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Abstract—Time–delay systems are infinite dimensional, thus
standard differential geometric tools can not be applied in a

straightforward way. Though, thanks to a suitable extended
Lie Bracket – or Polynomial Lie Bracket – which has been

introduced recently, it is still possible to build up a geometric
framework to tackle the analysis and synthesis problems for

nonlinear time delay systems. The major contribution herein
is to show that those geometric generalizations are not just

formal, but are interpreted in terms of successive forward and
backward flows similarly to the Lie Bracket of delay free vector

fields.

I. INTRODUCTION

Nonlinear time–delay models have to be considered in

many control applications. For instance they are used in

control network systems [7] whenever the communication

time can not be neglected with respect of the dynamics of

individual systems; biological systems are also known to

involve time–delay models [12].

Whereas major advances were obtained for the stabiliza-

tion of this class of systems, fundamental structural problems

such as controllability/accessibility or the observer design

remain open. The theory of delay–free nonlinear control

systems went through a dramatic success story in the 1980’s

in solving such structural problems thanks to the differential

geometric approach. Apart some attempts for its extension

to time–delay nonlinear systems [5], [9], it still remains

in a pioneering stage. For time-delay systems affected by

constant commensurate delays, a new approach was proposed

in [2] based on the differential representation of the given

dynamics. Such an approach has allowed to obtain interesting

results either on accessibility of a class of time delay systems

[4] and observer design [3], through the use of a new

operator, the extended Lie Bracket operator, defined on a

finite dimensional system which can be associated to the

given time-delay system. Such an approach has been further

developed in [1] with the introduction of a more general

tool: the Polynomial Lie Bracket. The main idea beyond the

extended Lie bracket operator was the consideration that even

though time delay systems are infinite dimensional systems,

when affected by constant commensurate delays, they could

be approximated by some finite dimensional system of ap-

propriate dimension linked to the delay affecting the system.

The Polynomial Lie bracket does not require this kind of

approximation, an its use fits well for the comprehension of

the structural properties of the given system.

In order to show both the peculiarities of time delay

systems with respect to delay free ones and the importance

of the Polynomial Lie bracket, in the present paper we

will consider the class of nonlinear single input time–delay

driftless systems affected by constant commensurate delay,

which coversthe case of constant multiple commensurate

delays as well [6]. Within such a class of systems we will

focus our attention on the simple case of system described

by the differential equation

ẋ(t) = g(x(t), x(t − τ ))u(t), (1)

where τ is a constant commensurate delay and the function

g(x(t), x(t − τ )), is analytic in its arguments. Already in

this particular case it is possible to understand the role of

the delay in the accessibility problem. As well know, in fact,

in the delay free case, a single input system of dimension

n > 1 is never accessible, whereas in [4] it was shown that

single input delay systems may happen to be accessible. A

flavour of what happens when multiple delays are present is

also given.

The outline is as follows. Section II is devoted to notations

which are used throughout the paper, as well as to recalls on

the Generalized Lie Bracket and related results. The main

contributions on the Lie Bracket interpretation are given in

Section III III. Conclusions and perspectives are provided in

Section IV.

II. PRELIMINARIES

A. An introductory example

Consider system (1) with g(·) =

(

x2(t − τ )
1

)

:

ẋ(t) =

(

x2(t − τ )
1

)

u(t) (2)

In Figure 1 below, the trajectory of the system is shown for

a switching sequence of the input signal. The input switches

from 1 to -1 and includes four such forward and backward

cycles. Differently from what would happen in the delay free

case when the input switches, the trajectory does not stay on

the same integral manifold of one single vector field. A new

direction is taken in the motion, which shows that the delay

adds some additional freedom for the control direction and

yields accessibility of the example under consideration. This

is a surprising property of single input driftless nonlinear

time–delay systems and contradicts pre-conceived ideas as it

could not happen for delay free systems. As it will be argued

in Section III the motion in the x1 direction of the final point

of each cycle has to be interpreted as the motion along the
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nonzero Lie Bracket of the delayed control vector field with

itself. These general intuitive considerations are formalized

through formal and precise definitions in the paper.

Fig. 1. Forward and backward integration yields a motion in a specific

direction

B. Notations

Consider the class of nonlinear time-delay systems (1).

General notations valid throughout the paper are as follows.

• x
T
[s] = (xT (t), · · ·xT (t − sτ )) ∈ IR(s+1)n, denotes

the vector consisting of the first (s + 1)n components

of the state of the infinite dimensional system (1).

x[0] = [x1,[0], · · · , xn,[0]]
T = x(t) ∈ IRn , will denote

the instantaneous values of the state variable.

• x
T
[s](−i) = (xT (t − iτ), · · ·xT (t − sτ − iτ)). Ac-

cordingly, xj,[0](−i) := xj(t − iτ) denotes the j–

th component of the instantaneous values of the state

variable delayed by D = iτ . When no confusion is

possible the subindex will be omitted so that x will

stand for x[s].

• K denotes the field of causal meromorphic functions

f(x[s] , u[j]), with s, j ∈ IN .

• Given a function f(x[s], u[j]), we will denote by

f(−l) = f(x[s](−l), u[j](−l));
• d is the standard differential operator;

• δ represents the backward time-shift operator: for

a(·), f(·) ∈ K: δ[ a df ] = a(−1)δdf = a(−1)df(−1);
• K(δ] is the (left) ring of polynomials in δ with coeffi-

cients in K.

As it was already recalled, the proposed approach starts

by considering the differential representation of the given

dynamics. Thus one gets that, using the notation just intro-

duced, such an infinitesimal representation is given by

dẋ[0] = f(x, u, δ)dx[0] + ĝ(x, δ)du[0] (3)

where

f(x, u, δ) =
∂g(x[0] , x[0](−1))

∂x[0]
+

∂g(x[0], x[0](−1))

∂x[0](−1)
δ

ĝ(x, δ) = g(x[0], x[0](−1))

C. Generalized Lie Derivative and Generalized Lie Bracket

The notions defined next, as the polynomial Lie bracket,

make sense for time–delay control systems (3). The defi-

nitions of Generalized Lie Derivative and Generalized Lie

Bracket are recalled now in the case of causal functions and

submodule elements. The more general case can be found in

[1].

More precisely, a general submodule element r(x, δ) =
s
∑

j=0

rj(x)δj gives rise to a series of Lie Derivatives, called

Generalized Lie Derivatives and defined as follows.

Definition 1: Given the function ϕ(x[s]) and the submod-

ule element r(x, δ) =
s
∑

j=0

rj(x)δj ∈ Kn(δ], the Generalized

Lie derivative Lrµ(x)ϕ(x[s]) is defined for µ = 0, ..., s as

follows

Lrµ(x)ϕ(x[s]) =

µ
∑

l=0

∂ϕ(x[s])

∂x[0](−l)
rµ−l(x(−l)). (4)

Generalized Lie derivatives according to Definition 1 are

standard Lie derivatives of ϕ(x[s]) along the following

extended vector fields.






r
0(x) · · · r

s(x)

0
. . .

...

0 · · · r
0(x(−s))







Starting from two polynomial submodule elements, yields

again a series vector fields named Generalized Lie Brackets,

and defined as follows.

Definition 2: Let rq(x, δ) =
s
∑

j=0

rj
q(x)δj ∈ Kn(δ],

q = 1, 2. For any k, l ≥ 0, the Generalized Lie bracket

[rk
1(·), rl

2(·)]Ei
, on IR(i+1)n, i ≥ 0, is defined as

[

rk
1(·), rl

2(·)
]

Ei
=

i
∑

j=0

(

[rk−j
1 , r

l−j
2 ]E

)T

(x(−j))

∂

∂x[0](−j)
,(5)

where
[

rk
1(·), rl

2(·)
]

E
=
(

Lrk
1 (x)r

l
2(x) − Lrl

2(x)r
k
1(x)

)

. (6)

The Generalized Lie brackets (5) have shown to charac-

terize the integrability conditions, that is when the ∆⊥(δ] is

generated by dλµ(x) = Λµ(x, δ)dx[0], µ ∈ [1, n − j] [2].

Conditions in terms of ∆(δ] have instead been given in [8].

Let us finally recall the definitions of Lie bracket for

time-delay systems and polynomial Lie bracket, introduced

in [1] where they have been effectively used to address

the integrability problem of any (not necessarily causal)

submodule ∆⊥(δ] and characterize in a complete way the

accessibility of a given time-delay system.

Definition 3: Given ri(x[s], δ) ∈ K∗n(δ], i = 1, 2, the
Lie Bracket [r1(x[s], δ), r2(x[s], δ)], is a (4s + 1)-uple of
polynomial vectors r12,j(x, δ), defined as

r12,j (x, δ) =

2s
∑

`=0

[r`−j
1

, r
`
2]E0δ

`
, j ∈ [−2s,2s]. (7)

Recalling that a polynomial vector r1(x[s], δ) acts on a

function ε(t) and denoting its image as R1(x[s], ε) :=
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∑s
j=0 rj

1(x)ε(−j), the polynomial Lie Bracket is then de-

fined as follows:

Definition 4: Given ri(x[s], δ) ∈ Kn(δ], i = 1, 2, the

polynomial Lie Bracket [R1(x, ε), r2(x, δ)] is defined as

[R1(x, ε), r2(x, δ)] := adR1(x[s],ε)r2(x[s], δ) =

ṙ2(x, δ)|ẋ[0]=R1(x,ε) −
s
∑

k=0

∂R1(x[s], ε)

∂x(−k)
δkr2(x, δ).

With some abuse, the Polynomial Lie Bracket and the

standard Lie bracket are both denoted by [., .]. No confusion

is possible, since in the Polynomial Lie bracket, some ε(i)
will always be present inside the brackets.

we end the present section by highlighting the relations

between the Lie bracket, the Generalized Lie bracket and

the Polynomial Lie bracket. More precisely

• The link between the Lie bracket (7) and the General-

ized Lie bracket (5) can be easily established by noting

that

r12,j(x, δ) =

(Inδ2s, · · · , Inδ, In)
(

[r2s−j
1 , r2s

2 ]E2s
|x(2s)

)

• Standard computations on the Polynomial Lie bracket

show that

[R1(x, ε), r2(x, δ)] =

2s
∑

j=−2s

r12,j(x, δ)ε(j). (8)

• If the given vectors are independent of δ and of the

delay, one recovers (up to ε(0)), the standard Lie bracket

since

[R1(x, ε), r2(x, δ)] = [r0
1(x)ε(0), r0

2(x)] = [r0
1, r

0
2]ε(0).

Instead, if delays are present, [R1(x, ε), r2(x, δ)] im-

mediately enlightens some important differences with

respect to the delay–free case, such as the loss of

validity of the Straightening Theorem. In fact, since

the term depending on δ undergoes a different kind

of operation with respect to the term depending on

ε, starting from r(x, δ) and its corresponding image

R(x, ε), in general

ṙ(x, δ)|ẋ[0]=R(x,ε) 6=

s
∑

k=0

∂R(x[s], ε)

∂x(−k)
δkr(x, δ)

which shows that in general [R(x, ε), r(x, δ)] 6= 0.

For instance, in example (2) taking r(x, δ) = ĝ(x, δ),

one has r(x, δ) =

(

x2(−1)
1

)

. Then R(x, ε) =
(

x2(−1)
1

)

ε(0) and

[R(x, ε), r(x, δ)] =

(

ε(−1) − ε(0)δ
0

)

=

(

1
0

)

(ε(−1) − ε(0)δ) 6= 0.

III. THE POLYNOMIAL LIE BRACKET INTERPRETATION

To clarify the role of the polynomial Lie Bracket, recall

as a preliminary that in the delay–free case the geometric

interpretation of the Lie bracket can be easily obtained by

considering a simple example of a two input driftless system.

As reported in [11] if one considers the dynamic system

ẋ(t) = g1(x(t))u1(t) + g2(x(t))u2(t)

and applies the sequence [(0, 1), (1, 0), (0,−1), (−1, 0)],
where each control acts exactly for a time h, then the first

order derivative of the flow in the origin is zero, while the

second order derivative of the flow in the origin is exactly

twice the bracket [g2, g1]. Of course if one refers to a one

input system then using a constant control allows to move

forward or backward on a unique integral manifold of the

considered control vector field.

Based on this consideration, let us go back to the time

delay system (1) and consider the dynamics over four steps

applying the control sequence [1, 0,−1, 0]. Then one gets

that

ẋ(t) = g(x(t), x(t − τ ))u(t)

ẋ(t − τ ) = g(x(t − τ ), x(t − 2τ ))u(t − τ )
(9)

ẋ(t − 2τ ) = g(x(t − 2τ ), x(t − 3τ ))u(t − 2τ )

ẋ(t − 3τ ) = g(x(t − 3τ ), x(t − 4τ ))u(t − 3τ )

Such a system can be rewritten in the form

ż(t) = g1(z(t))u1(t) + g2(z(t))u2(t) (10)

where z1(t) = x(t), z2(t) = x(t − τ ), z3(t) = x(t − 2τ ),
z4(t) = x(t − 3τ ), u1(t) = u(t − τ ) = −u(t − 3τ ) and

u2(t) = u(t) = −u(t − 2τ ). In (10)

g1(z) =







0
g(z2, z3)

0
g(z4, c0)






, g2(z) =







g(z1, z2)
0

g(z3, z4)
0






.

with c0 the initial condition of x on the interval [−4τ,−3τ ).
Of course not all the trajectories of z1(t) in (10) will be

trajectories of x(t) in (9), whereas all the trajectories of x(t)
for t ∈ [0, 4τ ) in (9) can be recovered as trajectories of z1(t)
in (10) for t ∈ [0, 4τ ), whenever the system is initialized with

constant initial conditions.

The sequence [(0, 1), (1, 0), (0,−1), (−1, 0)] for system

(10), can then be recovered by applying the sequence

[1, 0,−1, 0] to u(t) with the initialization u = 0 on the

interval [−τ, 0) and the switching applies exactly after τ .

Such an example shows immediately that the second order
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derivative in 0 is characterized by

[g1, g2] =













0
g(z2, z3)

0
g(z4 , c0)






,







g(z1 , z2)
0

g(z3 , z4)
0













=













0
g(x(t − τ ), x(t− 2τ ))

0
g(x(t − 3τ ), x(t− 4τ ))






,







g(x(t), x(t − τ ))
0

g(x(t − 2τ ), x(t − 3τ ))
0












.

It is immediately seen that the ∂
∂x(t) component is given

by
∂g(x(t),x(t−τ))

∂x(t−τ) g(x(t − τ ), x(t − 2τ )) which in general is

nonzero.

While the previous discussion allows to mimic what

happens in the delay free case by using a specific sequence,

in the general case one may refer to other kinds of sequences.

Before going into the technical details, consider again the

dynamics

ẋ(t) =

(

x2(t − τ )
1

)

u(t)

with the piecewise control which varies from 1 to -1 every 5

seconds. In the next figures the role of the delay and the role

of the duration of the control are shown through simulations.

Fig. 2. Trajectory of the dynamics with the same input signal and different

delays

Fig. 3. Trajectory of the dynamics with the same delay by input signals
of different duration

More precisely, in Figure 2, one cycle of the same switch-

ing signal is considered, for different delays. The behaviour

of the system trajectory easily shows that the delay itself

could be used as an additional “control”. It is worth noting

that in the particular case in which the control varies from 1,

to −1 with a period equal to an integer multiple of the delay,

the trajectory would remain on one unique integral manifold

as in the delay–free case.

In Figure 3 the input signal still switches from 1 to -1,

but the duration changes. It is easily seen that the end point

are all on a curve which is interpreted exactly as the integral

manifold of the Polynomial Lie bracket.

Let us now go through the technical details, and consider

the given dynamics (1), with its differential representation

(3). Starting from ĝ(x, δ) = g(x(t), x(t− τ )), let Ĝ(x, ε) =
g(x(t), x(t − τ ))ε(0) one can thus compute the associated

Polynomial Lie Bracket

[Ĝ(x, ε), ĝ(x, δ)] = ġ(x(0), x(−τ )|ẋ[0]=g(x(0),x(−τ))ε(0)

−ε(0)
∂g(x(0), x(−τ ))

∂x(0)
g(x(0), x(−τ ))

−ε(0)
∂g(x(0), x(−τ ))

∂x(−τ )
δg(x(0), x(−τ ))

=
∂g(x(0), x(−τ ))

∂x(−τ )
g(x(−τ ), x(−2τ ))(ε(−τ ) − ε(0)δ)

which is thus different from zero. In the example considered

throughout the paper, we have already shown that

[Ĝ(x, ε), ĝ(x, δ)] =

(

1
0

)

(ε(−1) − ε(0)δ)

Consider the dynamics (1) and assume th control changes

over 2 steps, t2 = t1 = t. The flow is thus given by

x(t1, t2) = x(t1 + t2) = φt2
u2

(φt1
u1

(x(0))

x(t1, t2, τ ) = x(t1 + t2 − τ ) = φt2
ū2

(φt1
ū1

(x(−τ )).

Note that for the retarded trajectory x(t1, t2, τ ) the control

ū is no more constant over the interval (t1 − τ, t2 − τ ), but

it is piecewise constant.

The first order derivative with respect to time of the flow,

x′, is then given by

x′(t1, t2) =
∂φt2

u2
(x(t1))

∂t2

∂t2

∂t
+

∂φt2
u2

(φt1
u1

(x(0))

∂t1

∂t1

∂t

Accordingly

x′(t1, t2) = g(x(t̄2), x(t̄2 − τ ))u2(t̄2)

+
∂φt2

u2

∂x(t̄1)
g(x(t̄1), x(t̄1 − τ ))u1(t̄1)

Setting now u2 = −u1 yields

x′(t1, t2) =
(

g(x(t̄2), x(t̄2 − τ )) −
∂φt2

u2

∂x(t̄1)
g(x(t1), x(t1 − τ ))

)

u2(t̄2)

x′(t1) = g(x(t1), x(t1 − τ ))u1(t̄1)
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Recalling that t1 = t2 = t, let t → 0, so that

x′(0, 0) = 0

x′(0) = g(x(0), x(−τ ))u1(t̄1)

One can repeat the same reasoning on x(t1, t2, τ ), taking
as initial point x(−τ ). One thus has that

x
′(t1, t2, τ) =

∂φt2
u2

(x(t1 − τ))

∂t2

∂t2

∂t
+

∂φt2
u2

φt1
u1

(x(−τ))

∂t1

∂t1

∂t

= g(x(t̄2 − τ), x(t̄2 − 2τ))ū2(t̄2 − τ)

+
∂φ

t2
ū2

∂x(t̄1 − τ)
g(x(t̄1 − τ), x(t̄1 − 2τ))ū1(t̄1 − τ)

Since u2 = −u1, one immediately gets that ū2 = −ū1 so
that

x
′(t1, t2, τ)=

(

g(x(t̄2 − τ), x(t̄2 − 2τ))

−
∂φ

t2
ū2

∂x(t̄1 − τ)
g(x(t̄1 − τ), x(t̄1 − 2τ))

)

ū2(t̄2 − τ)

x
′(t1, τ) = g(x(t1 − τ), x(t1 − 2τ))ū1(t̄1 − τ)

and x′(0, 0, τ ) = 0 representing the first order derivative,

compute starting from x(−τ ).

Let us now consider the second order derivative of

x(t1, t2), taking as initial point x(0). In this case, through

standard computations one has that

x′′(t1, t2) =
∂2φt2

u2
(x(t1))

∂t22
+ 2

∂2φt2
u2

(φt1
u1

(x(0))

∂t1∂t2

+
∂2φt2

u2
(φt1

u1
(x(0))

∂t21

Through standard computations one gets that for t1 = t2 = t

which goes to zero

x′′(0, 0) = u2(t̄2)
∂g(x(0), x(−τ ))

∂x(0)
x′(0, 0)

(11)

+ u2(t̄2)
∂g(x(0̄), x(−τ ))

∂x(−τ )
x̄′(0, 0, τ )

where x̄′(0, 0, τ ) is x′(t1 + t2 − τ ) computed starting from

x(0) and for t1 = t2 = t which goes to zero.

x̄′(0, 0, τ ) = x′(0, 0, τ )− g(x(−τ ), x(−2τ ))u1(−τ )

By considering that x′(0, 0) = 0, substituting the previous

expression into (11) one thus gets for t → 0

x′′(0, 0) =

−
∂g(x(0),x(−τ))

∂x(−τ) g(x(−τ ), x(−2τ ))u(t̄1)ū(t1 − τ )

Let us finally compute the differential of x′′(0, 0) with

respect to the control variable.

We get that

dx′′(0, 0) =

−
∂g(x(0), x(−τ ))

∂x(−τ )
g(x(−τ ), x(−2τ )) (u(−τ ) + u(0)δ) du

which coincides with our expression whenever we set

ε(−k) = −u(−kτ).

IV. SOME CONCLUDING REMARKS

The case discussed in this paper already enlightens some

peculiarities of time–delay systems with respect to the delay

free case. In the particular case considered, the Extended

Lie Bracket and the Polynomial Lie Bracket , end up

with the same result. in general, as already underlined in

the remarks, the polynomial Lie bracket ends up with a

collection of extended Lie bracket ,which actually define the

directions that can be used to move. we end this discussion

by proposing another example which highlight this point.

For instance, let us consider the dynamic system

ẋ(t) =





x3(t − τ )
x3(t − 2τ )

1



u(t)

Fig. 4. Trajectories obtained through two different input sequences

Fig. 5. Trajectories obtained through the same input sequence but with

different duration
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Using the definition of Polynomial Lie Bracket, one gets

that

r(x, δ) =





x3(t − τ )
x3(t − 2τ )

1



 , R(x, ε) =





x3(t − τ )
x3(t − 2τ )

1



 ε(0).

Accordingly

[R(x, ε), r(x, δ)] =





ε(−1) − ε(0)δ
ε(−2) − ε(0)δ2

0





=





1
0
0



 (ε(−1) − ε(0)δ) +





0
1
0



 ε(−2) − ε(0)δ2

so that we find two directions











1
0
0



 ,





0
1
0











which span

the plane (x1, x2).

In figure 4 two different sequences for the control are used

which show that one can get two different directions in the

plane (x1, x2), while in figure 5 the same control sequence

is used but with different duration.
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