
DOCTORAL THESIS

Development of CAE tools for
fluid-structure interaction and erosion in

turbomachinery virtual prototyping

Author:
Alessio CASTORRINI

Supervisor:
Prof. Alessandro CORSINI

Co-Supervisor:
Prof. Franco RISPOLI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Industrial Production Engineering

February 21, 2017

alessio.castorrini@gmail.com




iii

“Alles, was tief ist, liebt die Maske”

Friedrich Nietzsche





v

SAPIENZA UNIVERSITY OF ROME

Abstract
Faculty of Civil and Industrial Engineering

Department of Mechanical and Aerospace Engineering

Doctor of Philosophy

Development of CAE tools for fluid-structure interaction and erosion in
turbomachinery virtual prototyping

by Alessio CASTORRINI

The work presented in this thesis is based on the development of advanced
computer aided engineering tools dedicated to multi-physics coupled problems.
Starting from the state of the art of numerical tools used in virtual prototyping
and testing of turbomachinery systems, we found two interesting and actual pos-
sible developments focused on the improved implementation of fluid-structure in-
teraction and material wearing solvers. For both the topics we will present a brief
overview with the contextualization on the industrial and research state of the art,
the detailed description of mathematical models (Chapter 2), discretized (FEM)
stabilized formulations, time integration schemes and coupling algorithms used in
the implementation (Chapter 3). The second part of the thesis (Chapter 4-7) will
report some application of the developed tools on some latest challenges in turbo-
machinery field as rain erosion and load control in wind turbines and non-linear
aeroelasticity in large axial fans.

HTTP://WWW.UNIROMA1.IT/
http://www.ing.uniroma1.it/drupal/
http://www.dima.uniroma1.it/dima/




vii

Acknowledgements
I would like to acknowledge the entire research group and, in particular, Prof.

Alessandro Corsini and Prof. Franco Rispoli that give me the opportunity, the

means and the support to work and successfully finish this interesting project.

Thanks also to Prof. Kenji Takizawa and Prof. Tayfun E. Tezduyar for the support

and supervision during the collaboration period passed at the Waseda University

of Tokyo. Their contribution and experience were been crucial to achieve the final

goal. Thanks also to my family and friends, which always contributed to keep my

spirit up, making the time passed great and all the possible problems little.





ix

Contents

Abstract v

Acknowledgements vii

1 Research program overview and industrial context 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computational mechanics applied to turbomachinery problems (state

of the art) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 A background on fluid-structure interaction . . . . . . . . 4
1.2.2 A background on wearing on material . . . . . . . . . . . 6

1.3 Research scope and description . . . . . . . . . . . . . . . . . . . 7
1.3.1 Synthesis of the program . . . . . . . . . . . . . . . . . . 7

Overview on the numerical solver development for FSI com-
putations . . . . . . . . . . . . . . . . . . . . . 8

Overview on the numerical solver development for erosion-
geometry morphing computation . . . . . . . . 10

1.4 Industrial and research context . . . . . . . . . . . . . . . . . . . 10
1.4.1 Ultimate challenges in wind turbine blades technology . . 10
1.4.2 Ultimate challenges in fan blades technology . . . . . . . 11

2 Computational mechanics models 13
2.1 Aerodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Unsteady Reynolds averaged Navier–Stokes equations for
incompressible flows . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Turbulence model . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Arbitrary Lagrangian-Eulerian formulation for URANS equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Structure dynamics model . . . . . . . . . . . . . . . . . . . . . 17
2.3 Mesh motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 FSI model, interface equations . . . . . . . . . . . . . . . . . . . 20
2.5 Particles dynamics and damage in erosion phenomena . . . . . . . 20

2.5.1 Particles cloud tracking . . . . . . . . . . . . . . . . . . . 22
2.5.2 Turbulence–particle interaction parameters . . . . . . . . 23

2.6 Erosion models . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Raindrop erosion . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Sand and coal ash erosion . . . . . . . . . . . . . . . . . 25



x

3 Discretization, integration and interface schemes 27
3.1 Finite element stabilized formulation of turbulent flow equations in

ALE frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 PSPG formulation . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 SUPG formulation . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 DRD-DRDJ formulation . . . . . . . . . . . . . . . . . . 31
3.1.4 Time integration scheme – Crank-Nicolson . . . . . . . . 32

3.2 FEM formulation for the geometrically non-linear – finite deforma-
tion elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Time integration scheme – Generalized α . . . . . . . . . 35

3.3 FEM formulation of the moving mesh equations . . . . . . . . . . 36
3.4 Discretized particle equations . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Trajectory calculation . . . . . . . . . . . . . . . . . . . 37
3.5 XENIOS++ / FSI-Module: Block-iterative strong coupling algo-

rithm for computational fluid-structure interaction problems . . . 38
3.6 MASAI Interface for erosion with adapted geometry problems . . 40

4 Passive control of performance and load with morphing geometries 43
4.1 Performance improvement on wind turbine blade section . . . . . 43

4.1.1 Turbine description . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Reference airfoil . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Active case analysis . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Passive case analysis . . . . . . . . . . . . . . . . . . . . 46
4.1.5 Fluid mesh and boundary conditions . . . . . . . . . . . . 47
4.1.6 Solid mesh and boundary conditions . . . . . . . . . . . . 48
4.1.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Passive morphing control system for fan blades - 2D study . . . . 52
4.2.1 Fan and blade description . . . . . . . . . . . . . . . . . 52
4.2.2 Elastic trailing edge device . . . . . . . . . . . . . . . . . 54
4.2.3 Computational domain and boundary conditions . . . . . 54
4.2.4 Test set-up . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Frame of reference . . . . . . . . . . . . . . . . . . . . . 56
4.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
General observations . . . . . . . . . . . . . . . . . . . . 64

4.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Passive morphing control system for fan blades - 3D study . . . . 65

4.3.1 Fan description . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Computational domain . . . . . . . . . . . . . . . . . . . 66



xi

4.3.3 Boundary conditions and mechanical properties . . . . . . 67
Fluid phase . . . . . . . . . . . . . . . . . . . . . . . . . 68
Deformable solid parts . . . . . . . . . . . . . . . . . . . 68
Moving mesh . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Operating point for FSI computation . . . . . . . . . . . . 69
4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Dimensioning and placement of the morphing surface . . 70
FSI solution: elastic displacement . . . . . . . . . . . . . 72
FSI solution: unsteady aerodynamic field . . . . . . . . . 73
Observations on performance and effect of the control device 74

4.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Advanced FSI in industrial fan blade simulation 77
5.1 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Fan description . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Computational domain . . . . . . . . . . . . . . . . . . . 78
5.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . 79

Fluid phase . . . . . . . . . . . . . . . . . . . . . . . . . 80
Deformable solid parts . . . . . . . . . . . . . . . . . . . 80
Moving mesh . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.4 Operating point for FSI computation . . . . . . . . . . . . 81
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Performance verification with CFD . . . . . . . . . . . . 82
5.2.2 FSI solution: elastic displacement . . . . . . . . . . . . . 83
5.2.3 FSI solution: unsteady aerodynamic field . . . . . . . . . 83
5.2.4 Observations on performance . . . . . . . . . . . . . . . 84

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Numerical simulation with adaptive boundary method for predicting
time evolution of erosion processes 87
6.1 Case in study and computational details . . . . . . . . . . . . . . 88
6.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Prediction and study of rain erosion on wind turbine blade with FEM-
PCT 95
7.1 Description of the wind turbine . . . . . . . . . . . . . . . . . . . 96
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Comparison to BEM computation . . . . . . . . . . . . . 97
7.2.2 Erosion patterns . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Concluding remarks 103



xii

A Validation test 107

Bibliography 109



xiii

List of Figures

1.1 Wind turbine leading edge erosion due to rain [23] . . . . . . . . 11
1.2 Camber control concept with morphing airfoil [22] . . . . . . . . 11

3.1 Reference and deformed configuration of the structure domain . . 35
3.2 Rationale of the FSI algorithm . . . . . . . . . . . . . . . . . . . 39
3.3 Rationale of the MaSAI algorithm . . . . . . . . . . . . . . . . . 42

4.1 Active morphing, configuration at t = 0 s. . . . . . . . . . . . . . 46
4.2 Relative wind velocity considered in the start-up case . . . . . . . 46
4.3 Section relative wind velocity, computed for the passive morphing

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Section angle of attack, computed for the passive morphing case. . 47
4.5 Fluid computational domain. . . . . . . . . . . . . . . . . . . . . 49
4.6 Frame structure applied for the trailing edge. . . . . . . . . . . . . 49
4.7 Active case, aerodynamic coefficients. . . . . . . . . . . . . . . . 50
4.8 Passive case, aerodynamic coefficients . . . . . . . . . . . . . . . 51
4.9 Reference blade and section. . . . . . . . . . . . . . . . . . . . . 53
4.10 Detail of the grid (leading edge). . . . . . . . . . . . . . . . . . . 55
4.11 Detail of the grid (morphing surface). . . . . . . . . . . . . . . . 55
4.12 Test 1, flow field non-dimensional variables (1: pressure, 2: veloc-

ity magnitude, 3: vorticity). a) Original geometry; b) Elastic device
at the trailing edge . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Test 1, aerodynamic force coefficient in the rotor plane direction
(x) and vertical displacement of the elastic surface (tip point). . . . 60

4.14 Test 1, aerodynamic force coefficient in the out-of-plane direction
(y) and vertical displacement of the elastic surface (tip point). . . . 60

4.15 Test 2, flow field non-dimensional variables (1: pressure, 2: veloc-
ity magnitude, 3: vorticity). a) Original geometry; b) Elastic device
at the trailing edge . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.16 Test 2, aerodynamic force coefficient in the rotor plane direction
(x) and vertical displacement of the elastic surface (tip point). . . . 62

4.17 Test 2, aerodynamic force coefficient in the out-of-plane direction
(y) and vertical displacement of the elastic surface (tip point). . . . 62

4.18 Test 3, flow field non-dimensional variables (1: pressure, 2: veloc-
ity magnitude, 3: vorticity). a) Original geometry; b) Elastic device
at the trailing edge . . . . . . . . . . . . . . . . . . . . . . . . . 63



xiv

4.19 Test 3, aerodynamic force coefficient in the rotor plane direction
(x) and vertical displacement of the elastic surface (tip point). . . . 64

4.20 Test 3, aerodynamic force coefficient in the out-of-plane direction
(y) and vertical displacement of the elastic surface (tip point). . . . 64

4.21 Fan view and cad model. . . . . . . . . . . . . . . . . . . . . . . 67
4.22 Mesh: 3D view (top), lateral view (middle), section detail (bottom). 67
4.23 Radial distribution of the inlet absolute velocity for a flowrate of 51

m3/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.24 Boundary patches . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.25 CFD solution of the reference blade. Velocity field section at three

different radius [m/sec]. . . . . . . . . . . . . . . . . . . . . . . 71
4.26 3D view of the blade with the elastic surface at the trailing edge . 71
4.27 3D displacement ([m]) solution of the elastic surface at time 0.8 sec

(left) and 1.2 sec (right) . . . . . . . . . . . . . . . . . . . . . . . 72
4.28 Main oscillation cycle in the time history of the y component of the

displacement for nodes 1 (maximum displaced node) and 2 (higher
section tip). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.29 Detail of pressure contour plot at time 0.8 sec and 1.2 sec . . . . . 73
4.30 Sectional contour of pressure [Pa] field at time 0.8 sec and 1.2 sec 74
4.31 Velocity field [m/s] at R = 0.5 m . . . . . . . . . . . . . . . . . . 75

5.1 Fan view and cad model. . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Mesh: 3D view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Structural mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Mesh section detail . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Boundary patches . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Fan efficiency from experimental data . . . . . . . . . . . . . . . 81
5.7 Total pressure jump. . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8 Velocity magnitude [m/sec] at 20 %, 60 % and 90 % of blade span 85
5.9 Blade displacement magnitude. . . . . . . . . . . . . . . . . . . . 86
5.10 Tip nodes displacements. top: X component; middle: Y compo-

nent; bottom: Z component . . . . . . . . . . . . . . . . . . . . . 86
5.11 Difference of velocity (up) and pressure (down) fields between steady

CFD and FSI simulation . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Geometry of the numerical domain: inlet (red line), outlet (blue
line), periodic (gray surface), flow direction (green arrow). . . . . 89

6.2 Grid of the numerical domain with a zoon on the cylinder region.. 90
6.3 Cloud inlet line (blue line).. . . . . . . . . . . . . . . . . . . . . . 91
6.4 Erosion evolution (normalized dimensions), steps 0-6; θ=0 stagna-

tion line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Normalized erosion patterns: step 0 left, step 6 right (Blue: no

erosion, 0; red: 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 93



xv

6.6 Pressure field and streamlines from the first (left) and last (right)
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Cloud center trajectories evolution, steps 0-6. . . . . . . . . . . . 94

7.1 Mesh for the PCT computation. The arrows represent the cloud
initial velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Normalized impact count. Pressure side (left) and suction side (right) 99
7.3 Normalized damage. Pressure side (left) and suction side (right) . 100
7.4 Normalized impact count at different sections along the blade span,

as a function of the distance from the leading edge (LE). The pos-
itive and negative distance values are for the suction and pressure
sides, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Normalized damage at different sections along the blade span, as a
function of the distance from the leading edge (LE). The positive
and negative distance values are for the suction and pressure sides,
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 FSI Benchmark domain [143] . . . . . . . . . . . . . . . . . . . 107
A.2 FSI Benchmark solution, pressure field and streamlines . . . . . . 107
A.3 FSI Benchmark solution, tip vertical displacement . . . . . . . . . 108





xvii

List of Tables

4.1 Turbine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Blade data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Blade sections data . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Fluid phase boundary conditions. . . . . . . . . . . . . . . . . . . 48
4.5 Fan characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Flexible trailing edge extension characteristics. . . . . . . . . . . 54
4.7 Computational domain characteristics. . . . . . . . . . . . . . . . 55
4.8 Boundary conditions of the implicit systems. . . . . . . . . . . . . 56
4.9 Test conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 Flexible trailing edge extension characteristics. . . . . . . . . . . 69
4.11 Boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Blade material properties. . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Performance comparison, total pressure jump. . . . . . . . . . . . 84

6.1 Boundary and initial conditions for aerodynamic and moving mesh
solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Properties of fluid and particles. . . . . . . . . . . . . . . . . . . 91

7.1 Rotor characteristics, where “TSR” is the tip-speed ratio . . . . . 96
7.2 Airfoil cross-sections of the blade . . . . . . . . . . . . . . . . . 96
7.3 Droplet and target-material properties . . . . . . . . . . . . . . . 98
7.4 Out-of-plane force and torque acting on a single blade, obtained

from the SUPG/PSPG and BEM computations . . . . . . . . . . . 98
7.5 Components of the forces and moments acting on a single blade,

together with the rotor thrust and power output, obtained from the
SUPG/PSPG computation . . . . . . . . . . . . . . . . . . . . . 98

A.1 FSI benchmark, results comparison. . . . . . . . . . . . . . . . . 108





xix

List of Abbreviations

ALE Arbitrary Lagrange-Euler
URANS Unsteady Reynolds Averaged Navier-Stokes
DRD Diffusion for Reaction Dominated Problem
DRDJ Diffusion for Reaction Dominated Problem with Jump Factor
FE Finite Element
FSI Fluid Structure Interaction
GLS Galerkin/least-squares
PCT Particle cloud tracking
PDF Probability density function
PSPG Pressure-stabilizing/Petrov-Galerkin
SUPG Streamline upwind/Petrov-Galerkin
TI Turbulence intensity

Subscripts

f Fluid
s Solid
e Element
n Node number
sd Spatial dimensions

Superscripts

h Discretization characteristic length
n Time step number





xxi

List of Symbols

Roman

a Distance
ac Particle cloud acceleration
c Section cord
cm Rayleigh wave velocity
cw Speed of sound in water
C Stiffness tensor
Cε1 k− ε model constant
Cε2 k− ε model constant
Cµ k− ε model constant
CD Particle drag coefficient
dp,dw Particle and rain droplet diameter
Dt Isotropic dissipation at wall (k− ε model)
D Damage per unit surface
Et Additional source term (k− ε model)
E Young’s modulus
e Erosion per unit mass
fi Components of Reynolds averaged volume force in N-S momentum equation
f1 k− ε model constant
f2 k− ε model constant
f f Volume forces term in the URANSE momentum equation
F,FD Force and drag force on particle
Fi,Fd General and minimum impact force to have damage
FiI Component of the deformation gradient
g Gravity acceleration vector
h Traction vector at FSI interface
H() Heaviside function
I Identity matrix
J Jacobian determinant
k Turbulent kinetic energy
kM,kMv,kMa Generalized-α method constant
Km Fracture toughness
K1,K2,K3 Tabakoff model empirical constants
K[] FEM stiffness matrix
mp,mw Particle and droplet mass



xxii

M,Mab FEM mass matrix
ns Normal vector at the solid surface
n f Normal vector at the fluid-solid interface
nen,nel Node at element and element number in the FEM discretization
Nn Shape function at node n

P̄ Production term k− ε model
Pk Production term k− ε model
P Power
Pe Peclet number
p̃ Non-dimensional static pressure
pin f Free stream static pressure
p Pressure
p̄ Reynolds averaged fluid pressure
q[] Trial scalar function defined in the [] domain
r Local radius
rk,rε Reaction number
R Rotor radius
Rex Reynolds number (Re =V x/ν)
ReT Turbulent Reynolds number
Rep Particle Reynolds number
RT Tangential restitution factor
S Cascade pitch
Sk Source term (k− ε model)
Sε Source term (k− ε model)
T Simulation period
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1

Chapter 1

Research program overview and
industrial context

1.1 Introduction

An operating turbomachinery implies a very complex system of phenomena involv-
ing the structural parts (rigid and elastic dynamics, thermodynamics, interactions,
contacts and constraints), the fluid part (fluid and gas dynamics, thermodynamics,
chemical reactions, phase changes), the auxiliary systems (controls), the particles
part (eroded materials, water droplets, dusts and solid impurities) and the interac-
tion of all of these aspects. Knowledge and comprehension of all these phenomena
is crucial to obtain a good design.
In an industrial production process, the design part should be advanced enough to
guarantee a minimum waste of resources and a minimum time to arrive to the final
product. Considering the complex system described above, to reach an optimal new
design, the procedure could be very long and could require several iterations on the
prototype.
In order to reduce these iterations R & D engineers use the so-called CAE (computer-
aided engineering) to obtain the first prototype in a virtual environment. Virtual
prototyping allows designing, testing and, possibly, to change the product with a
cost that is fairly lower than in the real prototyping. In theory, when we design a
product using a CAE tool, the more the model implemented is accurate, the less
will be the steps and the time necessary to complete the design (and the lower will
be the design costs).
What is happening in practice is that, in parallel with the development of the per-
fect models for the CAE tools, engineers and R & D companies have to face the
computational costs associated to very high-fidelity models. Therefore, we can ob-
serve a sort of time shift between the physical phenomena comprehension and the
development of mathematical models, numerical techniques, research CAE tools
model accuracy and industrial CAE tools model accuracy (which usually results in
the lowest one). One of the motivations is that, at a certain level, the increasing in
accuracy for CAE tools does not justify the increasing in computational costs, with
respect to the cost saving obtainable using the upgraded model.
However, during the last decades, the computer technology has been demonstrating
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an incessant rate of growth and development, giving the possibility to continuously
extend the sizes of the numerical problems solvable by using medium price calcu-
lus resources. Following this trend, it is important to develop the models and the
numerical techniques in order to increase the accuracy because, looking at the fu-
ture, the technology will be such as to give to all the industries the possibility to use
the best models and to reduce the design procedure in only two steps: a "one-shot"
virtual prototyping followed by the final verification of the real product.

Looking at the turbomachinery virtual prototyping and testing, we will see that
a promising and necessary development is to be able in analysing the interaction
between the fluid and solid phases on the main process. This is what this project
is working for, namely, the definition, development and testing of numerical fluid-
solid interaction tools and methods, specialized on turbomachinery applications. In
particular, we will develop a fluid-structure interaction (FSI) solver able to simulate
three-dimensional aerodynamics and structure dynamics, with a strong and direct
coupling. The second main coupling phenomena we are going to deal, is the ero-
sion due to particle-laden flows. In this case, the interface algorithm will couple
the particle dynamics with the flow field and, in a last development the change of
geometry due to the erosion.

The actual strategy to study complex and multi-physical systems consists on sub-
dividing the physics involved in consistent subsystems (for example the fluid and
solid dynamics), using different dedicated models. Once the mathematical mod-
els has defined, the strategy to simplify the implementation and the computational
complexity implies to define some scales and bands of interaction in such a way to
can split every single problem in simpler sub-problems, avoiding, where possible,
the direct coupling between different systems.

In most of the cases, the necessity in reducing the computational effort leads to
use linearized and low order models. These models neglect the most part of the
complex dynamics and coupling effects, which typically can be described with
non-linear equations. For these cases, the numerical solution reduces its field of
application to few situations, e.g. the steady condition at the main operating point.
The prediction obtainable applying these models is affected with a certain grade of
approximation and a certain range of usability, which must be taken into account in
the design process.
The effect of making a design accepting these approximations and restrictions can
be that a virtual prototype would show good performance only in few operating
conditions (the ones considered in the simulations) while, it will have an unpre-
dictable behaviour in off-design conditions. For this reason, an iterative optimiza-
tion process on the prototype (and on the final product) will be necessary to arrive
to the definitive object. Indeed, all of the engineering products had crossed in its
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development a continuous revision relative to the experience of the response of it to
those complex phenomena that were not taken into account during the first design.
To be able in simulating also complex and coupled dynamics will reduce this de-
sign time.

The next session and chapter will report in detail the modelling and implemen-
tation adopted for the development of these numerical tools. An important aspect
to underline here is that the choice of the modelling is always related to the target
type of application. In industrial production of turbomachinery, representative ap-
plications in this topic come from wind turbine and large axial fan fields as will be
discussed in the next sections.

1.2 Computational mechanics applied to turbomachinery
problems (state of the art)

The purpose of this research is to continue the development of new CAE tools for
numerical simulation and testing of turbomachinery. As already underlined, the
actual commercial tools (which are the ones used in the industries), have not the
possibility of dealing with strong coupling FSI and erosion phenomena, which rep-
resents the aspects developed here.
In any case, the first step is to prepare a solid base of knowledge on the actual tech-
nology used in computational physics, in order to choose and eventually develop
the most suitable models needed to our dedicated tools. The choice has two main
constraints to consider, we should use the most hi-fidelity model, but keeping the
computational costs controlled to maintain the tool suitable for industrial produc-
tion applications.
The applications of the computational physics to the turbomachinery field are innu-
merable because of the complexity and depth of the arguments involved. We will
focus here on the main process, and in particular on the mechanics of the process
fluid (not reacting) and of the main structures (rotors, stators, cases and hub).
In addition, in this case we can find a huge database of researches in which numeri-
cal models are applied to study the different dynamics. A brief recall of the state of
the art in numerical simulation commonly applied in the turbomachinery industries
and research is reported in the following lines.

• Fluid-dynamics and aerodynamics, The CAE tools used for the simulation
of the aerodynamics are the so called CFD (Computational Fluid Dynamics)
solvers. The development of CFD began several years ago and saw an inces-
sant growth. To list all the model that could be used is far from the purpose
of this thesis.
Forgetting about the mono-dimensional, potential and low-Reynolds flow
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models, a way to subdivide the models for CFD application is based on how
and if they model the turbulence. At the actual stage, the most used and tested
models for the solution of the aerodynamic field in turbomachinery applica-
tions are the RANS (Reynolds Averaged Navier Stokes) based models. The
motivation of their success is related to a good ratio between accuracy of
the three-dimensional solution and computational time. At this moment, it
is possible to find a plenty of commercial and open source software which
can solve the RANS problems (e.g. FLUENT, CFD++, OpenFOAM). The
mostly used technique to discretize and numerically solve the equations is the
finite volume method, especially for its light impact on the computational
resources, considering the large amount of cells needed to solve turbulent
high-Reynolds flows.

• Structure dynamics, For the simulation of the stress state and deformation
of the structures, the mostly used approach is the Finite Element Method
(FEM) technique which allows to solve complex and three-dimensional struc-
tures with high-fidelity models. The solution of the structure dynamics through
the FEM followed a parallel development with respect to the CFD tools. We
can find several commercial and open source software, which guarantee a
very high level of accuracy both in case of simple (e.g. metallic) and com-
plex (e.g. composites) materials (NASTRAN, ANSYS, FEMAP, ABAQUS).

• Coupled systems, when it is proven that two or more dynamics can be con-
sidered one-way coupled (which means that the mutual influence can be ne-
glected), it will be possible to study the interaction through a quasi-static and
weak coupled approach, using the tools presented at the beginning of this
chapter in an open-loop systematic procedure.

All the introduced tools are very specialized and highly developed but they all
presents the same limit if observed in the wider context of the virtual prototyp-
ing. Indeed, in a real machine all the dynamics are, in general, coupled and mutual
influencing. Of course, the magnitude of the coupling effect on the global solution
depends on the ratio between critical quantities, e.g. in a fluid-structure interaction
problem, the mutual effect depends on the ratio between quantities like densities
and main frequencies.

1.2.1 A background on fluid-structure interaction

In the past, the fluid-structure interaction was considered less important than other
structural and aerodynamic problems, because, for metal blades with little aspect
ratio (blade span vs blade chord), the blade response follows frequencies which
are far from the main frequency of variation of the main aerodynamic fields. On
the other hand, the blade stiffness is very high and the structural response becomes
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important from a stress point of view, only for big variation in magnitude of the
aerodynamic field, which, in low-Mach number flows, usually are related to low-
frequency variation of the average field. In this frame, the application of the weak
coupling procedure can be used to study the aeroelastic effect.
With the introduction of new materials and the refinement of the aerodynamic de-
sign of the blade (toward more slender and complex shapes) the aeroelastic problem
acquires much more importance in the design phase. This is actually true in appli-
cations concerning wind turbines, but it becomes important also for large new fans.
In the case of wind turbines, the mostly used tools are based on the BEM (Blade
element momentum) theory coupled in a weak fashion, with a mono-dimensional
beam model for the structure. These models usually keep into account the un-
steadiness of the aerodynamic field using empirical and corrective models for the
dynamic wake and for the dynamic stall. To have an example of the state of the
art in the application of all these theories it is possible to refer to all the material
produced and pubblished by the NREL (National Renewable Energy Lab) with re-
spect to the FAST code [1], which is a very famous simulation tool used to study
the wind turbine dynamics and aeroelasticity. This model presents two limits, the
first associated to the coupling method, which is weak. Indeed, first the aerody-
namic is evaluated using the BEM theory in a quasi-static, equilibrium state of the
blade strip, then the aerodynamic load is integrated and used as boundary condition
of the beam model to solve the structure dynamics. The second limit concerns the
2D approximation made by the BEM theory, which neglects the three-dimensional
effects.
In case of less slender and faster blades, it is possible to find FSI and aeroelasticity
works especially on rotorcrafts, with the application of the unsteady boundary ele-
ment methods strongly coupled with non-linear beam models, as done by Morino
and Gennaretti [2]. This method, which is very fast and accurate, is limited to the
range of application in which the blades work at small angle of attacks, because the
impossibility of the potential theory to predict the separation phenomena.
In case of flows with separation, non-linear and turbulent aerodynamics we need to
increase the complexity of the base models. We can find a large amount of mate-
rial published by Tezduyar, Bazilevs and Takizawa ([3, 4]), using the finite element
method and isogeometric analysis applied to solve FSI problem. An example of
application to turbomachinery is the work of Bazilevs on large wind turbine, pre-
sented in [5]. Here the entire aerodynamic field is simulated directly with a sta-
bilized formulation of Navier-Stokes equations (ALE-VMS) while the structure is
modelled with a very high fidelity isogeometric-FEM model, based on a non-linear
membrane theory.
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1.2.2 A background on wearing on material

The impact of particles on a deposit layer or a clean surface can cause erosion.
Modelling this phenomenon is quite complex because several aspects must be ac-
counted for (i.e., impact velocity, particle shape, bonding forces, particle pattern in
the deposit layer, particle sintering, etc.).
The numerical study of erosion and deposit phenomena is usually done using par-
ticles based models. In the spectra of the possible mathematical models, we can
identify two main techniques, the single particle approach and the particle clouds
tracking (PCT) approach. As the name suggests, the first method follows the mo-
tion of each single particle while the second approach uses a statistical description
of the motion of clouds of particles, reducing the computational cost.
For our actual purpose the PCT represents the most interesting solution as it allows
to simulate large amounts of particles impacts with a low computational cost. The
method was proposed by Baxter in [6] and developed for example in [7]. There,
authors simulate the erosion due to coal ash on a metal fan blade, showing a good
qualitative agreement with the experimental observation both in time needed to
erode the surface and in shape of eroded area.
The particle dynamic solver gives as output the number, direction and energy of
impacts that the particles have on the target. In order to evaluate erosion or deposit
on the surface, a proper model is needed. The phenomenon is complex and mostly
related to the material properties of both target and particles, but also on the shape
and sizes of the particles themselves, the mostly used models are empirical and re-
lated to the particular case. Tabakoff for example presented an erosion model for
coal ash transported in turbine flow in [8].
As we are interested also in the rain erosion on plastic materials (for the wind tur-
bines case) we need a further model that can be found on the work of Keegan et al.
[9, 10]. Here the rain and hailstone erosion on a simple covering material used in
the wind turbines is studied. Authors used both numerical and experimental tools
to study the mechanics of the impact and the damages on the surface, providing a
suitable erosion model.
A study on the rain erosion effect on the airfoils used for wind turbine has been pre-
sented also by Fiore in [11]. The author applied a single particle approach coupled
with a double-lattice method to study the aerodynamics. The model adopted for the
aerodynamics gives good results in the range of little angles of attack in very short
computational time; this allowed the author to study a large range of configurations
and to propose an optimization method on the shape.

Although it is possible to find a large number of studies on the weak coupled so-
lution of erosion on turbomachinery parts due to transported particle, there are
very few studies on the mutual effect between erosion due to particle transport and
change in the shape of the target. A reference work can be what presented by Casa-
day [12], in which authors study the change in geometry and its effect on the flow
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using a systematic approach. Not more seems to be as automatic calculation like
what we will develop and present in Chapter 6.

1.3 Research scope and description

This research poses as main objective to develop numerical tools, which are able to
solve complex and strongly coupled fluid-solid interaction problems, starting from
an already tested and developed platform. The possible different developments are
an indefinite number; we choose to focus our development basing on our main
skills and experience, deciding to develop in parallel the aspects of fluid-structure
interaction and blade erosion due to transported particles.
At his previous form, the CAE tool package developed by our group was been
devoted to study the aerodynamics and erosion/deposit in turbomachinery applica-
tion, with the main attention to axial fan blades. A natural follow-up to this work is
to extend the study including the blade structural behaviour in view of new slender
and lighter blade designs. Indeed, composite materials are now in common use in
large blade manufacturing, but also the blade radius and aspect ratio are growing
to increase the efficiency. This aspect leads to important fluid-structure interaction
and vibro-acoustics phenomena, which need detailed computational methods for a
reliable prediction.

We focus our attention also on another fluid-solid interaction phenomena, which
is the particle erosion of the blades. Looking at the actual common request of the
scientific and industrial community, we found two interesting development to add
new capabilities to our CAE tools

• the rain erosion phenomena applied to wind turbines, solved adapting a suit-
able model of the rain erosion to the particle cloud tracking method already
implemented and successfully used in works as [13] on large ventilation fans.

• the coupling between the change of geometry due to the particle erosion and
the aerodynamic field, which transport the particles themselves.

1.3.1 Synthesis of the program

The first part of the work will be the identification and development of mathemat-
ical models suitable to describe the physical systems. Fluid-structure interaction
and erosion phenomena are a multi-physics problems that couples the unsteady
flow field evolution with the response of an immersed structure or particle motion.
It is crucial to find the correct modelling of all these aspects, taking into account
the final application of the work.
Using an URANS model represents the most suitable choice to simulate the aero-
dynamic for both the applications. Indeed, for fluid-structure interaction, we need
a good description of the aerodynamic forces (especially the pressure forces) at the
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surface of the structure and these models permit to simulate the three-dimensional
flow also in case of separation. The averaged solution of the turbulence in the
timestep introduce a negligible error as, in the cases in study, the scales associated
to the significant FSI coupling follow slower dynamics than the velocity fluctuation
due to turbulence.
Furthermore, the same averaged field gives the perfect description for the particle
cloud tracking approach, which base its equations on the statistical description of
the flow turbulence. Indeed, we will use the cloud description for the particle dy-
namics as it allows to solve problems of a huge amount of particles (as the rain in
wind turbine rain erosion) saving computational costs.
For the structure dynamics, we have to consider the structure of the industrial fan
blades we are going to test. Actually, the blades are made by metal alloys or re-
inforced plastic materials with short or particulate glass and carbon fibres. These
materials can be modelled as isotropic and elastic. Furthermore, we consider that
for our application, the material should work always in the elastic domain thus the
linear elasticity can be used, allowing the finite deformations considering the equa-
tions written in the deformed configuration.
Both FSI and erosion problems imply to move the computational domain, follow-
ing the solid deformation, in the first case, and the surface erosion, in the second
case. The mesh motion problem can be solved with a solid extension technique,
deforming all the mesh as an elastic body with forced displacement at the bound-
ary.
All the introduced modelling will be presented in detail in Chapter 2.
The finite element method (FEM) will be applied to solve all the sub-problems
(fluid flow, structure dynamics, mesh motion, impact/erosion). Especially for the
fluid solution, stabilization methods must be used to obtain the numerical solution.
Then, for the structural and moving-mesh problems, the weighted residual method
can be applied to the three-dimensional elastic problem.
Chapter 3 reports all the FE formulations implemented in the codes and describes
also the coupling and interface algorithms to solve FSI and UEB (Updating eroded
boundary).

Overview on the numerical solver development for FSI computations

The Fluid Structure Interaction (FSI) analysis could be a useful instrument in terms
of:

• Quantification of the structural response to given flow condition.

• Classification of the mechanism underlying the coupling between fluid and
structure.

• Characterization of the fatigue in the structure.
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• Design expedients to minimize the self-induced vibrations.

This is the reason why many authors developed different strategies for FSI res-
olution problem. The most used methods to achieve the strong coupling in FSI
solution are the so called partitioned (or block-iterative) approach and the mono-

lithic approach.
The adjective "monolithic" is used to identify a global process of discretization on
a one enlarged system of equations. In [14, 15, 16] , it is possible to find applica-
tion of this approach developed by Hubner (2004), Walhorn (2005) and Tezduyar
(2006). Another point of view that characterizes the FSI resolution process requires
the application of a partitioned scheme. In this way, authors are able to use a spe-
cific solver for each region of the domain. The interaction between fluid and solid
region is managed by the boundary conditions of the specific solver. The parti-
tioned approach is based on the possibility to apply a specific solver that represents
the state-of-art for each physical domain. Following this logic, it is possible to de-
velop an efficient global algorithm, with different grid resolution in the coupling
interface between the two domains. Nevertheless, this aspect has to be considered
in a particular way, especially during the information transfer process, in the inter-
face zone between different solvers [17, 18].
Establishing a comparison between these two schemes is not a simple task, how-
ever, in [19] Degroote (2008) analyses the behaviour of this resolution methods
using the same process of discretization. The main result of this analysis is related
to the lower computational load required by "partitioned" approach then the "mono-
lithic" one. This difference is considerable if we considerate that the accuracy of
the result obtained by these methods is comparable.
Monolithic approach is highly recommended for FSI problems where the stiffness
of the structure is very low and the densities between fluid and solid phase are com-
parable.
The idea behind our study is to solve the different physical domains consecutively
in each time interval using dedicated models and avoiding too complex and sparse
matrices associate to the final discretized system. However, the simple block-
iterative solution presents limits on particularly coupled problems as the separate
dynamics are "blind" on what happen on the others, during the separate non-linear
convergence steps. Starting from this consideration we propose a mixed algorithm
which uses a unique non-linear loop to achieve convergence on the residual of all
the systems (like in the monolithic approach), but solving them in a segregated

fashion, keeping frozen the coupling between different dynamics, only at the single
linear solution step, and updating them at each non-linear iteration.
The method consists of a systematic approach, which will be described in detail in
Chapter 3.
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Overview on the numerical solver development for erosion-geometry morph-
ing computation

Few works can be found on numerical studies that couple aerodynamic and turbu-
lent flows with erosion due to transported particle, in which the change in geometry
as effect of the erosion itself is considered, also in the aerodynamic calculation.
Indeed, in usual applications the time needed by the particles to erode an amount
of material as large as to change the aerodynamic field is huge. However, if we
consider the time scale not in seconds but related to the life of a mechanical part,
especially if the part shape is optimized to maximize the aerodynamic performance,
a similar study can be extremely useful to evaluate directly a measure of the loss in
performance of the part.
Furthermore, the shape of the erosion (as will be presented in the application of
Chapter 6) is affected by the change in shape of the boundary as it is related to the
impact direction and thus on the normal at the surface that changes if the boundary
moves.
As we said, the timing related to this change of geometry is huge so it is possible to
develop the algorithm keeping the weak coupling hypothesis. As will be showed,
the coupled solver will have the shape of an interface between the two separate
solvers, steady RANS and PCT, coupling the two with a dedicated empirical ero-
sion model, which gives the displacement at the mesh boundary to a moving mesh
solver. The erosion will be calculated through an iterative procedure in which the
iteration represents a time scaled on the time needed to erode a minimum given
amount of material (chosen by the user).

1.4 Industrial and research context

1.4.1 Ultimate challenges in wind turbine blades technology

The last updates in wind energy are mainly focused to increase the specific power
produced in order to reduce the gap in cost of energy with respect to the other
traditional forms. This aspect of course is primarily related to the wind resource.
Indeed, a great and continuous increasing of the amount of electric energy produced
by wind resource can be visible in the countries of the North of Europe. There, the
wind resource appears ideal for the power production, especially in offshore sites.
Application in rigid climate regions lead to damages on the wind turbine blades as
effect of ice, rain and sand erosion. Focusing on the rain erosion phenomena, it can
be showed that a not protected blade subjected to rainy climates can been damaged
by rain erosion resulting in a loss of about 20 % of performance.
Few numerical and experimental works were been presented on this topic (e.g. [9,
11, 20]), in these researches the blade is modelled as a wing strip and the particular
interaction between rain and coating material is studied in detail. With our numer-
ical tool, we can study the phenomenon on the full size blade, coupling the RANS
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FIGURE 1.1: Wind turbine leading edge erosion due to rain [23]

FIGURE 1.2: Camber control concept with morphing airfoil [22]

aerodynamic solution with a particle cloud model of the rain.
It is very easy to observe that to study similar phenomena in an experimental way,
implies a study restricted only on the material, and extracted from the real appli-
cation. In fact, the sizes of the new wind turbine blades do not allow to build an
experimental facility like in [21], always remembering the most important purpose
of wind industry, to save costs.
The work presented in Chapter 7 will show that, applying the aerodynamic solver
in coupling with the PCT solver and a proper erosion model, we can be able to pre-
dict the amount of damage on the blade surface, finding the most erosion exposed
areas, giving to the designer the possibility to optimize the material distribution and
save production costs.

Another aspect of sensible interest is the load and performance control. With the
increasing of blades size, the standard control systems can be improved and sup-
ported introducing new solutions as presented for example in [22]. One interesting
solution is to control, morphing the geometry, the effect due to the unsteady and
turbulent shape of the wind on the blade section performance and load. This avoids
to turn the entire blade to follow the short period fluctuation of the wind velocity,
allowing to use the standard control pitch without the need of improving its veloc-
ity and thus its power consumption and weight.
Chapter 4 will report an example of numerical analysis of an active and then a pas-
sive morphing system applied to improve the performance of a multi-MW wind
turbine.

1.4.2 Ultimate challenges in fan blades technology

An other field of interesting applications is the large axial fan aeroelasticity and
control.
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Numerical simulation tools are acquiring a crucial role in the virtual prototyping of
new fan rotor blades. This, in addition with the possibility in using new advanced
materials, is opening the design capability to blades of longer, lighter and more
slender structures.
The possibility to simulate directly both the aerodynamic and the effective structure
response opens the way to improved design capabilities, avoiding time waste and
costs due to long experimental testing campaign and over-dimensioned structures.
In Chapter 5 we will apply the FSI solver to an existing fan blade. The study will
show how, even in case of metal structure with little deformation, the coupling be-
tween fluid dynamics and structure dynamics can produce effects on both the fluid
and the solid involved in the machine main process.

The concept of morphing geometry to control and stabilize the flow was been
proposed and applied in several aeronautic and wind turbine applications. We stud-
ied the effect of a similar passive system on a large fan blade in order to see if
the adoption of this kind of solution brings to benefits on the fan behaviour in off-
design conditions.
In Chapter 4 we will report a numerical study on the effect that a passive morph-
ing system (made by an elastic-low stiffness surface) has on the sectional load and
flow-field, when it is applied to the trailing edge of an axial fan.
We obtain the results extracting the section of the fan blade and test it in the 2D
cascade, with and without the elastic device, in different operating conditions.
It will be possible to observe how the tested device could reduce the load in off-
design and high angle of attack conditions, while the same solution could intro-
duce vibrations in design conditions. This study is then extended to the three-
dimensional blade to complete the device testing, including the 3D effects.
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Chapter 2

Computational mechanics models

As introduced in the previous chapter, for each branch of the multi-physical system
we are going to solve we have to find, define and implement a consistent math-
ematical model. The choice of the model depends on and implies the range of
application for which the numerical solver will be suitable. A further consideration
have to be done on the computational cost and implementation complexity that re-
sults from the chosen model.
Starting from the applications proposed in the first chapter, we can identify the
correct mathematical models, observing the properties of the physical fields rel-
ative to each particular type of problem. For example, the flow field relative to
wind turbines and axial subsonic fans can be characterized by three-dimensional
effects, high Reynolds numbers and low Mach numbers. Hence, to simulate the
aerodynamics we will need a model for unsteady, three-dimensional, turbulent and
incompressible flows.
For FSI we need to define the structural model. In this case, all the applications we
propose here, will deal with isotropic materials and three-dimensional solid struc-
tures. The properties of the material used for the tested blades we are testing allow
to use the theory of linear elasticity. Furthermore, we are not solving structure that
are supposed to lead plastic deformations on their material. Bigger deformations
can be achieved using the deformed domain as domain base for the local displace-
ment computations.
In this chapter, we will present also the mathematical models used to simulate the
particles and their dynamics. For the case of rain simulation, since the big amount
of particles, we choose to use the Particle Cloud Tracking method in order to reduce
the computational cost. Indeed, the surface of a wind turbine blade is huge with re-
spect to the single raindrop, so it would not have sense to simulate the dynamics of
every single droplet to quantify the average damage on the surface.
Finally, we need to define the interface methods and algorithm to couple the dif-
ferent physical system. Leaving the description of the implemented coupling al-
gorithm to Chapter 3, here we will describe the base equations used at the FSI
interface and defined to couple the turbulence with the particle could dynamics.
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2.1 Aerodynamic Model

2.1.1 Unsteady Reynolds averaged Navier–Stokes equations for incom-
pressible flows

We recall here the Navier-Stokes equations for incompressible, turbulent flows,
written in the Reynolds Averaged form. These equations will be the starting point
of the discussion that will bring to the final aerodynamic model.
Since that the turbulence is a three-dimensional unsteady phenomenon, the numer-
ical solution of the original N-S equations (DNS - direct numerical simulation)
requires a huge amount of computational resources because of the discretizations
in time and space. Indeed, the computational domain must have very small control
volumes in order to catch every turbulent scale in every place of the field. This
is the motivation why, at the actual situation, DNS is used only in research and is
applied only on very simple geometries.
In practical problems, we can use statistical averaged equations in order to reduce
the problem size. Indeed, we can focus on and solve the quantities that are impor-
tant for the industrial application (like forces and mean velocities), modelling all
the fine scales which are of secondary importance for it.
The way to obtain the RANS equations from the standard N-S equations is to apply
the Reynolds averaging [24]. Let φ̂ the instantaneous value of one of the quantities
from the N-S equations (velocity, pressure, density, temperature, etc.) it can be
decomposed as follows:

φ̂ = Φ̄+φ
′ (2.1)

where Φ̄ is the mean value (which can be obtained with different averaging method),
and φ ′ represents the fluctuations.
Applying this decomposition to the incompressible N-S equation variables, and
averaging the resulting equation in time, we can obtain:
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Notice that, after the averaging procedure, the turbulent stress tensor ρ f u′iu

′
j ap-

pears on the momentum equation. This term represents the averaged transport of
momentum by the velocity fluctuation. As can be seen, this terms is not linear and
it is the only one directly depending on the velocity fluctuation components.
In order to close the RANS equations, this term needs to be supplemented before
the solution. This problem, called Turbulence Closure Problem, is solved adding
to the system some closure equations or algebraic relations. There are two types of
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models to close the turbulence problem:

• Eddy viscosity/diffusivity models, knows also first-order models

• Second-moment closures, knows also as Reynolds stress/flux models

The first order models, which will be our choice for this research work, assume
that the turbulent stress is directly related to the mean flow field. They are based on
the Boussinesq assumption [25], which states that the turbulent stress tensor can be
expressed in terms of the mean rate of strain in the same way as the viscous stress,
replacing the molecular viscosity coefficient with the turbulent (eddy) viscosity.

2.1.2 Turbulence model

Turbulence is not a local phenomenon but evolves in time and depends on the
boundary conditions. This implies that, for a correct definition and evaluation of
the eddy viscosity, it should be function of some turbulence parameter and, these
parameters should be defined by differential equations in order to account for the
turbulence evolution in time and space.
This kind of approach depends on the number of parameters (and so, number of
equations) chosen to describe the eddy viscosity. One of the most famous and used
model is a two-equation model based on the turbulent kinetic energy k and on the
rate of turbulent dissipation ε . The k− ε model gives good results in case of high-
Reynolds, rotating and ducted flows, and it represents the choice we did for our
implementation.
As we need a good quality solution at the wall (e.g. because of the interface prob-
lem for FSI), we chose to use the low Reynolds k−ε model of Launder and Sharma
[26]. Detailed descriptions and application of the method were presented by Dick
and Steelant in [27], Mavriplis et al. in [28] and Patel et al. in [29].
The two-equation model, based on the turbulent kinetic energy and dissipation rate,
can be written as

ρ f

[
∂k
∂ t

+∇∇∇ · (ku f )

]
= ∇∇∇ ·

[(
µ + µt

σk

)
∇∇∇k
]
+Sk, (2.4)

ρ f

[
∂ε

∂ t
+∇∇∇ · (εu f )

]
= ∇∇∇ ·

[(
µ + µt

σε

)
∇∇∇ε

]
+Sε , (2.5)

Here

Sk = Pk−ρ f ε−Dt , (2.6)

Sε =Cε1 f1Pk
ε

k −Cε2 f2ρ f
ε2

k +Et (2.7)

are the source terms, defining Pk = µtP− 2/3ρkS as the production term, Dt =

2µ

(
∂
√

k
∂xi

)(
∂
√

k
∂xi

)
as the isotropic dissipation at wall. Then the model is closed by
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defining the quantities

Et = 2µµt/ρ f

(
∂ 2ui

∂x j∂xk

)(
∂ 2ui

∂x j∂xk

)
(2.8)

P = 4/3
[
(ui, j)

2−um,mun,n
]
+(um,n +un,m)

2 (2.9)

(2.10)

and Cε1, f1, Cε2, f2 as model coefficients [26].
The connection between the proposed model and the RANS equations is given by
the flow velocities and the turbulent viscosity. The last one is defined as follow:

µt =Cµρ f k2/ε (2.11)

with
Cµ = 0.09exp[−3.4/(1+ReT/50)2], (2.12)

in which ReT = ρ f k2/µε is defined as the turbulent Reynolds number.

2.1.3 Arbitrary Lagrangian-Eulerian formulation for URANS equa-
tions

Numerical solvers have to guarantee an appropriate kinematic description of the
continuum associated to the described fields. In continuous mechanics, usually the
algorithms used in the solution of the equations use two kind of descriptions of the
motion:

• Lagrangian description, in which every node of the domain follows the ma-
terial particle during motion. This approach is usually adopted in the produc-
tion of structural and particles solvers.

• Eulerian description, in which the mesh is fixed and the fields move rela-
tively to the nodes position. This approach is largely used in the CFD.

The issue arises when the solver combines at the same time two different physics
which are usually solved using the two different approaches (like the coupled FSI
problem).
In order to solve an aerodynamic field interfacing a moving structure, we need to
move the domain nodes, following the deformation. This motion has to be taken
into account in the aerodynamic model if it uses an Eulerian description.
For this kind of problems, a third approach is adjoined to the possibilities listed
before, and it is called an Arbitrary Lagrange-Eulerian (ALE) description [30].
Several applications of this technique can be found in [31, 32, 33, 34, 35, 36, 37,
38]. As the name suggests, this approach combines the two descriptions in order to
do not lose the advantages of describing the aerodynamics using an Eulerian point
of view, considering a Lagrangian approach for the mesh motion (both fluid and
structural).
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Following [39] we can apply the ALE formulation to our aerodynamic model. Let
Ωt ⊂ IRnsd be the spatial domain with boundary Γt , where the subscript t states that
the fluid domain have to be considered time dependent. The URANS equations of
incompressible flows in the ALE frame can be written on Ωt and ∀t ∈ (0,T ) as

ρ f

[
∂u f

∂ t

∣∣∣
x̂
+(u f −um) ·∇∇∇xu f

]
− f f −∇∇∇x ·σσσ f = 0, (2.13)

∇∇∇x ·u f = 0, (2.14)

ρ f

[
∂k
∂ t

∣∣∣
x̂
+∇∇∇x · (ku f )

]
−∇∇∇x ·

[(
µ +

µt

σk

)
∇∇∇k
]
−Sk = 0, (2.15)

ρ f

[
∂ε

∂ t

∣∣∣
x̂
+∇∇∇x · (εu f )

]
−∇∇∇x ·

[(
µ +

µt

σε

)
∇∇∇ε

]
−Sε = 0, (2.16)

where ρ f , u f and f f are the fluid density, velocity and external force, respectively,
while um is the local domain velocity.
The stress tensor σσσ is defined, using the Boussinesq hypothesis, as

σσσ f (p,u) =−pI+2(µ +µt)εεε f (u f ). (2.17)

Here p is the pressure, I is the identity tensor, µ and µt are the molecular and
turbulent dynamic viscosities, and εεε f (u f ) is the strain-rate tensor:

εεε f (u f ) =
1
2
(
(∇∇∇xu f )+(∇∇∇xu f )

T ) . (2.18)

As reported in [39], the time derivative has to be taken in a fixed-domain (where x̂

represents the spatial coordinates of the reference initial domain), while the spatial
gradients are taken with respect to the coordinates of the current configuration of
the fluid domain x.

2.2 Structure dynamics model

We will deal for this work with metal and in general isotropic materials. Further-
more, the expected behaviour of the structure has to belong to the elastic regime of
the material response. For this reason, we can use for now a linear elastic model
for the structure dynamics, considering to treat large deformation of the slender
structure, using an Updated Lagrangian Formulation in the discretization proce-
dure (see the next chapter for a complete description).
We use the linear elastodynamics theory for Hookean materials as the base mathe-
matical model for the structure dynamics. This represent a well-known theory and
a complete description can be found for example in [40].
We can obtain the tensor form of the governing equations starting from the New-
ton second law. This form is independent of the choice of coordinate system and
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represent the general equations of motion for an elastic solid

ρs
∂ 2us

∂ t2 − fs−∇∇∇x ·σσσ s = 0, (2.19)

where us s is the displacement, fs the volume forces vector and σσσ s the Cauchy
stress tensor defined through the constitutive equations

σσσ s =C : εεεs(us) (2.20)

Here, εεεs(us) represent the strain tensor while C is the fourth-order stiffness
tensor.
For the linear elasticity hypothesis, the infinitesimal strain is directly related to
the first order derivative of the local displacement through the following strain-

displacement equation:

εεεs(us) =
1
2
(
(∇∇∇xus)+(∇∇∇xus)

T ) . (2.21)

Recalling the constitutive equation 2.20, the material information are stored
in the stiffness tensor. This is a fourth order tensor with generally 36 indepen-
dent components, which are considered constant in the linear Hookean theory. The
number of independent parameters decrease as the symmetry grade of the material
properties increase, until arriving to the isotropic material, which can be defined
with only two independent parameters:

C =



λ1 +2λ2 λ1 λ1 0 0 0
λ1 λ1 +2λ2 λ1 0 0 0
λ1 λ1 λ1 +2λ2 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ2 0
0 0 0 0 0 λ2


(2.22)

The parameters λ1 and λ2 are called Lamé constants. With this definition it is
possible to rewrite Eq 2.20 as

σs,i j = λ1δi jεs,kk +λ2(εs,i j + εs, ji) (2.23)

using the repeated index convention.
The Lamé constants can be related to the more useful Young’s modulus, shear mod-
ulus and Poisson’s ratio with the following expressions resulting from the inversion
of Eq 2.20:

λ1 =
Eνp

(1+νp)(1−2νp)
, λ2 = G =

E
2(1+νp)

(2.24)
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2.3 Mesh motion

The ALE approach implies the motion of the mesh. This motion, in case of do-
mains which keep the original topological properties can be done on the mesh it-
self, avoiding remeshing. In this way, it is possible to save a lot of computational
time because there is no need to recalculate and rebuild all the elements. The only
problem on moving the mesh nodes is to find a way which guarantee (minimizing
the active controls and iterations) to keep the mesh quality. Indeed, CFD problems
are very sensible to the mesh quality, which, if not good enough, could bring to
instabilities, non-consistent fields and fake gradients.
The control on the mesh quality takes long time and it is usually done during the
mesh design. It would be very difficult and heavy to do it using an automatic algo-
rithm inside of a scientific code, so it becomes very important to find a way to keep
the most than possible the original quality of the mesh.
The mesh motion technique proposed by Stein, Tezduyar, and Benney [41, 42]
gives the possibility to solve FSI problems with large deformations, keeping and
controlling the grid quality during the motion and maintaining the boundary struc-
ture of the mesh as designed for the fixed initial reference (constant y+ during the
mesh motion).
This method treats the mesh like an elastic solid and solve the motion problem by
solving the static linear elasticity on all mesh nodes, giving as boundary condition
the displacements of the boundary. Following [41], let Ωm ⊂ ℜnsd be the domain,
with nsd the number of spatial dimensions and Γm the boundary. Using the linear
elasticity we can write the equation of the elastic equilibrium for the points of Ωm

∇∇∇ ·σσσm = 0, (2.25)

Notice that the volume force term fm = 0 in this case, because we are interested only
on the displacement associated to a boundary displacement, without any external
fields effect.
In Eq. 2.25, σσσm is the Cauchy stress tensor already defined in the previous chapter.
In this case is useful to consider the material associated to the mesh domain as
isotropic, so we have

σσσm = λ1tr(εεεm(um))I+2λ2εεεm(um), (2.26)

and, again, the strain tensor can be defined in term of mesh displacements um, using
the linear theory

εεεm(um) =
1
2
(
(∇∇∇um)+(∇∇∇um)

T ) . (2.27)

Now the problem is to define properly the Lamé constants λ1,λ2 in order to obtain
the best result in terms of mesh quality after the displacement.
Continuing to adopt the method proposed by Tezduyar et al., we will obtain the
equivalent material properties for the mesh, using the so called Jacobian based
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stiffness model. Which will be discuss in the next chapter.

2.4 FSI model, interface equations

In the previous sections, we defined all the mathematical models relative to the
different physical systems we are going to solve. In this section we deal about
the coupling of these systems and in particular, we will define the relation that
allows the interaction between the aerodynamic field and the structural motion and
response.
All the following relations are defined at the interface between the two domains.
Let Γi, f , Γi,s be respectively the portions of the boundary of the fluid and solid
domains, which represent the interface. The points of Γi, f and Γi,s are coincident
so we can define the following relations between the fields of both the systems on
the points of Γ = Γi, f = Γi,s.

• Aerodynamic effect on the structure. The aerodynamic field acts on the
structure, transmitting a force on its boundary. This effect can be modelled
by applying the fluid traction force as a boundary condition for the structural
stress

σσσ s ·ns−h f = σσσ s ·ns−σσσ f ·n f = 0, on Γi (2.28)

here n are the normal vectors and h f is the fluid traction, defined in compo-
nents as

h f ,i =−pniδi j + ε f ,i jn j (2.29)

• Effect of the structure velocity on the aerodynamic field. The moving
boundary represents a sort of inflow for the fluid field as the fluid particles at
the interface must have zero relative velocity with respect to the wall (for the
impermeability and no-slip condition of viscous flows). Hence, if the bound-
ary moves, the fluid at the boundary must follow this movement, transmitting
a boundary velocity to the aerodynamic field. This effect can be obtained im-
posing the following equation on Γ

u f −vs = 0, on Γi (2.30)

2.5 Particles dynamics and damage in erosion phenomena

The second coupling phenomena we are going to deal is the erosion of the structures
(moving or fixed). In turbomachinery, the erosion phenomena are mainly driven
by a solid phase dispersed and transported in the fluid field. The material of the
particle phase depends on the application and we can find erosion phenomena due
to metal particles, coal ash, sand, rain, hail. As introduced before, the actual way
to solve the erosion problem in turbomachinery is to model first the transport of
the particles with a one-way coupling with the flow solution, and then to apply a
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suitable empirical description for the erosion effect.
As presented in [7], two-phase flows can be characterized by two ratios

τp

τe
, αp =

∑i niVp,i

V
(2.31)

the first is the ratio between the particle response time and the average time between
inter-particle collisions. The second one is the volume fraction of the dispersed
phase. Through these two ratios, it is possible to identify the dense or dilute nature
of a flow, choosing the correct model to analyse it.
In our applications, we will deal with particle flows that have τp

τe
< 1 and αp <

10−5, so we can use a one-way coupling approach in which the solid phase is
considered as a dispersed and transported phase, which does not interfere with the
fluid dynamics [43].
To deal with this kind of problems the simplest and most common approach is
the Lagrangian description of the single particle motion. The particle dynamics
is described through an ordinary differential equation called Basset-Boussinesque-

Osees (BBO) equation [7]

mp
dvp

dt
= F (2.32)

where mp, vp are the particle mass and velocity, while the force term include in
general different effects like buoyancy, gravity, pressure gradients force and drag
force. Studies on the force contributions can be found for example in [44, 45]
where it is demonstrated that, for high values of density ratio (the ratio between the
particle density and the fluid density) forces other than the drag do not give relevant
contributions to the particle motion. So Eq. 2.32 becomes

mp
dvp

dt
= FD =−1/8πd2

pρ fCD(u f −vp)|u f −vp| (2.33)

Applications of two-phase flows usually involve turbulent flows. Turbulence has
a direct effect on the particle motion thus, it has to be taken into account. Due to
the fluctuating character of turbulent velocity field, a dispersion of particle released
nominally at the same position is observed, that is particles released from the same
position at different time follow different trajectories. This phenomenon is called
turbulent dispersion.
The trajectory of a particle is computed by solving its equation of motion, the BBO
equation, hence the instantaneous turbulent velocity field should be known. How-
ever, this information is not provided by all the turbulence models. RANS models,
for instance, provide a time-averaged velocity field; on the contrary LES models
compute the instantaneous velocity. Therefore, depending on the turbulence model
adopted also turbulent dispersion has to be modelled.
Besides the problem of evaluating the instantaneous velocity field, it has to be taken
into account also the number of trajectories to simulate. In order to obtain statis-
tically independent results a huge number of trajectories should be tracked, thus
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requiring a huge computational time. To avoid this limit a model is needed. There-
fore, turbulent dispersion models have to accomplish two different tasks: to esti-
mate the instantaneous flow velocity in the position of the particle (if not available,
i.e., in RANS simulations), and to reduce the number of particle trajectories which
has to be tracked.
Considering that the aerodynamic model adopted in this work is a RANS model, a
turbulent dispersion model, and in particular the so-called Particle Cloud Tracking

(PCT), will be used and hence described in the following section.

2.5.1 Particles cloud tracking

We use the PCT model [46] to simulate a large number of particles without tracking
them individually. The PCT approach was used in turbulent particle dispersion [47,
48, 49, 50, 51] and validated in turbomachinery and biomass furnaces [52, 53]. In
the PCT model, each trajectory is not related to a particle, but to a group of particles
(a “cloud”), thus representing the evolution of the cloud position as a function of
time:

xc =
∫ t

0
vcdt ′+(xc)0. (2.34)

Here, subscript c refers to the cloud, vc is the velocity of the cloud, and (xc)0 is the
initial position of the cloud, usually at the inflow boundary.

The equation of motion for the cloud is given starting from the Basset–Boussinesque–
Oseen formulation (Eq. 2.33), which, with one-way dependence hypothesis accord-
ing to Armenio and Fiorotto [54], reads as

dvc

dt
= τ

−1
R (〈u〉−vc)+ 〈fff〉+

(
1− ρ

ρp

)
g, (2.35)

where 〈 〉 denotes ensemble average of the enclosed quantity (defined later), fff is
the centrifugal and Coriolis forces, ρp is the particle material density, and τR is the
particle relaxation time, which, for spherical particles, reads as

τ
−1
R =

3
4dp

CD
ρ

ρp
‖〈u〉−vc‖. (2.36)

Here, dp is the particle diameter and CD is the drag coefficient based on the particle
Reynolds number Rep =

||〈u〉−vc||dp
ν

, first introduced in [55]. The initial condition
for vc is given as vc(0) = 〈u〉|t=0.

The ensemble average for the dispersed phase within the cloud is defined ac-
cording to the hypothesis of independent statistical events, and for any quantity θ

it reads as

〈θ〉=
∫

Ωc
θPDF(x, t)dΩ∫

Ωc
PDF(x, t)dΩ

. (2.37)

Here, θ is ensemble-averaged quantity, Ωc is the cloud domain, and PDF(x, t) is
the multi-variate probability density function of the dispersed phase. This definition
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of the ensemble average is appropriate for stationary and non-stationary quantities,
and for both continuous and discontinuous quantities.
The PCT approach assumes that particle position distribution within a cloud is
Gaussian, and the cloud size varies in time according to the properties of the flow.
To this end, the PDF describing the particle distribution within the cloud reads as

PDF(x, t) =
1

(2π)1/2σ
exp

(
−1

2

(
‖x−xc‖

σ

)2
)
. (2.38)

Here, σ is the square root of the variance of particle position, which accounts for
the turbulent dispersion of particles. We will define it in Section 3.4. The cloud size
(cloud radius) is taken as 3σ , and that gives us Ωc. Each cloud is assumed to consist
of perfectly spherical particles with the same chemical and physical characteristics.
Combining Eqs. (2.35) and (2.36), we obtain

dvc

dt
=C′D‖〈u〉−vc‖(〈u〉−vc)+ 〈f〉+

(
1− ρ

ρp

)
g, (2.39)

where
C′D =

3
4dp

CD
ρ

ρp
. (2.40)

2.5.2 Turbulence–particle interaction parameters

The variance is taken to be dependent upon the Lagrangian time scale of the particle-
laden flow, τL, and, according to Baxter [46], its Markovian approximation reads
as

σ
2 = 2(v′)2

cτ
2
L

(
t

τL
− (1− e−t/τL)

)
+σ

2
0 , (2.41)

where τL is the Lagrangian integral time scale defined as

τL = max(τ,τp), (2.42)

with τp and τ the particle motion and turbulence time scales. The fluctuating com-
ponent of the particle velocity for the cloud, driven by the turbulence–particle in-
teraction [56], reads as

(v′)2
c = (u′)2

c

(
1− e−τ/τp

)
=

2
3

k
(

1− e−τ/τp
)
. (2.43)

2.6 Erosion models

The particular application covers a crucial role in the choice of the erosion model.
The erosion mechanism depends on the interaction between materials which have
different mechanical properties and fracture behaviours. In turbomachinery appli-
cations, the interest is usually pointed on turbo-engines, in the case of coal ash,
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metal particle and sand erosion; furthermore, it is common on wind turbines in-
stalled in hard climates, to encounter serious performance damages due to rain and
hail erosion.
As pointed by Tabakoff in [8] "The problem of predicting erosion in rotating ma-

chinery is very complex and has not been satisfactorily discussed in the literature"

and, " The theoretical studies concerning erosion are predominantly empirical.

They involve basic assumption about the process governing material removal".
On the base of this knowledge, we will present and discuss the two erosion model
suitable to treat the applications chosen for the purpose of this thesis, which are
rain erosion on wind turbine blades and sand erosion on metal structures.

2.6.1 Raindrop erosion

Based on the computed data from the flow and particle computations, we can com-
pute the rain erosion on the surface of a wind turbine blade using one of the models
proposed in the literature. Keegan et al. [10] provides a review of the available
models for rain erosion. According to Evans et al. [57], a threshold damage veloc-
ity can be computed as

vD ≈ 1.41
(

K2
mcm

ρ2
wc2

wdw

)1/3

. (2.44)

Here ρw and cw are the density of the water and the compressional wave speed in
water, and dw is the droplet diameter; Km is the fracture toughness of the target
material, and cm is the Rayleigh wave velocity of the target material, defined as

cm =

(
0.862+1.14νm

1+νm

)(
Em

2(1+νm)ρm

)
, (2.45)

with ρm, νm and Em being the density, Poisson’s ratio and Young’s modulus for the
target material.

The threshold damage velocity is the minimum impact velocity of a raindrop
that causes erosion damage to the blade. In quantifying the damage, we will use vD

in combination with other computed data. As a first approximation, one can write
the impact force of a droplet as

Fi =
mwv2

i

dw
, (2.46)

with mw representing the mass of a water droplet, and vi its impact velocity. Com-
bining Eqs. (2.44) and (2.46), the minimum impact force that causes damage to
the blade, Fd , can be computed. Assuming that the damage is proportional to the
impact force and the number of droplets impacting, the damage during the time
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step ∆t can be predicted as

∆D = ∆nw
Fi

Fd
H
(

Fi

FD
−1
)
, (2.47)

where ∆nw is the number of droplets impacting during ∆t, per unit surface area,
and H(·) is the Heaviside step function. We use Eq. (2.47) to predict the erosion
patterns. The impact count, nw, and damage, D, are calculated by summing ∆nw

and ∆D over the number of time steps the PCT computation is carried out.

2.6.2 Sand and coal ash erosion

Grant and Tabakoff developed an empirical model to predict the erosion of ductile
alloys [58]. This empirical relations together with the analysis of particle trajec-
tories in turbomachines, can be used to predict the erosion on different rotating
machine components made by hard particles like coal ash or sand.
Following what presented in [58] and [8], we can define the erosion per unit mass
of impacting particles as

e = K1 f (β1)V 2
1 cos2

β1(R2
T )+ f (V1N) (2.48)

Here β1 is the relative angle between the particle path and the surface, V1 is the
particle velocity, RT is the tangential restitution ratio

RT = 1−0.0016V1 sinβ1 (2.49)

and the functions

f (β1) = [1+CK(K12 sin(pi/21/β0)β1)]
2 (2.50)

f (V1N) = K3(V1 sinβ1)
4 (2.51)

where β0 is the angle of maximum erosion, CK = 1 for β1 ≤ 3β0 and CK = 0
for β1 > 3β0. K1,K12,K3 are empirical constants that have to be determined with
respect to the particular application in terms of particle and eroded structure mate-
rials.
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Chapter 3

Discretization, integration and
interface schemes

In the previous chapter, we defined all the mathematical models adopted to describe
the physics of the problems. Once applied to a particular case, the systems of partial
differential equations defined before, become a set of boundary values problems,
for which, in general, it is not possible to find an analytical closed solution.
Discretization techniques help to find the approximated solution of the boundary
values problem by using numerical schemes and numerical calculus. The expres-
sion of the discretized form of the boundary values problem depends on the tech-
nique and, in general, we can discretize (passing from an infinitesimal description
of the continuum to a finite description of a discretized domain). The main ap-
proaches are the well-known finite differences (FD), finite volumes (FV) and finite

elements (FE).
In this thesis we will adopt the FE method to discretize and solve numerically all
the PDE systems previously defined. The complete treatise and demonstration of
consistency of the method is out from the purpose of this thesis, it is possible to
find an ample literature on the topic, e.g. the book of T. Hughes [40]. We will give
here just a brief description of the fundamentals of the method, passing directly to
its application to our problem in the next sections.
The main constituents of the FEM applied to solve a boundary element problem are

• The variational or weak statement of the problem. To obtain the varia-
tional form of the problem we need to define the trial and test (weights or
virtual displacement) functions, in order to apply the virtual work principle.

• The approximated solution of the variational equations using finite ele-
ment functions

The most famous method to obtain the approximated solution of the boundary prob-
lem in weak formulation is the Galerkin’s method which is an example of so-called
weighted residual methods completely presented in [59].
In the following discussions we will refer to the trial functions maintaining the
nomenclature of the original variable (e.g. with uh for the displacements) and to
the weight functions with an alternative nomenclature (e.g. wh for the virtual dis-
placements). Here, h refers to the characteristic length scale of the mesh, in other
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words, of the discretized domain.

All the FEM formulations regarding the FSI modelling were been implemented
in the already existing in-house code XENIOS++, while a FORTRAN95 interface
was been developed to couple the aerodynamics (XENIOS++), PCT and erosion
(P-Track code) modelling.
XENIOS++ [60] is an OOP (object oriented) software developed with the C++
language. It was verified and used by our group for purely CFD computations
applied to turbomachinery. PC-Track [7] is a FORTRAN-based code developed
and used to study erosion and deposit on turbomachinery parts subjected to particle-
laden flows.

3.1 Finite element stabilized formulation of turbulent flow
equations in ALE frame

We will base all the aerodynamic formulation, basing on what already implemented
in XENIOS++ code [60], extending the same formulation on our moving boundary
problem in ALE frame.
As introduced before, we will solve all the equation systems using the Galerkin’s
least square (GLS) method and in particular (as we will see from the stabilized for-
mulations of the NS problem) the Petrov-Galerkin method.

Given Eqs. (2.13)–(2.14), we can form some suitably-defined finite-dimensional
trial solution spaces for velocity and pressure: S h

u , S h
p and, for now, dedicated test

function spaces for the continuity and momentum equations V h
C and V h

NS.
The finite element formulation of Eqs. (2.13)–(2.14) can be written as follows: find
uh

f ∈S h
u and ph ∈S h

p such that ∀wh
C ∈ V h

C and ∀wh
NS ∈ V h

NS:

∫
Ωt

wh
NS ·ρ f

(
∂uh

f

∂ t

∣∣∣
x̂
+(uh

f −uh
m) ·∇∇∇xuh

f − fh

)
dΩ+

∫
Ωt

εεε(wh
NS) : σσσ(ph,uh

f )dΩ

−
∫

Γh

wh
NS ·hhdΓ+

∫
Ωt

wh
C∇∇∇x ·uh

f dΩ = 0, (3.1)

It is possible to notice how, because of the same integration domain, it is possi-
ble to sum the three weak equations (momentum, continuity and boundary condi-
tion) in one integral form as in Eq. 3.1.
The same approach can be applied to the two equations of the turbulence model,
obtaining the final equations in weak form
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∫
Ωt

wh
k ·ρ f

(
∂kh

∂ t

∣∣∣
x̂
+∇∇∇x · (khuh

f )

)
dΩ−

∫
Ωt

wh
k ·
(

∇∇∇x ·
[(

µ +
µt

σk

)
∇∇∇xkh

])
dΩ

−
∫

Ωt

wh
kSkdΩ = 0, (3.2)∫

Ωt

wh
ε ·ρ f

(
∂εh

∂ t

∣∣∣
x̂
+∇∇∇x · (εhuh

f )

)
dΩ−

∫
Ωt

wh
ε ·
(

∇∇∇x ·
[(

µ +
µt

σε

)
∇∇∇xε

h
])

dΩ

−
∫

Ωt

wh
εSεdΩ = 0. (3.3)

The direct application of the finite element method to the Galerkin least squares
formulation for the solution of incompressible flows, introduces three sources of
instability. Each of those sources must be treated in the formulation of the numeri-
cal scheme in order to achieve a stable and consistent approximated solution.
The first source of instability comes from the incompressible condition which treats
the pressure variable with a single spatial term in the momentum equation, deprive
the system of equations of a pressure evolution equation. This indetermination
gives to the system the possibility of violating the inf-sup condition (known as
Babuska-Brezzi condition [40]) on the stability.
A second effect is due to the modelling of convective non-symmetric terms with
the Galerkin’s shape function, which are symmetric operators. This produces non-
physical oscillation in the solution of the velocity field. It is possible to demonstrate
that the amplitude of the oscillation is a function of the intensity of the convective
transport measured by the Peclet number

Pe =
uh

2Di f f
(3.4)

where u is the local velocity, h the length of the discretization and Di f f the diffu-
sivity.
The final source of instability is related to the so-called reactive terms in the tur-
bulence equations, in other words, the terms proportional to the unknown of the
equation.
Stabilized formulations to solve all of these aspects were been proposed, developed
and successfully used in the last 20 years. In particular

• The PSPG (Pressure Stabilized – Petrov Galerkin) [61] formulation is used
to solve the instability due to the incompressible constraint.

• The SUPG (Streamline Upwind – Petrov Galerkin)[62] formulation is used
to solve the instability on the convective terms

• The DRD (Diffusion for Reaction Dominated problems) technique [63, 64]
is used to solve the instability due to the reactive terms in the turbulence
closure model.
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3.1.1 PSPG formulation

Basing on what proposed in [61] and recalled in [60], the solution of the numer-
ical instability due to the incompressibility constraint is achieved by relaxing the
constraint itself, i.e. making the divergence of the velocity field in the continuity
equation dependent by the pressure.
This approach cannot be directly applied because it causes a loss in consistency
between the final form and the original differential form of Eq. 2.14. In order to
avoid the inconsistency the PSPG technique proposes to introduce a perturbation
of the Galerkin weight function applied to the continuity equation. The PSPG term
assumes the form:

nel

∑
e=1

∫
Ωe

t

1
ρ f

τPSPG

(
∇xqh

)
·
[
Ł(ph,uh

f )−ρ f fh
]

dΩ = 0, (3.5)

where τPSPG is the stabilization factor and

Ł(qh,wh) = ρ f

(
∂wh

∂ t

∣∣∣
x̂
+(uh

f −uh
m) ·∇∇∇xwh

)
−∇∇∇x ·σσσ(qh,wh). (3.6)

which state that the residual of Eq. 2.13 is used for the stabilization, recovering the
consistency with the original model.
The stabilization factor is defined using the form proposed in [65]

τPSPG =
h

2‖U‖
Z(ReU) (3.7)

with h is in this case the diameter of the equivalent sphere at the element, ReU is
the local Re number related to the global velocity and the function Z is defined as
follow

Z(ReU) = coth(ReU)−
1

ReU
(3.8)

3.1.2 SUPG formulation

In general, a discretized description of the non-linear convective terms with sym-
metric operators (e.g. central finite difference) conducts to instability as the algo-
rithm loses the direction of flow propagation. Upwind schemes allow this capability
and avoid the instability with the price of including an additional numerical diffu-
sion.
In the simple scalar upwind schemes, this diffusion is very high and produce a so-
lution, which is stable but highly damped. The Streamline Upwind scheme used
in our implementation, allow to reduce this negative effect, restricting the effect of
the upwind scheme only on the streamline direction.
It can be demonstrated [60], that such an artificial diffusivity is mathematically
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equivalent to modify the Galerkin weight function at the convective term as fol-
lows

w = w+ τSUPGuiwi (3.9)

In order to keep the consistency, this modification is done on all the weight function
of the momentum equation in integral form, giving the final SUPG/PSPG formula-
tion of the ALE-URANSE.
Recalling Eq. 3.1 and defining the test function spaces for the velocity and pressure
V h

u and V h
p , we can find uh

f ∈S h
u and ph ∈S h

p such that ∀wh ∈ V h
u and ∀qh ∈ V h

p :

∫
Ωt

wh ·ρ f

(
∂uh

f

∂ t

∣∣∣
x̂
+(uh

f −uh
m) ·∇∇∇xuh

f − fh

)
dΩ+

∫
Ωt

εεε(wh) : σσσ(ph,uh
f )dΩ

−
∫

Γh

wh ·hhdΓ+
∫

Ωt

qh
∇∇∇x ·uh

f dΩ (3.10)

+
nel

∑
e=1

∫
Ωe

t

1
ρ f

[
τSUPGρ f (uh

f −uh
m) ·∇xwh + τPSPG∇xqh

]
·
[
Ł(ph,uh

f )−ρ f fh
]

dΩ = 0,

In our case, the stabilization factor τSUPG is defined from [66] as

τSUPG =
nen

∑
n

∣∣uh ·∇Nn
∣∣ (3.11)

where Nn is the shape function associated to the node n and nen is the number of
nodes of the element.

3.1.3 DRD-DRDJ formulation

As introduced, the numerical instability associated to the turbulence closure equa-
tions comes from the reactive terms. This source produces significant effects in the
situation in which the convective action becomes negligible, i.e. stagnation points
and boundary layer separation zone as demonstrated by Corsini et al [67] and in
[60].
To solve the problem Corsini in [68] proposed the DRDJ (Diffusion for Reaction
Dominated Problem with Jump Factor) based on the DRD technique (Diffusion for
Reaction Dominated Problem) formulated by Tezduyar and Park [63], which is the
actual technique implemented in the XENIOS++ code. As in the upwind scheme,
the DRDJ technique is obtained introducing an additional diffusive term, which
depends on the Peclet number and on the reaction number defined as

rk =
ckh2

ν + νt
σk

(3.12)

for the turbulent kinetic energy equation and

rε =
cεh2

ν + νt
σε

(3.13)
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for the dissipation rate equation.
Using this approach and following the compact form of [68], we can define the
vectors of trial and test functions φ h ∈S h

φ
and ψh ∈ V h

ψ , with φ h = {kh,εh}T and
so, to define the weak form of the k− ε equations as

∫
Ωt

ψ
h ·ρ f

(
∂φ h

∂ t

∣∣∣
x̂
+(uh

f −uh
m) ·∇∇∇xφ

h +BTCφ
h−Fh

TC

)
dΩ

+
∫

Ωt

∇∇∇xψ
h ·
(

ρ f νTC

(
∇∇∇xφ

h
))

dΩ

−
nel

∑
e=1

∫
Ωe

t

Pstab
TC (ψh) ·

[
ŁTC(φ

h)−ρ f Fh
TC

]
dΩ

+
nel

∑
e=1

∫
Ωe

t

KDC
TCρ f ∇∇∇ψ

h : ∇∇∇φ
hdΩ = 0, (3.14)

where

ŁTC(φ
h) = ρ f

(
∂φ h

∂ t

∣∣∣
x̂
+(uh

f −uh
m) ·∇∇∇xφ

h +BTCφ
h
)
−∇∇∇x ·

(
ρ f νTC

(
∇∇∇φ

h
))
(3.15)

defining the following matrices

BTC =

[
ε

k 0
0 cε2 fε2

ε

k

]
(3.16)

νTC =

 (ν + νt
σk

)
0

0
(

ν + νt
σε

)  (3.17)

FTC =

[
Pk−D

Cε1Pk
ε

k +E

]
(3.18)

Pstab
TC =

[
τSUPG−k 0

0 τSUPG−ε

]
(3.19)

KDC
TC =

[
κDRDJ−k 0

0 κDRDJ−ε

]
(3.20)

Here κDRDJ−k and κDRDJ−ε are the DRDJ diffusivities defined in [63, 69, 70, 68,
71]).

3.1.4 Time integration scheme – Crank-Nicolson

Applying the finite element discretizzation

ui = ∑
a

Na(ξ )Ua
i (3.21)
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it is possible to obtain from the URANS problem the non-linear FE system

M
dU f (t)

dt
+(U f (t)−Um(t)) ·KNL(U f (t))+K(U f (t))+BPP(t) = g(t) (3.22)

where M is the mass matrix, KNL(U f (t)) is the non-linear convective term matrix,
K(U f (t)) is the diffusive term matrix, BP is the matrix of the pressure gradients
and g(t) is the known terms vector.
The numerical integration of this system can be done using the Crank-Nicolson
scheme [72] by discretizing the time derivative and obtain the following form

M
Un

f −Un−1
f

∆t
+θ

[
(Un

f −Un
m(t)) ·KNL(Un

f )+K(Un
f )
]
+BPPn =[

θg(tn)+(1−θ)g(tn−1)
]

− (1−θ)
[
(Un−1

f −Un−1
m ) ·KNL(Un−1

f )+K(Un−1
f )

]
(3.23)

with n the time step number, ∆t the time-step, and setting θ = 0.5 to have the
Crank-Nicolson second order implicit scheme.
An identical approach is used to integrate the k− ε equations.

3.2 FEM formulation for the geometrically non-linear –
finite deformation elasticity

The variational form of Eq. 2.19 is usually obtained considering the hypothesis
of small perturbations with respect to the reference configuration. This allows to
reduce the problem to a very simple set of linear algebraic equations using the FE
method. If we admit that the deformation can become large and finite, it will be
necessary to formulate the problem on the current or deformed configuration, in
order to continue to use the model introduced in Chapter 2.
It has to be notice that the current configuration of the body is unknown and it is
determined at each step of the solution problem. The non-linearity of the model
arises from this last aspect as the base equations suppose linear elasticity, defining
this kind of problem as geometrically non-linear.
As presented for example in [73], we can obtain the final variational form applying
the Galerkin’s technique to Eq. 2.19 with respect to the reference domain and then
to apply the transformation from the reference to the deformed configuration.
It is possible to prove [73] that, at the end of the process, the transformation to the
expressions integrated on the deformed body brings to a form that is practically
identical to the small perturbation theory, except for a single term which keeps into
account for the geometrical non-linearity and for the fact that, at each solution step
the integration domain must be updated.

We can find the variational form, and then the FEM formulation of the structure
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dynamics problem, by applying the GLS method and the FEM discretization to
each term of Eq. 2.19. For a complete description of the method, please refer to
[73].
Let define with capital letters the indices and variables relative to the reference con-
figuration (XI ∈Ω0), keeping the notation of Chapter 2 for the current configuration
variables (xi ∈Ωt). The variation of the Green strain tensor can be written as

δEIJ =
1
2
(δui, j +δu j,i)FiIF jJ = δεi jFiIF jJ (3.24)

where δεi j is the strain matrix from the deformed shape, which is identical to the
small perturbation form, and FiI = (δiI +ui,I) are the deformation gradient compo-
nents. To do not make the notation too heavy, we will omit the subscript s− solid

in the rest of the section.
Defining J as the Jacobian determinant of the deformation gradient, it is possible
to write the transformation from the Kirchhoff stress τi j to the Cauchy stress in
current configuration as

τi j = Jσi j (3.25)

Using Eq. 3.24 and 3.25 we can obtain the variational form of the stress-strain term
of Eq. 2.19 as

δEIJSIJ = δεi jσi jJ. (3.26)

Integrating the expression on the reference domain and then making the transfor-
mation on the integral, we can obtain∫

Ω0

δεi jσi jJdΩ0 =
∫

Ωt

δεi jσi jdΩt (3.27)

From the last expression, we can obtain the matrix form of the discretized equations
applying the FE technique. Let Nn be the element shape function defined at node
n. It can be demonstrated that∫

Ωt

δεi jσi jdΩt = δuT
∫

Ωt

BT
σdΩt (3.28)

where the matrix B can be obtained from Eq. 3.24, by applying the finite element
description of the displacement

ui = ∑
a

Na(ξ )Ua
i (3.29)

in which ξ are the parametric space variables of definition of Na and Ua
i is the nodal

displacement.
In the geometrically non-linear case B = B0+BNL

G and it is possible to demonstrate
that B0 is the same that can be obtained in the linear case for small perturbation,
while the non-linear part BNL

G defines the non-linearity due to the deformation.
The same procedure can be applied to the other two terms (inertial and external
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FIGURE 3.1: Reference and deformed configuration of the struc-
ture domain

forces) of Eq. 2.19 to obtain the residual in variational form∫
Ωt

δεi jσi jdΩt +
∫

Ωt

δuiρ üidΩt −
∫

Ωt

δuiρ fidΩt −
∫

∂Ωt

δuitIds = 0 (3.30)

Recalling again the FE description, we can arrive to the final matrix form of the
problem

fa−KabUT −MabÜT = 0 (3.31)

where fa, Kab and Mab are respectively the generalized force vector, the stiffness
matrix and the mass matrix of the FEM problem, defined as

fa =
∫

Ωt

NaρfdΩt +
∫

∂Ωt

Natds (3.32)

Kab =
∫

Ωt

BT
a DBbdΩt +GabI =

∫
Ωt

BT
a DBbdΩt +

∫
Ωt

Na,iσi jNb,idΩtI (3.33)

Mab =
∫

Ωt

NaρNbdΩtI (3.34)

Equation 3.33 implies the definition of the two terms of matrix B. In particular,
the Gab terms define the geometric non-linear part.

3.2.1 Time integration scheme – Generalized α

The Generalized-α method proposed by Chung and Hubert [74] is used to obtain a
stable time integration scheme for the structure dynamic equations.
Applying the procedure of [74] to Eq. 3.31, and solving with respect to the nodal
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displacement increment vector, we can obtain the following implicit system

[(1−αF)K+ kMM]∆Un =

− KUn−1 +M(kMvU̇n−1 + kMaÜn−1)−
[
(1−αF)fn +αF fn−1] (3.35)

(3.36)

which is completed by the explicit updating step

Ün =
1

β∆t2 (∆Un− U̇n−1
∆t− (0.5−β )∆t2Ün−1); (3.37)

U̇n = U̇n−1 +(1− γ)∆tÜn−1 + γ∆tÜn; (3.38)

Un = Un−1 +∆Un; (3.39)

with the scheme constants defined as follows

γ = 0.5+αF −αM; (3.40)

β = 0.25(1+αF −αM)(1+αF −αM); (3.41)

kM = 1−αM
β∆t2 ; (3.42)

kMv =
1−αM

β∆t ; (3.43)

kMa =
1−αM−2β

2∗β ; (3.44)

(3.45)

where αF and αM are opportunely defined in order to guarantee the stability and
maximum convergence order.

3.3 FEM formulation of the moving mesh equations

We report here the FE formulation discussed in [75] for the moving mesh solu-
tion. Let define the finite element trial and test function spaces as S h = {uh

m|uh
m ∈

[H1k(Ω)]nsd ,uh
m = gh on Γg} and V h = {wh|wh ∈ [H1k(Ω)]nsd ,wh = 0 on Γg}, with

H1k(Ω) the finite-dimensional function space on Ω. Then the Galerkin’s formula-
tion of Eq. 2.25 can be written as∫

Ω

εεεm(wh) : σσσm(uh
m)dΩ =

∫
Γh

wh ·hmdΓ (3.46)

considering that the force vector can be supposed zero for a moving mesh problem.
As introduced in Chapter 2, this method has the peculiarity to keep the mesh qual-
ity properties in the refinement zones, which is a very important property in case
of turbulent flow calculations. The Jacobian-based stiffening, first proposed in [76]
and then improved in [75], allows this capability by modifying the element equiva-
lent stiffness with a term proportional to the cell Jacobian. In particular, if a general
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integral term is expressed in the FE discretization as∫
Ω

[...]dΩ = ∑
e

∫
Σ

[...]eJedΣ (3.47)

with Je = det(∂x/∂ξ )e, the element stiffness alteration occurs as follows

∫
Σ

[...]eJedΣ→
∫

Σ

[...]eJe
(

J0

Je

)Z

dΣ. (3.48)

With J0 a constant dependent on the characteristic size of the problem and Z an
exponent that we will put equal to 1 for all the computations. For further detail and
test cases, see [75, 76].

3.4 Discretized particle equations

In the discretized particle equations, ensemble averaging is carried out over the
discretized cloud domain Ωc =

⋃nelc
e=1(Ωc)e, where (Ωc)e is the cloud element, and

nelc is the number of elements. The cloud elements come from a fixed mesh, which
we call “particle mesh,” and consist of the elements of that fixed mesh within the
radius 3σ (with σ defined as in Eq. 2.41). With that, the discretized version of
ensemble averaging is written as

〈θ〉h =
∑

nelc
e=1
∫
(Ωc)e

θPDF(x, t)dΩ

∑
nelc
e=1
∫
(Ωc)e

PDF(x, t)dΩ
, (3.49)

where the element-level integration is performed by Gaussian quadrature.

3.4.1 Trajectory calculation

Spatially-discretized version of Eq. (2.39) is written as

dvc
h

dt
= ah

c , (3.50)

where
ah

c =C′D‖〈u〉h−vh
c‖
(
〈u〉h−vh

c

)
+ 〈fff〉h +

(
1− ρ

ρp

)
g. (3.51)

Time discretization of Eq. (3.50) is done with a predictor–multicorrector algorithm.
Predictor stage:

(vh
c)

0
n+1 = (vh

c)n +(ah
c)n∆t. (3.52)

Multicorrector stage:

(vh
c)

i+1
n+1 = (vh

c)n +
(
(ah

c)n +(ah
c)

i
n+1

)
∆t
2
. (3.53)
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Here the subscript n is the time level, and the superscript i is the counter for the
multiple corrections. We stop the corrections when

(vh
c)

i+1
n+1− (vh

c)
i
n+1

(vh
c)

i+1
n+1

≤ 2×10−2. (3.54)

At each time step, the PCT model requires the computation of the cloud mean
position and radius, and the identification of the elements contained within the
cloud volume. This is done with the search algorithm described in [77].

3.5 XENIOS++ / FSI-Module: Block-iterative strong cou-
pling algorithm for computational fluid-structure in-
teraction problems

The FSI solution is obtained through a strongly coupled, segregated solution method.
The strong coupling between the four systems (ALE-URANS, k – ε , structure dy-
namics and mesh motion) is achieved by enforcing the consistency at the interface
and between the coupled quantities between different systems, iterating internally
to the time-step until to reach the convergence on all the system residuals.
We can define three main loops, the time loop to solve the unsteady problem, the
outer non-linear loop to solve the implicit coupled systems, and the inner solutions
of the linearized forms. Figure 3.2 shows the flow-chart of the algorithm.
At each time step, the solver executes the following:

• Solution of the ALE-URANS equations loading the time-step mesh veloc-
ities vm and enforcing from the previous non-linear iteration or time-step
(if it is the first iteration) the solid velocity as boundary flow velocity. Let
Γi f = Γis = Γi be the interface domain between the solid and the fluid, the
interface condition for the fluid can be written as

u f −vs = 0, on Γi (3.55)

The turbulence variables values are obtained from the previous iteration or
time-step (if it is the first non-linear iteration).

• Solution of the two-equation turbulence system, using the field variables al-
ready computed.

• Solution of the structure dynamic system, applying the aerodynamic traction
vector at the interface

σσσ s ·n−h = 0, on Γi (3.56)

Here h = σσσ f ·n and n is the unit vector normal to the interface surface.
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• Updating of the explicit variables such as the structure velocity and acceler-
ation.

• Iteration until the convergence on the total residual norm is achieved

• Solution of the mesh motion imposing the local displacement on Γi

• Explicit computation of the mesh velocity

FIGURE 3.2: Rationale of the FSI algorithm

In this algorithm we can find the two logics introduced above, indeed, the so-
lution procedure can be considered segregated as we solve separately in the non-
linear loop the main physical systems (N− S, k− ε , Elasticity), but also block-
iterative because we move the mesh at the end of the convergence problem. In
theory, to obtain the best consistency with fluid-structure interaction problems, we
should use a full monolithic approach, which solves all the equations together, also
for the mesh motion. However avoiding this further non-linearity produces more
stable and convergent solutions as the Jacobian of the cell is not changing during
the solution of the physical systems.
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The domain is composed by a single mesh in which the solid and fluid ele-
ments are defined in the solver with different physical properties and for which
different finite element matrices are assembled. This approach results in an auto-
matic management of the interface in the case of automatic domain decomposition
for parallel computation. This approach is to not confuse with the immersed bound-
ary approach, indeed, here the boundary is well defined in the mesh and the mesh
moves following the structure displacement.
The inner linear solution of the matrix systems is done using the GMRES solver
provided in the open source PETSC library. We use XENIOS++ code, self-produced
by our research group, for all the computations. Appendix A reports the result for
a validation test of the solver.

3.6 MASAI Interface for erosion with adapted geometry
problems

As reported also in the introduction, it is difficult to find applications and references
on numerical solvers that predict the erosion due to particle-laden flows and, at the
same time, update the eroded surface and calculation domain for the aerodynamic
solution.
The MaSAI algorithm, written in FORTAN 95, has been developed in order to
sequentially perform three different analysis:

1. A CFD analysis to investigate the flow stream;

2. A PCT analysis to obtain the erosion data;

3. A Moving Mesh analysis to evaluate the displacement of the eroded bound-
ary and re-mesh the domain accordingly.

Figure 3.3 shows the scheme of the algorithm. MaSAI starts acquiring the refer-
ence numerical domain and the initial and boundary conditions. Once the geometry
is defined, MaSAI (Multiphase Solver and Adaptive-mesh Interface) launches the
CFD solver of XENIOS. As the flow field is computed than the PCT solver PC-
Track [7] starts and assumes that flow field as an input. At the end of PC-Track
simulation, the erosion pattern is known and MaSAI computes the displacement
of the grid nodes. Since for very small displacements the variations in flow field
are negligible, we set a minimum erosion displacement (elim) below which both
the grid and flow field are unaffected by the erosion. At each iteration MaSAI
evaluates the maximum erosion displacement (emax) and computes the scale factor.
Multiplying the predicted erosion displacements by we are sure that at each itera-
tion the maximum value of eroded material always equals elim, thus avoiding the
issue of non-linear time-dependent phenomena. This of course results in a contrac-
tion/expansion of the actual simulated time at each MaSAI step.
The computed erosion displacements are then applied to the grid and the Adaptive
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Mesh code of XENIOS provides a new grid accounting for the eroded geometry.
Thanks to this operation, the flow field varies as the erosion process evolves and the
geometry of the target body changes. Then, the erosion prediction varies according
to the changing flow field. The simulation can be kept running since an exit con-
dition occurs. The exit condition can be set in terms of both maximum simulated
time and maximum eroded material, thus providing an extremely flexible tool.
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FIGURE 3.3: Rationale of the MaSAI algorithm
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Chapter 4

Passive control of performance
and load with morphing
geometries

4.1 Performance improvement on wind turbine blade sec-
tion

During the last twenty years, the development process on wind turbines implied
an increment in the size of the rotor. As an effect of this, the maximum operating
turbine size reaches 5-6 MW in nominal power, with blade length of 60 or more
meters. These particular dimensions are designed especially for offshore applica-
tions, because of the transportation problem associated to large structures.
Considering this rotating system, phenomena directly involved with the life cycle
and performance evolution are not simple to be predicted and the current expe-
rience does not allow to know in advance how these structures behave over long
periods. The main factors that influence the velocity at the rotor blades are:

• Atmospheric boundary layer;

• Small turbulent scale fluctuation;

• Wind gusts;

• Interaction between fluid and rotor blade.

The relative aerodynamic field resulting from these phenomena is unsteady, and it
presents a variable inflow velocity, which involves a variation of the angle of attack
at the section level, connected to a variation of the aerodynamic load. This fluctua-
tion produces a fatigue load on the blade, but also inside the structural components
of the wind turbine, as the transmission system. This aspect is relevant also in terms
of expected rotor performance; in fact, the aerodynamic surface is usually designed
with BEM methods, which take into account mainly the steady behaviour of the
airfoils.
A possible solution that can be useful for damping these oscillations and better
managing the flow variability is to use a variable geometry, based on a concept of
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smart blade (see for example [78, 79]).
We present here a numerical study on the active and passive trailing edge morph-
ing. In particular, the study focuses on the aerodynamic response of a midspan
blade section, in terms of FSI and driven surface deformation. The work of this
section is an updated version of the work published in [80].
In order to contextualize the 2D problem, we used as flow condition the local aero-
dynamic quantities recorded for the same section, using the NREL wind turbine
simulator FAST, applied to simulate the 5MW NREL wind turbine.
The two systems (active and passive control) have two different operating logic,
thus they require to be evaluated in two different conditions. We simulate the pas-
sive system in a turbulent wind, while the active system follows a simple start-up
procedure.
The passive system is modelled and solved through the FSI algorithm. The active
morphing is simulated using the same model described above, but imposing a time-
varying deformation of the trailing edge surface, so in this case the FSI does not
account for the structure dynamics as it is an external constraint of the solution.

4.1.1 Turbine description

The definition of the baseline wind turbine used as base in this work is reported
in [81] and corresponds to the 5 MW HAWT designed by the National Renewable
Energy Laboratory. Table 4.1 summarizes the main characteristics of the wind
turbine, while Table 4.2 reports the baseline blade properties.
Table 4.3 illustrates the aerodynamic design of the blade using the AeroDyn [82]
nomenclature. The blade node locations, labelled as "RNodes", are directed along
the blade-pitch axis from the rotor centre (apex) to the blade cross sections. The
element lengths, "DRNodes", sum to the total blade length of 61.5 m, divides the
wind turbine in 17 section. "DU" class of airfoil refers to Delft University and
"NACA" refers to National Advisory Committee for Aeronautics.

4.1.2 Reference airfoil

In a wind turbine blade, the midspan sections are critical because they contribute
(as the tip region) to the performance, but they also experience an oscillation of
the relative wind due to the turbulence. This effect is greater than the effect that
the wind turbulence has on the tip region, making the mid region more subjected
to aerodynamic load vibrations. Furthermore, we focus the solution on a two-
dimensional view. This is the reason why it is not possible to obtain accurate results,
when this solver is applied on the innermost and outermost regions, which are
characterized by the presence of secondary flows. These motivations led towards
a reference airfoil located in the mid-tip span region, and in particular, located on
the 12th nodal position of Table 4.3. At this position, we can find a NACA 64517
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airfoil, with a local relative velocity that can be extracted from the strip theory
calculation.

Rating 5 MW
Rotor orientation, configuration upwind, 3 blades
Control variable speed, collective pitch
Rotor, hub diameter 126 m, 3m
Hub height 90 m
Cut - in, rated, cut – out wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut – in, rated rotor speed 6.9 rpm, 12.1 rpm

TABLE 4.1: Turbine data

Length 61.5 m
Overall mass 17740 kg

TABLE 4.2: Blade data

Node (-) RNodes (m) DRNodes (m) Chord (m) Airfoil Profile (m)
1 2.8667 2.7333 3.542 Cylinder
2 5.6000 2.7333 3.854 Cylinder
3 8.3333 2.7333 4.167 Cylinder
4 11.7500 4.1000 4.557 DU40-A17
5 15.8500 4.1000 4.652 DU35-A17
6 19.9500 4.1000 4.458 DU35-A17
7 24.0500 4.1000 4.249 DU30-A17
8 28.1500 4.1000 4.007 DU25-A17
9 32.2500 4.1000 3.748 DU25-A17
10 36.3500 4.1000 3.502 DU21-A17
11 40.4500 4.1000 3.256 DU21-A17
12 44.5500 4.1000 3.010 NACA64-A17
13 48.6500 4.1000 2.764 NACA64-A17
14 52.7500 4.1000 2.518 NACA64-A17
15 56.1667 2.7333 2.313 NACA64-A17
16 58.9000 2.7333 2.086 NACA64-A17
17 61.6333 2.7333 1.419 NACA64-A17

TABLE 4.3: Blade sections data

4.1.3 Active case analysis

We are interested in the performance estimation of the starting manoeuvre of the
wind turbine, related to an application of an active morphing concept, applied on
the trailing edge of the airfoil.
We superimpose the trailing edge deformation as a function of the expected rela-
tive wind velocity. The deformation was achieved through a simple parabolic shape
function applied to the trailing edge coordinates.
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The active morphing process starts from the full-deformed configuration, corre-
sponding to the cut-in relative wind speed, and finishes in the undeformed config-
uration at the nominal relative wind speed. The section is subjected to the velocity
path reported in Figure 4.2, characterized by a relative wind starting velocity from
5 m/s (rotor stopped and cut-in wind velocity), to reach the nominal operating point
condition linearly.
During the evolution process, the angle of attack has been kept constant, exploiting
the variable speed control system, reported in Table 4.1. In this way, it is possible
to preserve similar triangle input speed of the wind turbine. Figure 4.1 shows the
morphing process evolution. The airfoil trailing edge area was rotated by 3 degrees
as to increase the camber. In this case, the trailing edge deflection rate is considered
constant.

FIGURE 4.1: Active morphing, configuration at t = 0 s.

FIGURE 4.2: Relative wind velocity considered in the start-up
case

4.1.4 Passive case analysis

In the passive control case, we want to estimate the response of the trailing edge
morphing system, when the airfoil is subjected to a variable input velocity, which
simulates the typical turbulence scenario in the nominal operating point of the wind
turbine.
The turbulence simulator TurbSim [83] is used to obtain the wind input for FAST
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FIGURE 4.3: Section relative wind velocity, computed for the
passive morphing case

FIGURE 4.4: Section angle of attack, computed for the passive
morphing case.

[1] in order to obtain the local aerodynamic quantities corresponding to an IEC-
NTM (Normal Turbulence Model) [84]. After that, we take the relative wind ve-
locity magnitude (Figure 4.3) and local angle of attack (Figure 4.4) at the corre-
sponding section. Finally, we applied this velocity profile using a tabular velocity
input at the inlet boundary of the CFD domain.

4.1.5 Fluid mesh and boundary conditions

The adopted grid is an "O-type" construction with an average radius of about 80
chords. In this way, it is possible to identify two different areas with different
boundary conditions. In the specific, there will be a fixed-wall and a moving-wall
region on the airfoil surface, the last one starting from the 60 % of the chord length
until the trailing edge. The mesh domain counts 2.1E+04 hexahedral cells assem-
bled in a structured way. The coupled interface is characterized by a y+ dimension
of 1.
Standard boundary conditions were applied to the RANS computations of incom-
pressible flow (Table 4.4).
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Inflow V0 = 12 m/s; TI = 5%
Time varying velocity (IEC-NTM)

Outflow Zero gradient
Fixed wall No-slip condition
Moving wall No-slip condition
Radial far field Zero gradient

TABLE 4.4: Fluid phase boundary conditions.

4.1.6 Solid mesh and boundary conditions

For this application, a lower order model for the structure dynamic is used to sim-
ulate a geometry similar to what proposed in literature. The morphing structure
can be solved as a truss structure, modelled with mono-dimensional linear bar ele-
ments. The inside part of the airfoil profile was modelled through the frame struc-
ture shown in Figure 4.6.
We applied different mechanical properties to obtain an automatic response in term
of displacement, considering the induced stresses generated on the airfoil by exter-
nal conditions. In this way, the airfoil is able to adapt the trailing edge configuration
in order to minimize the load magnitude in this area.
We choose the mechanical properties of the solid elements such as to avoid flutter
instabilities and deformations magnitude out of the linear deformation field:

• Isotropic material

• Young Modulus: 2 GPa

• Material Density: 1500 kg/m3

• Element Section Area: 0.01 – 0.05 m

It is possible to observe that these properties can be easily obtained with a particu-
lar polymeric material, which are of common use in wind turbine technology.
The structure is constrained imposing a zero displacement at the two leftmost
nodes.
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FIGURE 4.5: Fluid computational domain.

FIGURE 4.6: Frame structure applied for the trailing edge.

4.1.7 Results

It is possible to observe the results in terms of the main aerodynamic parameters.
Figure 4.7 shows the final comparison in terms of lift coefficient, drag coefficient
and their ratio between the standard (rigid) and the morphed configuration of the
airfoil in the active case. As expected, the lift coefficient trend for the morphed
configuration stands at higher levels than the standard. This difference tends to
fade near the nominal operating point, where the airfoil curvature returns toward
the original configuration. The drag coefficient trends, in the morphed and standard
configuration, are comparable. This is the reason why the aerodynamic efficiency,
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defined as the ratio CL/CD, assumes a higher value in the morphing configuration.
We must observe before analyse the passive case results that, since the structural
model is a linear model, the material and structure choice must be such that the
maximum elements deformation is limited to the linear field (small deformations).
Figure 4.8 shows the result of the lift coefficient for the passive case. As expected,
the morphed and the standard configuration show a comparable trend. This is due
to the limited area assigned to the morphing process, limited only in trailing edge
airfoil region. The main difference in lift production is observable in terms of
oscillation amplitude. However, also for this application we can note a decrease in
term of drag coefficient, as shown in Figure 4.8.
Figure 4.8 reports also the aerodynamic efficiency; the morphing configuration in
this case can be more efficient than the original airfoil. We choose to represent a
half-second window in this case because of the high frequency associated to the
unsteady aerodynamic solution.

FIGURE 4.7: Active case, aerodynamic coefficients.
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FIGURE 4.8: Passive case, aerodynamic coefficients

4.1.8 Conclusions

We investigated the effect that an active and a passive trailing edge morphing con-
trol could have on a section of a large wind turbine.
In order to have an indication of this effect, we chose to simulate the turbine con-
ditions, which we expect are the most significant for the application of these two
ways of control. In particular, we simulate a symbolic start-up manoeuvre for the
active case, and a normal turbulence at the rating wind velocity for the passive case.
The study produces the following results:

• Active morphing: in the start-up procedure, the morphed airfoil produces a
greater aerodynamic efficiency, as effect of the greater lift coefficient.

• Passive morphing: during the power production state, in normal turbulence
conditions, the drag of the morphing airfoil is less than the rigid section case.
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This can be translated in a potential increment in blade torque.

Using a FEM solver based on linear beam elasticity for the structural displacement,
the solution has a limitation on the displacement magnitude. A possible future
development can be to study the effect of a big deformation structure, which can
be probably useful in terms of vibrational load reduction. This improvement will
be applied to the study of a similar system on axial fan blades, which is the topic of
the next two sections.

4.2 Passive morphing control system for fan blades - 2D
study

Large fan systems used in tunnel and metro ventilation are usually subjected to a
range of different operating conditions. In this range, the flow rate, the fan velocity
but also the inlet flow direction, vary, leading the fan to operate far from the rating
design point. Furthermore, in real application the flow at the inlet is not uniform
and of not constant velocity, as an effect of the unsteady nature of a real flow field,
and due for example to the presence of near structures and other obstacles. In these
off-design conditions, the fan rotor is subjected to vibrational loads and loss in
performance.

For this kind of product, the development of an active control system to reduce
the negative effects in off-design and unsteady inlet conditions is not a practicable
way. Conversely, passive systems always represent an interesting solution for their
constructive simplicity and low costs.

The system we have applied and tested is a passive control based on the aeroe-
lastic deformation, applied at the trailing edge of the blade. This solution is based
on something already presented and studied for aircrafts (e.g. [85, 86]), where
the elastic and morphing trailing edge is used to reduce the aerodynamic drag and
noise. It was also adopted and for wind turbines [22, 87, 88], where the applica-
tion of a deformable trailing edge is supposed to be useful to reduce the vibrational
loads, noise and efficiency losses, due to the random nature of the turbulent wind.
Other applications can be found in [89, 90, 79].

The study presented in this section refers to the work published in [91].

4.2.1 Fan and blade description

As base of all the computations, we take the geometry and flow conditions of the
FLÄKT WOODS 224JMTS, which is a reversible large axial fan for tunnel venti-
lation. Table 4.5 reports the fan main characteristics.

We choose a reversible fan because we would to test the control system evalu-
ating its effect especially on the stall and off-design loads, and a reversible airfoil
has a greater attitude in manifesting stall and flow separations. The choice is also
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related to the availability of experimental data of the overall aerodynamic perfor-
mance

Figure 4.9 shows the problem set-up with respect to the blade geometry. We
take as reference to obtain the cascade, the section at r = 0.99 m (88 % of the fan
radius). In this way, we are far from both the tip region and the hub region, reducing
the most than possible the error due to neglect the three-dimensional aerodynamic
effects.

The domain is obtained from the section extracted as in Figure 4.9. The cascade
has a local pitch of 388.8 mm, the section cord c is 210 mm long and forms an angle
θ of 20 degrees with the disc plane.

FIGURE 4.9: Reference blade and section.

Fan model 224JMTS
Fan diameter 2.240 m
Hub diameter 0.8 m
Blade radius 0.72 m
Tip gap 0.009 m
Tip chord 0.21 m
Hub chord 0.26 m
Base section thickness 0.06 m
Tip section thickness 0.012 m
Number of blades 16
Nominal speed 985 rpm
Nominal power 192 kW

TABLE 4.5: Fan characteristics.
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Length 0.05 m
Thickness 0.001 m
Young modulus 300 MPa
Poisson coefficient 0.4
Density 1000 kg/m3

TABLE 4.6: Flexible trailing edge extension characteristics.

4.2.2 Elastic trailing edge device

To simulate a flexible extension of the trailing edge we use a rectangular bar with
the geometrical and mechanical properties listed in Table 4.6. The density and stiff-
ness are such as to obtain a finite deformation under the assumed flow conditions,
but avoiding flutter instabilities. The chosen properties can be obtained using a
polymeric material. The material is assumed isotropic and with uniform density.

4.2.3 Computational domain and boundary conditions

Figure 4.10 and 4.11 show some details of the computational domain used to simu-
late the cascade. The inlet boundary is one cord far from the leading edge while the
outlet is at two cords of distance from the trailing edge (along the cord direction).
The cascade condition is imposed by making periodic the two lateral edges.

The grid is of structured type, made by linear quadrilateral elements, Table
4.7 reports the domain characteristics. As the turbulent solver use a low-Reynolds
model, the y+ at wall is 1.

The overall implicit equation system, solved by the non-linear solver, is com-
posed by 121460 degrees of freedom, considering the 9 degrees of freedom for
each node (u f , p, k, ε ,us, û). Table 4.8 reports the boundary condition for the four
systems.

The single grid approach allows to switch on and off the presence of the elastic
bar, by simply communicating to the solver which elements are fluid and which are
solid.

4.2.4 Test set-up

We investigate the effect of the application of the elastic device on three operating
conditions. These test conditions are based on experimental data, relative to blade
load tests conducted by the fan manufacturer. All the experimental data and fan
information have been used by courtesy of Fläkt Woods Ltd (UK) and obtained via
private communication.

Table 4.9 reports the specifications of the three test cases. TEST 1 corresponds
to a minimum load condition; TEST 2 corresponds to the point of maximum total
efficiency of the fan; while TEST 3 corresponds to the case in which the maximum
load on the blade was recorded during the experimental tests.
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FIGURE 4.10: Detail of the grid (leading edge).

Considering the relative flow velocity, the Reynolds number at the inlet varies
from 1.43E+06 to 1.45E+06, while the maximum Mach number is 0.33, justifying
the assumptions of turbulent incompressible flow.

FIGURE 4.11: Detail of the grid (morphing surface).

Element type QUAD4
Total number of nodes 17685
Total number of elements 17296
Fluid elements 17096
Solid elements 200
Wall nodes 305
Interface nodes 105
Average y+ at wall 1

TABLE 4.7: Computational domain characteristics.
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Fluid velocity
Inlet u f = utest

Outlet Zero gradient
Wall and interface u f −us = 0
Left and right Periodic
Pressure
Left and right Periodic
Other boundaries Zero gradient
Turbulence quantities
Inlet TI = 5%
Outlet Zero gradient
Wall and interface (k,ε) = (0,0)
Left and right Periodic
Structure displacements
Cantilever constraint us = 0
Interface σσσ s ·n−h = 0
Mesh displacement
wall and interface û−us = 0
other boundaries û = 0

TABLE 4.8: Boundary conditions of the implicit systems.

4.2.5 Frame of reference

The frame of reference used to define the solution domain is an orthonormal right-
handed set of unit vectors, defined as follows:

• O (origin): airfoil center of gravity

• Z (blade axis): vector parallel to the blade axis, directed from the hub to the
tip.

• Y (rotation/thrust axis): vector lying on a plane normal to the rotor disc plane,
parallel to the rotation axis of the fan and directed opposite to the fan angular
velocity vector.

• X (in-plane axis): vector lying on the rotor disc plane, defined to close the
orthonormal right-hand system.

Figures 4.12, 4.15 and 4.18 show the defined system, projected on the cascade
plane.

4.2.6 Results

The following sections report the results of the three numerical tests with a brief
description of the plots. A complete and general discussion on all the results is
given at the end of the section.

We identify as CASE A the case with no elastic device and as CASE B the case
with the device (FSI solution). Figures 4.12, 4.15 and 4.18 show the contour plots
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Test 1
Flow rate 99.88 m3/s
Total efficiency 61.8 %
Maximum measured stress the blade 21.92 ± 2.94 MPa
Test 2
Flow rate 79.29 m3/s
Total efficiency 75.3 %
Maximum measured stress the blade 23.49 ± 2.67 MPa
Test 3
Flow rate 51.03 m3/s
Total efficiency 52.9 %
Maximum measured stress the blade 24.47 ± 16.00 MPa

TABLE 4.9: Test conditions.

of the flow field quantities in the blade vane, for both the cases, with and without the
elastic surface at the trailing edge. Here we choose to describe the fields with three
non-dimensional quantities. In particular, we use the pressure field (p̃ =

p−pin f
ρ f

)
to have a view on the load acting on the blade surface. The velocity magnitude
(|ũ|= |u f |

|uin f | ) and the streamlines to see the velocity field and the vorticity magnitude
(ξ = ∇̃× ũ) in order to see the turbulence and wake characteristics.

The other figures report the components of the aerodynamic force per unit
length (as this is a 2D computation), acting on the blade section. In these plots, we
use as directions to project the force, the in-plane direction (X) and out-of-plane
direction (Y) (where ”plane” is the rotor disc plane, e.g. see Figure 4.12).

It is important to notice that we do not change the original blade geometry
and we test this device by adding an additional surface. As the aerodynamic load
depends on the wet surface, in all the tests the aerodynamic force results greater
in case B, which has a 1/4 of cord of length more. If we normalize the loads,
evaluating the aerodynamic coefficient of the section, we can show that there is a
reduction of the blade load associated to the use of the morphing system in the high
load cases (Test 2 and 3). Starting from this consideration, we can obtain the plots
of Figure 4.13, 4.14, 4.16, 4.17, 4.19, 4.20 evaluating the aerodynamic coefficients
as follows:

Cx = Fx
0.5ρ f c|uin f |2

(4.1)

Cy =
Fy

0.5ρ f c|uin f |2
(4.2)

Where Cx and Cy are respectively the in-plane and out-of-plane aerodynamic force
coefficient.

All the simulations have started from a steady solution of the flow field (ob-
tained with the bar as rigid in the case B) and have carried on setting a fixed
∆t = 0.001sec.
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Test 1

In this test condition, the local angle of attack is about 6 degrees. The flow is
attached and the elastic surface mean displacement does not affect significantly the
flow field, except for a little oscillation of the pressure field due to vortex shedding
associated to the elastic response of the bar. We can observe differences between
the two cases looking at the aerodynamic force plots in Figure 4.13 and 4.14. Here
two aspects are evident:

• the average load is higher in the case of trailing edge extension. As discussed
before, the motivation is the increased wet surface of the section and we will
ignore this aspect in future considerations.

• the effect of the elastic device is to increase the unsteadiness of the flow field,
resulting in an oscillation of the aerodynamic load.

After the initial transient, the aeroelastic coupling reaches a stable oscillating con-
dition for which it is possible to extract the vibrational characteristics. Starting
from the displacement data of the elastic bar, we obtain a frequency of 13.6 Hz, an
amplitude of 0.2 mm and a mean value of 2.5 mm and 0.89 mm in the Y and X
direction respectively.
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FIGURE 4.12: Test 1, flow field non-dimensional variables (1:
pressure, 2: velocity magnitude, 3: vorticity). a) Original geome-

try; b) Elastic device at the trailing edge
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FIGURE 4.13: Test 1, aerodynamic force coefficient in the rotor
plane direction (x) and vertical displacement of the elastic surface

(tip point).

FIGURE 4.14: Test 1, aerodynamic force coefficient in the out-of-
plane direction (y) and vertical displacement of the elastic surface

(tip point).

Test 2

This test corresponds to the maximum efficiency condition. The local angle of at-
tack is around 10 degrees and although a small separation region at the trailing edge
is observable, the flow can be watched as attached. Here, the effect of the elastic
extension on the flow field can be notice as a small reduction of the thickness of the
wake released by the trailing edge (Figure 4.15, contours 2 and 3).
The instability related to the vortex shedding is present. However, this is not the
only observable effect; indeed, the elastic surface responds directly to the main flow
characteristics, assuming an average finite deflection upward.
The average aerodynamic coefficients are reduced from case B with respect to case
A in both the directions. Therefore, we can state that the bar deflection "drives"
better the flow reducing the aerodynamic drag, but at the same time, it reduces the
pressure jump between suction side and pressure side, reducing the lift.
It is possible to define a stable oscillating condition with the following characteris-
tics: 6.7 Hz of frequency, 0.5 mm of amplitude, and a mean value 3.85 mm in Y
direction and 1.17 mm in X direction.
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FIGURE 4.15: Test 2, flow field non-dimensional variables (1:
pressure, 2: velocity magnitude, 3: vorticity). a) Original geome-

try; b) Elastic device at the trailing edge
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FIGURE 4.16: Test 2, aerodynamic force coefficient in the rotor
plane direction (x) and vertical displacement of the elastic surface

(tip point).

FIGURE 4.17: Test 2, aerodynamic force coefficient in the out-of-
plane direction (y) and vertical displacement of the elastic surface

(tip point).

Test 3

In this case, the angle of attack of the section is about 13.5 degrees and a larger sep-
aration region is present. The fan is working in a condition with high aerodynamic
load on the blade.

This time, the effect of the device on the flow field is more evident, especially
from the velocity and vorticity fields in Figure 4.18. The presence of the elastically
reacting surface at the tail of the airfoil seems to reduce the flow separation and the
trailing edge stall.

This behaviour reflects on the aerodynamic forces, especially in the x direction,
where a significant reduction is observable (see Figure 4.19 and 4.20). This effect
represent what we were expecting from this kind of passive device, i.e. to reduce
the load oscillations in stall conditions.
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FIGURE 4.18: Test 3, flow field non-dimensional variables (1:
pressure, 2: velocity magnitude, 3: vorticity). a) Original geome-

try; b) Elastic device at the trailing edge
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FIGURE 4.19: Test 3, aerodynamic force coefficient in the rotor
plane direction (x) and vertical displacement of the elastic surface

(tip point).

FIGURE 4.20: Test 3, aerodynamic force coefficient in the out-of-
plane direction (y) and vertical displacement of the elastic surface

(tip point).

This time the oscillation assume a complex shape, due to the unstable and com-
plex dynamics associated to the largely separated flow.

General observations

The analysis of all the results leads to identify three main effects that the elastic
passive device could have on this system. The first observation confirms the hy-
pothesis that, leaving the trailing edge of the airfoil free to deflect as an effect of
the aerodynamic load, allows to passively control the load magnitude and to reduce
the stall in off-design, high incidence conditions. This aspect is dominant in Test 3
(Figure 4.18, 4.19 and 4.20).

The second consideration has to be done on the negative effect that the system
has on the attached flow conditions. Here, it is possible to observe that, after a cer-
tain transient, the system starts to oscillate with a stable oscillation, which induces
a vibrational load on the blade. This second phenomenon is dominant in Test 1, but
is present also in Test 2, where both the effects give a noticeable contribution to the
final observed dynamics.
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The final observation has to be done on Test 2. Indeed, in this case, both the
effects described above are present and they are acting in a considerable manner.
It is important to notice that Test 2 is the case closest with the design condition
at which the blade should work, and that both the effects reduce the performance.
In fact, the first reduces the load and so the output of the fan, while the second
introduces a vibratory load.

4.2.7 Conclusions

We tested the effect that a passive elastic device applied to the trailing edge of a
large axial fan blade, has on the flow field and on the local sectional load of the
blade.

The FSI solver has been applied to an extracted section of the blade at a high
midspan radius; the section is treated as part of a periodic cascade, in three different
inflow conditions, solving the field with and without the elastic device.

We can conclude from this study that the application of a morphing passive
device to the reference blade results in two different effects, with respect to the
flow condition. When the flow is totally attached, the fact of having an elastically
reacting surface in the field leads to unsteadiness and oscillations for constant inlet
velocities. On the other hand, the study shows that this solution has a potential
applicability in controlling the load and the separation region in stall conditions.

However, both of these two effects have a negative impact on the performance
near the design point, because of the lift reduction and vibratory load generation.

Nevertheless, this last consideration does not exclude the possibility of devel-
oping technologies in this direction and an interesting extension of this research
could be a parametric study oriented

• to different lengths and materials, e.g. reducing the length and the material
density, to have a more detailed map on the stall control capability, but also
trying to reduce the aeroelastic vibration in stable flows;

• to a device integrated in the original section geometry, as a morphing trailing
edge region.

4.3 Passive morphing control system for fan blades - 3D
study

The work presented in [91] and in the previous section, represents the first part
of a main study completed by this section. Here we extend the application to the
three-dimensional blade, investigating the fluid-structure interaction dynamics also
including all the effect neglected in the 2D problem and, in this way, completing
the virtual testing of the device.
The work is subdivided in two phases. First, the aerodynamic field is solved in
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order to find the span region in which to apply the control surface. Then, we can
move to the fluid-structure interaction (FSI) simulations using the information on
the test conditions and device material from the previous 2D study.

4.3.1 Fan description

We use for this study the fan blade of the FLÄKT WOODS 224JMTS (Figure 5.1),
already used in the 2D study (Table 4.5).
For our computation we consider the blade installed on the hub with a pitch angle
of 20 degrees. Figure 5.1 shows the fan and a sketch of the CAD model of the
entire rotor.

4.3.2 Computational domain

The simulation has been done on a periodic domain relative to the single blade
vane. Indeed, we suppose for now that the fan is operating in a clean inlet condition
thus that the inlet flow is not affected by any distortion. This approach allows to
save computational costs and simulation time, that is important considering the
complexity of the coupled final system.
Figure 4.22, shows views of the domain which is a structured, multiblock domain
of hexahedral elements. The frame of reference used to generate the domain is
defined as follows

• Origin, point located at the intersection between the blade and fan axes;

• Y axis, axis of rotation, directed upwind with respect to the inflow absolute
velocity;

• Z axis, corresponding with the blade CG axis, pointing in the radial direction;

• X axis, automatically defined to close the right hand frame

The overall computational mesh counts 1 million of elements subdivided in two
main blocks, the structural block relative to the morphing surface and composed by
4.e+03 elements that form the solid three-dimensional structure, and the fluid block
composed by the remaining elements. To guarantee a correct solution at wall we
set the wall space such to have an average y+ ' 1. Figure 4.22 shows also a section
view of the mesh near the trailing edge.
The fluid domain is extended for one chord upwind from the leading edge and two
chords downwind from the trailing edge.
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FIGURE 4.21: Fan view and cad model.
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FIGURE 4.22: Mesh: 3D view (top), lateral view (middle), sec-
tion detail (bottom).

4.3.3 Boundary conditions and mechanical properties

We solve the system in the blade relative frame of reference, which is a system of
axes that starts from the configuration outlined in the previous section, rotating with
the blade. Figure 5.5 shows the boundary patches where are defined the boundary
conditions reported in Table 4.11
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Fluid phase

On the fluid domain we impose an inlet velocity which can be expressed in terms
of relative velocity as

uin f = ω×x f |inlet +Vinlet ŷ (4.3)

The function for the inlet absolute velocity Vinlet is obtained by scaling on the right
flow rate the empirical function reported in the plot of Figure 4.23. In the same way
is obtained the radial distribution of turbulent kinetic energy, scaling an empirical
distribution in order to have an average turbulence intensity (TI) at inlet of about
5%.
In addition to the boundary condition we have to define the physical properties of
the flow, which is air with standard density ρ f = 1.225 and kinematic viscosity
ν = 1.5e−05. The reference pressure is set to pre f = 0Pa.

Deformable solid parts

The elastic surface is constrained to the trailing edge of the blade with a simple
cantilever constraint.
The spanwise extension and placement of the surface will be decided after a pre-
liminary CFD study, in order to apply it to the most useful zone.
The material and thickness properties of the moving surface are the same as in [91]
and we recall them here in Table 4.10.
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FIGURE 4.23: Radial distribution of the inlet absolute velocity
for a flowrate of 51 m3/s.
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FIGURE 4.24: Boundary patches

Length 0.05 m
Thickness 0.001 m
Young modulus 300 MPa
Poisson coefficient 0.4
Density 1000 kg/m3

TABLE 4.10: Flexible trailing edge extension characteristics.

Moving mesh

The moving mesh solver needs constraint at the equivalent solid boundary. In
this case, the elastic domain will take the displacement directly from the struc-
tural solver, while for all the other boundary patches we simply fixed to zero the
mesh displacements.

4.3.4 Operating point for FSI computation

Starting from the fan experimental data we are interested in high loaded conditions
in order to see the maximum effect on the blade. We have the maximum load before
the stall corresponding to 52m3/s of flow rate.
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Fluid Structural Mesh
Patch solver solver motion

1. Inlet u f = uin f us = 0 um = 0
grad(p) = 0

k = kin f low (T I = 5%)

ε = εin f low

2. Outlet Zero gradient us = 0 um = 0
3. Case u f = ω×xcase us = 0 um = 0

grad(p) = 0
k = 0
ε = 0

4. Hub u f = 0 us = 0 um = 0
grad(p) = 0

k = 0
ε = 0

5-6 Periodic patches Periodicity us = 0 um = 0
7. Blade surface u f = 0 us = 0 um = 0

grad(p) = 0
k = 0
ε = 0

8. Morphing surface u f = 0
grad(p) = 0

k = 0
ε = 0

9. Morphing surface fastening u f = 0 us = 0 um = 0
grad(p) = 0

k = 0
ε = 0

TABLE 4.11: Boundary conditions.

4.3.5 Results

Dimensioning and placement of the morphing surface

Starting from CFD studies of the fan it is possible to see the aerodynamic field and
select the portion of the blade in which the device could be more useful. We know
from [91] that this kind of passive control should have the maximum benefit at high
angle of attack configurations, reducing the stall of the blade sections.
What is important for the actual purpose is to catch the span region with a higher
probability to find the flow separation. Figure 4.25 shows the velocity field com-
puted from the initial state CFD. From this picture is evident that the root and
low-mid span regions are the most affected by flow separation. We use this result
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to place the device, which will be not on the entire blade span, leaving the tip and
high-span region free. Indeed, we know from [91] that this morphing surface can
introduce unsteady oscillation and vibrations at low angle of attack, which are com-
mon incidences at high span locations.
Figure 4.26 shows the blade with the attached device.

FIGURE 4.25: CFD solution of the reference blade. Velocity field
section at three different radius [m/sec].

FIGURE 4.26: 3D view of the blade with the elastic surface at the
trailing edge
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FSI solution: elastic displacement

The displacement of the surface results in a complex and three-dimensional mode.
The twist of the blade and so the three-dimensionality of the geometry covers an
important role on the complexity of the response. However, considering the low
stiffness of the material coupled with the small thickness of the surface, we can no-
tice that the motion is mostly affected by the aerodynamic forces, that, as we will
see in the next sections, is related to the surface displacement because of the FSI
coupling.
In order to show the displacement shape of the surface we plot on Figure 4.27 the
contour and deformed shape corresponding to the time steps in the simulation (3
seconds of simulation using a 3E-03 sec of time step) corresponding to the maxi-
mum and minimum displacement recorded on all the nodes.
Figure 4.28 shows the time solution of the displacement of two reference nodes, in
particular the node with higher displacement and the node at the tip of the higher
section of the elastic surface.
Starting from the observation of these two plots, we can extract the frequency of
the response (as the structure is elastic and the solver linear) which is about 1.18 Hz.

FIGURE 4.27: 3D displacement ([m]) solution of the elastic sur-
face at time 0.8 sec (left) and 1.2 sec (right)
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FIGURE 4.28: Main oscillation cycle in the time history of the y
component of the displacement for nodes 1 (maximum displaced

node) and 2 (higher section tip).

FIGURE 4.29: Detail of pressure contour plot at time 0.8 sec and
1.2 sec

FSI solution: unsteady aerodynamic field

The elastic displacement of the control surface affects the aerodynamic field in
terms of vortex structures, pressure unsteadiness and velocity field. Figure 4.30
reports the view at different span-wise sections of the pressure field in the two ob-
servation points outlined in the previous section. In particular, we choose the same
time steps of Figure 4.27 which are the most significant for an evaluation of the
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unsteadiness of the fields due to the surface displacement (and thus due to the cou-
pling between the two physical systems). It is possible to observe how, due to the
elastic motion, the pressure field results as an unsteady field. The detail showed in
Figure 4.29 underlines the generation of pressure fluctuation due to vortex struc-
tures generated by the trailing edge motion.

FIGURE 4.30: Sectional contour of pressure [Pa] field at time 0.8
sec and 1.2 sec

Observations on performance and effect of the control device

Recalling the results obtained in [91] we can confirm the stabilization effect on
the separating flow at the root sections of the blade. Figure 4.31 demonstrate this
statement showing the reduction of the separation area. However, the aerodynamic
field in the middle-span section become unstable because the presence of the elastic
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device, which starts an unsteady and unstable vibration when coupled with the
aerodynamic. The low stiffness used to define the material plays an important role
in allowing this unstable coupling and further study on the choice of a suitable
material could solve this problem.

FIGURE 4.31: Velocity field [m/s] at R = 0.5 m

The three-dimensional nature of the surface oscillation and the shape of the un-
steady aerodynamic field conducts to a final consideration about the possibility of
studying FSI problems on fast rotor blades using the two-dimensional approxima-
tion at the section. Indeed, it is evident that the three-dimensional effects are not
negligible in this kind of solution unless to accept a certain grade of approximation.

4.3.6 Conclusion

We studied the effect of a passive morphing control surface applied to the trailing
edge of the blade of a large horizontal axis fan, simulating in time the unsteady
system with a fluid-structure interaction solver.
Recalling the previous study on the same topic but at the section level (two-dimensional
study), we complete the numerical testing of the control device verifying its effect
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also in three-dimensional case. To do it, we chose from the sectional study the
most significant operating point showing that for this kind of geometry, the three-
dimensionality of both the flow and structure response introduce a not negligible
complexity on a FSI problem.
The device, which was supposed to mitigate the flow separation in high loaded con-
dition, works properly for the near root radial positions, but the unstable aeroelastic
motion produces pressure fluctuation at the mid-span region.
Further studies could be done on different materials and configurations, keeping in
mind the importance of using strongly coupled solver in order to catch the non-
negligible mutual interaction between the structure dynamics and the surrounding
aerodynamic field.
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Chapter 5

Advanced FSI in industrial fan
blade simulation

Industrial and aeronautical fan technology followed in recent years a continuous
development assisted by numerical CAE (Computation aided engineering) tools.
Furthermore, the application of new materials and manufacturing techniques per-
mits to generate complex three-dimensional designs with high aerodynamic per-
formance. Ample literature can be found on design and testing of horizontal axis
fan blade with CFD (e.g. [92]) and FEA tools (e.g. [93]), with very high fidelity
models adopted to study aerodynamics and structure stresses.
Although the high level of accuracy showed by CFD and structural FEA models,
they start to lack in consistency with the physical problem when the coupling ef-
fects between aerodynamic field and structure response become not negligible for
the purpose of the analysis.
Aeroelastic problems in turbomachinery attract the attention of industrial and aca-
demic researchers [94, 95, 96, 97]. At the moment, the most part of the literature
produced for this topic presents studies on flutter and mistuning or flow unbalanc-
ing effect on the aeroelastic response, using the one-way weak coupling approach,
see for example [95]. The assumption of small or negligible fluid-structure cou-
pling is often adequate in the case of turbomachinery flutter. However, Sadeghi
and Liu demonstrate in [98] that this assumption breaks down for light and slender
blades (small inertia structures). Furthermore, the nonlinear flutter behaviour is not
predictable with linearized models and one-way coupling models. Nonlinear flutter
cases in turbomachinery were demonstrated by Carstens and Belz in [99] and by
Sadeghi and Liu in [100, 98].
Although many research studies were conducted by Tezduyar and Takizawa (on
parachute applications [101]), Bazilevs (on wind turbines [102]), strongly coupled
FSI simulations on fan blades with three-dimensional non-linear models are much
less common to find in the literature. The work of Sadeghi and Liu [103] on the
coupled fluid-structure simulation for turbomachinery blade rows, shows an ap-
plication of the method to a transonic fan. In this work, the authors solve the
eigenvalue problem for the linear structure dynamics, which guarantees a fast and
filtered solution, neglecting the high-frequency modes. The aerodynamic is solved
through a 3D-RANSE model with good agreement with the experimental data.
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Following a very similar logic, we present in this chapter a work in which the
strongly coupled solver is used to study the FSI on a large subsonic fan, showing
the effect on both the fluid part and the structural part, focusing on the aspect di-
rectly related to the coupled dynamics.

5.1 Problem set-up

5.1.1 Fan description

As in the previous chapter we use the fan blade of the FLÄKT WOODS 224JMTS
(Figure 5.1, Table 4.5). The choice of the fan is simply related to the availability of
experimental data of the overall aerodynamic performance.
Also in this case we consider the blade installed on the hub with a pitch angle of 20
degrees.

5.1.2 Computational domain

The simulation has been done on a periodic domain relative to the single blade
vane, similar to what presented in the previous chapter. Indeed, we suppose also
in this case that the fan is operating in a design condition and the inlet flow is not
affected by any distortion. This approach allows to save computational costs and
simulation time, aspects which are important to keep into account considering the
complexity of the coupled final system.
Figure 5.2 shows a view of the domain, which is structured, multiblock and com-

posed by hexahedral elements. The frame of reference is defined as follows:

• Origin, point located at the intersection between the blade and fan axes;

• Y axis, axis of rotation, directed upwind with respect to the inflow absolute
velocity;

• Z axis, corresponding with the blade CG axis, pointing in the radial direction;

• X axis, automatically defined to close the right hand frame

FIGURE 5.1: Fan view and cad model.
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FIGURE 5.2: Mesh: 3D view.
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FIGURE 5.3: Structural mesh

The computational mesh is subdivided in two main blocks, the structural block
(Figure 5.3) composed by 4.e+04 elements that form the solid blade structure, and
the fluid block composed by 5.e+05 elements. To guarantee a correct solution at
wall we set the wall space such to have an average y+ ' 1, while for a complete
development of the flow field we extended the domain 1 chord upwind from the
leading edge and 2 chords downwind from the trailing edge. Figure 5.4 shows a
section view of the mesh near the trailing edge.

5.1.3 Boundary conditions

We solve the system in the blade relative frame of reference. Figure 5.5 shows the
boundary patches where are defined the boundary conditions reported in Table 5.1



80 Chapter 5. Advanced FSI in industrial fan blade simulation

X

YZ

FIGURE 5.4: Mesh section detail

Fluid phase

The BC structure for the fluid case is very similar to what already defined in Chapter
4 for the 3D case. On the fluid domain, we impose the inlet velocity in terms of
relative velocity as

uin f = ω×x f |inlet +Vinlet ŷ (5.1)

The function for the inlet absolute velocity Vinlet is obtained by scaling on the right
flow rate the empirical function reported in the plot of Figure 4.23. In the same way
is obtained the radial distribution of turbulent kinetic energy, scaling an empirical
distribution in order to have an average turbulence intensity (TI) at inlet of about
5%.
Again, the physical properties of the flow are referred to air with standard density
ρ f = 1.225 and kinematic viscosity ν = 1.5e−05. The reference pressure is set to
pre f = 0Pa.

Deformable solid parts

The blade is considered constrained to the hub with a simple cantilever constraint.
The material is aluminium alloy with the main properties reported in Table 5.2.

Moving mesh

The moving mesh solver needs constraint at the equivalent solid boundary. In
this case, the elastic domain will take the displacement directly from the struc-
tural solver, while for all the other boundaries we simply fixed to zero the mesh
displacements.
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FIGURE 5.5: Boundary patches

5.1.4 Operating point for FSI computation

Looking at the efficiency curve in Figure 5.6 we can see that the maximum effi-
ciency point is for a flow rate of about 79.3 m3/s. We chose this point for the FSI
calculation as we are interested in to verify how the aeroelastic coupling affects the
performance and the aerodynamic field, thus, in a virtual prototyping point of view,
we should focus on the significant operating point used in the fan design.

FIGURE 5.6: Fan efficiency from experimental data
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Fluid Structural Mesh
Patch solver solver motion
1. Inlet u f = uin f us = 0 um = 0

grad(p) = 0
k = kin f low (T I = 5%)

ε = εin f low
2. Outlet Zero gradient us = 0 um = 0
3. Case u f = ω×xcase us = 0 um = 0

grad(p) = 0
k = 0
ε = 0

4. Hub u f = 0 us = 0 um = 0
grad(p) = 0

k = 0
ε = 0

5-6 Periodic patches Periodicity us = 0 um = 0
7. Blade interface u f = 0

grad(p) = 0
k = 0
ε = 0

8. Blade fastening u f = 0 us = 0 um = 0
grad(p) = 0

k = 0
ε = 0

TABLE 5.1: Boundary conditions.

Material Aluminium alloy
Young modulus 64 GPa
Poisson coefficient 0.34
Density 2700 kg/m3

TABLE 5.2: Blade material properties.

5.2 Results

5.2.1 Performance verification with CFD

We need to solve the CFD with fixed geometry in order to give to the FSI solution
a correct initial condition.
To verify the CFD solution we can compare the total pressure jump obtained with
the steady solution of the RANSE problem with the experimental data. Figure 5.7
shows the fan curve of the total pressure jump with respect to the flow rate.

From the range of solution obtained we continue our analysis from the one
corresponding to the maximum efficiency flow rate. Figure 5.8 shows a sectional
view at different blade span location of the velocity field for the selected point. In
this case the structure is considered fixed so the solution process has been carried
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FIGURE 5.7: Total pressure jump.

on until the steady state.

5.2.2 FSI solution: elastic displacement

Figure 5.9 shows the total displacement of the blades points. From a static point of
view, the displacement of the structure results in a coupled bending-torsion mode
as in most turbomachinery applications that present blades with high aspect ratio.
The bending is directed upwind, out of the disk plane, as effect of the lift force.
The blade is mechanically balanced on is axis and with respect to the centre of ro-
tation so the torsion is due to an unbalanced aerodynamic pressure at the section,
e.g. a finite distance between the aerodynamic centre and the section elastic centre
coupled with the aerodynamic moment of the section.
In order to give a measure of the structure dynamics we chose to show the dis-
placement of the tip nodes at the leading and trailing edges. Figure 5.10 shows the
time history of the displacement of these two node. Neglecting to comment the
displacement in axial direction (Z), which is only related to the centrifugal forces,
we can focus on the other two components related to the aeroelastic motion. It is
very interesting to notice that the phase of the nodal displacement is shifted. This
is a very common effect in aeroelasticity due to the strong coupling of the aerody-
namic forcer and the structure motion, although the magnitude of the displacement
is very small due to the high blade stiffness. Indeed, the chosen blade is an old de-
sign blade made with a high stiffness material that, coupled with an high stiffening
effect of the centrifugal force, does not allow large displacements.

5.2.3 FSI solution: unsteady aerodynamic field

We choose as observation point the instant of maximum displacement at tip, how-
ever, to choose a different step would bring to similar results. Indeed, the difference
is related to the fact that the FSI solution field is unsteady and the unsteadiness in
the field can be only generated by the elastic motion.
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Figure 5.11 shows respectively the difference between velocity and pressure fields,
made between the steady CFD and the FSI cases. It is possible to notice how the
elasticity of the blade affects the field around it, producing pressure oscillations in
time and space and conditioning the velocity field as effect of the moving boundary.

5.2.4 Observations on performance

As explained, the high stiffness of the structure and its motion does not allow large
deformations. The maximum amplitude of the aeroelastic oscillation is in the order
of 1 mm. This low value indeed cannot affect in a considerable way the perfor-
mance of the fan as Table 5.3 reports. Thus, we can orient for this study the analysis
of the results just at the observation of the dynamic of the fields.

Solver Total pressure jump [kPa]
CFD 1147.34
FSI 1150.28

TABLE 5.3: Performance comparison, total pressure jump.

5.3 Conclusion

The numerical fluid-structure interaction analysis was applied to study an axial fan
blade. Using a dedicated finite element solver we were able to obtain in one simu-
lation the solution of the unsteady turbulent flow and structural motion in the blade
vane.
The blade motion results in a small and phase shifted vibration composed by a cou-
pled bending-torsional mode. As expected, the bending motion is directed upwind
(toward the suction side) and out-of-plane, while the torsional vibration is princi-
pally due to aerodynamic unbalancing at the blade section (effect of flow separation
at the trailing edge and blade twist.
The analysis of the flow field influenced by the structure motion shows the develop-
ment of pressure fluctuation at the blade surface, these fluctuations do not affect the
performance because of the high stiffness of the structural system. However, this
kind of effect can affect the aeroelastic stability, as they will be amplified in cases
of lighter and softer materials or more slender designs. The development of CAE
tools able to solve these coupled systems will give a very useful testing platform
for future fan virtual prototyping.
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FIGURE 5.8: Velocity magnitude [m/sec] at 20 %, 60 % and 90
% of blade span
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FIGURE 5.9: Blade displacement magnitude.

FIGURE 5.10: Tip nodes displacements. top: X component; mid-
dle: Y component; bottom: Z component

FIGURE 5.11: Difference of velocity (up) and pressure (down)
fields between steady CFD and FSI simulation
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Chapter 6

Numerical simulation with
adaptive boundary method for
predicting time evolution of
erosion processes

This section presents the application of the interface MaSAI algorithm, presented
in Chapter 3. The algorithm connects the two codes for flow field and particle mo-
tion and deposition simulations to study with a new approach the time evolution of
erosion on a target body.
This approach shows a big potential for those applications where a long time sim-
ulation is important but not possible with the classical numerical techniques. Solid
particles such as dust, sands, ash particles from combustors, volcanic ashes, despite
the filtering systems are often dragged by the flows evolving in turbomachinery.
These particles might impact a surface of the turbomachinery (typically blade or
vane surfaces) and stick to or erode it. Particle deposition and erosion (which is
the focus of this work) alter the target surface geometry, which in turn affect the
aerodynamic of the machine. Numerical prediction of such phenomena are usually
solved adopting a one-way coupling approach since particle concentration is very
small (less than 1.0E-06) [104]. This means that the flow is not affected by the
particles and their effects on surface geometry, and the particles are dragged by
the same flow field during the simulation. So far, a number of studies have been
performed according to this approach. Tabakoff in 1970s [105] was a pioneer of
numerical pre-diction of erosion process in turbomachinery applications, keeping
working in this field for more than 40 years, and mostly focusing his study in tur-
bine erosion (i.e., [106, 107]). His experiments and numerical simulations opened
the way to several other scientists and researchers. For instance, just to cite some
studies published in the last decades, Ghenaiet simulated the erosion process on
a small radial compressor [108] and a ventilating system [109]. Suzuki and Ya-
mamoto [110] performed a numerical prediction of sand erosion in a single-stage,
axial compressor. Mazur et al. [111] numerically studied particle erosion pro-cess
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time evolution of erosion processes

in the main stop valve of a steam turbine; Mack et al. [112] uses numerical sim-
ulations to predict the erosion on guide vanes and in labyrinth seals in hydraulic
turbines. In some previous works, our group adopted Tabakoff models to simulate
the erosion process in several turbomachinery applications, from industrial fans to
wind turbine blades (i.e., [113, 114, 115, 116, 117, 118, 119]).
In the cited studies, numerical predictions do not account for the flow field changes
due to erosion caused geometry variations of the target bodies, however this aspect
may be relevant, especially turbomachinery, to predict the body life, its structural
integrity, the time evolution of the erosion process or the performance degradation
of a given machine. In these cases, the use of a coupled solver allows to account
for the effect of boy shape changes, and also increases the accuracy of prediction.
In this work, we simulate the time evolution of particle erosion using moving-mesh
fluid-structure solver, coupled with a particle tracking and erosion code. The use
of a run-time mesh motion technique allows to account for the time evolution of
erosion effects on body shape, and in turn on flow field, avoiding to rebuild the
mesh at each geometry change.
Particle erosion rate is predicted adopting the Tabackoff model reported in [8], ac-
counting for particle impact velocity and angle, and material properties of both the
particles and target surface. According to the computed erosion rate, mesh of the
solid body is moved and the flow field computation repeated with the new geome-
try.
In order to show the potential of this approach we study the erosion process of a
metal cylinder immersed in a high-Reynolds, uncompressible flow. Results will
show the time evolution of erosion process and its effect on flow field.

6.1 Case in study and computational details

We define as sample case to test the algorithm, a metal cylinder in a channel flow
with sand particles. The geometry of the domain is depicted in Figure 6.1. Al-
though the geometry is three-dimensional, we force periodicity on the z direction
in order to reduce the flow complexity and avoid complicated three-dimensional
effects other than the ones introduced by a non-symmetric erosion. The computa-
tional domain is a structured mesh of 5.0E+04 hexahedral elements and is used for
both the aerodynamic and particle clouds dynamics calculations. Figure 6.2 shows
a sketch of the grid.
As we are defining a virtual application, the particular initial and boundary con-
ditions values are not crucial until they belong to the range of applicability of the
mathematical models adopted. In this sense, we choose to simulate a flow with
Reynolds number of about 6.0E+05 and Mach number 0.1. The turbulence model
is a so-called low-Reynolds model, so the only constraint on the computational do-
main is to set y+ = 1 at the wall boundary. The outlet and inlet surface are far
enough to avoid a bad conditioned flow at the cylinder.
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The same discussion can be done for the particle cloud phase. The clouds proper-
ties are chosen to obtain a significant and physically consistent effect on the erosion
shape. Therefore, we set the integration time-step and initial clouds positions and
dimensions, consistently with the geometry and aerodynamic field.
Table 6.1 reports the boundary and initial conditions for both the aerodynamic and
moving mesh solvers, while Table 6.2 reports the main properties of fluid and par-
ticles.
In particular, as for the solid phase we assumed that it consists of coal ash particles,
and stainless steel is assumed as target material. These materials can be found in
real applications, such as in the case of an induced draft fan used for exhaust extrac-
tion in coal-fired power plants. Silicon reach ash particles dragged by the exhaust
are very erosive and the fan undergoes severe erosion [120].
The total amount of simulated particles is here divided into six clouds (each con-
taining 50 M particles) uniformly distributed along an inlet line covering a cylinder
diameter size (Figure 6.3). Clouds inlet velocity equals the gas velocity, and clouds
enter the domain at each step of the simulation. It is worth noting that the inlet
position of the clouds is not perfectly symmetric with respect to the cylinder; this is
done on purpose in order not to have e perfectly symmetric erosion pattern. Within
each cloud, particles have identical size and properties and are distributed follow-
ing a Gaussian curve, according to Baxter [47]. Moreover, particles are assumed to
be spherical, non-rotating and non-reacting.
For the operation of MaSAI algorithm we set as minimum erosion displacement
elim = 2.5mm.

FIGURE 6.1: Geometry of the numerical domain: inlet (red line),
outlet (blue line), periodic (gray surface), flow direction (green

arrow).
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FIGURE 6.2: Grid of the numerical domain with a zoon on the
cylinder region..

Aerodynamic solver

Patch Variable Value

Inlet Velocity 100 m/s
Pressure Zero gradient

TI 5%
Cylinder Velocity No slip

Pressure Zero gradient
k, ε (0,0)

Outlet All Zero gradient
Periodic patches All Periodicity

Moving mesh solver

Patch Variable Value
Inlet All displacements Zero
Oulet All displacements Zero
Channel walls All displacements Zero
Periodic patches Z displacement Zero
Cylinder All displacements u = ue

TABLE 6.1: Boundary and initial conditions for aerodynamic and
moving mesh solvers.



6.2. Results and discussion 91

Fluid phase

Density 1.225 kg/m3

Dynamic viscosity 18.27 µPa s

Particles

Particle material Coal ash
Particle density 2000 kg/m3

Particle diameter 5.0 µm
Cloud number 6 (per step)
Cloud initial size 0.8 m
Number of particles per cloud 50 M
Cylinder material Stainless steel
Cylinder density 7600 kg/m3

TABLE 6.2: Properties of fluid and particles.

FIGURE 6.3: Cloud inlet line (blue line)..

6.2 Results and discussion

The surface of the eroded cylinder at different steps of the simulation is reported
in Figure 6.4. The cylinder surface was opened and reported on a 3D diagram: z
axis refers to the z direction of the numerical domain (Figure 6.3); θ is the angular
position (in radiant) on the cylinder surface, being 0 the stagnation line; the third
axis represent the cylinder radius and it is normalised with the diameter, thus the
non-eroded cylinder radius is equal to 0.5 in these figures. As shown in the figures,
at the first step the more erosive clouds are the two closer to the stagnation line,
as expected. They produce a slightly asymmetrical erosion pattern on the cylinder
surface, due to the non-perfectly symmetric starting positions of the clouds. This,
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of course, affects the flow dynamics close to the cylinder and the motion of the
successive clouds. Indeed, starting from step 2 the erosion patterns become more
asymmetrical. The difference in erosion pattern at different steps is summed up by
Figure 6.5. It represents the partial erosion patterns on the cylinder surface at step
0 (Figure 6.5 left) and step 6 (Figure 6.5 right): the loss of symmetry is evident.
Cloud trajectories at different steps are reported in Figure 6.7. As shown, the dif-
ferences are not very pronounced however, since even a small difference in the
impact angle may provoke a relevant difference in erosion rate, they are enough to
affect the erosion behaviour of the particles. The erosion peak in each step is equal
to 2.5 mm as set in the MaSAI interface, which means about 16 months in actual
time. It is worth remembering that the actual simulated time, depends on the num-
ber of clouds, the number of particles per cloud, the flow velocity, and the material
properties of both the particle and the target material.

FIGURE 6.4: Erosion evolution (normalized dimensions), steps
0-6; θ=0 stagnation line.
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FIGURE 6.5: Normalized erosion patterns: step 0 left, step 6 right
(Blue: no erosion, 0; red: 1).

FIGURE 6.6: Pressure field and streamlines from the first (left)
and last (right) iteration.

Figure 6.6 shows a comparison between the aerodynamic field developed with
the original geometry (left) and after the erosion (right). Here two very interesting
and important aspects come out. First, the aerodynamic field, and in particular the
pressure field, changes its shape even for a small amount of erosion. The main
motivation is not related to the magnitude of the eroded material but to the shape
that the erosion has. Indeed, the non-symmetry in the erosion shape plays the main
role in the change of aerodynamic field, which appears, as evident from the wake
streamlines, to follow the same non-symmetry.
The second consideration is automatically related to this coupling between erosion
of geometry and aerodynamic field, pointing the attention on the importance of the
coupling between these two aspects in order to obtain a consistent solution. As we
can see from Figure 6.5, the non-symmetry of the aerodynamic field is reflected
by the distribution of erosion magnitude. In particular, we can point out that as
we obtain a first non-symmetry of the erosion, this will be totally non-symmetric
toward all the iterations. This behaviour is due to the fact that the mutual interaction
between the erosion and the resultant aerodynamic field as an amplificatory role
for the geometric non-symmetries. By looking at the distribution of the pressure
coefficient, it is possible to see a general reduction of its value in the rear part of our
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sample with respect the initial field. This is because the eroded surfaces generally
produce a higher reduction of the pressure coefficient. Indeed, since the erosion is
higher in the lower part, we obtain in this part a higher reduction of the pressure
coefficient starting from the first iteration.

FIGURE 6.7: Cloud center trajectories evolution, steps 0-6.

6.3 Conclusions

In the present study, a new approach to simulate the time evolution of erosion on a
target body is presented. In this approach the effect of the change of the body ge-
ometry due to the erosion is accounted for, and it affects both the flow and particle
cloud dynamics still keeping them one-way coupled, as in the great majority of the
turbomachinery applications.
This approach shows a big potential for those applications where a long-time sim-
ulation is important but is not possible with the classical numerical techniques. In
particular, in all those applications, the interactions between the erosion and the
change in the aerodynamic field due to the change of geometry have to be kept
in consideration. As we reported in the previous paragraph, the coupling of these
phenomena has an amplificatory role for the non-symmetries of all the physic quan-
tities.
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Prediction and study of rain
erosion on wind turbine blade
with FEM-PCT

This section reports the update of the work [114], then published in [113].
Wind turbines at high latitudes or offshore are subjected to heavy rain. In large
horizontal-axis wind turbines (HAWT), at normal operating conditions, the blade-
tip velocity range is 90–110 m/s, resulting in rain-driven erosion that influences
the turbine performance. Field studies [23, 121] show that the maximum power
for a turbine with deeply eroded blades could be reduced as much as 20% of the
rated nominal power. Wood [122] and 3M [121] reported that, in severe climates,
serious damage to the blade leading edge can be seen within two years of operation.
These findings indicate the significant role erosion could play in the wind-turbine
maintenance scheduling and even in the early stages of the wind-turbine design.

As in any turbomachinery erosion analysis, the dynamics of the dispersed phase
carried by the flow is determined by the inertia and drift velocity of the particles.
The physical and chemical properties of both the particles and the target surface
play a role in the erosion process. Therefore accurate representation of the particle-
laden flow is essential in reliable computational turbomachinery analysis and de-
sign, and that needs to be complemented with case-specific erosion models [9].

In 1970s, several researchers, motivated by in-service erosion in aero-engines,
started developing methods for computing the particle trajectories and related ero-
sion in gas turbine components. For example, Tabakoff and coworkers [123, 124,
125] carried out particle-trajectory computations in axial and centrifugal turboma-
chinery, substantiating the interaction between the particle dynamics and the iner-
tial forces in rotating cascades. Later computational studies [126, 127] focused on
various modeling aspects of sand erosion. In particle-laden flows, Corsini et al.
[128] pointed out turbulence–particle closure modeling as one of the main com-
putational challenges. In wind-turbine erosion, most work reported focused on
maintenance and technology issues related to protective coatings [129, 23, 130,
131, 132, 133, 134, 121]. While rain erosion in wings has been studied systemati-
cally in dedicated experimental test facilities [135, 130, 136], for wind turbines the
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experiments have been performed on blade specimens rather than the entire blade
[129, 23].

In this application, we present a method for computational analysis of rain ero-
sion in wind-turbine blades, which is modeled as a special case of particle-laden
flows in turbomachinery. The focus here is on the turbulence–particle interaction
and erosion in a HAWT, which has a rated power of 6 MW [114]. The equations
are solved in the rotating reference frame of the turbine rotor. Consequently, the
computations are based on the version of Eq. (3.10) that includes the noninertial
terms, and in the implementation of the stabilized formulations these terms are just
added to the other source terms. The linear solver uses 5 outer and 5 inner GM-
RES iterations, with SOR preconditioning. For more sophisticated preconditioning
techniques designed for incompressible-flow computations with the SUPG/PSPG
method, see [137, 138, 139, 140, 141].

7.1 Description of the wind turbine

In this study, we design and use a blade for a 6MW, 3-blade HAWT rotor. The
main characteristics of the rotor are given in Table 7.1. Table 7.2 provides the
airfoil cross-sections used in the chord and twist design, which is based on the
Blade Element Momentum (BEM) theory with tip and root loss correction factors
[142]. Specifically, we use the same airfoils as those in the 5MW NREL [81] wind
turbine.

Rated wind speed (m/s) 12
Design rated power (kW) 6,000
Rotor radius (m) 61
Number of blades 3
Rated rotor speed (rpm) 15
Nominal TSR 8
Hub radius (m) 3

TABLE 7.1: Rotor characteristics, where “TSR” is the tip-speed
ratio

Radial position (m) Airfoil
10.0 DU 99-W-405
17.5 DU 99-W-350
22.5 DU 97-W-300
29.0 DU 91-W2-250
37.0 DU 93-W-210
46.0–60.0 NACA 64-618

TABLE 7.2: Airfoil cross-sections of the blade



7.2. Results 97

FIGURE 7.1: Mesh for the PCT computation. The arrows repre-
sent the cloud initial velocities

In the flow computation the mesh is unstructured, with 4.76 million nodes,
4.24 million hexahedral elements, 2.28 million tetrahedral elements, and 0.09 mil-
lion pyramid elements. The mesh is structured in the PCT computation, with 1.24
million nodes and 1.20 million hexahedral elements. The PCT domain surrounding
the blade extends 3 mean chords from the leading-edge side, and 2 mean chords
from the other sides. This domain size for the PCT computation is sufficient in
using a large-enough portion of the already computed flow field around the blade.
Globally, 50 million droplets, each having a 2 mm diameter, enter the domain in 10
identical clouds (see Figure 7.1). Each cloud has an initial radius of 7.5 m, with the
initial positions arranged in such a way that we have a uniform raindrop distribution
along the blade. The initial velocity of each cloud is equal to the flow velocity at
the cloud center. Droplet and target-material properties are given in Table 7.3.

7.2 Results

7.2.1 Comparison to BEM computation

We first compare, at the nominal operating point, the result from the SUPG/PSPG
computation to data from a standard BEM computation with NREL FAST[1]. Ta-
ble 7.4 shows the out-of-plane force and torque acting on the blade, obtained from
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the SUPG/PSPG and BEM computations.
The difference between the torques predicted is less than 3%, and the difference
between the out-of-plane forces is even less.
Table 7.5 shows, for the SUPG/PSPG computation, the components of the forces
and moments acting on a single blade, together with the rotor thrust and power
output.

Water density (kg/m3) 1,000
Droplet diameter (mm) 2
Compressional wave speed in water (m/s) 1,490
Density of target material (kg/m3) 1,150
Fracture toughness of target material (MPa m1/2) 1.0
Young’s modulus of target material (GPa) 3.32
Poisson’s ratio of target material 0.38

TABLE 7.3: Droplet and target-material properties

SUPG/PSPG BEM
Out-of-plane force (kN) 280 278
Torque (kN m) 1,282 1,316

TABLE 7.4: Out-of-plane force and torque acting on a single
blade, obtained from the SUPG/PSPG and BEM computations

X Y Z
Pressure forces (kN) 4.3 -39.7 279.9
Pressure moments (kN m) -38.8 -11,069.4 -1,355.4
Viscous forces (kN) 0.1 1.9 0.4
Viscous moments (kN m) -0.4 -11.9 73.7
Rotor thrust (kN) 840.9
Rotor power output (kW) 6,039.9

TABLE 7.5: Components of the forces and moments acting on
a single blade, together with the rotor thrust and power output,

obtained from the SUPG/PSPG computation

7.2.2 Erosion patterns

We portray the erosion patterns in terms of the impact count (nw) and the damage
(D). The impact count depends only on the cloud dynamics. The damage depends
on the number of particles impacting, raindrop impact velocity, and the mechanical
properties of the blade surface. In reporting nw and D, we normalize them by their
maximum values on the blade surface.

Figures 7.2 and 7.3 show the impact count and damage distributions.
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FIGURE 7.2: Normalized impact count. Pressure side (left) and
suction side (right)

The comparison of the two distributions reveals the features of the rain-induced
erosion process. First, there is a clear coincidence between the peak impact count
core and the corresponding damage, as can be seen at the blade tip and in the
blade leading-edge regions above mid-span. This is related to the kinematics of the
impact, i.e., the magnitude of the blade tip velocity and the impact angle along the
leading edge. Second, the distributions from mid-span inward indicate that below
a certain blade velocity, the damage no longer correlates with the impact count.
Third, the blade rotation effects are evident, again from mid-span inward, in the
amplification of the damage on the blade pressure side.

Figures 7.4 and 7.5 show the impact count and damage at different sections
along the blade span, as a function of the distance from the leading edge.

Figure 7.4 confirms that the most critical blade area is the leading edge, irre-
spective of the radial position, due to the concentration of raindrop impacts. The
figure also shows a lack of symmetry in the impact count distribution between the
suction and pressure sides, partly due to the blade rotation and the local angle of
attack. Specifically, from mid-span outward, the ratio of the peaks between the suc-
tion and pressure sides is nearly constant at 4. Moving inward, we see clear peaks
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on the suction side only.
Figure 7.5 shows that the differences between the suction and pressure sides are

even more evident for the damage. The effect of the number of particles impacting,
combined with the raindrop impact velocity and the relative flow velocity, results
in much larger damage on the suction side compared to the pressure side. The
maximum damage is concentrated on the suction side of the leading edge at the
tip of the blade, where the flow (and droplet) speed is maximum. These findings
match those observed in the actually wind turbines, where the zone most affected
is usually the leading edge, in the mid-tip region.

FIGURE 7.3: Normalized damage. Pressure side (left) and suc-
tion side (right)
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FIGURE 7.4: Normalized impact count at different sections along
the blade span, as a function of the distance from the leading edge
(LE). The positive and negative distance values are for the suction

and pressure sides, respectively

	  

FIGURE 7.5: Normalized damage at different sections along the
blade span, as a function of the distance from the leading edge
(LE). The positive and negative distance values are for the suction

and pressure sides, respectively
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7.3 Conclusions

We have presented computational analysis of rain erosion in wind-turbine blades.
Such an analysis is important because the rain erosion damage could be signifi-
cant if the blades are not protected and that could degrade the aerodynamic per-
formance and therefore the power production. The simulation of this phenomenon
involves rotating turbulent flows, large number of particles carried by the flow, and
turbulence–particle interaction.

On the proposed model of a 6MW HAWT blade, the erosion patterns obtained
were in good agreement with those observed in the actual wind turbines.
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Concluding remarks

The aim of this thesis was to present a three-year research work, focused on the
development and application of new numerical tools, which are able to simulate
complex interaction phenomena involved in the main process of turbomachinery.
Starting from a background knowledge of the most used and advanced numerical
CAE tools used for the virtual prototyping in industrial production and design engi-
neering; we found actual and interesting challenges in studying the fluid-structure
interaction and the erosion of wearing material due to particle-laden flow.

To simulate both of the phenomena implies to find suitable and high fidelity
models, keeping into account that the computational cost should be as low as pos-
sible.
We chose to use URANS models for the aerodynamics. These models produce
good results in terms of surface forces and mean velocity profile, with the possi-
bility to simulate also separated flows. The use of an Arbitrary Lagrange-Eulerian

formulation for the aerodynamic solution allowed to move the domain following
the deformation (even large) of the structure given by a three-dimensional geomet-
rically non-linear elastic model.
RANSE models give also a statistical averaged description of the turbulence of the
flow, allowing to use the particle cloud tracking technique to simulate the particle
laden flow erosion on blades material. The simulation of the particle transport in
the flow had to be coupled with erosion models to evaluate the mass and portion of
wearing material eroded by the flow. Following the common practice in the state
of the art, we found and implemented two empirical models ([8, 9]), as we have
studied the rain erosion on composite wind turbine blades, and the coal ash erosion
on a metal structure.
All the models presented have been coupled in order to solve the mutual interaction
between the different dynamics. The strong coupling FSI algorithm and the erosion
interface algorithm put further non-linearity to the final systems, which is added to
the non-linear nature of all the equations composing the models.
To obtain stable numerical solution, each non-linearity has been treated with the
proper instrument during the discretization procedure. We used the finite ele-

ment method to discretize the equations and obtain the final matrices structures
that can be solved with numerical schemes. Stabilized formulation have been used
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to treat the convective and pressure terms of the Navier–Stokes equations (SUPG

and PSPG). To stabilize the reactive terms of the turbulence closure model (k− ε

equations) we used the DRDJ technique.
Stability of the solution in time is achieved using the Crank-Nicolson scheme to
produce the integration step of ALE-URANSE, while the Generalized-α method
is used to stabilize the structure dynamics. For the particle motion the integration
scheme adopted is of predictor/multi-corrector type.
The non-linearity introduced by the coupling between aerodynamics and structure
dynamics is treated solving the non-linear step in a partial segregated and iterative

way, achieving the strong coupling through a convergence loop on all the residuals.
For the flow – particle transport – erosion interface we used a one-way coupling as
the time-scales of the different dynamics are different enough to allow this kind of
approach. Therefore, in this case it was not necessary to introduce a stabilization
technique.

In the second part of the thesis we reports some applications of the developed
tools.
The FSI solver has been applied to study a horizontal fan blade in normal operat-
ing conditions (Chapter 5), as to evaluate, for an old design done with a structure
considered stiff enough to neglect the FSI coupling, the effects of the aeroelastic-
ity. The same solver has been applied also to study the effect of elastic morphing
geometries used to control the load and performance for both axial fan and wind
turbine blades (Chapter 4). In this case we saw how, for little deformation and in
case of active control, this kind of device could improve the section performance
of the wind turbine blade. For the fan case, the solution proved that a low-stiffness
device (allowing also large deformation) can reduce the load and stabilize the flow
in the stall condition, but it has negative effect in the normal operating point as, the
same material properties, which guarantees a good response for separating flows,
making the device aeroelastically unstable.
Finally, we adapted and applied the erosion interface solver to two upcoming chal-
lenges in this field of research. Firstly, we showed the importance of considering
the change in geometry (even small) due to erosion during the solution process
(Chapter 6). Indeed, we observed on the sample case (cylinder eroded by coal-ash)
how the flow distorts as effect for example of a non-symmetric erosion on a sym-
metric aerodynamic shape. This aspect can become important in the study of the
performance and the erosion evolution itself on turbomachinery component sub-
jected to particle-laden flows.
The second application (Chapter 7) focused on the rain erosion of wind turbine
blades, confirming a good agreement with field observations in terms of mostly
damaged area on the blade surface.

All this numerical tools can represent an important help in the design phase of
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new and advanced products. The design process, but also the optimization of the
components, can be done considering also effects which are usually neglected, but
that are proven to acquire importance in the in-field installed working conditions
of the turbomachinery. Studying and producing solutions, which accounts also for
these effects in the first design phase, can help to increase the life of the components
and to extend a good performance level for more time and more working conditions.
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Appendix A

Validation test

A validation test of the FSI-solver was done using the benchmark proposed by
Turek et al in [143]. This test consists in a 2D unsteady solution of an incompress-
ible and laminar flow over a fixed cylinder with an elastic bar mounted downstream.
Figure A.1 shows the benchmark domain.

FIGURE A.1: FSI Benchmark domain [143]

Referring to the FSI test 3 [143] we obtain good agreement for the same type
of algorithm as reported in Table A.1. After a start-up transient, the system tend to
a stable oscillating solution as visible from Figure A.3. In Table A.1 we compare
the vertical displacement of the bar tip, the overall lift value and the oscillation
frequency. The firsts two quantities are reported in a form that takes into account the
oscillatory nature of the solution, i.e. the mean value plus/minus the half amplitude
value.

FIGURE A.2: FSI Benchmark solution, pressure field and stream-
lines
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FIGURE A.3: FSI Benchmark solution, tip vertical displacement

Turek FSI3 [143] XENIOS++
U2[mm] 1.5±25.9 1.2±25.5
Li f t[N] −0.6±106.0 −1.1±103.1
f [Hz] 5.45 5.69

TABLE A.1: FSI benchmark, results comparison.



109

Bibliography

[1] FAST user manual: https://nwtc.nrel.gov/FAST8.

[2] L Morino et al. “Aerodynamics and aeroacoustics of wings and rotors via
BEM-unsteady, transonic, and viscous effects”. In: Computational mechan-

ics 21.4-5 (1998), pp. 265–275.

[3] T. E. Tezduyar et al. “Modeling of Fluid–Structure Interactions with the
Space–Time Finite Elements”. In: Flow Simulation with the Finite Element

Method. in Japanese. Springer, 2008. Chap. 10, pp. 215–251. ISBN: 978-4-
431-10033-1.

[4] T.E. Tezduyar. “Finite element methods for fluid dynamics with moving
boundaries and interfaces.” In: E. Stein, R. de Borst, and T.J.R. Hughes, ed-

itors, Encyclopedia of Computational Mechanics, Fluids, chapter 17. Wiley

3 (2004).

[5] Y Bazilevs et al. “3D simulation of wind turbine rotors at full scale. Part
II: Fluid–structure interaction modeling with composite blades”. In: Inter-

national Journal for Numerical Methods in Fluids 65.1-3 (2011), pp. 236–
253.

[6] LL Baxter and Philip J Smith. “Turbulent dispersion of particles: the STP
model”. In: Energy & Fuels 7.6 (1993), pp. 852–859.

[7] P Venturini. “Modelling of particle-wall deposition in two-phase gas-solid
flows”. PhD thesis. Sapienza University of Rome, 2008.

[8] W Tabakoff, R Kotwal, and A Hamed. “Erosion study of different materials
affected by coal ash particles”. In: Wear 52.1 (1979), pp. 161–173.

[9] M. H. Keegan, D. H. Nash, and M. M. Stack. “On erosion issues associated
with the leading edge of wind turbine blades”. In: Journal of Physics D:

Applied Physics 46.38 (2013), p. 383001. URL: http://stacks.iop.
org/0022-3727/46/i=38/a=383001.

[10] M. H. Keegan, D. H. Nash, and M. M. Stack. “Numerical modelling of
hailstone impact on the leading edge of a wind turbine blade”. In: EWEA

Annual Wind Energy Event. Vienna, Austria, 2013.

[11] Giovanni Fiore, Gustavo EC Fujiwara, and Michael S Selig. “A Damage
Assessment for Wind Turbine Blades from Heavy Atmospheric Particles”.
In: 53rd AIAA Aerospace Sciences Meeting. 2015, p. 1495.

http://stacks.iop.org/0022-3727/46/i=38/a=383001
http://stacks.iop.org/0022-3727/46/i=38/a=383001


110 BIBLIOGRAPHY

[12] Brian Patrick Casaday. “Investigation of Particle Deposition in Internal
Cooling Cavities of a Nozzle Guide Vane”. PhD thesis. The Ohio State
University, 2013.

[13] Alessandro Corsini et al. “Predicting blade leading edge erosion in an axial
induced draft fan”. In: Journal of Engineering for Gas Turbines and Power

134.4 (2012), p. 042601.

[14] Björn Hübner, Elmar Walhorn, and Dieter Dinkler. “A monolithic approach
to fluid–structure interaction using space–time finite elements”. In: Com-

puter methods in applied mechanics and engineering 193.23 (2004), pp. 2087–
2104.

[15] Tayfun E Tezduyar et al. “Space–time finite element techniques for com-
putation of fluid–structure interactions”. In: Computer methods in applied

mechanics and engineering 195.17 (2006), pp. 2002–2027.

[16] Elmar Walhorn et al. “Fluid–structure coupling within a monolithic model
involving free surface flows”. In: Computers & structures 83.25 (2005),
pp. 2100–2111.

[17] Charbel Farhat and Michael Lesoinne. “Two efficient staggered algorithms
for the serial and parallel solution of three-dimensional nonlinear transient
aeroelastic problems”. In: Computer methods in applied mechanics and en-

gineering 182.3 (2000), pp. 499–515.

[18] Farid Abed-Meraim et al. “Multiphysics Simulation Environments for Shell
and Spatial Structures”. In: (2008).

[19] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. “Performance
of a new partitioned procedure versus a monolithic procedure in fluid–
structure interaction”. In: Computers & Structures 87.11 (2009), pp. 793–
801.

[20] George S Springer, Cheng-I Yang, and Poul S Larsen. “Analysis of rain ero-
sion of coated materials”. In: Journal of Composite Materials 8.3 (1974),
pp. 229–252.

[21] Carolyn Westmark and G Wm Lawless. “A discussion of rain erosion test-
ing at the United States Air Force rain erosion test facility”. In: Wear 186
(1995), pp. 384–387.

[22] Thanasis K Barlas and GAM Van Kuik. “Review of state of the art in smart
rotor control research for wind turbines”. In: Progress in Aerospace Sci-

ences 46.1 (2010), pp. 1–27.

[23] S. Powell. 3M Wind blade protection coating. Industrial Marketing Presen-
tation W4600. 3M, 2011.

[24] K. Hanjalic et al. Analysis and Modelling of Physical Transport Phenom-

ena. Delft. 2008.



BIBLIOGRAPHY 111

[25] J. Boussinesq. Essai sur la theorie des eaux courantes. Memoires presentes
par divers savants a l’Academie des Sciences 23 (1): 1-680. 1877.

[26] B.E. Launder and B.I. Sharma. “Application of the Energy-Dissipation
Model of Turbulence to the Calculation of Flow Near a Spinning Disc.”
In: Letters in Heat and Mass Transfer 1 (1974), pp. 131–138.

[27] E. Dick and J. Steelant. “Coupled solution of the steady compressible Navier-
Stokes equations and the turbulence equations with a multigrid method”.
In: Applied Numerical Mathematics 23 (1997), pp. 49–61.

[28] D. J. Mavriplis and L. Martinelli. “Multigrid solution of compressible tur-
bulent flow on unstructured meshes using a two-equation model”. In: Inter-

national Journal for Numerical Methods in Fluids 18.10 (1994), pp. 887–
914. ISSN: 1097-0363. DOI: 10.1002/fld.1650181002. URL: http:
//dx.doi.org/10.1002/fld.1650181002.

[29] V. C. Patel, W. Rodi, and G. Scheuerer. “Turbulence models for near-wall
and low Reynolds number flows - A review”. In: AIAA Journal 23 (1985),
pp. 1308–1319. DOI: 10.2514/3.9086.

[30] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. “Lagrangian–Eulerian
finite element formulation for incompressible viscous flows”. In: Computer

Methods in Applied Mechanics and Engineering 29 (1981), pp. 329–349.

[31] Y. Bazilevs et al. “3D Simulation of Wind Turbine Rotors at Full Scale.
Part I: Geometry Modeling and Aerodynamics”. In: International Journal

for Numerical Methods in Fluids 65 (2011), pp. 207–235. DOI: 10.1002/
fld.2400.

[32] Ming-Chen Hsu, I. Akkerman, and Y. Bazilevs. “Wind turbine aerodynam-
ics using ALE-VMS: Validation and role of weakly enforced boundary con-
ditions”. In: Computational Mechanics 50 (2012), pp. 499–511.

[33] Ming-Chen Hsu and Y. Bazilevs. “Fluid–structure interaction modeling of
wind turbines: simulating the full machine”. In: Computational Mechanics

50 (2012), pp. 821–833.

[34] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure

Interaction: Methods and Applications. Wiley, February 2013. ISBN: 978-
0470978771. DOI: 10.1002/9781118483565.

[35] Y. Bazilevs et al. “Aerodynamic and FSI Analysis of Wind Turbines with
the ALE-VMS and ST-VMS Methods”. In: Archives of Computational Meth-

ods in Engineering 21 (2014), pp. 359–398. DOI: 10.1007/s11831-
014-9119-7.

[36] Y. Bazilevs et al. “FSI modeling of vertical-axis wind turbines”. In: Jour-

nal of Applied Mechanics 81 (2014), p. 081006. DOI: 10.1115/1.
4027466.

http://dx.doi.org/10.1002/fld.1650181002
http://dx.doi.org/10.1002/fld.1650181002
http://dx.doi.org/10.1002/fld.1650181002
http://dx.doi.org/10.2514/3.9086
http://dx.doi.org/10.1002/fld.2400
http://dx.doi.org/10.1002/fld.2400
http://dx.doi.org/10.1002/9781118483565
http://dx.doi.org/10.1007/s11831-014-9119-7
http://dx.doi.org/10.1007/s11831-014-9119-7
http://dx.doi.org/10.1115/1.4027466
http://dx.doi.org/10.1115/1.4027466


112 BIBLIOGRAPHY

[37] Y. Bazilevs et al. “Novel structural modeling and mesh moving techniques
for advanced FSI simulation of wind turbines”. In: International Journal

for Numerical Methods in Engineering 102 (2015), pp. 766–783. DOI: 10.
1002/nme.4738.

[38] Y. Bazilevs et al. “ALE–VMS Formulation for Stratified Turbulent Incom-
pressible Flows with Applications”. In: Mathematical Models and Meth-

ods in Applied Sciences 25 (2015), pp. 2349–2375. DOI: 10 . 1142 /
S0218202515400114.

[39] Y. Bazilevs et al. “ALE-VMS and ST-VMS Methods for Computer Mod-
eling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interac-
tion”. In: Mathematical Models and Methods in Applied Sciences 22.supp02
(2012), p. 1230002. DOI: 10.1142/S0218202512300025.

[40] T. J. Hughes. The finite element method: linear static and dynamic finite

element analysis. Courier Corporation. 2012.

[41] K.Stein, T.E. Tezduyar, and R. Benney. “Automatic mesh update with the
solid-extension mesh moving technique. Computer Methods in Applied
Mechanics and Engineering.” In: Computer Methods in Applied Mechanics

and Engineering 193 (2004), pp. 2019–2032.

[42] T. Tezduyar et al. “Massively Parallel Finite Element Computation of 3D
Flows – Mesh Update Strategies in Computation of Moving Boundaries
and Interfaces”. In: Parallel Computational Fluid Dynamics – New Trends

and Advances. Ed. by A. Ecer et al. Elsevier, 1995, pp. 21–30.

[43] S. Lain and M. Sommerfeld. “Turbulence Modulation in Dispersed Two-
phase Flow Laden with Solids from a Lagrangian Perspective”. In: Inter-

national Journal of Heat and Fluid Flow 24 (2003), pp. 616–625.

[44] M Sommerfeld, B van Wachem, and R Oliemans. Best practice guidelines.

ERCOFTAC Special Interest Group on “Dispersed Turbulent Multi-Phase

Flow”. Tech. rep. Version 20-08-2007, 2008.

[45] Crowe C.T., Troutt T.R., and Chung J.N. “Numerical models for two-phase
turbulent flows”. In: Annual Review of Fluid Mechanics 28.1 (1996), pp. 11–
43.

[46] L. L. Baxter. “Turbulent transport of particles”. PhD thesis. Brigham Young
University, 1989.

[47] L. L. Baxter and P. J. Smith. “Turbulent dispersion of particles: the STP
model”. In: Energy and Fuels 7 (1993), pp. 852–859.

[48] S. K. Kaer. “Numerical investigation of ash deposition in straw-fired fur-
naces”. PhD thesis. Aalborg University, Denmark, 2001.

[49] L. P. Wang. “On the dispersion of heavy particles by turbulent motion”.
PhD thesis. Washington State University, 1990.

http://dx.doi.org/10.1002/nme.4738
http://dx.doi.org/10.1002/nme.4738
http://dx.doi.org/10.1142/S0218202515400114
http://dx.doi.org/10.1142/S0218202515400114
http://dx.doi.org/10.1142/S0218202512300025


BIBLIOGRAPHY 113

[50] L. J. Litchford and S. M. Jeng. “Efficient statistical transport model for tur-
bulent particle dispersion in sprays”. In: AIAA Journal 29 (1991), pp. 1443–
1451.

[51] S. Jain. “Three-dimensional simulation of turbulent particle dispersion”.
PhD thesis. University of Utah, 1995.

[52] D. Borello et al. “Prediction of multiphase combustion and ash deposition
within a biomass furnace”. In: Applied Energy 101 (2013), pp. 413–422.

[53] P. Venturini et al. “Modelling of multiphase combustion and deposit forma-
tion and deposit formation in a biomass-fed boiler”. In: Energy 35 (2010),
pp. 3008–3021.

[54] V. Armenio and V. Fiorotto. “The importance of the forces acting on parti-
cles in turbulent flows”. In: Physics of Fluids 13 (2001), pp. 2437–2440.

[55] L. Schiller and A. Naumann. “Uber die grundlegenden Berechnungen bei
der Schwekraftaubereitung”. In: Zeitschrift des Vereines Deutscher Inge-

nieure 77 (1933), pp. 318–320.

[56] P. J. Smith. 3-D Turbulent particle dispersion submodel development. Quar-
terly Progress Report. Department of Energy, Pittsburgh Energy Technol-
ogy Center, 1991.

[57] A. G. Evans et al. Impact damage in brittle materials in the elastic response

regime. Tech. rep. SC5023. Rockwell International Science Centre, 1976.

[58] G Grant and W Tabakoff. An experimental investigation of the erosive char-

acteristics of 2024 aluminum alloy. Tech. rep. DTIC Document, 1973.

[59] Bruce A Finlayson. The method of weighted residuals and variational prin-

ciples. Vol. 73. SIAM, 2013.

[60] Filippo Menichini. “Sviluppo di metodi di soluzione segregata per formu-
lazioni variazionali Petrov-Galerkin con programmazione ad oggetti per
la predizione di flussi non stazionari nelle turbomacchine”. PhD thesis.
Sapienza University of Rome, 2008.

[61] T. E. Tezduyar. “Stabilized Finite Element Formulations for Incompressible
Flow Computations”. In: Advances in Applied Mechanics 28 (1992), pp. 1–
44. DOI: 10.1016/S0065-2156(08)70153-4.

[62] T. J. R. Hughes, L. P. Franca, and M. Balestra. “A New Finite Element For-
mulation for Computational Fluid Dynamics: V. Circumventing the Babuška–
Brezzi Condition: A Stable Petrov–Galerkin Formulation of the Stokes
Problem Accommodating Equal-Order Interpolations”. In: Computer Meth-

ods in Applied Mechanics and Engineering 59 (1986), pp. 85–99.

http://dx.doi.org/10.1016/S0065-2156(08)70153-4


114 BIBLIOGRAPHY

[63] T. E. Tezduyar and Y. J. Park. “Discontinuity Capturing Finite Element
Formulations for Nonlinear Convection-Diffusion-Reaction Equations”. In:
Computer Methods in Applied Mechanics and Engineering 59 (1986), pp. 307–
325. DOI: 10.1016/0045-7825(86)90003-4.

[64] A Corsini et al. “Improved discontinuity-capturing finite element techniques
for reaction effects in turbulence computation”. In: Computational Me-

chanics 38.4-5 (2006), pp. 356–364.

[65] T. E. Tezduyar et al. “Incompressible flow computations with stabilized
bilinear and linear equal-order-interpolation velocity-pressure elements”.
In: Computer Methods in Applied Mechanics and Engineering 95 (1992),
pp. 221–242. DOI: 10.1016/0045-7825(92)90141-6.

[66] F. Rispoli, A. Corsini, and T. E. Tezduyar. “Finite Element Computation
of Turbulent Flows with the Discontinuity-Capturing Directional Dissi-
pation (DCDD)”. In: Computers & Fluids 36 (2007), pp. 121–126. DOI:
10.1016/j.compfluid.2005.07.004.

[67] A. Corsini, F. Rispoli, and A. Santoriello. “A Variational Multiscale high-
order finite element formulation for turbomachinery flow computations”.
In: Computer Methods in Applied Mechanics and Engineering 194 (2005),
pp. 4797–4823.

[68] A. Corsini et al. “A DRD Finite Element Formulation for Computing Tur-
bulent Reacting Flows in Gas Turbine Combustors”. In: Computational

Mechanics 46 (2010), pp. 159–167. DOI: 10.1007/s00466- 009-
0441-0.

[69] A. Corsini et al. “Improved Discontinuity-Capturing Finite Element Tech-
niques for Reaction Effects in Turbulence Computation”. In: Computa-

tional Mechanics 38 (2006), pp. 356–364. DOI: 10.1007/s00466-
006-0045-x.

[70] A. Corsini et al. “A Multiscale Finite Element Formulation with Disconti-
nuity Capturing for Turbulence Models with Dominant Reactionlike Terms”.
In: Journal of Applied Mechanics 76 (2009), p. 021211. DOI: 10.1115/
1.3062967.

[71] A. Corsini, F. Rispoli, and T. E. Tezduyar. “Stabilized Finite Element Com-
putation of NOx Emission in Aero-engine Combustors”. In: International

Journal for Numerical Methods in Fluids 65 (2011), pp. 254–270. DOI:
10.1002/fld.2451.

[72] John Crank and Phyllis Nicolson. “A practical method for numerical eval-
uation of solutions of partial differential equations of the heat-conduction
type”. In: Mathematical Proceedings of the Cambridge Philosophical So-

ciety. Vol. 43. 01. Cambridge Univ Press. 1947, pp. 50–67.

http://dx.doi.org/10.1016/0045-7825(86)90003-4
http://dx.doi.org/10.1016/0045-7825(92)90141-6
http://dx.doi.org/10.1016/j.compfluid.2005.07.004
http://dx.doi.org/10.1007/s00466-009-0441-0
http://dx.doi.org/10.1007/s00466-009-0441-0
http://dx.doi.org/10.1007/s00466-006-0045-x
http://dx.doi.org/10.1007/s00466-006-0045-x
http://dx.doi.org/10.1115/1.3062967
http://dx.doi.org/10.1115/1.3062967
http://dx.doi.org/10.1002/fld.2451


BIBLIOGRAPHY 115

[73] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element

method: solid mechanics. Vol. 2. Butterworth-heinemann, 2000.

[74] J. Chung and G. M. Hulbert. “A time integration algorithm for structural
dynamics with improved numerical dissipation: The generalized-α method”.
In: Journal of Applied Mechanics 60 (1993), pp. 371–75.

[75] K. Stein, T. Tezduyar, and R. Benney. “Mesh Moving Techniques for Fluid–
Structure Interactions with Large Displacements”. In: Journal of Applied

Mechanics 70 (2003), pp. 58–63. DOI: 10.1115/1.1530635.

[76] T. E. Tezduyar et al. “Computation of Unsteady Incompressible Flows with
the Finite Element Methods – Space–Time Formulations, Iterative Strate-
gies and Massively Parallel Implementations”. In: New Methods in Tran-

sient Analysis. PVP-Vol.246/AMD-Vol.143. New York: ASME, 1992, pp. 7–
24.

[77] A. Corsini et al. “Predicting blade leading edge erosion in an axial induced
draft fan”. In: ASME Journal of Engineering for Gas Turbines and Power

134 (1993).

[78] Livier Gonzalez. “Morphing wing using shape memory alloy: a concept
proposal”. In: Final research paper in (2005).

[79] Xavier Lachenal, Stephen Daynes, and Paul M Weaver. “Review of morph-
ing concepts and materials for wind turbine blade applications”. In: Wind

Energy 16.2 (2013), pp. 283–307.

[80] A Corsini et al. “Numerical study on active and passive trailing edge mor-
phing applied to a multi-MW wind turbine section”. In: International Cen-

ter for Numerical Methods in Engineering. 2015.

[81] J. Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Off-

shore System Development. Technical Report NREL/TP-500-38060. Na-
tional Renewable Energy Laboratory, 2009.

[82] AeroDyn user manual: https://nwtc.nrel.gov/AeroDyn.

[83] TurbSim user manual: https://nwtc.nrel.gov/TurbSim.

[84] International Electrotechnical Commission et al. “IEC 61400-1: Wind tur-
bines part 1: Design requirements”. In: International Electrotechnical Com-

mission (2005).

[85] HP Monner et al. “Design aspects of the adaptive wing-the elastic trail-
ing edge and the local spoiler bump”. In: Aeronautical Journal 104.1032
(2000), pp. 89–95.

[86] Anna-Maria R McGowan et al. Research activities within NASA’s morphing

program. Tech. rep. DTIC Document, 2000.

[87] Helge Aa Madsen et al. “The potentials of the controllable rubber trailing
edge flap (CRTEF)”. In: Proceedings of EWEC. 2010.

http://dx.doi.org/10.1115/1.1530635


116 BIBLIOGRAPHY

[88] Helge Aagaard Madsen, Anna Candela Garolera, and T Schettler. “Towards
an industrial manufactured morphing trailing edge flap system for wind
turbines”. In: Proceedings of EWEC. 2014.

[89] Frank H Gern, Daniel J Inman, and Rakesh K Kapania. “Structural and
aeroelastic modeling of general planform wings with morphing airfoils”.
In: AIAA journal 40.4 (2002), pp. 628–637.

[90] Silvestro Barbarino, Farhan Gandhi, and Steven D Webster. “Design of ex-
tendable chord sections for morphing helicopter rotor blades”. In: ASME

2010 Conference on Smart Materials, Adaptive Structures and Intelligent

Systems. American Society of Mechanical Engineers. 2010, pp. 323–336.

[91] A Castorrini et al. “Numerical Study on the Passive Control of the Aeroe-
lastic Response in Large Axial Fans”. In: ASME Turbo Expo 2016: Tur-

bomachinery Technical Conference and Exposition. American Society of
Mechanical Engineers. 2016, V001T09A010–V001T09A010.

[92] Domenico Borello et al. “Large-eddy simulation of a tunnel ventilation
fan”. In: Journal of Fluids Engineering 135.7 (2013), p. 071102.

[93] Cheng Xu, Ryoichi Samuel Amano, and Eng Kwong Lee. “Investigation
of an axial fan-blade stress and vibration due to aerodynamic pressure field
and centrifugal effects”. In: JSME International Journal Series B Fluids

and Thermal Engineering 47.1 (2004), pp. 75–90.
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