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Reliable and Robust Detection of Freezing of Gait
Episodes With Wearable Electronic Devices

Ardian Kita, Paolo Lorenzi, Rosario Rao, and Fernanda Irrera

Abstract— A wearable wireless sensing system for assisting1

patients affected by Parkinson’s disease is proposed. It uses inte-2

grated micro-electro-mechanical inertial sensors able to recognize3

the episodes of involuntary gait freezing. The system operates in4

real time and is designed for outdoor and indoor applications.5

Standard tests were performed on a noticeable number of6

patients and healthy persons and the algorithm demonstrated7

its reliability and robustness respect to individual specific gait8

and postural behaviors. The overall performances of the system9

are excellent with a specificity higher than 97%.10

Index Terms— Wearable electronic device, inertial sensors,11

freezing of gait, movement classification algorithms.12

I. INTRODUCTION13

THE implications of new technologies involving the use of14

sensors are becoming increasingly important in health-15

care. This is the case of wearable sensors able to detect16

abnormal and/or unforeseen situations by monitoring physi-17

cal and/or physiological parameters along with other symp-18

toms [1]. The information that can be extrapolated from19

accelerometers and gyroscopes allows a correct reconstruction20

of the movements and a precise evaluation of the state of the21

musculoskeletal apparatus. The technological development and22

miniaturization of these devices has led to the possibility to be23

worn by patients who suffer from various diseases implying24

the motion sphere. The utility of their use in the patient25

care, assistance and rehabilitation consists in new and still26

not fully explored opportunities offered by the generation of27

big amounts of data regarding locomotion, postural and noc-28

turnal disorders. Sensors can help monitoring and mitigating29

the effects of these disorders, customizing the therapy and30

eventually activating feedbacks to patients and care-givers.31

Patients affected by the Parkinson’s Disease (PD) can ben-32

efit mostly from the technological advancements in this field.33

PD manifests in about 1% of the worldwide population over34

65 years, bringing severe ailments and disturbs related to the35

musculoskeletal apparatus, which include muscular rigidity,36

tremors, postural instability, bradykinesia, hypokinesia and37

akinesia [2]. These symptoms vary from one patient to another,38
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are very sensitive to the drug therapy and to the environmental 39

inputs and depend on the progression of the disease. Today, 40

the standard examination of the stage of the disease is done 41

by doctors with the aid of patient and relative reports, which 42

are generally incomplete and arbitrary. 43

In this context, it is easy to understand that a wearable 44

electronic system for monitoring automatically and objectively 45

the motion symptoms of PD patients is strongly desired. The 46

processed data would help doctors in estimating better the 47

stage of the disease and customize the therapy. The latter 48

point is crucial to mitigate the symptoms. In fact, the proper 49

therapy can reduce most of the symptoms, mainly at the early 50

disease stage, and can help patients in preventing catastrophic 51

falls as consequence of episodes of freezing of gait (FoG). 52

FoG is defined as a paroxysmal block of movement associated 53

with gait initiation, turning or negotiating an obstacle [3], [4], 54

and can be accentuated by an incorrect drug therapy. FoG is 55

described by the patients as a disabling symptom that makes 56

their feet “stuck on the ground”. In these situations, the patient 57

reacts attempting to make the step, thus forcing the lower 58

limbs and thrusting forward the trunk. For this reason, FoG is 59

reported as the main cause of falls of PD patients [4], [5]. It has 60

been demonstrated that a rhythmic auditory stimulation (RAS) 61

as a metronome can release the involuntary block [6], [7]. 62

Therefore, a wearable system able to provide a robust and 63

reliable detection of the FoG in any context, and give timely 64

a rhythmic auditory stimulation would be extremely useful. 65

As an evidence of the current interest in the field, several 66

FoG detection systems have been proposed in literature in the 67

last decade, to be used outdoor [8]–[10] or indoor [11]–[14]. 68

They all employed inertial sensors disseminated on the patient 69

body. Very recently, we too proposed a wearable wireless 70

sensing system operating in real time [15]. Herein, that system 71

will be called System 1. It used integrated micro-electro- 72

mechanical (MEMS) inertial measurement units (IMU) to able 73

to recognize specific kinetic features associated to motion 74

disorders, typical of (but not limited to) the PD. The sensors 75

were wireless connected to a PC. The algorithms provided 76

detection and classification of the gait disorders using a time 77

domain analysis of the data obtained through the fusion of the 78

accelerometers and the gyroscopes signals. Then, the angular 79

velocity and its low pass filter (kle f t , kright ) were calculated. 80

The index K given by the sum of kle f t , and kright was 81

finally compared with specific thresholds to classify regular 82

states and disorders. System 1 was tested on 16 patients and 83

performances in FoG detection were the best obtained to 84

date. Notwithstanding, that system suffered by some severe 85
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limits which are now overcome by the system proposed here86

(System 2). First, the wireless communication between the87

sensors and the PC was lost whenever the maximum dis-88

tance covered by the protocol communication was exceeded.89

To solve this problem, System 2 is designed to use a portable90

receiver (a smartphone), eventually connected with the home91

wireless LAN to transmit data to the PC. This also makes92

System 2 suitable for outdoor applications, with a battery life93

of a few hours. Second, the algorithm A1 exhibited problems94

in the FoG detection and classification in specific cases, as in95

the presence of noise sources related to the behavior of the K96

index with time or to individual dubious gait and postural97

attitudes of patients. The algorithm A2 proposed here is98

robust respect to those sources of noise and its reliability is99

corroborated by a good statistic. The software platform is more100

generally suitable for the reconstruction of a visual skeletal101

representation of a moving human body.102

II. RELATED WORKS103

In literature, most of the reported work on the detection of104

FoG episodes is in the frequency domain. Mostly, the freezing105

index (FI) extrapolation has been used. It consists in evaluating106

the ratio between the power in the FoG band [2-6 Hz]107

associated to least leg tremor [16] and the power in the108

rest of the spectrum and comparing this ratio with defined109

thresholds. In this context, the first detection of FoG episodes110

was made monitoring the body acceleration with a 3-axis111

accelerometer [17]. They applied FFT, amplitude and wavelet112

analysis performing an offline processing. A few years later,113

Moore et al. [13] analyzed offline the accelerometer data114

collected on 11 patients. Authors detected the frequency com-115

ponents in the 3-8 Hz band during a FoG episode, which are116

not present in regular gait or voluntary rest. Calculating the FI,117

their algorithm obtained 89% accuracy and 89% sensitivity in118

FoG detection. Basing on the algorithm proposed in [13], other119

authors developed a system for online FoG detection [18].120

That system contained three 3-axial accelerometers and a121

wearable computer. It was able to detect FoG episodes with122

user-dependent settings, exhibiting a sensitivity of 88.6%,123

a specificity of 92.4% evaluated on a sample of ten patients,124

and a latency up to 2 s. Manual adjustment of the algorithm125

parameters was necessary to achieve optimal results. Other126

online FoG-detection systems based on the FI extrapolation127

were presented in [19] and [20]. In the former work, authors128

used a 3-axis accelerometer and a wearable computer and129

detected FoG episodes with latency up to 580 ms. In the130

latter work, authors studied a sample of 12 PD patients and131

evaluated the sensitivity in recognizing the occurrence of a132

FoG episode (reporting 100% of success), without evaluating133

the sensitivity to timing and duration of each episode.134

Remaining in the frequency domain, other methods of135

analysis alternative to the FI extrapolation have been devel-136

oped. For example, the algorithm proposed in [12] based on137

the evaluation of the step length and cadence. Authors made138

a comparison with the FI extrapolation and concluded that139

their algorithm appeared more accurate in recognizing FoG140

episodes.141

In pure time domain, the signal amplitude is considered 142

rather than the frequency band, so that a low pass filter is 143

needed to select the band of interest. This can be regarded 144

as the main drawback of the time domain approach. On the 145

other hand, this kind of analysis has the great advantage of 146

performing a lower number of calculations, which reflects 147

in a smaller power consumption and a longer battery life. 148

Very few papers can be found in literature with the pure time 149

domain approach. In this frame, we recall here the work by 150

Y. Kwon et al. [21], which was based on the use of the 151

root mean square (RMS) of the accelerometer signal, and 152

our previous work [15], which was based on the fusion of 153

raw accelerometers and gyroscope signals. Both detected FoG 154

episodes through a threshold method. In [21], 20 patients were 155

studied, obtaining a sensitivity and a specificity over 85%. 156

In [15], 16 patients were studied, obtaining a sensitivity and 157

a specificity over 94%. 158

Some work has been carried out in a combination of time 159

and frequency domains, using different methods. Machine 160

learning techniques were used by some authors [9], [22], [23]. 161

Sensitivity and specificity higher than 98% have been reported 162

in [22] on a sample of 10 patients, with a latency up to 710 ms. 163

In [24] fuzzy logic algorithms were applied reporting good 164

sensitivity and specificity on 18 patients. Finally, very recently, 165

S. Rezvanian et al. [25] proposed using the continuous wavelet 166

transform (CWT) to define an index for identifying FoG 167

episodes with good performances evaluated on 10 patients. 168

In conclusion of this Section, it is worth mentioning that all 169

the work related to the detection of human body movements 170

stems from the huge amount of work about the inertial 171

navigation systems started in the second half of the XX century 172

and still continuing today [26]–[28]. The most used signal 173

fusion algorithm for the calculation of sensor orientation in 174

navigation systems is the Kalman filter [29], while in our work 175

we opted for the algorithm proposed by Mahony et al. [30], 176

which is less computationally expensive and therefore more 177

convenient for wearable applications. By comparing the two 178

algorithms, we got negligible difference in the orientation 179

estimation with a noticeable benefit from the calculation load 180

viewpoint. 181

III. THE STARTING POINT: SYSTEM 1, ALGORITHM A1 182

In this Section, we will go through a summary of the 183

features of System 1 and Algorithm A1 proposed in [15], 184

which inspired System 2. System 1 consisted on a set of 185

two IMU sensors, wireless connected to a PC collecting and 186

processing data. The board used in System 1 is the same 187

of System 2. It is a prototype called neMEMSi [31], [32], 188

designed for processing signals in real-time and transmitting 189

them. The IMU LSM9DS0 integrates a ±16 g (g-force) 190

3D accelerometer, a ±12 Gauss 3D magnetometer and a 191

±2000 dps 3D gyroscope in a 4x4 mm2 Land Grid Array 192

package. A Bluetooth connection was used to transmit data. 193

The BT33 class 1.5 micro-sized (11.6×13.5 mm2) Bluetooth 194

V3.0 module provided by Amp’ed RF/STMicroelectronics is a 195

highly integrated solution for Bluetooth applications using the 196

Serial Port Profile (SPP). The processing unit of neMEMSi 197
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Fig. 1. Representation of the reference systems: (a) the median plane where
the gait takes place; (b) the sensor reference system, with G the gravity
direction; and (c) the earth reference system, in which the sensor reference
system rotates.

is the STM32L1, an ultralow- power 32-bit microcontroller198

provided by STMicroelectronics, with 33.3 DMIPS peak com-199

putation capability and an extremely low power consumption200

scalable down to 233uA/MHz. The Cortex™M3 architecture201

along with the 32 MHz clock frequency make this microcon-202

troller suitable for advanced and low-power embedded com-203

putations. The board has a total dimension of 25x30x4 mm3
204

including the battery.205

The detection and classification algorithm A1 used in Sys-206

tem A1 was based on a time domain analysis of the sensors207

signals. The raw signals of accelerometers and gyroscopes are208

fused together by using an orientation estimation algorithm209

proposed by Mahony et al. [30]. To eliminate the gyroscope210

drift and to provide the sensor orientation in space, they used211

a correction vector provided by a Proportional Integral (PI)212

controller, where the error vector ε driving the PI controller213

is determined from the previously estimated attitude and the214

accelerometer vector a. Authors suggested to use ε=a × d215

where d is the direction of the gravity vector as given by the216

estimated attitude. Regarding the PI controller, the value of217

the integral coefficient is Ki = 0.0025, while the proportional218

coefficient is K p = 0.5. A quaternion based representation of219

the limbs orientation and position was calculated and a 3D220

vector representing the limbs was generated. The sampling221

frequency ( fs) was 60 Hz.222

The sensors were positioned on the shins. Gait direction was223

in the median plane represented in Fig.1a. The x-y-z sensor224

reference system is sketched in Fig.1b. Fig.1c shows the Xe-225

Ye-Ze earth reference system in which the sensor reference226

system rotates. Ze coincides with negative G axis. The angle227

β sketched in Fig.1b is used for the FoG detection and it228

is calculated as the angle formed between two 3D vectors:229

the negative y-axis and the gravity axis (G). It is worth230

noticing that the angle β is solid and, therefore, does not lie231

in the median plane. To detect FoG and calculate all the gait232

statistics, we need to analyze the projection of the β angle onto233

the median plane. In this way, any information on the rotation234

around the G axis is ignored. Eventual discontinuities of the235

β angle when it changes the sign, and consequent problems236

in angle derivation, can be easily overcome by conventional237

mathematical techniques.238

The angular velocities ωright , ωle f t obtained after the239

β angle derivation were used as the input for the FoG240

detection algorithm. That algorithm calculated the first order241

Fig. 2. Algorithm A1: representation of the angle (â), the angular velocity (ù)
and K during a typical test. Our clinical absolute reference is also reported.

low-pass filtered angular velocities. We defined as ωt and kt , 242

respectively, the right/left angular velocity and the lowpass 243

filter measured at time t, kt−1 the value of k at the pre- 244

vious step, α the smoothing coefficient set by the cutoff 245

frequency ( fcutof f ): 246

kright = lowpass(|ωright |) (1a) 247

kle f t = lowpass(|ωle f t|) (1b) 248

kt = (1 − α) · ωt + α · kt − 1 (1c) 249

α = (1 + 2π · f cutof f
/

f s)
−1 (1d) 250

In System 1, it was: fcutof f =0.83 Hz, fs=60 Hz, α = 0.92. 251

Finally, the index K was defined: 252

K = kle f t + kright . (1e) 253

Patients were asked to wear the sensors and walk some 254

steps, turn and go back. All the tests were filmed and the 255

films were studied by doctors who determined the exact onset 256

and ending times of the freezing episodes. Those clinical 257

statements represented our absolute reference, which allowed 258

to define three threshold values of the K index (T1-T3) to 259

classify four stationary states: regular gait (K >T3), pre- 260

FoG time (T3> K >T2), FoG state (T2> K >T1) and 261

rest state (K <T1). Once the values of T1-T3 were fixed 262

for a certain patient, they remained unchanged for the whole 263

duration of the monitoring. 264

Distinguishing correctly the involuntary block (i.e., the FoG) 265

from the voluntary block is crucial because in real time a 266

false negative (i.e., a FoG episode classified as a voluntary 267

block) would not switch on the audio-feedback. At the same 268

time, a false positive (i.e., a voluntary block classified as 269

FoG) would switch on the audio feedback when not necessary, 270

thus confusing the patient. In Fig. 2 we can see how the 271

algorithm A1 works. In that test the patient was a female, 272
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Fig. 3. Sketch of System 2: the two sensors are positioned on the shins,
a smartphone is used as portable receiver, a headphone is wireless connected
for the auditory feedback, a PC is connected to the smartphone via the wifi.
The information and database can be shared in a cloud.

over 65, in an advanced stage of the disease. The behavior273

of the angle (β), the angular velocity (ω) and the K index274

are shown as function of the test time. As one can see, the β275

and ω curves varied consistently in the different portions of276

the figure. In particular, it is easy to appreciate an oscillatory277

behavior of β and ω during the regular gait (0-4 s; 32-39 s)278

and a flatness during the rest state (46-55 s). The K index279

exhibited a wide variability.280

The clinical report by doctors about the exact FoG timing is281

indicated in the bottom. They referred the occurrence of two282

FoG episodes, between 4 and 32 s and between 39 and 46 s.283

The comparison between the K index and the clinical report284

allowed defining the T thresholds for the state classification.285

A strength of this kind of systems is the possibility to distin-286

guish between the rest state and the FoG thanks to the fact287

that during a FoG sensors are able to detect any least activity288

related to leg muscle contractions. To this regard, looking at289

Fig.2 one can see that during the test the patient interrupted290

abruptly the regular gait for two times remaining involuntarily291

blocked with the feet stuck on the ground. During those time292

intervals, the sensors revealed the muscle contractions and the293

FoG episodes were correctly classified by the algorithm.294

Algorithm A1 was tested on 16 patients, the time of each295

detected FoG was compared with the clinical reference. As a296

result, 94.5% sensitivity and 96.7% specificity were got [15].297

IV. UPGRADING THE SYSTEM: SYSTEM 2,298

ALGORITHM A2299

System 1 suffered by a severe constraint imposed by the300

wireless communication between the sensors and the PC, when301

the maximum distance covered by the communication protocol302

was exceeded. System 2 releases that constraint thanks to the303

use of a portable receiver (a smartphone) and can be used304

outdoor for the real-time detection of FoG eventually giving an305

auditory stimulation. System 2 is sketched in Fig.3. It consists306

on the two sensors on the shins, a smartphone, a headphone307

for the auditory feedback and a PC for the data storage and308

processing. The information and database can be shared in a309

cloud. Using a smartphone, we set the sampling frequency ( fs)310

to 25Hz. This has a benefit in that the number of transmitted311

data and the number of operations per unit time are lower312

than in the case at 60 Hz, thus improving the sensors and313

smartphone battery life. In turn, setting fs =25Hz does not314

present any drawbacks in the detection since the characteristic315

band of muscle tremors in PD lies well below 25 Hz.316

Fig. 4. Algorithm A1: Representation of typical fluctuations of the K index
around T1 leading to “micro crossings” of the threshold.

From the soft viewpoint, a few problems had emerged 317

with algorithm A1. Those issues and the solutions provided 318

in algorithm A2 will be deeply discussed in the following. 319

They regard: 1) unreliable identification of pre-FoG times; 320

2) micro-crossings of the thresholds, 3) slow variations of 321

K during threshold crossings, 4) possible false FoG detection 322

during body turning and 5) possible false FoG detection during 323

body swing. For clarity, we will go through five intermediate 324

steps, which will be called A2.1-A2.5, each addressing one of 325

the issues listed before: the step A2.2 includes the solutions 326

implemented in step A2.1, the step A2.3 includes the solutions 327

implemented in step A2.2, and so on. 328

A. Step A2.1 Against Unreliable Identification 329

of Pre-FoG Times 330

The first change is the elimination of the threshold 331

T3 related to the identification of a pre-FoG time (T3> 332

K >T2). The pre-FoG time was introduced in A1 to outline 333

the transition between the regular gait and the FoG and vice 334

versa, although it actually does not correspond to a state. The 335

reason was that forecasting the FoG is highly desired for a 336

timely feedback to the patient. 337

Unfortunately, the occurrence of pre-FoG episodes appeared 338

extremely arbitrary, subject to a wide variability between one 339

patient to another and also, for the same patient, between 340

one test to another. Around 50% of the tests revealed abrupt 341

transitions between the two states while the other 50% revealed 342

up to a few seconds in passing from one state to another. 343

Furthermore, the risk that voluntary step shortening and slow- 344

down were interpreted as pre-FoG was consistent. So, after a 345

care evaluation of the whole set of tests, we concluded that 346

the identification of a pre-FoG time was not reliable and also 347

potentially dangerous for the patient. Therefore, in algorithm 348

A2 the K dynamics includes just two thresholds and three 349

states: rest state, when K lies in the interval [0-T1]; FoG state, 350

when K lies in the interval [T1-T2]; regular gait, K > T2. 351

B. Step A2.2 Against False Classifications Due to 352

Threshold Micro-Crossings of the K Index 353

We define as “micro crossings” of the thresholds the fluctu- 354

ations of the K index around the values T1 and T2 which 355
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Fig. 5. Representation of the typical delay of the K (K’) index calculated
with Algorithm A1 (A2.3) when crossing the threshold T1.

lead to classifications different from the real states of the356

patient. To elucidate the concept, we consider the K index357

graph reported in Fig.4, obtained with algorithm A1. It relates358

to a patient who was first in the rest state and then started359

walking at time 11 s. As one can see, during the rest state the360

K index fluctuated around the T1 threshold (as outlined by the361

arrows). Algorithm A1 classified those time intervals as short362

FoG episodes, although the clinical reference did not. This363

is an example of false positive. We solve this problem in this364

step. Step A2.2 includes the activation of a waiting time (twait )365

as soon as the K index crosses one of the thresholds, at the366

end of which the value of K is checked again. The state is367

classified after this procedure.368

Two different waiting times are needed, depending whether369

getting out of the T1-T2 interval (FoG interval) or entering it.370

In fact, in the former case just one threshold will be crossed371

for sure (T1, if the patient releases the block going into the372

rest state, T2 if the patient releases the block starting walking),373

while in the latter case one or both thresholds will be crossed374

and the waiting time needs to be longer. The introduction of375

twait implies a delay in the classification, which can be an376

issue if a FoG episode is occurring.377

Therefore, the final choice of twait should be a compromise378

between the necessity of a reliable classification and the379

maximum acceptable delay in FoG detection. In A2.2, we set380

twait =100 ms when getting out the T1-T2 interval and twait =381

400 ms when getting into that range.382

C. Step A2.3 Against Slow Variations of K During383

Threshold Crossings384

We consider a zoom of Fig.4 in the time interval between385

10 s and 12.5 s. This is reported in Fig.5, with the red386

dashed curve (algorithm A1). As one can see, using A1 the387

transition of K from T1 to T2 took a time around 100 ms,388

which included the time constant τ =1/(2π• fcutof f ) and389

corresponds to the time spanned by K for a 3dB variation.390

In algorithm A1 fcutof f was 0.83 Hz during the whole test391

time, regardless if the patient was in a stationary state or was392

making a transition between two states. To reduce this delay393

time, higher values of fcuto f f would be desired. The new394

algorithm A2.3 introduces a mechanism that adapts the α395

coefficient in order to make fcutof f higher when K crosses396

Fig. 6. The number of false FoG detections is plotted against the delay time
of the FoG detection when the patient passed from regular gait to a FoG state,
for the two algorithms. Points are calculated with different cutoff frequencies.

a threshold. However, increasing fcuto f f the stability of the 397

K index degrades, meant as the fluctuations of K around a 398

threshold, which can induce false FoG detections. In Fig.6 the 399

calculated number of false FoG detections in a real test is 400

plotted against the time constant τ , when the K index entered 401

the T1-T2 interval. The points correspond to different cutoff 402

frequencies in the range 0.4-3.35 Hz, with a 0.23 Hz step. 403

Looking at the curve calculated with algorithm A1, one can 404

see that raising fcuto f f, the high-frequency components of the 405

K index become more evident, increasing its instability and 406

introducing many false FoG detections. On the other hand, τ 407

is inversely proportional to fcutof f , so a high value of fcutof f 408

is desired to reduce delay. 409

As for the curve calculated with A2.3, its value is zero 410

in most of that interval and starts raising for fcutof f above 411

∼2 Hz. Thus the final choice of fcutof f in algorithm A2.3 is 412

a trade-off between the need to have a short delay time 413

in transitions and the need to have a stable K index 414

in the stationary states. In conclusion, we definitely set 415

fcutof f =0.83 Hz (corresponding to α =0.827) in stationary 416

states and fcuto f f =2.7Hz (corresponding to α =0.6) when 417

passing thresholds. As a result, in Fig.5, the curve calculated 418

with the algorithm A2.3 exhibits much shorter transition times 419

than the other one. 420

It is worth noticing that the frequency 0.83 Hz falls below 421

the characteristic interval of FoG frequencies [2-6Hz], and that 422

the attenuation at 6Hz is approximately 18dB. Although this 423

attenuation seems rather high, it is necessary for the correct 424

operation of the algorithm. In fact, we need to distinguish 425

the FoG episode from both the rest state and the regular gait. 426

As for the regular gait, its K amplitude is much higher than 427

in FoG, as outlined in Fig.2, and the higher the attenuation in 428

the FoG band the easier the capability of distinguishing the 429

regular gait from the FoG. On the other hand, in the rest state 430

we notice that in principle the K amplitude should be zero 431

after low-pass filtering, apart from the eventual random drift 432

of sensors. To this regard, we recall that the implementation 433

of the fusion algorithm incorporated gyroscope bias drift 434

compensation [28]. This implied that the random drift was 435

always negligible apart from around the gravity axis. 436
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TABLE I

VALUES OF THE ADAPTIVE CUTOFF FREQUENCY (FS=25 HZ)

However, also the latter drift contribution was filtered out by437

eliminating the component of limb rotation around the gravity438

axis, as it is not necessary for the algorithm. Furthermore, any439

residual drift coming from the accelerometer was filtered out440

too, by the fact that we based our calculations on the derivative441

of the angle. In conclusion, the K amplitude in the rest state is442

due only to sensor thermal and residual mechanical noise and443

lies typically 10 dB below the FoG K amplitude after low-pass444

filtering. So, distinguishing the FoG from the rest state in not445

a concern.446

In Table I, the first column indicates the condition of447

K (stationary or threshold crossing). In the second column,448

the algorithm actions are defined. The third column shows449

the corresponding values of fcutof f definitely used in A2.3 at450

25 Hz. In the bottom raw of Table I the stationary state451

with K >T2, classified as regular gait, is characterized by452

fcutof f = 2.7 Hz. This choice was made because there is453

the possibility that the patient suddenly stops voluntarily,454

causing an abrupt decrease of K , thus spanning on a wide455

dynamics. In this case, a lower cutoff frequency would reflect456

in a longer reaction time of the system. This is paid with457

a greater variability of K in the regular gait state, whose458

effects include some micro over-crossings of thresholds, which459

however are now ignored having introduced the waiting time460

in the step A2.2.461

D. Step A2.4 Against False FoG Detection462

During Body Turning463

This problem may arise when the patient turns. In some464

case, body turning induces FoG, but more generally, body465

turning is accompanied by natural step shortening and move-466

ment slowdown. In any case, algorithm A1 classified those467

slow movements as FoG episodes, since K remained in the468

interval T1-T2. To elucidate the concept, the red dashed curve469

in Fig.7a represents the K index calculated with algorithm A1,470

during a patient turning (starting at time t = 19 s). Doctors471

reported that the patient experienced a FoG only at the end of472

the turning, whereas the algorithm A1 detected a FoG in the473

whole interval between the two red dashed lines.474

To solve this problem, in the step A2.4 we introduce a475

turning coefficient, Kturn. Kturn is calculated by considering476

the pure raw signal of the angular velocity around the sensor477

y-axis only (ωY), which corresponds to the negative G-axis478

Fig. 7. (a) Curves of the K index obtained with algorithm A1 (dashed red
line) and of the K’ index obtained with algorithm A2.4 (black continuous
line), relative to a patient who turned after the time t = 19 s. The clinical
absolute reference is also reported. (b) Curve of the Kturn index in the same
interval.

when the shin is at the vertical position (refer to Fig.1b): 479

K turn = lowpass(|ωy|) (2a) 480

The introduction of Kturn is necessary since K does 481

not contain any information about the rotation around the 482

y-axis. On the other hand, the accelerometer does not give 483

any information during a rotation, so that in Kturn it is 484

not necessary to compute the fusion between gyroscope and 485

accelerometer. Then, another threshold Tturn is defined, relative 486

to Kturn . The Kturn curve is displayed in Fig.7b in the same 487

timescale of K . As one can see, Kturn is always under the 488

threshold Tturn apart from during the turning. 489

So, in algorithm A2.4 we define a new index: 490

K ′ = K + K turnforK turn > T turn (2b) 491

K ′ = K forK turn ≤ T turn (2c) 492

The curve of the K ′ index calculated with algorithm A2.4 is 493

drawn in Fig.7a with the black continuous line. It correctly 494

reports a short FoG only in the interval 22s – 23s. 495

E. The New Algorithm: Step A2.5 Against False FoG 496

Detection During Body Swing 497

Here we define as body swing the oscillations of the trunk 498

occurring in the frontal plane (Fig. 8). Body swing is a 499
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Fig. 8. Representation of the body swing in the frontal plane.

Fig. 9. Curve of the K’ index (black continuous line) obtained with algorithm
A2 and curve of the Kswing index (brown dashed line) during a specific test
performed on a healthy person oscillating the trunk.

recurrent postural habit of some people when they are in rest500

state, which is not related with any symptom of the PD.501

During those oscillations a muscle activity is present in the502

inferior limbs, since the body weight switches from right to503

left. There is the risk that this muscle activity is erroneously504

interpreted as FoG. It is detected by the sensors on the shins as505

small variations of the gyroscope signal mainly on the z-axis.506

In order to avoid that those rest states accompanied by least507

leg muscle activity were classified as FoG events, we define a508

new coefficient called Kswing as the low pass filtered module509

of the raw gyroscope signal ωZ:510

K swing = lowpass(|ωz|) (3)511

If Kswing>K ′, it is not a FoG episode. This procedure makes a512

comparison between the movements in the median and in the513

frontal plane sketched in Fig. 8. If the rotation in the frontal514

plane (around the sensor x-axis) is bigger than the rotation in515

the median plane (around the sensor z-axis), we are dealing516

with a body swing, not with a FoG.517

We did not find any patient with the attitude of body518

swinging and the test was performed on healthy persons. The519

persons were asked to walk regularly, then to block and mimic520

a FoG, then to swing the body, then to rest.521

In Fig.9 there are drawn the curves of K ′(black continuous522

line) and Kswing (brown dashed line) during a test. As one523

can see, in the body swing time (41s-53s) it is Kswing>K ′.524

In that time interval, the algorithm A2.5 does not report FoG,525

Fig. 10. Block scheme of Algorithm A2 operation.

TABLE II

DIFFERENCIES BETWEEN ALGORITHMS A1 AND A2

whatever the value of the K ′index (the black curve). In the 526

other intervals, it is always Kswing< K’. 527

F. Summarizing the Algorithm A2 Operation 528

Algorithm A2 includes all the improvements discussed in 529

the steps from A2.1 to A2.5. A block scheme of A2 operation 530

is sketched in Fig.10. The algorithm initiates with the calcu- 531

lation of K, Kturn and Kswing , as discussed in the previous 532

sub-sections. Then Kturn is compared with the threshold Tturn 533

and only in the case Kturn > Tturn a new index K ′ is defined 534

following eqs.2b and 2c. Then, the new index K ′ is compared 535

with Kswing . If K ′>Kswing , then the algorithm A2 carries 536

on the classification of the state, which does not include 537

the possibility of a body swing. If not, the leg movement is 538

interpreted as a body swing. 539

We conclude this Section with an overview of the differ- 540

ences between the two algorithms, listed in Table II. The five 541
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TABLE III

SYSTEM PERFORMANCES WITH ALGORITHMS A1 AND A2

Fig. 11. The specificity of our system using algorithm A2 (black continuous
line) or algorithm A1 (red dashed line) is drawn for each patient. Points are
the average of four tests.

rows correspond respectively to the five changes operated in542

steps A2.1-A2.5, and the third column reports about each step543

achievement.544

V. RESULTS545

In this work, 32 patients have been studied (22 males and546

10 females) whose age varied from 55 to 82 (average of 63).547

The test was the same for all of them and consisted on: an548

8 mt long walk, turning and walk back. Patients passed through549

an open door, which represented a virtual obstacle potentially550

inducing a FoG.551

Each patient repeated the test several times, so that the552

total number of tests is 128. We detected FoG episodes on553

25 of the investigated patients. Table III resumes the average554

performance of the system in terms of specificity, sensitivity,555

precision and accuracy in FoG timing respect to the entire test556

time, for the two algorithms. In each test the clinical report was557

our absolute reference. The time of the FoG episodes detected558

by our system respect to the absolute reference was calculated.559

The two algorithms have been applied on the same dataset.560

As one can see, the average performances with algorithm561

A2 improved respect to A1.562

In the case of patients exhibiting specific attitudes,563

the improvement obtained with algorithm A2 is much more564

consistent than the average value listed in Table III.565

In fact, a few patients exhibited individual ways of walking566

and turning the body, which sometimes were mis-interpreted567

as FoG events by algorithm A1, but were correctly interpreted568

by algorithm A2. This is elucidated in Fig.11, where the569

specificity calculated with algorithm A2 is compared with that570

calculated with algorithm A1 for every patient. Each point of571

the plot corresponds to a single patient and is the average of572

four tests. Referring to Fig.11, algorithm A1 exhibited major573

problems with patients #13, #14, #16, #26. In details, patient574

#13 had the habit to walk dragging the right leg, patient#14 and575

#26 slowed and shortened the steps while turning to almost576

stopping and, finally, patient #16 stopped continuously while 577

walking, probably because this helped him to concentrate on 578

the steps. All those behaviors were sometimes mis-interpreted 579

by algorithm A1, which in fact detected many more FoG 580

events respect to the reality. On the contrary, those uncer- 581

tain behaviors are now correctly interpreted by algorithm 582

A2 thanks to the dynamic threshold evaluation, the adaptive 583

cutoff frequency and the new parameter Kturn . 584

For all the other patients, algorithms A1 and A2 work 585

similarly with very slight differences. Those minor differences 586

are due to the fact that each patient exhibits FoG episodes of 587

different duration: the same patient sometimes blocks for a 588

fraction of second and some other times for many seconds. 589

Now, when the FoG lasts around one second, the 400 ms 590

delay introduced by algorithm A2 (A2.2) has a percentage 591

effect which is not negligible, and worsen the FoG detection. 592

On the contrary, when the delay is much shorter than the 593

block duration, the algorithm A2 works better than A1. In gen- 594

eral, since the FoG time durations are not predictable a priori 595

and are randomly distributed, the two curves in Fig.11 look 596

very close with very slight positive or negative differences due 597

to the statistical distribution of the FoG episode duration. 598

In conclusion, algorithm A2 is robust respect to possible 599

noise sources introduced by individual patient attitudes. The 600

only penalty in using algorithm A2 respect to A1 is the 601

introduction of a delay of 400 ms in FoG detection. Of course, 602

this is not a problem at all in off-line processing, since the 603

resolution of our absolute reference is even longer. However, 604

also in real time operation, in case that an auditory feed-back 605

is to be given, a delay of 400 ms does not affect significantly 606

the functioning. 607

Finally, to further verify the system reliability, we also 608

performed 20 tests on 10 healthy persons. The healthy persons 609

made the same exercise as the patients, voluntarily stopping 610

sometimes during the walk, shortening and slowing down the 611

steps, oscillating the body. As a result, no one FoG episode was 612

classified with algorithm A2, obtaining the 100% specificity 613

and accuracy in this set of tests. 614

VI. CONCLUSIONS 615

A wearable wireless sensing system for assisting patients 616

affected by Parkinson’s Disease is proposed. It uses MEMS 617

inertial sensors to recognize specific kinetic features associated 618

to motion disorders as involuntary gait blocks, typical of (but 619

not limited to) the PD. The system is designed for outdoor and 620

indoor applications. Two sensors are positioned on the shins 621

and are wireless connected to a portable receiver (a smart- 622

phone) which operates in real time and eventually provides an 623

auditory stimulation to the patient in specific risky cases, as the 624

involuntary Freezing of Gait episodes. The portable receiver 625

can be connected with the home wireless LAN to transmit data 626

to a PC, which operates offline for data storing and processing. 627

The proposed algorithm (A2) for the classification of the 628

gait states is based on a time domain analysis. It makes a 629

processing of the angular velocities calculated by operating a 630

fusion between the accelerometer and the gyroscope signals. 631

An index K ′ is obtained after low-pass filtering the angular 632

velocities. The index K ′ is compared with thresholds defined 633
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after a preliminary calibration of the system, made through an634

absolute clinical reference.635

Algorithm A2 starts from another algorithm (A1), respect636

to which it includes main changes devoted to the correct637

classification of the FoG episodes in the presence of noise.638

The noise sources treated in this work are due to minor639

behaviors in time of the K ′ index and to specific individual640

attitudes of some patients while walking, resting, turning.641

A dynamic evaluation of the thresholds reduces the false642

positive classifications of FoG in the case that the parameter K ′
643

shows micro-over crossings of the thresholds. A mechanism644

of adaptive cutoff frequency reduces the delay time in the645

classification of the gait states and reduces the occurrence646

of false positives and false negative classification of FoG647

episodes. A correction in the case of body turning reduces648

the possibility that steps shortening and movement slowdown649

are classified as FoG episodes. Finally, a correction in the case650

of body swing reduces the possibility that least leg movements651

due to body oscillations are classified as FoG episodes.652

Repeated standard tests were performed on a group of 32 PD653

patients of different age, gender and disease stage, and on a654

control group of 10 healthy persons. As a result, the overall655

system performances feature a specificity and a sensitivity656

of 97.6% and 93.4%, respectively, were achieved on the657

patients group and a specificity and accuracy of 100% on658

the healthy control group. Algorithm A2 demonstrated robust659

with those patients exhibiting specific individual ambiguous660

attitudes while turning, walking or resting, where the previous661

algorithm A1 failed. Finally, we wish to notice that those662

performances are statistically meaningful thanks to the amount663

of persons monitored in this work.664
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