fiemme valley North-east Italy 0.955 0.018 9.97% -10.280 0.000 0.004 0.010 21.84% 
Giudicarie valley North-east Italy 0.972 0.011 0.17% -25.586 0.000 0.004 0.010 27.12% 
Lessinia Cimbrians North-east Italy 0.953 0.017 10.79% -13.817 0.000 0.004 0.011 21.70% 
Lower Venosta valley North-east Italy 0.953 0.018 21.49% -25.908 0.000 0.001 0.004 1.65% 
Molise Croats South Italy 0.970 0.015 31.10% -18.745 0.000 0.000 0.000 0.00% 
Non valley North-east Italy 0.957 0.019 14.30% -25.526 0.000 0.003 0.007 12.25% 
Primiero valley North-east Italy 0.974 0.010 0.00% -16.647 0.000 0.000 0.000 0.00% 
Salento Grecanici South Italy 0.989 0.007 0.01% -25.750 0.000 0.000 0.000 0.00% 
Sant'Antioco Sardinia 0.942 0.029 40.74% -24.478 0.000 0.000 0.000 0.00% 
Sole valley North-east Italy 0.953 0.015 25.21% -22.433 0.000 0.005 0.009 37.58% 
Tocco da Casasuria Central Italy 0.990 0.008 0.00% -25.538 0.000 0.003 0.007 31.60% 
Upper Venosta valley North-east Italy 0.955 0.017 15.62% -16.602 0.000 0.000 0.000 0.00% 
Vagli Central Italy 0.948 0.029 7.99% -5.690 0.003 0.000 0.000 0.00% 

Pattern 3 
Gardena valley Ladins North-east Italy 0.869 0.036 96.75% -6.072 0.011 0.023 0.014 79.91% 
Jenne Central Italy 0.833 0.036 99.95% -22.442 0.000 0.027 0.014 95.03% 

Pattern 4 
Isarco valley North-east Italy 0.961 0.015 0.88% -9.411 0.000 0.051 0.013 99.68% 
Piglio Central Italy 0.954 0.011 40.64% -24.040 0.000 0.012 0.011 76.03% 
Saracinesco Central Italy 0.940 0.021 30.19% -5.101 0.018 0.021 0.014 81.24% 
Trevi Central Italy 0.949 0.013 33.14% -13.110 0.000 0.030 0.012 98.19% 

Pattern 5 
Luserna Cimbrians North-east Italy 0.919 0.034 32.65% -1.373 0.265 0.022 0.016 47.40% 

Pattern 6 
Benetutti Sardinia 0.917 0.029 79.17% -14.519 0.000 0.021 0.012 43.53% 

 

 


