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MOTIVATIONS AND MAIN
OBJECTIVES

“Creativity is intelligence having fun”
Albert Einstein

This dissertation is the result of some innovative proposals, in the wide framework
of production efficiency frontier models, that have the common goal of reducing
subjective choices of the researcher by using, as far as possible, objective methods.

In particular, the first proposal links the economic efficiency theory to the spatial
econometrics with the aim of taking into account - in the efficiency evaluation of a
productive unit - the neighborhood effects in a global way avoiding the subjective
selection of a set of variables identifying territorial effects. The method called Spatial
Stochastic Frontier Analysis (SSFA) has been published in Fusco and Vidoli (2013)
for the production efficiency analysis and generalized in this thesis to be able to also
analyze the cost efficiency.

The second proposal, instead aims to introduce enhancements in the methods
using frontier techniques to aggregate simple indicators in a composite indicator.
Subjectivity is avoided in the identification of the set of aggregation weights nec-
essary for constructing the composite indicator, in the definition of a preference
structure among simple indicators and in the extreme values and outliers influence
removal. The two methods proposed, called respectively Directional Benefit of the
Doubt (D-BoD) and Robust Directional Benefit of the Doubt (RD-BoD), have been
published in Fusco (2015) and Vidoli, Fusco and Mazziotta (2015).

The dissertation consists of four parts: the first one introduces the foundations
of the economic efficiency analysis and gives key economic concepts and definitions
needed for a proper understanding of the following parts, focusing both on parametric
and on nonparametric methods for cross-sectional and panel data and for mono-output
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and multi-output production processes; the second one discusses the fundamentals
of the spatial econometrics, on the main connection proposals with the efficiency
theory and shows in detail the SSFA method and the related R package called
SSFA implemented to allow other researchers to use it; in the third part the concept
of composite indicator and the required steps for its construction are discussed
and D-BoD and RD-BoD are shown, moreover the related R package Compind is
presented; all proposed methods have been tested both on simulated data and on real
data and the results are shown in the fourth part. In the last part, two innovative
applications, respectively on the estimation of non performing loans of commercial
banks (Fusco and Maggi, 2016) and on the estimation of the local governments’
expenditure needs (Vidoli and Fusco, 2017) by using the efficiency and spatial theories,
are also included .
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THE MEASUREMENT OF
EFFICIENCY

1.1 Production frontiers and technical efficiency . . . . . . . . . . . 4
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1.1.2 Technical efficiency . . . . . . . . . . . . . . . . . . . . . 6
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1.3.1 Revenue efficiency . . . . . . . . . . . . . . . . . . . . . . 11

The efficient use of physical (e.g. labor, energy, capital, etc.) and monetary
resources, or an efficient production process, are the two main objectives of any
production unit to be competitive on the market and to maximize the profits.

Since 1950, beginning with Koopmans (1951), Debreu (1951) and Shephard (1953)
a wide literature has developed in econometrics, management sciences, operations
research and mathematical statistics areas with the aim to implement new tools
for analyzing productivity and efficiency of firms (please see Shephard (1970) for a
comprehensive presentation of the underlying economic theory).

3



The measurement of efficiency

This chapter introduces to the foundations of the economic efficiency analysis and
gives key economic concepts and definitions needed for a proper understanding of
the following chapters.

1.1 Production frontiers and technical efficiency

1.1.1 Production frontier

Consider the case of a production unit i using a positive vector of P inputs, denoted
by x = (x1, ...,xP ) , x ∈ RP+ to produce a positive vector of Q outputs, denoted by
y = (y1, ...,yQ), y ∈ RQ+.

To determine if an input set can produce an output set knowledge on technology,
that is the set of feasible production activities of i, is needed.
The general way to characterize the technology of i is the technology set Ψ(x,y),
which represents the all combinations of input and output such that y can be pro-
duced with the input vector x, i.e. Ψ = {(x,y) : x can produce y}.

The production technology is assumed to satisfy the following properties (Cham-
bers, 1988):

Ψ1: (x,0) ∈Ψ and (0,y) ∈Ψ⇒ y = 0

Ψ2: Ψ is a closed set

Ψ3: Ψ is bounded for each x ∈ RP+

Ψ4: (x,y) ∈Ψ⇒ (λx,y) ∈Ψ for λ≥ 1

Ψ5: (x,y) ∈Ψ⇒ (x,λy) ∈Ψ for λ ∈ [0,1]

Ψ6: (x,y) ∈Ψ⇒ (x′,y′) ∈Ψ ∀ (−x′,y′)≤ (−x,y)

Ψ7: Ψ is a convex set for x ∈ RP+

These properties state that any non-negative level of input can produce at least a
zero level of output and the production of a positive output is impossible without at
least one input (there is no free lunch); guarantee the existence of at least one input
and one output efficient vector; ensure that finite inputs cannot produce infinite
outputs; guarantee a feasible production that is any input-output, where the input
quantity is larger and the output one is smaller, is also in the technology set (free
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The measurement of efficiency

disposability); sometimes it is required that any input-output combinations have to
lie in the set of possible production (convexity).

x

y

f(x)

Ψ(x,y)

Figure 1.1: The Graph of Production Technology (P=1, Q=1)

In Figure 1.1 Ψ(x,y) is the region beneath the curve f(x), called production
frontier, that represents the maximum output obtainable by the given input vector
or the minimum input usage required to produce any given output vector, i.e.:

f(x) = max{y : y ∈ P (x)}= max{y : x ∈ L(y)} (1.1)

where L(y) and P (x) are respectively the input and the output set of production
technology (see Figure 1.2).

x1

L(y)

x2

(a) L(y)

y1

y2

P(x)

(b) P (x)

Figure 1.2: The input and output sets of production technology (P = 2, Q= 2)

5



The measurement of efficiency

Note that f(x) is defined in terms of Ψ(x,y) and so it is assumed to satisfy the
subsequent properties:

f1: f(0) = 0

f2: f is upper semi-continuous on RP+

f3: f(x)> 0⇒ f(λx)→+∞ as λ→+∞

f4: f(λx)≥ f(x),λ≥ 1 for x ∈ RP+

f5: x′ ≥ x⇒ f(x′)≥ f(x)

f6: f is quasi-concave on RP+

1.1.2 Technical efficiency

One of the main objectives of a firm is to minimize inputs used to produce a given
output set or to obtain the maximum output from a given input set.

Koopmans (1951) gave a general definition of efficient subset of Ψ: (x,y) is
technical efficient in Ψ if and only if it cannot be dominated by some (x′,y′) ∈Ψ.

This definition can be split in:

• input-oriented efficiency if output quantity is fixed and no more reduction of
inputs is possible;

• output-oriented if input quantity is fixed and no more increment of outputs is
possible.

Debreu-Farrell Efficiency

Debreu (1951) and Farrell (1957) proposed two measures of Technical efficiency (TE)
where the basic idea is to seek if it is possible to reduce the input quantities without
changing the output quantities produced and vice versa:

• input-oriented measure of TE: TEI(x,y) =min{θ : θx ∈ L(y)}.

• output-oriented measure of TE: TEO(x,y) = [max{φ : φy ∈ P (x)}]−1

6
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x2

x1

x

0

x*=θx

(a) TEI

y2

y1

y

y*= φy

(b) TEO

Figure 1.3: Input and output efficiency (P = 2, Q= 2)

More simply, in a single-input and single-output case, TE is measured as the ratio
between the observed input xA and the minimum input xA∗ (observed output yA
and the maximum output yA∗), under the assumption of fixed output (fixed input)
i.e. in the Figure 1.4 for a generic firm A:

TEI = xA
xA∗

≥ 1 and TEO = yA
yA∗

≤ 1 (1.2)

x

y

f(x)

Output-oriented

Input-oriented

xA

yA

xA*

yA*

A

Figure 1.4: Input-oriented and output-oriented technical efficiency (P = 1, Q= 1)
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1.2 Cost frontiers and cost efficiency

Now, consider also that firms are subjected to a strictly positive vector of input
prices given by w = (w1, ...,wP ) ∈ RP+ and that they attempt to minimize the cost of
producing the output vector y given by wTx =∑

pwpxp.

It is possible to derive a cost frontier that represents the minimum expenditure
required to produce any output given input prices i.e.:

c(y,w) = min
x

{
wTx : x ∈ L(y)

}
(1.3)

y

Cost

C(y,w)

Figure 1.5: Cost frontier (Q= 1)

Note that c(y,w) is defined in terms of L(y) and so it is assumed to satisfy the
subsequent properties:

c1: c(0,w) = 0 and c(y,w)> 0 for y≥ 0

c2: c(y,λw) = λc(y,w) for λ > 0

c3: c(y,w′)≥ c(y,w) for w′ ≥w

c4: c is concave in w

c5: c is continuous in w

c6: c(λy,w)≤ c(y,w) for 0≤ λ≤ 1

c7: c is lower semi-continuous in y

c8: c(y′,w)≤ c(y,w) for 0≤ y′ ≤ y

c9: If Ψ is convex, then c is a convex function in y
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1.2.1 Cost efficiency

Cost efficiency (CE) can be measured as the ratio between the minimum cost
and the observed cost under the assumption of fixed output and input prices i.e.
CE(x,y,w) = c(y,w)/wTx and for a generic firm A (Figure 1.6):

CE = wATxA∗

wATxA
≤ 1 (1.4)

A
wA'xA

wA'xA*

yA

Cost

y

Figure 1.6: Cost efficiency (Q= 1)

Moreover, it can be noted that the inefficiency in term of costs could depend from
two types of bad management of inputs: (i) an inappropriate quantity of resources to
produce a fixed quantity of outputs i.e. a technical inputs inefficiency (Chapter 1 at
page 6); (ii) an inappropriate mix of resources. Figure 1.7 shows that the firm could
reach the full technical efficiency (isoquant curve) by reducing the inputs quantity
from x to x′, but by adding the isocost curve, that is the curve of all combinations of
inputs which cost the same total amount, the cost efficiency is reached at quantity
x∗ i.e. with a different allocation of the inputs x1 and x2 namely input allocative
efficiency (AE).
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x2

x1

x

x'

x*
x''

isoquant

isocost

Figure 1.7: Decomposition of cost efficiency

Therefore, the cost efficiency can be decomposed in:

CE = wTx∗

wTx
= wTx∗

wTx′
wTx′

wTx
= AE ·TE (1.5)

1.3 Revenue functions

A firm can maximize profits by minimizing costs or maximizing revenues, and so in
this section it is assumed that producers are subjected to a strictly positive vector of
output prices given by p = (p1, ...,pQ) ∈ RQ+ and that they attempt to maximize the
revenue of producing the output vector y, given by pTy =∑

qpqyq, obtainable from
the input vector x at their disposal.

It is possible to derive a revenue frontier that represents the maximum revenue
obtainable from any input given the output prices i.e.:

r(x,p) = max
y

{
pTy : y ∈ P (x)

}
(1.6)
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r(x,p)

x

Revenue

Figure 1.8: Revenue frontier (P = 1)

Note that r(x,p) is defined in terms of P (x) and so it is assumed to satisfy the
subsequent properties:

r1: r(0,p) = 0 and r(x,p)> 0 for x≥ 0

r2: r(x,λp) = λr(x,p) for λ > 0

r3: r(x,p′)≥ r(x,p) for p′ ≥ p

r4: r is convex in p

r5: r is continuous in p

r6: r(λx,p)≥ r(x,p) for λ≥ 1

r7: r is upper semi-continuous in x

r8: r(x′,p)≥ r(x,p) for x′ ≥ x

r9: If Ψ is convex, then r(x,p) is a concave function in x

1.3.1 Revenue efficiency

Revenue efficiency (RE) can be measured as the ratio between the actual revenue
and the maximum revenue under the assumption of fixed input and output prices
i.e. RE(x,y,p) = pTy/r(x,p) and for a generic firm A (Figure 1.9):

RE = pATpA
pATpA∗

≤ 1 (1.7)
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r(x,p)

x

Revenue

A
pA'yA

pA'yA*

xA

Figure 1.9: Revenue efficiency (P = 1)
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Standard production functions, generally, present the implicit strong hypothesis
that producers use multiple inputs to obtain a single-output. However, sometimes,
the case of a multi-input/multi-output production process exists also and a represen-
tation of this setting has been provided by the so-called Shephard distance functions
(Shephard, 1970).
Moreover, in some cases the direct estimation of a cost or a revenue frontier may not
be practical or appropriate: it would not be practical when input or output prices
do not differ among firms or it might not be appropriate when there is a systematic
difference in cost-minimizing behavior in an industry, for example when political,
union or regulatory factors cause shadow prices to deviate from market prices in a
systematic way. In this situation, the duality between cost and production functions
breaks down, and the resulting bias in the cost frontier estimates makes the cost
efficiency calculation and decomposition biased as well (object of analysis of the
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Chapter 12).
Distance functions, instead, do not require price information, they are robust to
systematic deviations from cost-minimizing behavior, and they do not suffer from
simultaneous equations bias when firms are cost minimizers or shadow cost minimiz-
ers (Coelli, 2000).

Therefore, distance functions through the duality theorems, explained in the
following sections, allow to estimate shadow-pricing models when prices are not
observable, are endogenous and/or are difficult to estimate in a consistent way
or, finally, if the goal is to estimate the monetary effects of the production of an
undesirable output (object of analysis of the Chapter 13).

For these reasons distance functions are regularly utilized in theoretical and
empirical economics papers both in a parametric and in a non-parametric way. Färe
et al. (1985) and Färe et al. (1994), for example, used linear programming methods
to construct non-parametric distance functions for the measurement of technical
efficiency and productivity growth in multi-output firms, or Lovell, Richardson,
P. Travers and Wood (1994), Grosskopf et al. (1997), Coelli and Perelman (1999)
and Coelli and Perelman (2000) proposed to estimate parametric distance functions
using econometric methods.

The following sections give an introduction to input and output distance functions
and on their duality with cost and revenue frontiers.
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2.1 Cost frontiers and input distance functions

An input distance function defined as DI(x,y) =max{λ > 1 : x/λ ∈ L(y)} indicates
the largest proportional contraction in the observed input vector x such that the
contracted vector (x/λ) is still an element of the original input set L(y).

x2

x1

x

0

x/λ*

L(y)

Figure 2.1: Input distance function (P = 2)

Färe et al. (1985) and Färe et al. (1994) proved that in the particular case of
single-output, distance functions are closely linked with the Farrell efficiency measure,
inasmuch, they provide radial measures of the distance from an output-input bundle
to the boundary of production technology. More specifically the input distance
function is the reciprocal of the Farrell efficiency, i.e. DI(x,y) = [TEI(x,y)]−1 =
[min{θ : θx ∈ L(y)}]−1.

More simply, taking up the graph (a) in Figure 1.3a, which depicts the input
technical efficiency, DI(x,y) can be represented as in Figure 2.2 and it can be written:

DI(x,y) = 0A
0B and TEI = 0B

0A = 1
DI(x,y)
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x2

x10

B

A

Figure 2.2: Input distance function vs Farrell input efficiency (P = 2)

Its properties can be summarized as:

DI1: DI(0,y) = 0 and DI(x,0) = +∞

DI2: DI(x,y) is an upper semi-continuous function

DI3: DI(λx,y) = λDI(x,y) for λ > 0

DI4: DI(x,λy)≤DI(x,y) for λ≥ 1

DI5: DI(λx,y)≥DI(x,y) for λ≥ 1

DI6: DI(x′,y)≥DI(x,y) for x′ ≥ x and DI(x,y′)≤DI(x,y) for y′ ≥ y

DI7: If L(y) is a convex set for y then DI(x,y) is a concave function in x

These assumptions ensure the distance function to be non-negative, non-decreasing
in x and non-increasing in y, to be linearly homogeneous in x and that if x belongs
to the input set L(y) then DI(x,y)≥ 1 and that the distance is equal to 1 only if x
is on the frontier.

Taking advance of the envelope theorem (see Shephard, 1970 or Färe, 1988), the
cost frontier can be derived from equation (2.1):

c(y,w) =min
x

{
wTx : x ∈ L(y)

}
=min

x

{
wTx :DI(x,y)≥ 1

}
(2.1)

In fact, if c(y,w) = min
x

{
wTx :DI(x,y)≥ 1

}
satisfies conditions {c1-c5,c7,c8}

(Chapter 1 at page 8), then c(y,w) is dual to DI(x,y) in the sense that DI(x,y) =
min
w

{
wTx : c(y,w)≥ 1

}
satisfies properties {DI1−DI3,DI6,DI7}.
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Therefore, the cost function can be derived from the input distance function by
minimizing with respect to inputs, and the input distance function is obtainable from
the cost function by minimizing with respect to input prices. This duality between
the input distance function and the cost function can be used to obtain the absolute
shadow prices of inputs (Shephard, 1970 , Färe and Primont, 1995).

Assuming that the cost and the distance functions are both differentiable, a
Lagrange problem can be set up to minimize the cost (see e.g. Rodríguez-Álvarez
et al., 2007):

min
x

Λ = wTx +λ(1−DI(x,y)) (2.2)

and first order conditions with respect to inputs yield the relationship:

w = λ∇xDI(x,y) (2.3)

where ∇ is the gradient operator.
At the optimum, in force of the homogeneity of degree 1 of DI(x,y) (see Jacobsen,
1972), the Lagrange multiplier equals the cost function, i.e., λ = c(y,w). Thus,
equation (2.3) may be written in terms of the following system of equations:

w = c(y,w)∇xDI(x,y) (2.4)

Now, by using the second part of the Shephard’s duality theorem, equation (2.4) can
be written as:

DI(x,y) = w∗(x,y)x (2.5)

where w∗(x,y) represents the input price vector that minimizes the cost.

Applying Shephard’s dual lemma to expression (2.5), the shadow price formula
can be written as:

∇xDI(x,y) = w∗(x,y) (2.6)

Consequently, by combining (2.6) with (2.4):

w = c(y,w)w∗(x,y) (2.7)

The main difficulty that arises in order to obtain absolute shadow prices from
expression (2.7) relies on the dependence of the cost function c(y,w) on w, that is
precisely the vector of shadow prices sought.

Therefore, in order to obtain c(y,w) the Hailua and Veemanb (2000) shadow
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prices ratio is used:

cpp′ =
w∗p
w∗p′

= ∂DI(x,y)/∂xp
∂DI(x,y)/∂xp′

(2.8)

It represents the relative shadow price of xp with respect xp′ and w∗p and w∗p′ are
the shadow prices of the inputs xp and xp′ , respectively.

Assuming, at last, that “The absolute shadow price wp of an input p, equals its
observed market price wo

p”, the absolute shadow price of xp′ is given by:

wp′ = wo
p

∂DI(x,y)/∂xp′
∂DI(x,y)/∂xp

(2.9)

Finally, the AE can be obtained comparing the shadow cost function with the
cost function calculated by the means of the actual prices, formally:

AE =
c(y,w′p)
c(y,wo

p) (2.10)

2.2 Revenue frontiers and output distance func-
tions

The output distance defined as DO(x,y) = min{µ ∈ [0,1] : y/µ ∈ P (x)} indicates
the smallest proportional reduction in the observed output vector y provided that the
expanded vector (y/µ) is still an element of the original output set P (x) (Grosskopf
et al., 1995).

y2

y1

y

y/μ*

P(x)

Figure 2.3: Output distance function (Q= 2)
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Färe et al. (1985) and Färe et al. (1994) proved that, in the particular case of
single-input, output distance function equal the Farrell efficiency i.e. DO(x,y) =
TEO(x,y) = [max{φ : φy ∈ P (x)}]−1.

Simplifying, taking up the graph (b) in Figure 1.3b, which depicts the output
technical efficiency, DO(x,y) can be represented as in Figure 2.4 and it can be written
as:

DO(x,y) = 0A
0B and TEO = 0A

0B =DO(x,y)

y2

y1

B

A

0

Figure 2.4: Output distance function vs Farrell output efficiency (Q= 2)

The properties can be summarized as:

DO1: DO(x,0) = 0 and DO(0,y) = +∞

DO2: DO(x,y) is a lower semi-continuous function

DO3: DO(x,λy) = λDO(x,y) for λ > 0

DO4: DO(λx,y)≤DO(x,y)for λ≥ 1

DO5: DO(x,λy)≤DO(x,y) for 0≤ λ≤ 1

DO6: DO(x′,y)≤DO(x,y) for x′ ≥ x and DO(x,y′)≤DO(x,y) for y′ ≤ y

DO7: If P (x) is a convex set for x then DO(x,y) is a convex function in y

Taking advantage of the envelope theorem (see Shephard, 1970 or Färe, 1988),
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the revenue frontier can be derived from equation (2.11):

r(x,p) =max
y

{
pTy : y ∈ P (x)

}
=max

y

{
pTy :DO(x,y)≤ 1

}
(2.11)

In fact, if r(x,p) = max
y

{
pTy :DO(x,y)≤ 1

}
satisfies conditions {r1-r5,r7,r8}

(Chapter 1 page 11), then r(x,p) is dual to DO(x,y) in the sense that DO(x,y) =
max
p

{
pTy : r(x,p)≤ 1

}
satisfies properties {DO1−DO3,DO6,DO7}.

Therefore, the revenue function can be derived from the output distance function
by maximizing with respect to outputs, and the output distance function is obtainable
from the revenue function by maximizing with respect to output prices. This duality
between the output distance function and the revenue function can be used to obtain
the absolute shadow prices of outputs (Shephard, 1970 , Färe and Primont, 1995).

Assuming that the revenue and distance functions are both differentiable, a
Lagrange problem can be set up to maximize revenue:

max
y

Λ = pTy +λ(DO(x,y)−1) (2.12)

and first order conditions with respect to outputs yield the relationship (Färe and
Primont, 1995):

p =−λOyDO(x,y) (2.13)

At the optimum, in force of the homogeneity of degree 1 of DO(x,y) (see Jacobsen,
1972), the negative of the Lagrange multiplier equals the revenue function, i.e.,
−λ= Λ = r(x,p). Thus, equation (2.13) may be written in terms of the following
system of equations:

p = r(x,p)OyDO(x,y) (2.14)

Now by means of the second part of the duality theorem (2.11), it is obtained that:

DO(x,y) = p∗(x,y)y (2.15)

where p∗(x,y) represents the output price-vector that maximises revenue.

Applying Shephard’s dual lemma to expression (2.15), yields:

OyDO(x,y) = p∗(x,y) (2.16)

expression that combined with equation (2.14), leads to:

p = r(x,p)p∗(x,y) (2.17)
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where, p∗(x,y) is obtained from the gradient of the distance function, and represents
revenue-deflated output prices. The main difficulty that arises in order to obtain
absolute shadow prices from expression (2.17) relies on the dependence of the revenue
function r(x,p) on p, that is precisely the vector of shadow prices sought.

Therefore, in order to obtain r(x,p) it is assumed that “The observed price of an
output q, poq, equals its absolute shadow price pq”, and thus the maximum revenue is
obtained as:

r =
poq

p∗q(x,y) (2.18)

expression that can be used to calculate the absolute shadow prices of the remaining
outputs from its deflated shadow prices p∗. The absolute shadow price for output
yq′ , denoted by pq′ , is given by (Färe, 1993):

pq′ = r ·p∗q′(x,y) = r · ∂DO(x,y)
∂yq′

= poq ·
∂DO(x,y)/∂yq′
∂DO(x,y)/∂yq

(2.19)

2.3 Directional efficiency measures

In both Farrell and Shephard efficiency measures, seen in the previous chapters, the
producer has to choose whether to reduce inputs by fixing outputs or to increment
outputs by fixing inputs, moreover, in a multi-input or multi-output case, all inputs
or all outputs are reduced or expanded by a same multiplicative factor.

Sometimes, it would be useful to be able to decide how intensively to reduce
or increase the various inputs and outputs and for this reason in recent years
alternative efficiency measures have been proposed like the directional distance
functions (Chambers et al., 1998). Please see Bogetoft and Otto (2011) for a detailed
discussion.

The purpose of directional distance functions is to determine improvements in a
given direction g ∈ RP+×RQ+ and to define an excess function e such as:

−→
DT (x,y;g) = sup{e : (x− egx,y+ egy) ∈Ψ} (2.20)

where g = (gx,gy) is the directional vector, i.e. this function is defined by simultane-
ously contracting inputs and expanding outputs.

The function satisfies the following properties:

21



Shadow price approach, duality and distance functions

D1: −→DT (x,y;g)≥ 0⇔ x ∈Ψ (representation)

D2: −→DT (x−αg,y +αg;g) =−→DT (x,y;g)−α for α ∈ R+ (translation)

D3: −→DT (x,y;g) is an additive measure, hence it allows negative values of x
and/or y

From a geometric point of view directional distance functions project the point (x,y)
onto the production frontier f(x) in the direction g = (gx,gy) as shown in Figure 2.5.

x

y

f(x)

xA

yA

xA*

yA*

A

yA + egy

xA - egx

Figure 2.5: Input-oriented and output-oriented directional efficiency (P = 1, Q= 1)

There are some special cases of −→DT (x,y;g) that are interesting:

• gy = 0⇒−→DT (x,y;gx,0) = −→D I(x,y;gx) (Directional input distance func-
tion)

• gx = 0⇒−→DT (x,y;0,gy) =−→DO(x,y;gy) (Directional output distance func-
tion)

• gx = 0 and gy = y⇒
−→
DT (x,y;0,y) = (1/DO(x,y))−1 (Relation with Shep-

hard’s output distance function)

• gx = x and gy = 0⇒−→DT (x,y;x,0) = 1−1/DI(x,y) (Relation with Shep-
hard’s input distance function)

Long debates have pursued in the economic literature on how the directions may
be chosen, please see Färe et al. (2008) for a discussion.
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In Chapters 1 and 2 the theory of production technology, technical and economic
efficiency has been discussed; in empirical studies both the frontier and the efficiency
of a given firm are unknown and must be estimated from a sample of production
units for which data, on input and output quantities, are available.

In literature, many different approaches have been proposed and vary from
the most popular fully parametric, where a functional form of the frontier and a
statistical distribution of the efficiency are assumed and the parameters are estimated
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by statistical and econometric methods, to the most popular fully nonparametric
techniques, where the frontier is identified only by some specific properties and
the relative efficiency is calculated through linear programming methods. However,
in recent years, several interesting middle methods have been developed: semi-
nonparametric and semi-parametric methods. Table 3.1 reports a synthetic taxonomy
of the most used approaches.

Table 3.1: Estimation techniques by production technology

Production Technology Estimation techniques

Nonparametric DEA, Farrell (1957);Charnes et al. (1978)

FDH, Deprins et al. (1984); Grosskopf (1996)
Order-m, Cazals et al. (2002); Daraio and Simar (2007)

Semi-nonparametric StoNED , Kuosmanen and Kortelainen (2012)

StoNEZD, Johnson and Kuosmanen (2011)
Semi-parametric Park and Simar (1994), Park et al. (2007)

Parametric SFA, Aigner et al. (1977); Meeusen and van den Broeck (1977)

DFA, Aigner and Chu (1968)

From a personal point of view, as can be seen from the chapters dedicated to
empirical applications, no single approach is best but in some cases it is more
convenient to use a parametric approach while in others a nonparametric approach
is preferred.

In the following sections some parametric and nonparametric frontier approaches
will be presented focusing more on the methods that are used in subsequent chapters.

3.1 Parametric approach

The frontier parametric models are classified according to two main criteria: (i) the
presence of noise in the estimation procedure, in deterministic models it is assumed
that all observations (x, y) belong to the production set Ψ i.e. Pr((x,y) ∈Ψ) = 1,
while stochastic models allow for the presence of the noise in the data and so for
some unit i (xi,yi) /∈ Ψ; (ii) the type of data analyzed i.e. cross-section or panel
data.

In an econometric framework the existence of a well-defined production (or cost)
structure characterized by smooth, continuous, continuously differentiable and quasi-
concave production (or cost) functions is taken as given.

Therefore, by hypothesizing for simplicity the case of N producers that produce
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in one year (cross-section data) a single output y by using P inputs x, the parametric
single-output production frontier can be written as:

yi ≤ f(xi;β) (3.1)

where f(xi;β) is a well-defined smooth, continuous, continuously differentiable, quasi-
concave production function and β are the technology parameters to be estimated.

Moreover, it is assumed that prices are imposed by the market and so input prices
wi are treated as exogenous, the parametric cost frontier is:

Ci ≥ c(yi,wi;β) (3.2)

where Ci is the observed expenditure incurred by producer i.

The main parametric approaches pros are:

• statistical inference can be easily carried out being based on econometric models
and so on probabilistic structures;

• the presence of parameter to estimate and so results are easy to interpret in
terms of sensitivity of the production function to particular inputs or of cost
function to particular outputs and input prices and so on.

Instead, the major criticisms to parametric approaches regard:

• the restrictive assumptions about particular functional forms for the frontier
and about the distribution of the two elements of the stochastic parts of the
model, i.e. inefficiency and noise, from which derives, in my opinion, the most
applicative problem called “Wrong skewness problem”;

• the greater difficulty in estimating multi-input/multi-output cases.

3.1.1 Deterministic Frontier Analysis (DFA)

As hinted above, in a deterministic model all observations (x, y) are assumed to
belong to the production set Ψ and this means that in the data there are no random
shocks and that the distance to the frontier is pure inefficiency i.e.:

yi = f(xi;β) ·TEi (3.3)

and TE is measured as:
TE(xi,yi) = yi

f(xi;β) ≤ 1 (3.4)
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The production model is usually rewritten as (see Jondrow et al., 1982 and Battese
and Coelli, 1992):

yi = f(xi;β) · exp{−ui} (3.5)

that in logarithmic terms becomes:

ln(yi) = ln[f(xi;β)]−ui (3.6)

where ui≥ 0 is a measure of the technical inefficiency and guarantees that yi≤ f(xi;β)
and TE(xi,yi)≤ 1.

In the same way the cost frontier can be written as:

ln(Ci) = ln[c(yi,wi;β)] +ui (3.7)

where ui ≥ 0 is a measure of the cost inefficiency and guarantees that Ci ≥ c(yi,wi;β)
and CE(yi,wi) = c(yi,wi;β)

Ci
≤ 1.

Note that from a mathematical point of view the production and the cost frontier
differ only in the “ui” sign, therefore, to simplify presentation in the following sections
it will refer only to the production frontier case (easily reportable to the cost frontier
issue).

In literature, three major methods have been proposed to obtain the deterministic
frontier.

Mathematical programming

Aigner and Chu (1968) reformulated the equation (3.6) in a linear and a quadratic
mathematical programming models where parameters are calculated as those βs for
which the sum of the deviations (or squared deviations), of the observed output
of each producer from the maximum feasible output, is minimized. The principal
drawback of the proposed model is that parameters are calculated rather than
estimated and so statistical inference on the results is complicated.

Corrected Ordinary Least Squares (COLS)

Winsten (1957) suggested to estimate the model in equation (3.6) in two stages. In
the first stage the slope parameters can be consistently estimated by Ordinary Least
Squares (OLS) and in the second step the biased OLS β̂0 intercept is corrected by
shifting the estimated production function upward until all residuals except one, on
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which the function is placed, are negative i.e.:

β̂∗0 = β̂0 + max
i
{ûi} (3.8)

x

y
COLS

OLS

Figure 3.1: COLS (Corrected Ordinary Least Squares)

and TE is measured as follows:

TEi = exp{ûi−max
i

(ûi)}. (3.9)

An important drawback of COLS is the strong sensitivity to outliers, in fact, as
shown in Figure 3.2 the frontier is shifted on the highest point defined “fully efficient”
and the relative efficiency of all other points is underestimated.

x

y

Figure 3.2: COLS (Corrected Ordinary Least Squares) in presence of outliers
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Modified Ordinary Least Squares (MOLS)

Afriat (1972) and Richmond (1974) proposed a variation of COLS that hypothesizes
a one-side distribution of OLS residuals, such as halfnormal or exponential, and a
shift of the frontier equal to the mean of the assumed distribution i.e.:

β̂∗0 = β̂0 +E(ûi) (3.10)

x

y
COLS

OLS
MOLS

Figure 3.3: MOLS (Modified Ordinary Least Squares)

Afterward, TE is measured as below:

TEi = exp{ûi−E(ûi)}. (3.11)

Note that to obtain TE, it is assumed ûi ≥ 0, i.e. residuals must have a “Negative
skewness”.

3.1.2 Stochastic Frontier Analysis (SFA)

Stochastic frontier models (SFA) introduced in the same period by Aigner et al.
(1977) and Meeusen and van den Broeck (1977) allow the possibility of random
shocks (bad weather, machinery breakdown,...), not controllable by producers, in the
production process. In deterministic models these types of events cause a translation
of the frontier leading to an increment of the inefficiency for the unfortunate producer.

Starting from the deterministic frontier in equation (3.6) and introducing a
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stochastic term vi SFA can be specified as follows:

ln(yi) = ln[f(xi;β)] +vi−ui (3.12)

where:

• vi is a two-side noise term;

• ui is the nonnegative technical inefficiency term;

• vi and ui are assumed to be independent of each other and of the regressors.

Figure 3.4 shows a comparison among SFA and the deterministic models discussed
in the previous section.

x

y

SFA
COLS

OLS
MOLS

Figure 3.4: Comparison between stochastic and deterministic frontier models

In the same way the stochastic cost frontier can be defined as:

ln(Ci) = ln[c(yi,wi;β)] +vi+ui (3.13)

Distributional assumptions

In order to estimate the technical (or cost) efficiency of each producer some distribu-
tional assumptions, on the compound error εi = vi−ui (or εi = vi+ui in the cost
case), are required. One of the most used distributions proposed in literature is the
Normal-Half Normal1 (Aigner et al., 1977) based on the idea that the modal value
of inefficiency term is zero:

1Please see Kumbhakar and Lovell (2000) or Greene (2008) for the other distributions for ui.
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• vi ∼ iid N(0,σ2
v)

• ui ∼ iid N+(0,σ2
u)

The aftermath on the likelihood function of this distributional assumption will be
discussed in detail as it will be modified in the innovative part of the thesis.

The mathematical general formulation (usable both for production and cost
functions) of the Half normal density function (depicted in Figure 3.5a) of ui is2:

f(u) = 2√
2πσu

· exp
{
− u2

2σ2
u

}
(3.14)

and the normal density function of vi is:

f(v) = 1√
2πσv

· exp
{
− v2

2σ2
v

}
(3.15)

In order to derive the density function of the compound error term ε and taking
advantage of the independence assumption (see page 29), the joint density function
of ui and vi is the product of the single density functions, i.e.:

f(u,v) = 2
2πσuσv

· exp
{
− u2

2σ2
u
− v2

2σ2
v

}
(3.16)

Then, the general form of the joint density function for ui and εi, since εi = vi−s ·ui
(where s= 1 for production functions and s=−1 for cost functions), is given by:

f(u,ε) = 2
2πσuσv

· exp
{
− u2

2σ2
u
− (ε+ su)2

2σ2
v

}
(3.17)

Whereupon, to obtain the marginal density of εi (depicted in Figure 3.5b), ui is
integrated out of the joint density:

f(ε) =
∫ ∞

0
f(u,ε) du

= 2√
2π(σ2

u+σ2
v)
·

1−Φ
sε(σu/σv)√

σ2
u+σ2

v

 · exp{− ε2

2(σ2
u+σ2

v)

} (3.18)

where Φ(.) is the cumulative distribution function of the standard Normal distribution.

A convenient parameterization that also produces a useful interpretation, is to
put σ =

√
(σ2
u+σ2

u) and λ = σu/σv, in this way the total variance of ε (σ2) can

2For simplicity’s sake the equations refer to each company i but the i subscript is dropped.
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be calculated as the sum of the variances due to the inefficiency (σ2
u) and to the

noise term (σ2
v) and the parameter (λ) is an immediate suggestion of the amount of

inefficiency with respect to the noise3. So the (3.18) can be reformulated as:

f(ε) = 2√
2πσ
·
[
1−Φ

(
sελ

σ

)]
· exp

{
− ε2

2σ2

}

= 2
σ
·φ
(
ε

σ

)
·Φ
(
−sελ

σ

) (3.19)

where φ(.) is the density function of the standard normal distribution.

u

f(u)

0 1 2 3 4

(a) Half normal distribution of ui

ε

f(ε)

0 1 2 3-1-2-3

(b) Normal- Half normal distribution of εi

Figure 3.5: Normal - Half normal distribution model

It is important to note that:

• if λ→+∞ the distance to the frontier is all due to inefficiency and so deter-
ministic frontier results return;

• if λ→ 0 the distance to the frontier is all due to noise, there is no inefficiency
in the disturbance, and the model can be efficiently estimated by OLS.

Finally, the log likelihood function to be maximized (or minimized in the case of
cost), to obtain maximum likelihood estimates of all parameters, is given by:

ln(L) =
N∑
i=1

{
1
2 ln

( 2
π

)
− ln(σ) + ln

[
Φ
(
−sεiλ

σ

)]
− ε2

i

2σ2

}
(3.20)

3Some papers use this alternative parameterization γ = σ2
u/σ

2 where the parameter γ measures
the proportion of the total variance of ε due to the inefficiency term (see Battese and Corra, 1977;
Battese and Coelli, 1992; Coelli, 1991; Greene, 2000, chapter 28).
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The last step is the estimation of the inefficiency or efficiency of each firm. In
literature the main two proposals are:

• Jondrow et al. (1982) : E(ui|εi) = µ∗i+σ∗
{
φ(−µ∗i/σ∗)
Φ(µ∗i/σ∗)

}
• Battese and Coelli (1988) : E {exp(−sui)|εi}=

{1−Φ(sσ∗−µ∗i/σ∗)
1−Φ(−µ∗i/σ∗)

}
exp

(
−sµ∗i+ 1

2σ∗
)

where µ∗i =−sεiσ2
u/σ

2 and σ∗=σuσv/σ. Note that exp{−E(ui|εi)} 6=E {exp(−sui)|εi}.

3.1.3 A brief introduction to panel data frontier models

Cross-sectional frontier models suffer, as pointed out by Schmidt and Sickles (1984),
from some difficulties related to the strong assumptions on the compound error term.
Panel data, if available, allows to overcome these limitations thanks to the classical
panel data estimation techniques that require less distributional assumptions: in fact,
in many techniques it is not necessaries to assume the independence of the efficiency
term from the regressors or the technical efficiency distribution to be skewed (by
avoiding one of the main critical issues of frontier models). Moreover, in panel
data models, the efficiency of each producer can be estimated consistently, unlike
cross-sectional models, as the time periods T →+∞.

In panel data models the production frontier (but also the cost one by changing
the sign of uit) can be written as:

ln(yit) = ln[f(xit;β)] +vit−uit (3.21)

where i= 1, ..., I indexes producers and t= 1, ...,T indexes time periods.

A part of the literature, going back to classical panel data models, assumes that
efficiency only varies across producers but is constant through time, i.e.:

ln(yit) = ln[f(xit;β)] +vit−ui (3.22)

Aiming at a more fluid reading of the application in Chapter 13 and to avoid making
the discussion heavy going only one of the possible techniques is reported (please
see Kumbhakar and Lovell, 2000 or Greene (2008) for a detailed discussion) that is
the “Distribution-Free Approach” (also named “Free efficiency Method” - Berger,
1993). This approach assumes a stable efficiency of each producer over time, whereas
random errors will average out to zero in the end (Berger et al., 1993), i.e.:

ûi = max
i

(û∗i )− û∗i (3.23)
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where û∗i =∑
t εit/T.

In this type of models β coefficients can be estimated with a Feasible Generalized
Least Squares (FGLS).

3.1.4 Functional forms

Another important choice in the estimation of parametric frontiers, in addition to
the ui distribution, is the functional form of f(x;β) (or c(yi,wi;β)). The functional
form, in fact, modifies the shape of the isoquants but also the relationship among the
regressors. Functional forms should have two characteristics: on the one hand, they
should own the properties of the production function (or cost function) discussed
in Chapter 1 at page 6 (page 8 for the cost) i.e. homogeneity, homotheticity,
convexity/concavity etc.; on the other hand, their analytical form should allow
empirical analysis and/or the use of statistical and econometric techniques.

In microeconomics, the functional forms are generally divided into two main
categories: rigid functional forms and flexible functional forms. The criterion for
distinguishing is the substitution elasticity between the variables that define the
domain: if for any pair (xi,xj) with i 6= j substitution elasticity is constant, then we
talk about rigidity. In the opposite case, namely substitution elasticity is different
for i and j, we talk about flexibility (see Griffin et al., 1987 for a discussion on the
selection of functional forms in production function analysis).

Cobb-Douglas (CD)

The form specified in equation (3.6) and (3.7) is the most used in applications
literature of stochastic frontier and econometric inefficiency estimation and it is
called Cobb-Douglas. The fame of Cobb-Douglas production function is due to the
fact that it has universally smooth and convex isoquants and an immediate economic
interpretation of results and so of the production technology of the firm. Moreover,
it is linearizable with logarithms and so suitable for econometric analysis based on
the OLS regression models.

Consider the case of two inputs that is labor L and capital K to produce the
output y the Cobb-Douglas form is (Cobb, 1928):

y = ALβKα (3.24)

β and α give directly the elasticities of the output with respect the labor and the
capital and their sum provides information about the returns to scale:
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• if α+β = 1 the production function has constant returns to scale, meaning
that an increment of the usage of capital K and labor L of a constant factor
generates an increment of the produced output y of the same factor;

• if α+β < 1 the production function has decreasing returns to scale, an increment
of the usage of capitalK and labor L of a constant factor generates an increment
less than proportional of the produced output y;

• if α+β > 1 the production function has increasing returns to scale, an increment
of the usage of capitalK and labor L of a constant factor generates an increment
more than proportional of the produced output y.

The logarithmic general Cobb-Douglas form of a production function is given by:

f(x)CD = α0 +
P∑
p=1

βp · ln(xp) + ε (3.25)

Cobb-Douglas is a rigid functional form that assumes a constant substitution elasticity
among any variables equal to 1, so in the literature some flexible functional forms,
that impose fewer restrictions and represent a valid approximation of rigid forms,
have been proposed.

Translog (TL)

Translog functional form, with respect to the Cobb-Douglas, has both linear and
quadratic terms with the ability of using more than two factor inputs. This function
can be approximated by a second order Taylor series (Christensen et al., 1971, 1973)
in terms of logarithms and it is characterized by partial substitution elasticities that
assume different values. Analytically, a Translog with p inputs can be written as
follows:

f(x)TL = α0 +
P∑
p=1

βp · ln(xp) + 1
2

P∑
p=1

P∑
k=1

βpk · ln(xp) · ln(xk) + ε (3.26)

Note: If transformed data are used, that is inputs are measured relative to their
means, Translog elasticities at means would simply be βp.

Although Translog allows less restrictions, it is more difficult to interpret than
Cobb-Douglas, it also requires the estimation of many parameters and can suffer from
curvature violations. Moreover, it derives from the Taylor series approximation that
imposes the choice of an arbitrary local point and could generates a large estimation
error (White, 1980) in a regression setting.
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Fourier Flexible Functional form (FFF)

Fourier Flexible Functional form (FFF) originally proposed by Gallant (1981) is
capable of representing a multivariate function when the true functional form is
unknown (Dym and McKean, 1972). In fact, a linear combination of sine and cosine
functions can exactly approximate every multivariate function with some desirable
properties, thanks to the fact that sine and cosine functions are mutually orthogonal
and able to cover the entire space of definition of the variables considered.

FFF avoids the limitation of the Taylor series approximation but like other
series expansion it has an approximation problem. In fact, to accurately represent
a function an infinite number of trigonometric terms, whose coefficients can be
estimated only with an infinite number of observations, may be necessary. Gallant
(1981) suggested that with a finite number of observations, a second order polynomial
in the explanatory variables generates an acceptable error of approximation; this
finding is also confirmed by Eastwood and Gallant (1991) suggesting that a number of
coefficients equal to the number of observations raised to the 2/3 power can produce
consistent and unbiased estimates.

If the explanatory variables are expressed in natural logarithm the FFF is the
series expansion of a TL function:

f(x)FFF = α0 +
P∑
p=1

βp · ln(xp) + 1
2

P∑
p=1

P∑
k=1

βpk · ln(xp) · ln(xk)

+
P∑
p=1

δp · sin(zp) +
P∑
p=1

λp · cos(zp) +
P∑
p=1

P∑
k=1

δpk · sin(zp+ zk)

+
P∑
p=1

P∑
k=1

λpk · cos(zp+ zk) +
P∑
p=1

P∑
k=1

P∑
l=1

δpkl · sin(zp+ zk + zl)

+
P∑
p=1

P∑
k=1

P∑
l=1

λpkl · cos(zp+ zk + zl) + ε

(3.27)

In order to compare the different functional forms, consider a complex form to be
estimated where the true function is:

Y =



(
x
e

)2
x ∈ [0, e)

ln(x) x ∈
[
e,e2

)
0.25 · cos(x− e)2 + 1.75 x ∈

[
e2, e2 +π

)
ln(x−2π) x ∈

[
e2,25

)
(3.28)

Figure 3.6 shows the estimated regression curves of the three functional form discussed
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above.
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Figure 3.6: Comparison among functional forms

It can be noted how the flexibility of the function increases from the Cobb-Douglas
to the FFF of first degree specification: only the FFF begins to catch the congestion
point of the true function.

Finally, Figure 3.7 compares the FFF up to third degree that fits the data trends
very well.

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

Y
FFF first degree
FFF second degree
FFF third degree

Figure 3.7: Comparison among FFF degrees

36



Frontier models estimation techniques

3.2 Nonparametric approach

Nonparametric frontier approaches are based on the envelopment idea that is the
identification of an attainable set (a best-practice frontier), enveloping the cloud
of data points, formed by the most efficient units in the sample called “Bench-
marks”. Then, a relative efficiency of all other firms is found by comparison with the
benchmarks.

In literature, the pioneer was Farrell (1957) developing a first empirical work
to identify an efficient frontier of the production possibilities and the resulting
efficiency scores. Subsequently, were Charnes et al. (1978) and Banker et al. (1984)
to operationalize Farrell’s idea by using linear programming techniques. Whereupon,
an entire research field has been developed of which only some aspects will be seen
aimed at understanding the innovative part of the thesis.

The main pros for nonparametric approaches are:

• the very few assumptions required for the identification of the frontier;

• the easy evaluation of multi-input/multi-output cases;

• the possibility to directly compare the individual firm with its peers or combi-
nation of peers, in as much as, the frontier derives from the data itself.

Instead, the major criticisms to nonparametric approaches regard:

• the deterministic nature of the analysis;

• the difficulty of economic interpretations in term of sensitivity of production
to particular inputs;

• the “curse of dimensionality” problem that implies the consideration of large
sample sizes to get reliable results.

3.2.1 Free disposal hull (FDH)

Deprins et al. (1984) proposed the Free disposal hull estimator (FDH), that relying
only on the Free disposability assumption for Ψ (see the production technology
property Ψ1 Chapter 1 at page 4), and so it envelopes all the cloud of data points
by connecting all positive orthants in the inputs with the negative orthants in the
outputs with the vertex at the observed data points (as shown in Figure 3.8), i.e.:

ΨFDH = {(x,y) ∈ RP+Q
+ |y ≤ Yi,x≥Xi,(Xi,Yi) ∈ χ} (3.29)
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where χ is a random sample χ= {(Xi,Yi), i= 1, ....,n}.

x

y

A

B

C

D
FDH

Figure 3.8: FDH (Free disposal hull)

Then, starting from the definitions 1.1.2, for example, the FDH input technical
efficiency estimator for a unit (x,y), relative to the boundary of the convex hull of
χn, is given by:

TEIF DH
=min{θ : (θx,y) ∈ΨFDH(χ)} (3.30)

and so also all the other efficiency measures. In practice, the FDH estimator is
computed, using only sorting algorithms, by a simple vector comparison procedure
that amounts to a complete enumeration algorithm proposed in Tulkens (1993) and
its asymptotic properties have been established in Park et al. (2000) and Daouia
et al. (2010).

3.2.2 Data envelopment analysis (DEA)

The Data envelopment analysis (DEA) introduced by Farrell (1957) and popularized
by Charnes et al. (1978), that operationalized DEA as a linear programming estimator,
adds to the Free disposability assumption also the Convexity of Ψ (see the production
technology property Ψ7 Chapter 1 at page 4), i.e.:

ΨDEA = {(x,y) ∈ RP+Q|y ≤
n∑
i=1

γiYi,x≥
n∑
i=1

γiXi, for (γ1, ...,γn)

s.t.
n∑
i=1

γi = 1;γi ≥ 0; i= 1, ...,n}
(3.31)

ΨDEA is thus the smallest free disposal convex set covering all the data.
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The equality constrained ∑n
i=1 γi = 1 produces a Variable Returns to Scale (VRS)

characterization of the DEA (see Banker et al., 1984).

Figure 3.9 shows the differences between ΨDEA and ΨFDH , note that if the point
c is fully efficient for the FDH it is less efficient for the DEA.

x

y

DEA

FDH

A

B

C

D

Figure 3.9: Comparison between DEA and FDH production technology

The ΨDEA also allows for Constant Returns to Scale (CRS) (also named CCR-
DEA model - Charnes et al., 1978) if the equality constrained ∑n

i=1 γi = 1 is dropped,
Decreasing Returns to Scale (DRS) if the equality constrained is changed in∑n

i=1 γi≤ 1
and Increasing Returns to Scale (IRS) if the equality constrained is modified in∑n
i=1 γi ≥ 1. See Figure 3.10 for a graphical comparison.
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Figure 3.10: DEA technology sets under different assumptions

Its asymptotic properties have been established in Kneip et al. (2008).

3.2.3 Order-m partial frontiers

Both the FDH and the DEA estimators fully envelope observations in the sample and
so their main disadvantage is the sensitivity to outliers or extreme data points.Cazals
et al. (2002), with the aim to overcome this drawback, proposed a more robust
nonparametric estimator of the frontier (a “partial frontier”) based on the concept
of expected minimum input function of order m and so called Order-m.

The underlying idea is to identify a partial frontier well near the upper (or
lower) boundary, in such a way to be sensitive to the magnitude of the extreme
valuable observations but, simultaneously, resistant to their influence in case they
are suspicious.

This method mitigates the outliers effect introducing a distribution of probability
for the units in the technology set Ψ. In a probabilistic approach the production pro-
cess, that generates observations in χn, can be defined through the joint distribution
of the random vector (X,Y ) on RP+×RQ+, i.e. (Daraio and Simar, 2005):

HXY (x,y) = Prob(X ≤ x,Y ≥ y) (3.32)

This probability function can be decomposed as follows:

HXY (x,y) = Prob(X ≤ x|Y ≥ y)Prob(Y ≥ y) = FX|Y (x|y)SY (y) (3.33)

where it is supposed that the survivor function of Y exists i.e. SY (y)> 0 and that
the support of the conditional distribution of X FX|Y (.|y) can be viewed as the
attainable set of input values X for a unit working at the output level y.
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For a given level of y, consider m i.i.d. random variables Xi generated by the
conditional distribution of X that is FX(x|y), the random set of order m can be
defined as follows:

Ψ̃m(y) = {(x,y′) ∈ RP+Q
+ |Xi ≤ x for some 1≤ i≤m,y′ ≥ y}. (3.34)

Next, the benchmark is not identified looking at the lower bound of this support but
as the expected minimal value of inputs for m units randomly drawn according to
FX|Y (.|y) (i.e. units producing at least the output level y):

ϕm = E [min(X1, ...,Xm|Y ≥ y)] =
∫ ∞

0

[
1−FX|Y (x|y)

]m
dx (3.35)

For finite m, this is clearly less extreme than the full frontier as depicted in Figure
3.11.
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Figure 3.11: Comparison among DEA, FDH and Order-m production technology

Finally, input-oriented efficiency score defined for all y such that SY (y) > 0, is
given by:

T̃EIm =min{θ : (θx,y) ∈Ψm}=min{θ :H(θx,y)> 0} (3.36)

T̃EIm is computed by the following formula:

T̃EIm = min
i=1,...,m

 max
j=1,...,P

Xj
i

xj

 (3.37)

T̃EIm is a random variable since the Xi are random variables generated by FX(x|y).
All results discussed above can be simply reformulated to the output-oriented case.
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In traditional regression models, to obtain Best Linear Unbiased Estimators
(BLUE) of the parameters, must be valid the so-called Gauss-Markov assumptions
on the residuals (ε):

• Zero mean: E[ε] = 0;

• Homoschedasticity : E[ε2] = σ2;

45



Spatial autocorrelation analysis

• No serial correlation : E[εiεj ] = 0, i 6= j;

• Normality: ε∼N(0,σ2).

Absence of serial correlation hypothesis is not valid in presence of Spatial auto-
correlation. Different definitions of Spatial autocorrelation have been proposed in
literature starting from 1985. Upton and Fingleton (1985) said that spatial autocorre-
lation exists if the map presents an organized pattern like, for example, subfigures (a)
and (c) in Figure 4.1. In other words, a mapped pattern that significantly deviates
from a map where each value of the analysed variable is assigned randomly (see
subfigure (b) in Figure 4.1), presents a spatial autocorrelation.

Figure 4.1: Spatial autocorrelation patterns

A conceptual generalization has been proposed by Cliff and Ord (1973) that
proposed the comparison among the distributions of some variables in a region or a
set of points to test the presence of spatial autocorrelation.
Griffith (1987) and Goodchild (1987) asserted that, in order to evaluate if significant
deviations from the random distribution exist it is necessary to calculate an index
of comparison. In particular, spatial autocorrelation indexes have to measure “the
degree to which objects or activities at some place on the earth’s surface are similar to
others objects or activities located nearby” reflecting Tobler’s first law of geography:
“everything is related to everything else, but near things are more related than distant
things”.
Moreover, a key definition has been given by Sokal and Oden (1978) that introduced
the concept of “dependence” i.e. spatial autocorrelation exists when the observed
value of a variable at one locality is significantly dependent on the values of the
same variable at neighboring localities. This dependence is defined by Anselin
and Bera (1998) as “the coincidence of value similarity with locational similarity.
In other words, high or low values for a random variable tend to cluster in space
(positive spatial autocorrelation) or locations tend to be surrounded by neighbors with
very dissimilar values (negative spatial autocorrelation). Of the two types of spatial
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autocorrelation, positive autocorrelation is by far the more intuitive. Negative spatial
autocorrelation implies a checkerboard pattern of values and does not always have a
meaningful substantive interpretation.”
Therefore, positive spatial autocorrelation means that high values tend to be located
near high values, medium values near medium values, and low values near low values
as shown in Figure 4.2.

United States - Annual Average Wind Speed at 30 m

21-FEB-2012 2.1.1

Wind Speed
m/s

>10.5
  10.0 
    9.5
    9.0
    8.5
    8.0
    7.5
    7.0
    6.5
    6.0
    5.5
    5.0
    4.5
    4.0
 < 4.0

Source: Wind resource estimates developed by AWS Truepower,
LLC.  Web: http://www.awstruepower.com. Map developed by
NREL.  Spatial resolution of wind resource data: 2.0 km.
Projection: Albers Equal Area WGS84.

The average wind speeds indicated on this map are model-derived
estimates that may not represent the true wind resource at any
given location. Small terrain features, vegetation, buildings, and
atmospheric effects may cause the wind speed to depart from the
map estimates. Expert advice should be sought in placing wind
turbines and estimating their energy production.

Figure 4.2: Positive spatial autocorrelation - Annual Average Wind Speed at 30 m
(United States)

In SFA specification the firm-level efficiency is estimated from the residuals,
assuming that all producers in the sample are independent: however, this assumption
rules out the possibility to account for spatial effects in the theoretical model. The
limitations of this approach were already known in early contributions, considering
Farrell (1957) highlighted the importance of incorporating the correlation between
technical efficiency and variables representing location, temperature and rainfall. In
his analysis, focused on the efficiency patterns in US agricultural firms, he argued
that “the apparent differences in efficiency [...] reflect factors like climate, location
and fertility that have not been included in the analysis, as well as genuine differences
in efficiency”.
When spatial effects are significant, the traditional techniques used to estimate the
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SFA (MLE or its variants) parameters generate biased results: if the disturbances are
spatially correlated, the assumption of a spherical error covariance matrix is violated,
leading to biased and inconsistent estimators (LeSage, 1997). In order to overcome
these issues, a number of recent contributions in frontier analysis have proposed
alternative specifications aiming to incorporate spatial effects in the baseline models.
This part of the literature follows the approach used by spatial econometrics, a specific
branch of econometrics that deals with spatial interaction (spatial autocorrelation)
and spatial structure (spatial heterogeneity) in both cross-sectional and panel data
(Paelinck and Klaassen, 1979; Anselin, 1988).

4.1 Definition of the neighborhood

To assess spatial autocorrelation, a very critical and criticized step is the definition
of the concepts of “neighborhood” and “nearest neighbor” (see Anselin, 1988).

Consider again a sample of I units of which a variable x is observed, the set of
neighbors for a spatial unit i, denoted with N(i) can be defined in various ways (see
LeSage and Pace, 2009 and Arbia, 2010 for a detailed discussion):

Critical cut-off distance neighborhood: two sites are said to be neighbors if
0≤ d≤ d∗, with d an appropriate distance chosen, and d∗ representing the critical
cut-off.

Nearest neighbor: two sites are said to be neighbors if dij =Min(dij),∀i, j.

In the literature, different definitions of distance d have been proposed: (i) the Eu-
clidean distance between centroids of polygons, (ii) the Hausdorff distance (Hausdorff,
1914), (iii) social distances (Doreian, 1980), (iv) economic distances (Case et al.,
1993), (v) distances measured in terms of the empirically observed flows (Murdoch
et al., 1997) or (vi) distances measured in terms of trade-based interaction (Aten,
1996, 1997).

Contiguity-based neighborhood: is based on the mere adjacency between two
polygons. Two polygons are said to be neighbors if they share a common boundary:

Rook contiguity: two regions are neighbors if they share a common side (Figure 4.3a);

Queen contiguity: two regions are neighbors if they share a common side or vertex
(Figure 4.3b);

Bishop: two regions are neighbors if they share a common vertex (Figure 4.3c).

48



Spatial autocorrelation analysis

(a) Rook contiguity

(b) Queen contiguity (c) Bishop contiguity

Figure 4.3: Contiguity neighborhood in a regular lattice

These neighbor links are presented in a n×n weight matrix W whose elements are:

wij =

1 if j ∈N(i)
0 otherwise

(4.1)

For ease of interpretation, it is common practice to normalize W such that the
elements of each row sum to unity. Since W is nonnegative, this ensures that
all weights are in [0,1], and it has the effect that the weighting operation can be
interpreted as an averaging of neighboring values (Elhorst, 2014).

Finally, another important notion helpful to the subsequent topics is the definition
of spatial lag: a spatial lag is a variable that averages the neighboring values of a
location.
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4.2 Detecting spatial autocorrelation

The existence of spatial autocorrelated residuals, i.e. of clusterized data (see Figure
4.4), can be evaluated with some indicators of spatial association.

Figure 4.4: Spatial clusters

4.2.1 Moran’s I

Moran’s I (Moran, 1950) tests the global spatial autocorrelation (of the overall
clustering of the data) through the calculation of the cross-products of the variable
x deviations from its mean for n observations at locations i, j as:

I = n

S0

∑
i
∑
jwij(xi−x)(xj−x)∑

i(xi−x)2 (4.2)

where x is the mean of the x variable, wij are the elements of the weight matrix, and
S0 is the sum of the elements of the weight matrix: S0 =∑

i
∑
jwij .

Moran’s I is similar but not equivalent to a correlation coefficient. It varies
from -1 to +1. In absence of autocorrelation and regardless of the specified weight
matrix, the expectation of Moran’s I statistic is [−1/(n−1)], which tends to zero
as the sample size increases. For a row-standardized spatial weight matrix, the
normalizing factor S0 equals n (since each row sums to 1), and the statistic simplifies
to a ratio of a spatial cross product to a variance. A Moran’s I coefficient larger than
[−1/(n− 1)] indicates positive spatial autocorrelation, and a Moran’s I less than
[−1/(n−1)] indicates negative spatial autocorrelation (see Figure 4.5 for a graphical
representation).
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Low-high
Outliers

High-high 
(over the average)
Positive correlation

Low-low 
(below the average)
Negative correlation

High-low
Outliers

Spatial lags

Observations

Figure 4.5: Morans’I scatterplot

4.2.2 Geary’s C

Geary’s C statistic (Geary, 1954) is based on the deviations in responses among the
x values of each observation with another one:

C =
(n−1)∑i

∑
jwij(xi−xj)2

2∑i
∑
jwij

∑
i(xi−x)2 (4.3)

Geary’s C ranges from 0 (maximal positive autocorrelation) to a positive value (high
negative autocorrelation) and it assumes value 1 in absence of autocorrelation (Sokal
and Oden, 1978). So, if the value of Geary’s C is less than 1, it indicates positive
spatial autocorrelation.

Moran’s I is a more global measure and it is sensitive to extreme values of x,
whereas Geary’s C is more sensitive to differences in small neighborhoods. In general,
Moran’s I and Geary’s C results give similar conclusions. However, Moran’s I is
preferred in most cases since Cliff and Ord (1975, 1981), have shown that Moran’s I
is consistently more powerful than Geary’s C.
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Local indicators of spatial association (LISA)

Moran’s I and Geary’s C both measure the global spatial autocorrelation that could
result null, in mean, hiding the existence of clusters at local level.

A measurement of the local spatial autocorrelation is given by the so-called Local
indicators of spatial association (LISA - Anselin, 1995) that calculate n Local Moran’s
I (Ii) and evaluate the statistical significance for each Ii.
LISA measures can be deduced from the Moran’s I statistics defined in equation
(4.2) as:

Ii = (xi−x)∑
i(xi−x)2/n

∑
j

wij(xi−xj) (4.4)

and I =∑
i Ii/n.

4.3 Spatial autoregressive models

In this section, a non-exhaustive review of methods for estimating regression models
in presence of autocorrelated residuals will be presented.

The classical formulation of a linear regression model, in a matrix formulation, is:

y = Xβ+ ε (4.5)

where X is the covariates matrix and ε∼N(0,σ2I).

In a time-series context, the OLS estimator remains consistent even when a
lagged dependent variable is present, as long as the error term does not show serial
correlation; in a spatial context, instead, this rule does not hold, irrespective of the
properties of the error term.

In other terms, ignoring spatial autocorrelation may have serious effects on
statistical inference that is on efficiency, consistency, hypothesis testing and, finally,
on prediction step. More in particular, Pace and LeSage (2010) wrote that: “unlike
the standard least-squares result for the case of omitted variables, the presence of
spatial dependence magnifies conventional omitted variables bias in OLS estimates”
showing that “using spatial econometric model specifications containing spatial lags of
both the dependent and explanatory variables produces estimates whose bias matches
the conventional omitted variables case”.

Also for these reasons, in recent years (see e.g. Case et al., 1993; Cohen and
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Morrison, 2004) economics literature has seen an increasing number of theoretical
and applied econometric studies involving spatial issues.

Anselin (2003) proposed a taxonomy of the spatial externalities models for cross-
sectional data. This taxonomy depends on the way in which spatial dependence is
incorporated in the regression specification. It can be included:

• as an additional covariate in the form of a spatially lagged dependent variable
(Wy) if the focus of interest is to evaluate if y in place i is affected by the
values of the dependent variable in nearby place j;

• as additional covariates in the form of spatially lagged explanatory variables
(WX) if the focus of interest is to test if y in place i is affected by the
independent variables in both place i and j;

• in the error structure (Wε) if the focus of interest is to test if the error terms
across different spatial units are correlated.

It is important to note that the elements of the weights matrix are nonstochastic
and exogenous to the model.

4.3.1 Spatial AutoRegressive model (SAR)

Assuming that the outcome y in a location is affected by the y in all nearby locations
(by the way of W), the equation (4.5) can be rewritten as a (first order) Spatial
AutoRegressive model (SAR or Spatial lag) formally (Anselin, 1988; LeSage and Pace,
2009; Arbia, 2014):

y = λWy+ Xβ+ ε (4.6)

where λ < |1| is a spatial autoregressive coefficient and ε∼N(0,σ2
εI).

Spatial lag term Wy is correlated with the disturbances, even when the latter are
independent and identically distributed. In fact, if the reduced form of the (4.6) is
considered:

y = (I−λW)−1Xβ+ (I−λW)−1ε (4.7)

Consequently, the spatial lag term must be treated as an endogenous variable and
proper estimation methods must account for this endogeneity (OLS will be biased
and inconsistent due to the simultaneity bias) such as Maximum Likelihood (ML) or
the Two Stage Least Squares (2SLS).
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4.3.2 Spatial Error Model (SEM)

Assuming, instead, that a random shock in a specific location does not only affect y in
this location, but it is transmitted to all other locations by the multiplier ρ∈ [0,1], the
equation (4.5) can be rewritten as a Spatial Error Model (SEM), formally (Anselin,
1988; LeSage and Pace, 2009; Arbia, 2014):

y = Xβ+ ε,ε= ρWε+ ε̃ (4.8)

where ρ < |1| is a spatial autoregressive coefficient and ε̃∼N(0,σ2
ε̃I).

In this case the reduced form of ε is:

ε= (I−ρW)−1ε̃ (4.9)

The SEM is a special case of regression with a non-spherical error term, in which
the off-diagonal elements of the covariance matrix express the structure of spatial
dependence. Consequently, OLS remains unbiased:

E[ε] = (I−ρW)−1E[ε̃] = 0 (4.10)

since E[ε̃] = 0.

However, classical estimators for standard errors will be biased, in fact the error
variance-covariance matrix becomes:

E[εεT ] = (I−ρW)−1E[ε̃ε̃′](I−ρWT )−1

= σ2
ε̃(I−ρW)−1(I−ρWT )−1

= σ2
ε̃Ω

(4.11)

Therefore, the MLE described in Anselin (1988) involves the maximization of the
following likelihood function that will be discussed in detail as it will be modified in
the innovative part of the thesis:

L(β,σ2
ε̃ ,ρ) =(2π)−

n
2 (σ2

ε̃)
−n

2

∣∣∣∣(I−ρW)−1
[
(I−ρW)−1

]T ∣∣∣∣− 1
2

· exp
{
− 1

2σ2
ε̃

(y−Xβ)T
[
(I−ρW)−1(I−ρWT)−1

]−1
(y−Xβ)

} (4.12)

where:
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∣∣∣∣(I−ρW)−1
[
(I−ρW)−1

]T ∣∣∣∣= ∣∣∣(I−ρW)−1
∣∣∣ · ∣∣∣∣[(I−ρW)−1

]T ∣∣∣∣=
|(I−ρW)|−1 · |(I−ρW)|−1 = |(I−ρW)|−2

So, the log likelihood to be estimated is (please see Lee (2004) for a discussion on
the asymptotic properties of the above ML estimator):

ln
[
L(β,σ2

ε̃ ,ρ)
]

=− n2 ln(2π)− n2 ln(σ2
ε̃) + ln|(I−ρW)|−

1
2σ2

ε̃

(y−Xβ)T
[
(I−ρW)−1(I−ρWT )−1

]−1
(y−Xβ)

(4.13)

Finally, using Ord (1975), in order to enormously simplify the computation,
ln|(I−ρW)| can be decomposed as ∑n

i=1 ln [(1−ρψi)] where ψi represents the i− th
eigenvalue of the weight matrix W.

4.3.3 Spatial AutoCorrelation model (SAC)

Finally, the Spatial AutoCorrelation model (SAC, Kelejian and Prucha, 1998) is the
logical union of the two estimators shown before.

y = λWy+ Xβ+ ε,ε= ρWε+ ε̃ (4.14)

or also including the indirect effects on X the more general model named SAC-mixed
is obtained:

y = λWy+ Xβ+λWX + ε,ε= ρWε+ ε̃ (4.15)

The less general models described above can be derived from the SAC-mixed:

• if λ 6= 0 and ρ= 0→ Spatial AutoRegressive Model

• if λ= 0 and ρ 6= 0→ Spatial Error Model

More specifically, SAC and SAC-mixed models allow to take into account both the
impact of the neighbors on the outcome y - decomposing the direct effects from
indirect ones - and to make possible the control of the bias due to the omitted
variables in the estimation.
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4.3.4 Geographically Weighted Regression (GWR)

Models discussed in sections 4.3.1, 4.3.2 and 4.3.3 assume that the relationship among
variables is a stationary mechanism over the geographical units, i.e. they estimate a
single average parameter β.

However, it could be a reasonable thought that in many cases the relationship
between the dependent variable y and the covariates X is not constant in the whole
area but varies across the geographical units, i.e. the mechanism is non-stationary.

Geographically Weighted Regression (GWR) introduced by Brunsdon et al. (1996)
takes into account these different relations allowing to estimate a β for each unit, i.e.
the regression model is:

yi =Xiβi+ εi (4.16)

where:

• yi is the i− th observation of the dependent variable y at location i;

• Xi is the i− th row of the regressors matrix X;

• βi is the vector of the β coefficients for each unit at location i;

• εi is the random term.

In particular, GWR performs a series of weighted least squares regressions on subsets
of the data, where the influence of an observation i decreases with the Euclidean
distance to a regression point j. These distance-dependent weights are determined
by a kernel function and the range of the input data is set up according to a specific
bandwidth in order to carry on a Local Weighted Regression (LWR, Fotheringham
et al., 2002) for each spatial subset (Figure 4.6).

Figure 4.6: GWR kernel function, source: Fotheringham et al. (2002)
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In previous chapters a general overview of both the frontier analysis and the
spatial dependence has been shown in order to introduce key topics for understanding
the issue of this innovative chapter.

In particular, as seen in Section 4.3 spatial data positively auto-correlated violates
the independence assumption of the classical OLS regression and so also the SFA
model4; this violation does not permit the assessment of statistical inference because
SFA errors can no longer be assumed to have zero covariances with each other.

4In terms of homoscedasticity of u, e.g. see Jondrow et al. (1982).
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Subsequently, given the need to consider for spatial dependence also in frontier
analysis, some models have been developed; they can be divided into two major fields
distinguishing those that explain inefficiency/efficiency in terms of exogenous deter-
minants analysing the heterogeneity from those that consider the spatial dependence
by including in the model a spatial autoregressive specification.

5.1 Spatial efficiency literature

As far as the first stream is concerned, some authors have proposed to analyze
heterogeneity by including contextual factors as regressors or to modelling the
inefficiency term. In particular, Lavado and Barrios (2010) used contextual factors
for modelling the inefficiency part of a stochastic frontier model by embedding a
SAR in the deterministic part and a general linear mixed model into the efficiency
equation. Hughes et al. (2011), in a panel-type model with the aim of evaluating a
climate-adjusted production frontier for the Australian broad acre cropping industry,
considered specific spatial effects in the stochastic production frontier by adding
climate effects as dependent variables. Jeleskovic and Schwanebeck (2012) proposed a
two step deterministic estimation model to differentiate heterogeneity and inefficiency
in world healthcare systems: (i) in the first step different fixed effects panel spatial
models have been estimated; (ii) in the second step the obtained inefficiency has
been regressed (also with various fixed effects panel spatial models) as dependent
variable onto country specific variables that identify the heterogeneity; finally, Brehm
(2013) proposed a correction of the SFA error term for panel data by introducing
spatially correlated factors variables that affect the production process.

In the second set of analysis, others proposals consider spatial dependence by
including a spatial lag into the dependent variable or into the covariates. More
specifically, Affuso (2010) included spatial lag on the dependent variable reformulating
the stochastic frontier density function; Glass et al. (2013), Glass et al. (2014) and
Glass et al. (2016) introduced the concept of efficiency spillover, extending the non-
spatial Cornwell et al. (1990) model to the case of spatial autoregressive dependence;
Adetutu et al. (2015) proposed a local spatial stochastic frontier model that accounts
for spatial interaction by allowing spatial lags on the inputs and on the exogenous
variables to shift the production frontier technology; Han et al. (2013) proposed a
method for investigating spillovers effects in panel data by maintaining the Schmidt
and Sickles (1984) hypothesis of time-invariant inefficiency, but allowing global spatial
dependence through the introduction of a spatial lag on the dependent variable.

Finally, other papers proposed to consider spatial dependence by including a
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spatial lag on the inefficiency term. Druska and Horrace (2004) extended the Kelejian
and Prucha (1999) specification for cross-sectional data based on a standard fixed
effects model by assuming an autoregressive specification of the error term and
estimating inefficiency with the Generalized Moments Method; Schmidt et al. (2009)
used a Bayesian approach to include latent spatial effects, that explain geographical
variation of firms’ outputs and inefficiency, dependent on a parameter that captures
the unobserved spatial characteristics; e.g. Areal et al. (2012) suggested, with the aim
of measuring the overall effect of spatial factors that affect the production, to include
a spatial lag directly into inefficiency allowing the splitting of the inefficiency (u)
into a spatial component and into a specific term for every firm through a Bayesian
procedure:

y = Xβ+ ε− z
where

ε∼ N(0,σ2
εI), z = ρWz+ z̃

(5.1)

where W is the connectivity matrix that includes the relative spatial information
(see Section 4.1), ρ is the spatial lag parameter (ρ ∈ [0,1]), z and z̃ are the latent
variables, representing the inefficiency, whose distributional form is unknown.

Rewriting the specification of z as z = (I− ρW)−1z̃ into equation (5.1), Areal
et al. (2012) proposed to consider:

y = Xβ+ ε− (I−ρW)−1z̃ (5.2)

Pavlyuk (2010) proposed to include spatial lags on the overall standard SFA model
(see also recent enhancements, Pavlyuk, 2012, 2013).

Following the approach implemented by Areal et al. (2012) in equation (5.2),
Fusco and Vidoli (2013) have proposed to measure the global effect of spatial factors
by including a spatial lag only in the inefficiency term of a SFA, not using a Bayesian
procedure but by reformulating the SFA density function with a SEM.

Therefore, spatial dependence refers to how much the level of technical inefficiency
of firm i depends on the levels set by other firms j = 1, ...,n, under the assumption
that part of the firm i inefficiency depends on the neighbor firm j’s performances
(j 6= i).
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5.2 Spatial Stochastic Frontier Analysis (SSFA)

Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier mod-
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Starting from equation (3.12), the Normal / Half-Normal cross-section general
form (homoskedastic case) of the Spatial Stochastic Frontier model (SSFA) proposed
in Fusco and Vidoli (2013) can be respectively rewritten, in a matrix formulation, as:

y = Xβ+v− s ·u
= Xβ+v− s · (I−ρW)−1ũ

(5.3)
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where:

• v ∼ iid N(0,σ2
vI);

• u∼ N+(0,(I−ρW)−1(I−ρWT )−1σ2
ũI);

• u and v are independently distributed of each other, and of the regressors;

• ũ∼N(0,σ2
ũI);

• s= 1 for production functions and s=−1 for cost functions.

Starting from equations (3.14) and (3.15) at page 30 the density functions for each
firm5 of (1−ρ∑iwi.)−1ũi ≥ 0 and vi, noting (1−ρ∑iwi.) as δ(ρ) can be written as:

f([δ(ρ)]−1ũ) = 2√
2π[δ(ρ)]−1σũ

· exp
{
− [δ(ρ)]−2ũ2

2[δ(ρ)]−2σ2
ũ

}
(5.4a)

f(v) = 1√
2πσv

· exp
{
− v2

2σ2
v

}
(5.4b)

Given the independence assumption, the joint density function of [δ(ρ)]−1ũ and v
is the product of equations (5.4a) and (5.4b):

f([δ(ρ)]−1ũ,v) = 1
π[δ(ρ)]−1σũσv

· exp
{
− v2

2σ2
v
− [δ(ρ)]−2ũ2

2[δ(ρ)]−2σ2
ũ

}
(5.5)

Since ε= v−s · [δ(ρ)]−1ũ , the joint density function for [δ(ρ)]−1ũ and ε becomes:

f([δ(ρ)]−1ũ, ε) = 1
π[δ(ρ)]−1σũσv

· exp
{
−(ε+ s[δ(ρ)]−1ũ)2

2σ2
v

− [δ(ρ)]−2ũ2

2[δ(ρ)]−2σ2
ũ

}
(5.6)

The marginal density function of ε is obtained by integrating [δ(ρ)]−1ũ out of

5For simplicity’s sake and to make the notation more consistent with the SFA literature, the
model is rewritten for each observation i and the subscript i is dropped in the main variables.
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f([δ(ρ)]−1ũ, ε), which yelds:

f(ε) =
∫ ∞

0
f([δ(ρ)]−1ũ, ε) du

= 2
σ
·φ
(
ε

σ

)
·Φ
(
−sλε

σ

)
where

σ =
√
σ2
v + [δ(ρ)]−2σ2

ũ

λ= [δ(ρ)]−1σũ
σv

(5.7)

and φ(·) e Φ(·) are the standard normal density and distribution functions, respec-
tively.

The marginal density function f(ε) is asymmetrically distributed with mean and
variance:

E(ε) =−E([δ(ρ)]−1ũ) =−[δ(ρ)]−1σũ

√
2
π

V(ε) = σ2
v + π−2

π
[δ(ρ)]−2σ2

ũ

(5.8)

The log-likelihood function for a sample of n producers is given by:

ln(L) =
N∑
i=1

{
1
2 ln

( 2
π

)
− ln(σ) + ln

[
Φ
(
−sλεi

σ

)]
− ε2

i

2σ2

}
(5.9)

Finally, in order to obtain estimates of the technical efficiency of each producer,
following Jondrow et al. (1982), the conditional distribution of [δ(ρ)]−1ũ given ε is
calculated as:

f([δ(ρ)]−1ũ|ε) = f([δ(ρ)]−1ũ, ε)
f(ε)

= 1√
2πσ∗

exp

{
− [δ(ρ)]−1ũ−µ∗]2

2σ2
∗

}/[
1−Φ

(
−µ∗
σ∗

)]
where

µ∗ =
−sε[δ(ρ)]−2σ2

ũ

σ2

σ2
∗ =

[δ(ρ)]−2σ2
ũσ

2
v

σ2

(5.10)
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Since f([δ(ρ)]−1ũ|ε) is distributed asN+(µ∗,σ2
∗), the point estimator for [δ(ρ)]−1ũi

can be obtained following Jondrow et al. (1982) or Battese and Coelli (1988)’s
proposals. Choosing the second one as suggested in Kumbhakar and Lovell (2000)
TE is calculated as below:

TEi = E
(
exp

{
−[δ(ρ)]−1ũi

}
|εi
)

=
[

1−Φ(sσ∗−µ∗i/σ∗)
1−Φ(−µ∗i/σ∗)

]
exp

{
−sµ∗i+

1
2σ

2
∗

} (5.11)

Therefore, SSFA avoids the subjective choice of the exogenous determinants
allowing the evaluation of the conjoint effect of a multitude of unknown determinants
and focuses the analysis of the spatial dependence only on the inefficiency term.
So, it can be considered a prerequisite for subsequent analysis that identifies some
determinants of the inefficiency.

5.3 Simulations

To test the properties and accuracy of the SSFA estimator, two simulations have
been conducted, the first tests the SSFA ability to sterilize the spatial correlation by
using the Data Generating Process (DGP) construction criteria proposed by Banker
and Natarajan (2008) and adding a strong spatial correlation in the inefficiency term
and the second tests the ability of the SSFA to estimate the parameters of the model
by implementing a MCMC where the strength of the spatial correlation is varied.

5.3.1 Banker simulated data

The DGP proposed in Banker and Natarajan (2008) and also used in Johnson and
Kuosmanen (2011) allows the construction of a continuous, monotoning, increasing
and concave function over the relevant range of input used in the simulation. To
test the SSFA ability to sterilize the spatial correlation among the units in a frontier
model, the main difference with Banker and Natarajan (2008)’s formulation is due to
the spatial correlation added into inefficiency term through a spatial lag parameter
and a contiguity matrix.

The true production frontier originally proposed is a third-order polynomial of a
single input variable x:

yi = (x3
i −12x2

i + 48xi−37), i= 1, . . . ,n (5.12)
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The 107 Italian provinces contiguity matrix (year 2008) is used to construct W and
for each unit an input x∼ Unif [1,4], a noise term v ∼N(0,0.52) and an inefficiency
term that depends either on a ρ equal to 0.8 are extracted, either to a variance equal
to 0.56, and either to a parameter γ ∈ [0,5] that enhances differences in inefficiency
between northern and southern provinces, giving lower value to the northern provinces
and higher value to the southern ones6.

More clearly, u may be expressed as:

ui = (1−ρ
∑
i

wi.)−1ũi ·γ where ũi ∼N(0,0.752) (5.13)

Then, adding the noise term v and the inefficiency term u, the equation (5.12)
becomes:

yi = (x3
i −12x2

i + 48xi−37) · exp(−ui+vi), i= 1, . . . ,n (5.14)

The simulated data represented in Figure 5.1 shows how the presence of a strong
spatial auto-correlation (Moran’s I index is equal to 0.46), a characteristic of many
economic phenomena, is particularly dangerous because it is not easy to diagnose.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
2

0
2

4

Log(x)

Lo
g(

y)

Figure 5.1: Simulated data and the true frontier

Starting from the simulated data, SFA analysis is conducted with the aim of
estimating the production efficiency of each unit; results - first column of Table 5.1 -
hide the presence of a high spatial correlation in the residuals as shown in the Moran
plot in Figure 5.2, making the SFA estimates biased and thereby requiring the use of
a model which takes into account and sterilizes the spatial correlation between units.

6Equation (5.13) allows the introduction of a strong spatial correlation both local, by the way of
γ, and global, by the way of ρ, in the data.
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Table 5.1: Simulation results by method. Simulated data.

SFA SSFA
Intercept 1.1858∗∗ 3.4448
β 1.2734∗∗∗ 41.6332∗∗∗
σu 1.3192 0.5959
σv 0.7793∗ 0.4743∗
Moran’s I 0.4571∗∗∗ −0.189
ρ - 0.7784
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Figure 5.2: Moran plot - SFA residuals

In particular, in the first step, equation (5.14) is estimated both by a SEM and
by OLS; the difference in the variance of the errors between the two models, (σũ) is
placed as the initial value in the next optimization phase of ML.

Table 5.1 shows three results: (i) the strong differences in the intercept and the
parameter β, (ii) the smaller value of σu and σv, proving that the SSFA model fits
the true function better on the frontier and (iii) the correct estimation of the spatial
lag ρ.

The difference among the residuals estimated is clearly visible in Figure 5.3, where
it is shown that the SSFA model residuals are no longer dependent on the territory
and the major inefficiency assigned to the southern provinces is fully neutralized.
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SFA (Sum) -4 - -2 -2 - -1 -1 - -1 -1 - -0 -0 - 0 0 - 2

(a) SFA
SSFA (Sum) -3 - -2 -2 - -1 -1 - -1 -1 - -0 -0 - 0 0 - 1

(b) SSFA

Figure 5.3: Spatial residual distribution by method

5.3.2 MCMC simulation

In this section a MCMC simulation is implemented with the aim to test the goodness
of estimation and the finite sample performance of the SSFA method.

The SSFA model DGP used to simulate 1,000 samples of 100, 200 and 400
observations is:

y = 10 + 0.8 ·x−u+v

u= (I−ρW)−1ũ
(5.15)

where x is extracted from a N(60,5), v from a N(0,0.1), ũ from a N(0,3) and ρ varies
in (0.1, ...,0.9) with 0.1 increments. Finally, W is a sparse matrix as suggested by
LeSage and Pace (2009), for its low computational costs, where the average number
of neighbors for each observation, identified through the nearest neighbor method,
will be equal to 67.

7“If W contains all non-zero elements, it would require enormous amounts of memory to store
this matrix for problems involving large samples such as the US Census tracts where n > 60,000.
Fortunately, W is usually sparse, meaning it contains a large proportion of zeros. For example,
if one relies on contiguous regions or some number m of nearest neighboring regions to form W ,
the spatial weight matrix will only contain mn non-zeros as opposed to n2 non-zeros for a dense
matrix. The proportion of non-zeros becomes m/n which falls with n. Contiguity weight matrices
have an average of six neighbors per row (for spatially random sets of points on a plane). As an
example, using the 3,111 US counties representing the lower 48 states plus the district of Columbia,
there are 9,678,321 elements in the 3,111×3,111 matrix W , but only 3,111×6 = 18,666 would be
non-zero, or 0.1929 percent of the entries. In addition, calculating matrix-vector products such as
Wy and WX take much less time for sparse matrices. In both cases, sparse matrices require linear
in n operations (O(n)) while a dense W would require quadratic in n operations (O(n2)) (LeSage
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According to the data generated from rules and the DGP above, β and ρ are esti-
mated using the SSFA. The SSFA goodness of estimation is evaluated by calculating
the Root Mean Squared Error (RMSE) of parameters and the results are reported in
Table 5.2 and in Figure 5.4.

Table 5.2: RMSE of SSFA parameters

Parameters True value RMSE
n= 100 n= 200 n= 400

β 0.8 0.007 0.004 0.002

ρ

0.1 0.050 0.032 0.019
0.2 0.052 0.029 0.018
0.3 0.047 0.027 0.016
0.4 0.041 0.023 0.013
0.5 0.039 0.022 0.013
0.6 0.034 0.019 0.012
0.7 0.028 0.016 0.011
0.8 0.023 0.013 0.009
0.9 0.024 0.010 0.005

Some important findings are summarized as follows. The estimation results of
the parameters show very low RMSE values, already for samples of 100 units, both
for β and for the various ρ parameters8.

Moreover, Figure 5.4 reports the kernel densities of the repeated estimated ρ

parameters, showing that the distributions are very close to the true values and that
this accuracy rises with increasing spatial dependence in the error term and with
increasing sample size as already indicated by RMSE values.

Below some diagnostics of the MCMC simulation for n= 400 are provided to test
the stationarity of the MCMC output.
Figure 5.5 displays the trace plots of the simulation showing that the center of the
chains appears to be around the ρ true values, with very small fluctuations.

Instead, Figures 5.6 and 5.7 show the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) for ρ that test if the estimated ρ at iteration
k is correlated with past versions of itself at lags 1,2,..., in the first case in a global
way and in the second case by imposing a partial autocorrelation equal to 0 beyond
that iteration.

and Pace, 2009).
8Note that only one value for β is reported as it is almost constant at varying rho.
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Figure 5.4: Rho MCMC distribution results
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Figure 5.5: Trace plots of ρ parameters (n= 400)
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Figure 5.6: ACF plots of ρ parameters (n= 400)

In both cases good results are obtained strengthening the stationarity hypothesis
of the chain and this indicates that the chain could have reached the right distribution.
These results provide simulation evidence that β and ρ estimated by the SSFA are
almost surely very near to the true values.

Finally, a comparison with the classical SFA model is provided both graphically
in terms of fitted values (Figure 5.8), and in terms of speed of the algorithm(Table
5.3). Note that the algorithm is the Nelder and Mead (1965) with the following
constraints on the parameters: ρ ∈ [0,1], σ2

u ≥ 0 and σ2
v ≥ 0.

In particular, Figure 5.8 shows that the SSFA formulation hides an interesting
property: the identification of the error part imputable to the spatial proximities
and different for each unit allows to change (positively or negatively) the intercept
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Figure 5.7: PACF plots of ρ parameters (n= 400)
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Figure 5.8: SFA and SSFA fitted values, simulated data
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of the model by impacting both on the specific estimation of each unit (light blue
continuous line) both on the average slope (dark blue dashed line); therefore, in the
SSFA framework the intercept is to be intended only as the “medium level” cleansed
by the individual spatial effect.

Table 5.3: Comparison of SFA, SSFA and SEM convergence speed

Sample size Speed (seconds)
SFA SSFA SEM

n= 100 0.0335 0.4556 0.2745
n= 200 0.0419 0.7547 0.3355
n= 400 0.0690 3.2925 0.7745

Finally, Table 5.3 compares the speed of convergence (in seconds) of SFA, SSFA
and SEM models showing a not too heavy computational effort of the SSFA with
respect the SFA for a single iteration, since the SSFA requires a SEM to find the
initial values of β and ρ and has to do matrix operations with n×n matrices (W).

5.3.3 Spatial weight sensitivity analysis

The main criticism of spatial regression models is the sensibility of the estimations to
alternative specifications used for the spatial weight matrix W (see LeSage and Pace,
2014 for a detailed survey). Arbia and Fingleton (2008) highlighted that “[...] critics
of spatial econometrics almost always in our experience home in on the arbitrary
nature of the weights matrix, asking “how is it defined and why is it precisely like that
when it could easily have been like this, what does it mean, and are not the results
obtained conditional on somewhat arbitrary decisions taken about its structure?”.
Some future research on the robustness of outcomes to variations in assumptions
about the weight matrix structure would be helpful in allaying such criticisms [...].”

Accordingly, in this section SSFA results will be tested by varying W specification
in the same DGP of section 5.3.2 with a sample of 400 units. The test is carried
out using the k-nearest neighborhood criteria by increasing the average number of
neighbors for each observation from 6 to a maximum of 100 given the sample size of
400.

The goal of efficiency analysis is the correct estimation of β coefficients and of the
specific efficiency for each producer. For this reason the results are evaluated, on the
stability of the estimated β coefficients and on the mean of estimated efficiency in
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the sample, to different specifications of W. For coherence with the simulation in sec-
tion 5.3.2 the results are tested for different values of ρ as shown in Tables 5.4 and 5.5.

Table 5.4: Sensitivity analysis of the β coefficients with different ρ and number of
neighbors in W (n= 400)

ρ
SSFA #Neighbors

6 20 30 100
0.4 0.797 0.797 0.798 0.801
0.6 0.795 0.795 0.797 0.800
0.8 0.793 0.793 0.795 0.802

The β coefficients are robust both to growing of the number of neighbors and of the
ρ as desirable.

Table 5.5: Sensitivity analysis of the estimated efficiency with different ρ and number
of neighbors in W (n= 400)

ρ SFA SSFA #Neighbors
6 20 30 100

0.4 0.4381 0.4439 0.4422 0.4421 0.4389
0.6 0.4358 0.4488 0.4444 0.4415 0.4355
0.8 0.4373 0.4625 0.4474 0.4361 0.4360

The estimated efficiencies, as shown in Table 5.5, decrease in mean by increasing
the number of neighbors and tend to the SFA ones, particularly for high values of
ρ, as expected. The result is more evident at local level, in fact, if the number of
neighbors tend to N the SSFA model does not split correctly the error term and
residuals remain spatial autocorrelated as shown in Figures 5.9 for a rho= 0.8.
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Figure 5.9: W sensitivity analysis (rho= 0.8)
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5.4 Strengths, drawbacks and possible enhance-
ments

In conclusion, SSFA is an innovative method, suitable to estimate both production
and cost frontiers, that presents a lot of advantages with respect to SFA and SEM
models and could be defined as a more general method that allows to:

• take into account the global spatial dependence of the model that SFA neglects
with clear improvements on statistical inference;

• take into account the presence of production (cost) inefficiency in the model that
SEM neglects leaving in the error term a systematic deterministic component
with subsequents bias estimated β parameters

Moreover, SSFA, even if the own algorithm contains a SEM estimation to find
initial values of parameters and has to do matrix operations of order n×n, does
not require high times of convergence with respect to SFA. So, it is better, in
my opinion, to use directly the SSFA for estimating efficiency: in case of absence
of spatial autocorrelation SFA is obtained anyway but in case of any degree of
spatial autocorrelation (even if very small) in the residuals the firm specific efficiency
estimated is more correct.
The major critical points of SSFA method derived from those of the SFA (described
in section 3.1 at page 24) like the wrong skewness issue that generates convergence
problems also for the SSFA and that will be studied soon.
From a technical point of view, only the “Half-normal” distributional case of the
inefficiency term has been improved both in the SSFA formulation and in the R
package and so “exponential”, “truncated normal” or others distributions will be
implemented soon.

Moreover, another possible improvement of the convergence speed could be the use
of other types of algorithms (Nelder and Mead (1965) is robust but relatively slow)
like e.g. the Expectation-maximization (EM) algorithm for the MLE estimation
for its simplicity, ease of implementation and its memory requirements tend to be
modest compared to other methods even in very large sample size problems. Also,
the EM algorithm is numerically very stable.

Finally, possible extensions of the SSFA method could also include the use of
panel data to obtain more robust measures and to analyze the persistence over time
of phenomena that occur in specific spatial clusters.
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SSFA R PACKAGE

6.1 Introduction

To implement the SSFA model proposed in equation (5.3) the code written in R by
Straub and Torsten (2011) has been suitably modified and a new package, named
ssfa, that allows also to make comparison with respect the SFA model has been
created.

Below are reported the “Reference manual” and the vignette entitled“Spatial
Stochastic frontier models: Instructions for use” published on CRAN.
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Package ‘ssfa’
June 10, 2015

Type Package

Title Spatial Stochastic Frontier Analysis

Version 1.1

Date 2015-06-09

Author Elisa Fusco, Francesco Vidoli

Maintainer Elisa Fusco <fusco_elisa@libero.it>

Description Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spa-
tial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-
sectional data, by splitting the inefficiency term into three terms: the first one related to spa-
tial peculiarities of the territory in which each single unit operates, the second one re-
lated to the specific production features and the third one representing the error term.

Depends Matrix, maxLik, spdep, sp

License GPL-3

Suggests R.rsp

VignetteBuilder R.rsp

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-10 01:02:51

R topics documented:
ssfa-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
eff.ssfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fitted.ssfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Italian_W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
L_hNV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
L_hNV_rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
plot_fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
plot_moran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
residuals.ssfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ssfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1

SSFA R package

6.2 Reference manual
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2 eff.ssfa

SSFA_example_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
u.ssfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Index 15

ssfa-package Spatial Stochastic Frontier models

Description

The package implements the Spatial Stochastic Frontier model for cross-sectional data introduced
by Fusco and Vidoli (2013). The method controls spatial heterogeneity in SFA models by splitting
the inefficiency term into three parts: the first one related to spatial peculiarities of the territory in
which each single unit operates, the second one related to the specific production features and the
third one representing the error term.

Details

Package: ssfa
Type: Package
Version: 1.1
Date: 2015-06-09
License: GPL-3

Author(s)

Elisa Fusco, Francesco Vidoli

Maintainer: Elisa Fusco <fusco_elisa@libero.it>

References

Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier models: controlling spatial global and
local heterogeneity, International Review of Applied Economics, 27(5) 679-694.

eff.ssfa SSFA efficiency

Description

This function returns the technical efficiency of each producer (without local spatial effects) calcu-
lated by the Battese and Coelli (1988) formulation modified by using an autoregressive specification
in the inefficiency term u.

SSFA R package
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fitted.ssfa 3

Usage

eff.ssfa(object, ...)

Arguments

object an object of class ssfa.

... further arguments for methods.

Value

Technical efficiency of each producer (without local spatial effects).

References

Battese, G. E., and T. J. Coelli (1988). Prediction of Firm-level Technical Efficiencies with a Gen-
eralized Frontier Production Function and Panel Data. Journal of Econometrics 38(3): 387-399.

Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier models: controlling spatial global and
local heterogeneity, International Review of Applied Economics, 27(5) 679-694.

Kumbhakar, S. C., and C. A. K. Lovell (2000). Stochastic Frontier Analysis, Cambridge University
Press.

See Also

u.ssfa

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,

form = "production", par_rho=TRUE)
eff <- eff.ssfa(ssfa)

fitted.ssfa SSFA fitted values

Description

This function returns the fitted values of the original data used to estimate the SSFA model.

Usage

## S3 method for class 'ssfa'
fitted(object, ...)

SSFA R package
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4 Italian_W

Arguments

object an object of class ssfa.

... further arguments for methods.

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,

form = "production", par_rho=TRUE)
fitted.ssfa(ssfa)

Italian_W Italian provinces spatial weights matrix example

Description

This is an example dataset that contains the 107 Italian provinces contiguity matrix (year 2008).

Usage

data(Italian_W)

Format

A data frame with 107 x 107 row-standardized distances between observations (Italian provinces).

References

http://www.istat.it/it/archivio/104317#confini.

Examples

data(Italian_W)

SSFA R package

81



L_hNV 5

L_hNV SFA half-normal log likelihood function

Description

This function is used to estimate the parameters of the classical SFA model where half-normal
distribution of inefficiency term is assumed.

Usage

L_hNV(p, y = y, X = X, sc = sc)

Arguments

p a vector with the parameters to be estimated.

y the dependent variable.

X the model matrix.

sc specifies the form of the frontier model (-1 = cost, 1 = production).

Value

Value of the SFA log likelihood function.

L_hNV_rho SSFA half-normal log likelihood function

Description

This function is used to estimate the parameters of the SSFA model where half-normal distribution
of inefficiency term is assumed.

Usage

L_hNV_rho(p, y = y, X = X, sc = sc, w = w, sigmau2_sar = sigmau2_sar)

Arguments

p a vector with the parameters to be estimated.

y the dependent variable.

X the model matrix.

sc specifies the form of the frontier model (-1 = cost, 1 = production).

w the spatial weight matrix.

sigmau2_sar is the variance of the spatial correlated part of the inefficiency term estimated
into ssfa.fit function.

SSFA R package
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6 plot_fitted

Value

Value of the SSFA log likelihood function.

Note

Please note that sigmau2_sar is not a free parameter because it is estimated into the ssfa.fit
function.

See Also

ssfa

plot_fitted SSFA plot

Description

This function allows to plot the data and the fitted values obtained by SSFA model.

Usage

plot_fitted(x, y, object, xlab, ylab, main, ...)

Arguments

x the x coordinates of points in the plot.

y the y coordinates of points in the plot.

object an object of class ssfa.

xlab a title for the x axis.

ylab a title for the y axis.

main an overall title for the plot.

... arguments to be passed to methods, such as graphical parameters (see par).

See Also

plot

SSFA R package
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Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)

#### SFA and SSFA comparison
sfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,

form = "production", par_rho=FALSE)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,
form = "production", par_rho=TRUE)

sfa_fitted <- fitted.ssfa(sfa)
plot_fitted(SSFA_example_data$log_x, SSFA_example_data$log_y, ssfa)
lines(sort(SSFA_example_data$log_x), sfa_fitted[order(SSFA_example_data$log_x)],col="red")

plot_moran SSFA residuals Moran plot

Description

This function allows to plot the residuals of the object against their spatially lagged values, aug-
mented by reporting the summary of influence measures for the linear relationship between the data
and the lag.

Usage

plot_moran(x, main, xlab, ylab, labels, listw, ...)

Arguments

x an object of class ssfa.

main an overall title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

labels character labels for points with high influence measures, if set to FALSE, no
labels are plotted for points with large influence.

listw a listw object from nb2listw (see nb2listw).

... arguments to be passed to methods, such as graphical parameters (see par).

References

Anselin, L. (1995). Local indicators of spatial association, Geographical Analysis, 27, 93-115.

Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial
association. pp. 111-125 in M. M. Fischer, H. J. Scholten and D. Unwin (eds) Spatial analytical
perspectives on GIS, London, Taylor and Francis.

SSFA R package
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8 residuals.ssfa

See Also

moran.plot

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)

#### SFA and SSFA comparison ###
sfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,

form = "production", par_rho=FALSE)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data, data_w=Italian_W,

form = "production", par_rho=TRUE)

moran.test(residuals.ssfa(sfa), sfa$list_w)
moran.test(residuals.ssfa(ssfa), ssfa$list_w)

plot_moran(sfa, listw=sfa$list_w)
plot_moran(ssfa, listw=ssfa$list_w)

residuals.ssfa SSFA residuals

Description

This function returns the residuals of the fitted SSFA model.

Usage

## S3 method for class 'ssfa'
residuals(object, ...)

Arguments

object an object of class ssfa.

... further arguments for methods.

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,

data_w=Italian_W, form = "production", par_rho=TRUE)
residuals.ssfa(ssfa)

SSFA R package
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ssfa Spatial stochastic frontier estimation

Description

This function estimates the Spatial Stochastic Frontier model introduced by Fusco and Vidoli (2013)
in the following form:

log(yi) = log(f(xi;βi)) + vi − ui

ui = ρ
∑

i

wi.ui + ũi

where yi are the outputs, xi the inputs, vi the stochastic noise, ui the inefficiency term, rho the
spatial lag, wi. a standardized row of the spatial weights matrix and ũi the stochastic noise of the
inefficiency term.

Usage

ssfa(formula, data = NULL, data_w = NULL, intercept = TRUE, pars = NULL, par_rho = TRUE,
form = "cost")

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted.

data an optional data frame containing the variables in the model.

data_w a data frame containing the spatial weight matrix.

intercept logical. If true the model includes intercept.

pars initial values for the parameters to be estimated.

par_rho logical. If true the function estimates the Spatial Stochastic Frontier (SSFA)
otherwise the classical Stochastic Frontier (SFA).

form specifies the form of the frontier model as "cost" or "production".

Value

ssfa returns the following objects of class ssfa:

y the dependent variable.

x the covariates.

X the model matrix.

coef the estimated coefficients.

sc the form of the frontier model estimated (-1 = cost, 1 = production).

hess a symmetric matrix giving an estimate of the Hessian at the solution found.

logLik the value of the log likelihood function.

SSFA R package
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10 ssfa

ols the linear model for the LR-test.

sigmau2 the estimation of sigmau2 (only if par_rho=FALSE): value of inefficiency vari-
ance.

sigmau2_dmu the estimation of sigmau2_dmu (only if par_rho=TRUE): value of the part of
the inefficiency variance due to DMU’s specificities.

sigmau2_sar the estimation of sigmau2_sar: value of the part of the inefficiency variance due
to the spatial correlation.

sigmav2 the estimation of sigmav2: value of the stochastic error variance.

sigma2 the estimation of sigma2: value of the total variance.

rho the estimation of the spatial lag parameter rho.

fun the distribution of the inefficiency term u.

list_w a listw object from nb2listw (See nb2listw).

Note

NOTE 1: In this version the distribution of the inefficiency term u is only "half-normal".

NOTE 2: The method used to maximize the log likelihood function is the Newton-Raphson. Please
see the R function maxNR of the maxLik package for details (Henningsen and Toomet (2011)).

NOTE 3: Please note that the classical SFA inefficiency variance sigmau2, in the SSFA, is decom-
posed into sigmau2_dmu and sigmau2_sar, respectively the part of inefficiency variance due to
DMU’s specificities and to the spatial dependence, i.e. sigmau2 = sigmau2_dmu + sigmau2_sar
and consequently the total variance is given by sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2.

Author(s)

Fusco E. and Vidoli F.

References

Battese, G. E., and T. J. Coelli (1995). A Model for Technical Inefficiency Effects in a Stochastic
Frontier Production Function for Panel Data. Empirical Economics 20(2): 325-332.

Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier models: controlling spatial global and
local heterogeneity, International Review of Applied Economics, 27(5) 679-694.

Kumbhakar, S. C., and C. A. K. Lovell (2000). Stochastic Frontier Analysis, Cambridge University
Press.

Henningsen, A. and Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in
R. Computational Statistics 26(3), 443-458.

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,

SSFA R package
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SSFA_example_data 11

data_w=Italian_W, form = "production", par_rho=TRUE)

### SSFA total variance decomposition
sigma2 = ssfa$sigmau2_dmu + ssfa$sigmau2_sar + ssfa$sigmav2
sigma2
ssfa$sigma2

SSFA_example_data Example dataset

Description

The dataset contains the simulated data used by Fusco and Vidoli (2013) to test the model. Data
Generating Process (DGP) follows the construction criteria proposed by Banker and Natarajan
(2008), also used by Johnson and Kuosmanen (2011), with the addition of a strong spatial cor-
relation in the inefficiency term through a spatial lag parameter and a contiguity matrix (107 Italian
provinces contiguity matrix, year 2008).

Usage

data(SSFA_example_data)

Format

A data frame with 107 observations (Italian provinces) and 2 variables:

DMU the Decision Making Unit name.

log_x the input vector (already in logarithmic form).

log_y the output vector (already in logarithmic form).

References

Banker, R., and R. Natarajan (2008). Evaluating Contextual Variables Affecting Productivity using
Data Envelopment Analysis. Operations Research 56 (1): 48-58.

Johnson, A., and T. Kuosmanen (2011). One-stage Estimation of the Effects of Operational Con-
ditions and Practices on Productive Performance: Asymptotically Normal and Efficient, Root-n
Consistent StoNEZD Method. Journal of Productivity Analysis 36:219-230.

Examples

data(SSFA_example_data)

SSFA R package
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12 summary

summary SSFA summaries

Description

The function print.ssfa is used to display the values of SFA and SSFA estimated coefficients. In
particular:
- for SFA the function displays the Intercept, the regressors beta coefficients, the inefficiency
variance sigmau2, the stochastic error variance sigmav2 and the total variance sigma2;
- for SSFA the function displays, in addition, the decomposition of the inefficiency variance into
sigmau2_dmu and sigmau2_sar, respectively the part of inefficiency variance due to DMU’s speci-
ficities and to the spatial dependence, and finally, the spatial lag parameter rho.
The function summary.ssfa is used to display the summary results of SFA and SSFA. In particular:
- for SFA the summary shows the estimation of SFA coefficients (Intercept, beta coefficients,
sigmau2 and sigmav2) and others useful information as the total variance sigma2, the inefficiency
parameter Lambda (sigmau/sigmav), the Moran I statistic, the mean of efficiency, the LR-test and
the AIC values;
- for SSFA the summary shows, in addition, the decomposition of the inefficiency variance into
sigmau2_dmu and sigmau2_sar and the spatial lag parameter rho.

Usage

## S3 method for class 'ssfa'
print(x, ...)
## S3 method for class 'ssfa'
summary(object, ...)

Arguments

x an object of class ssfa.
object an object of class ssfa.
... further arguments for methods.

Note

Please note that the classical SFA inefficiency variance sigmau2, in the SSFA, is decomposed into
sigmau2_dmu and sigmau2_sar, respectively the part of inefficiency variance due to DMU’s speci-
ficities and to the spatial dependence, i.e. sigmau2 = sigmau2_dmu + sigmau2_sar and conse-
quently the total variance is given by sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2.

References

Anselin, L. (1995). Local indicators of spatial association, Geographical Analysis, 27, 93-115.
Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier models: controlling spatial global and
local heterogeneity, International Review of Applied Economics, 27(5) 679-694.
Kumbhakar, S. C., and C. A. K. Lovell (2000). Stochastic Frontier Analysis, Cambridge University
Press.
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u.ssfa 13

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,

data_w=Italian_W, form = "production", par_rho=TRUE)

print(ssfa)
summary(ssfa)

u.ssfa SSFA inefficiency

Description

This function returns the specific inefficiency of each producer (without local spatial effects) cal-
culated by the Jondrow et al. (JLMS) (1982) formulation modified by using an autoregressive
specification in the inefficiency term.

Usage

u.ssfa(object, ...)

Arguments

object an object of class ssfa.

... further arguments for methods.

Value

Inefficiency of each producer (without local spatial effects).

References

Fusco, E. and Vidoli, F. (2013) Spatial stochastic frontier models: controlling spatial global and
local heterogeneity , International Review of Applied Economics, 27(5) 679-694. Kumbhakar, S.
C., and C. A. K. Lovell. (2000) Stochastic Frontier Analysis, Cambridge University Press.

Jondrow, J., C. A. Knox Lovell, I. S. Materov, and P. Schmidt. (1982). On the Estimation of Tech-
nical Inefficiency in the Stochastic Frontier Production Function Model. Journal of Econometrics
19 (2-3): 233-238.

See Also

eff.ssfa
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14 u.ssfa

Examples

library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,

data_w=Italian_W, form = "production", par_rho=TRUE)
ineff <- u.ssfa(ssfa)
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ssfa-package, 2

eff.ssfa, 2, 13

fitted.ssfa, 3
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moran.plot, 8

nb2listw, 7, 10

par, 6, 7
plot, 6
plot_fitted, 6
plot_moran, 7
print.ssfa (summary), 12
print.summary.ssfa (summary), 12

residuals.ssfa, 8

ssfa, 6, 9
ssfa-package, 2
SSFA_example_data, 11
summary, 12
summary.ssfa (summary), 12

u.ssfa, 3, 13
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Spatial Stochastic frontier models: Instructions for use

Elisa Fusco & Francesco Vidoli

June 9, 2015

In the last decade stochastic frontiers traditional models (see Kumbhakar and Lovell, 2000 for a detailed
introduction to frontier analysis) have been extended with the aim to take into account firm specific hetero-
geneity (see e.g. Greene, 2004, Greene, 2005b, Greene, 2005a). If firm specific heterogeneity is not accounted,
in fact, a considerable bias in the inefficiency estimates can be endogenously created.

ssfa package allows to include heterogeneity in a different way with respect to traditional techniques:
”instead of identifying ex-ante a multitude of determinants, often statistically and economically difficult to
detect [...] this approach allow the evaluation of the conjoint effect of a multitude of determinants” (Fusco
and Vidoli, 2013) considering spatial proximities; more particularly ssfa package implements the Spatial
Stochastic Frontier Analysis (SSFA), an original method introduced by Fusco and Vidoli (2013) with the aim
to test and depurate the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models by splitting the
inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each
single unit operates, the second one related to the specific production features and the third one representing
the error term.

The main idea is that spatial dependence refers to how much the level of technical inefficiency of farm i
depends on the levels set by other farms j = 1, ..., n, under the assumption that part of the farm i inefficiency
(ui) is linked to the neighbour DMU j’s performances (j 6= i).
Denoting yi as the single output of producer i, xi the inputs vector and f a generic parametric function, the
Normal / Half-Normal cross-sectional production frontier model can be respectively written1:

log(yi) = log(f(xi;βi)) + vi − ui
= log(f(xi;βi)) + vi − (1− ρ

∑

i

wi.)
−1ũi

where

vi ∼ N (0, σ2
v)

ui ∼ N+(0, (1− ρ
∑

i

wi.)
−2σ2

ũ)

ui and vi are independently distributed of each other,

and of the regressors

ũi ∼ N (0, σ2
ũ)

wi. is a standardized row of the spatial weights matrix

ρ is the spatial lag parameter (ρ ∈ [0, 1])

(1)

1For simplicity’s sake and to make the notation more consistent with the SFA literature, we did not write the model in
matrix form, but for each company i.

1
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ssfa package allows to estimate both the ”production” form (as shown in equation (1) and the ”cost”
form of the frontier i.e.:

log(Ci) = log(f(yi, wi;βi)) + vi + ui

where

Ci is the cost

wi are the input prices.

(2)

Introducing a variable sc that defines the form of the frontier:

{
1 for production function
−1 for cost function

(3)

ssfa model can be written as:

log(yi) = log(f(xi;βi)) + vi − sc · ui (4)

In order to estimate the ssfa model we have to install and load the package:

> #install.packages("ssfa")

> library(ssfa)

In this package, the SSFA_example_data and Italian_W datasets have been included in order to better
illustrate and comment the model.

� The first dataset contains the simulated data used by Fusco and Vidoli (2013) to test the model. Data
Generating Process (DGP) follows the construction criteria proposed by Banker and Natarajan (2008),
also used by Johnson and Kuosmanen (2011), with the addition of a strong spatial correlation (ρ = 0.80)
in the inefficiency term through a spatial lag parameter and the contiguity matrix Italian_W.

� The second dataset is the Italian provinces contiguity matrix for the year 2008 containing 107 x 107
row-standardized distances.

> data(SSFA_example_data)

> data(Italian_W)

> names(SSFA_example_data)

[1] "DMU" "log_y" "log_x"

The variable log_y is the log-transformed output, log_x is the log-transformed input and DMU is the Decision
Making Unit name.

2
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Figure 1: Example simulated data

ssfa package allows to easily compare the Spatial Stochastic Frontier (SSFA) with the classical Stochastic
Frontier (SFA) by setting the parameter par_rho as TRUE to estimate the SSFA or FALSE to estimate the
classical SFA.

In order to compare the SSFA estimation versus the SFA one, a standard SFA production frontier has been
first estimate by setting, into the ssfa function, command form="production" and par_rho="FALSE":

> sfa <- ssfa(log_y ~ log_x , data = SSFA_example_data, data_w=Italian_W,

+ form = "production", par_rho=FALSE)

> summary(sfa)

Stochastic frontier analysis model

Estimate Std. Error z value Pr(>|z|)

Intercept 1.185847 0.450144 2.63437 0.008429 **

log_x 1.273394 0.302062 4.21567 2.5e-05 ***

sigmau2 1.319260 0.915815 1.44053 0.149717

sigmav2 0.779320 0.311867 2.49889 0.012458 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sigma2 = 2.098581

Inefficiency parameter Lambda (sigmau/sigmav): 1.30109

Moran I statistic: 0.457094

3
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Mean efficiency: 0.485295

LR-test: sigmau2 = 0 (inefficiency has no influence to the model)

H0: sigmau2 = 0 (beta_ssfa = beta_ols)

Value Log-Lik

ssfa -163.6215

ols -164.1653

Value LR-Test: 1.088 p-value 0.148

AIC: 335.2431, (AIC for lm: 332.3306)

In the standard SFA framework (par_rho="FALSE"), ssfa function returns, in addition to the intercept and
the log_x coefficient, the estimation of the variance of the two error components sigmau2 and sigmav2.
Other useful information about efficiency estimation are reported:

� sigma2: the estimate of the total variance where σ2 = σ2
u + σ2

v ;

� lambda: the ratio of the standard deviation of the inefficiency term to the standard deviation of the
stochastic term i.e. σu

σv
;

� the mean of efficiency estimated;

� the results of the test on the influence of the inefficiency on the model. This is a test of the null
hypothesis H0 : σ2

u = 0 against the alternative hypotheses H1 : σ2
u > 0. If the null hypothesis is true,

the stochastic frontier model is reduced to an OLS model with normal errors. For this example, the
output shows LR = 1.088 with a p-value of 0.148. There are several possible reasons for the failure to
this test, including for example the uncontrolled spatial dependence of the inefficiency term.

In addition to previous statistics, summary function displays information about the spatial autocorrelation
of the SFA residuals, the Moran’s I statistic. For example, in this application I = 0.457 showing a positive
and significant (p− value < 2.2e− 16) global autocorrelation among residuals.

> moran.test(residuals(sfa), listw=sfa$list_w)

Moran's I test under randomisation

data: residuals(sfa)

weights: sfa$list_w

Moran I statistic standard deviate = 8.3329, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.457093893 -0.009433962 0.003134475

Autocorrelation among residuals can be tested also locally thanks to plot_moran function that enables you
to assess how similar an observed value is to its neighbouring observations; its horizontal axis is based on
the values of the observations and is also known as the response axis, while the vertical Y axis is based on
the weighted average or spatial lag of the corresponding observation on the horizontal X axis. This function
need a neighbours list: it can be easily calculate thanks to the nb2listw function of spdep package from the
contiguity matrix Italian_W.

4
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> plot_moran(sfa, listw=sfa$list_w)
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Figure 2: SFA Moran scatterplot

Finally, summary function reports the AIC value for the ssfa model and the lm model.

Having estimated the SFA model as baseline, the spatial production frontier SSFA can be carried on by
setting command form="production" and par_rho="TRUE":

> ssfa <- ssfa(log_y ~ log_x , data = SSFA_example_data, data_w=Italian_W,

+ form = "production", par_rho=TRUE)

> summary(ssfa)

Spatial Stochastic frontier analysis model

Estimate Std. Error z value Pr(>|z|)

Intercept 3.445042 2.153384 1.59983 0.109637

log_x 1.633247 0.226971 7.19585 < 2e-16 ***

sigmau2_dmu 0.596074 0.650270 0.91666 0.359322

sigmav2 0.474248 0.214914 2.20668 0.027336 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pay attention:

1 - classical SFA sigmau2 = sigmau2_dmu + sigmau2_sar: 0.882803 where sigmau2_sar: 0.286729

2 - sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2: 1.357051

Inefficiency parameter Lambda = sigmau_dmu/sigmav: 1.256883

5
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Spatial parameter Rho: 0.778393

Moran I statistic: -0.189043

Mean efficiency: 0.571884

LR-test: sigmau2_dmu = 0 (inefficiency has no influence to the model)

H0: sigmau2_dmu = 0 (beta_ssfa = beta_ols)

Value Log-Lik

ssfa -138.9479

ols -164.1653

Value LR-Test: 50.435 p-value 0

AIC: 297.8958, (AIC for lm: 332.3306)

The output of ssfa (with par_rho="FALSE") returns the intercept, the log_x coefficient and the estimation
of the variance of the two error components not spatially correlated i.e. sigmau2_dmu and sigmav2.

In this case, the model decomposes the inefficiency variance sigmau2 into sigmau2_dmu and sigmau2_sar,
respectively the part of inefficiency variance due to DMU’s specificities and to the spatial dependence, i.e.
σ2
u = σ2

udmu
+ σ2

usar
. Consequently, the total variance is given by σ2 = σ2

udmu
+ σ2

usar
+ σ2

v .

In this application, (lambda = 1.257) is smaller than the SFA one (lambda = 1.301) because the production
unit inefficiency is sterilized from the influence of the neighbourhood performances.

In addition, the summary function reports the estimated spatial parameter ρ that in this case is 0.778 very
close to the true simulation parameter (0.80); Moran’s I = −0.189 is no more significant (p−value = 0.9993).

> moran.test(residuals(ssfa), listw=ssfa$list_w)

Moran's I test under randomisation

data: residuals(ssfa)

weights: ssfa$list_w

Moran I statistic standard deviate = -3.2046, p-value = 0.9993

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

-0.189042939 -0.009433962 0.003141349

> plot_moran(ssfa, listw=sfa$list_w)

6
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Figure 3: SSFA Moran scatterplot

In this application it can be easily note that the likelihood-ratio test is highly significant (LR = 50.435 with
a p-value = 0.000); these findings, support the conclusion that the SSFA model is able to correctly estimate
the inefficiency component of the error term.

Other functions are available into ssfa package:

� fitted.ssfa: this function calculates the fitted values of the original data used to estimate the SSFA
model.

> ssfa_fitted <- fitted.ssfa(ssfa)

> sfa_fitted <- fitted.ssfa(sfa)

� plot_fitted: plots the original data, the SSFA fitted frontier and optionally the SFA fitted frontier
with the aim to compare models colouring points according to the efficiency values.

> plot_fitted(SSFA_example_data$log_x, SSFA_example_data$log_y, ssfa, pch=16, cex=0.5,

+ xlab="X", ylab="Y", cex.axis=0.8 )

> points(SSFA_example_data$log_x, SSFA_example_data$log_y, pch=16, cex=0.5,

+ col= ifelse(eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.20) , "#D7191C",

+ ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.20)

+ &eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.4) ,"#FF8C00",

+ ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.4)

+ &eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.6) ,"#FFFF00",

+ ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.6)

+ &eff.ssfa(ssfa)<quantile(eff.ssfa(ssfa), 0.8) ,"#ADFF2F",

+ ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.8)

+ &eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 1),"#008B00", "#2F4F4F"))))))

> lines(sort(SSFA_example_data$log_x),sfa_fitted[order(SSFA_example_data$log_x)],

+ col="red")

7
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Figure 4: Plot data, SSFA and SSFA frontiers

� residuals.ssfa: calculates the SSFA model residuals.

> ssfa_residuals <- residuals.ssfa(ssfa)

> sfa_residuals <- residuals.ssfa(sfa)

With residuals estimation we can compare SFA and SSFA results, for example, with maps like the
following:

under −1.9
−1.9 − −1.3
−1.3 − −1
−1 − −0.3
−0.3 − 0.3
over 0.3

(a) SFA

under −1.6
−1.6 − −1.1
−1.1 − −0.7
−0.7 − −0.4
−0.4 − 0.1
over 0.1

(b) SSFA

Figure 5: Spatial residuals distribution by method
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Figure 5 shows that the spatial dependence present in SFA residuals (a) is fully neutralized by the
SSFA model (b).

� eff.ssfa: calculates the efficiency (Battese and Coelli (1988) formulation) and inefficiency (Jondrow
et al. (1982) formulation) estimated.

> ssfa_eff <- eff.ssfa(ssfa)

> #sfa_eff <- eff.ssfa(sfa)

>

> #summary(sfa_eff)

> #summary(ssfa_eff)

>

> ssfa_u <- u.ssfa(ssfa)

> #sfa_u <- u.ssfa(sfa)

>

> #summary(ssfa_u)

> #summary(sfa_u)
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Part III

Frontier models for aggregating
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7.1 Introduction

In this part, the analysis will be focused on another way to use frontier models,
that is a particular approach for constructing Composite Indicators (CI). Firstly,
a definition of CI is given and an overview of the main issues of the aggregation
process and on the previous proposed methods is discussed, with the aim to allow
the comprehensibility of the innovative subsequents chapters.

“Composite indicator is formed when individual indicators are compiled into a single
index, on the basis of an underlying model of the multi-dimensional concept that is

being measured"
(OECD, 2005)

Therefore, constructing a composite indicator consists in the aggregation of an
appropriate number of simple indicators representing different multidimensional
aspects of the same issue.
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Interest in CIs, as a useful tool to support decision-makers in policy analysis
and policy communication (Nardo et al., 2005), is rapidly growing thanks to their
capability to summarise multi-dimensional issues, to rank countries in benchmarking
analysis and to their ease of interpretation.

On the other hand, the construction of a CI is a very complex and delicate process
because if the CI is poorly constructed or misinterpreted it may send misleading
and non-robust policy messages leading to simplistic policy conclusions. For these
reasons Freudenberg (2003) has proposed a series of subsequent steps for obtaining a
good CI, among which:

1. the systematisation of a theoretical framework for the identification of relevant
analysis dimensions;

2. the standardisation of the simple indicators with the aim of transforming them
into pure, dimensionless numbers and to invert possible opposite polarities/signs
(e.g. air pollution in OECD Better Life Index) in order to allow comparisons;

3. the imputation of missing data;

4. the weighting of simple indicators;

5. the succeeding sensitivity analysis on the robustness of the aggregation.

Moreover, the construction of CIs involves some stages where judgments have to
be made: the selection of sub-indicators, the choice of the model, the choice of the
weights for aggregating indicators, the treatment of missing values and so on.

In particular, a critical step in this sense and focus of the following sections and
chapters, is the weighting of simple indicators (Step 4), in fact, Joint Research Centre
of European Commission asserts that "no uniformly agreed methodology exists to
weight individual indicators before aggregating them into a composite indicator"9.
In this framework, the two main issues to be considered are: (i) how to find weights,
i.e. if in a subjective or objective manner (see Section 7.2); (ii) if a trade-off relation
exists among simple indicators i.e. the possibility to compensate a disadvantage on
some simple indicators, with a sufficiently large advantage on the others (see Chapter
8).

9http://composite-indicators.jrc.ec.europa.eu/S6_weighting.htm
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7.2 Weighting issue

In order to provide an answer to the first problem, a large number of researchers
identify weights subjectively in cooperation with experts who know the theoretical
context well (please see e.g. ONS, 2002, WMRC, 2001), others on the contrary, use
objective methods in order to avoid arbitrariness problems.

The first group of proposed methods, includes the Budget Allocation Processes (BAP
- Jesinghaus in Moldan et al., 1997) based on a subjective allocation of a “budget” of
one hundred points to a set of indicators; the Analytic Hierarchy Processes (AHP
- Forman, 1983, Saaty, 1987) in which weights are the trade-offs across indicators;
the Conjoint Analysis (CA - Green and Srinivasan, 1978, Hair, 1995, McDaniel and
Gates, 1998) that studies the evaluations (preferences) given by the respondents on a
set of alternative scenarios representing different values for the individual indicators.

The second group includes: the Principal Component Analysis (PCA - Manly, 1994)
and the Factor Analysis (FA - Thurstone, 1931) that groups collinear simple indicators
with the aim to capture the common information among them; however, weights
cannot be estimated with these methods if weak correlation exists among indicators;
the Unobserved Components Model (UCM - Kaufmann et al., 1999, Kaufmann
et al., 2003) that assumes the dependence of the simple indicator on an unobserved
variable plus an error term in order to identify the relationship between the composite
and its components; the DEA models (see Subsection 3.2.2 for a mention on the
methodology) and in particular the Benefit of Doubt Approach (BoD - Melyn et al.,
1991) based on the identification of an efficiency frontier.

In general, in the CI framework, there are no functional relationships among single
indicators, covering different aspects of a specific economic or social phenomenon,
and so, nomic casuality cannot be assumed (Born, 1949), meaning that certain
or probabilistic general functions covering relations among instances cannot be
assumed. Moreover, in a nonparametric perspective, it is not even useful to introduce
constraints, parametric functional forms or penalties which may be linked to a specific
theoretical model because results would be clearly linked to the theoretical model
that has generated them.

From a logical perspective, therefore, the claim of "back to the details" suggested by
Nardo et al. (2005) appears as misleading, because the resulting composite indicator
is clearly linked to the model that generated it.
This happens because, especially in this context, "in the mathematical knowledge
the consideration [the assumptions] is an operation that, for the objects, comes from
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outside; so it follows that the real object is altered"10 (Hegel, 1995). Knowledge, is
considered as a bias with respect to the expected measure, and the measure itself
influences the analysis, that is, there are not neutral actions without consequences:
or the thought explains the evolution of the object (adaequatio intellectus ad rem),
or the object itself is deformed by the thought (adaequatio rei to intellectus).

Given this premise, the choice among different weighting functions, models or
evaluation frameworks can be done or in an axiomatic way or according to the
required statistical properties. In the following section (7.3) the BoD approach is
analyzed in detail since it determines the weights endogenously and consequently
avoids the main critical remark on the subjectivity involved in the choice of the
weights set.

7.3 Frontier approach: the Benefit of the Doubt

DEA techniques have been applied in the construction of many socio-economic CIs,
like the evaluation of public policies: see e.g. Prieto and Zofio (2001) and Zafra-
Gomez et al. (2010) for local government performance evaluation; Storrie and Bjurek
(2000), for the European labor market analysis; Cherchye et al. (2004) for social
inclusion policies at EU level and Takamura and Tone (2003) for government agencies
evaluation. They have been used also in analysis of country performance through
macroeconomic indicators: see e.g. Lovell (1995), Lovell et al. (1995), Cherchye
(2001) and Cherchye et al. (2005) for internal market policies; for the construction of
a environmental and ecological performance indicator: see e.g. Zhou et al. (2007),
Bellenger and Herlihy (2009), Lo (2010), Sahoo et al. (2011), Rogge (2012) and
Zanella et al. (2013) and finally for the calculation of the Human Development Index:
see e.g. Mahlberg and Obersteiner (2001), Despotis (2005a), Despotis (2005b) and
Cherchye et al. (2008).

In Section 1.1 the production set Ψ was introduced such as:

Ψ = {(x,y) : x can produce y} (7.1)

satisfying the usual assumptions as in Shephard (1970) and in Färe et al. (1985)
described in detail in the same section.

As highlighted by Witte and Rogge (2009), the classical BoD approach is a
particular case of the CCR-DEA model (Charnes et al., 1978) presented in Subsection

10In Italian "Nel conoscere matematico la considerazione è un operare che, per la cosa, vien da
fuori; ne segue quindi che la cosa vera viene alterata".
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3.2.2 where x is univariate and constant equal to 1 and y is a vector of k simple
indicators in [0,1] (from this point denoted by I).

The BoD estimator of the output efficiency score φ (see Subsection 1.1.2 for a
definition) for a given unit o is obtained by solving the following linear program:

max
φ,γ1,...,γn

φ

s.t. φIo ≤
n∑
i=1

γiIi

γi ≥ 0

(7.2)

where γi are the weights searched.

CIs calculated through equation (7.2) satisfy the following desirable properties:

1. Weights are endogenously determined by the observed performances
and the benchmark is not based upon theoretical bounds, but on a linear
combination of observed best performances;

2. BoD CI is weak monotone: Let CI an unbalanced-adjusted aggregation
function of Q simple indicators Iq, CI is weakly positive monotone
if for each c > 0, CI(I1, ..., Iq, ..., IQ) ≤ CI(I1, ..., Iq + c, ..., IQ) (see e.g.
Chakravarty, 2003, Casadio Tarabusi and Guarini, 2013);

3. Weighting scheme is the highest possible; this property is particularly
"useful in policy arena, since policy-makers could not complain about
unfair weighting: any other weighting scheme would have generated lower
composite scores" (Nardo et al., 2005).

Figure 7.2 shows the properties described above graphically, in particular, the
solid lines indicate the level curves of the CI obtained by combining two indicators
I1 and I2 that are positive monotone, in fact, CI increases whenever any of the
simple indicators increase and the others are left unchanged. Moreover, the frontier
is determined by points A,B and C that are the benchmarks, i.e. the units in the
sample that yields the maximal CI value equal to 1 (given the constraints on weights).
Finally, the weights set of other units, and in particular of point D, is the one that
maximizes units CI value with respect the benchmark identified as the unit that
minimize the distance from the single unit and the frontier (e.g. the point B for D).

Therefore, the optimal set of weights (if it exists) guarantees the corresponding
unit the best position with respect to all the other units in the sample.
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Figure 7.1: BoD

However, this method inherits all the hypothesis and drawbacks of the DEA
model some of which are described below.

One of the main hypothesis is the preferential independence among simple indica-
tors as it is a linear aggregation method.
In fact, in the construction of CIs, the first assumption to make is on the functional
form for the underlying aggregation rule (see e.g. Diewert, 1976) that is generally
linear (Freudenberg, 2003) i.e. I =∑N

i=1wixi, where xi is a scale adjusted variable
normalized in [0,1] and wi is the related weight (usually ∑N

i=1wi = 1, 0≤ wi ≤ 1).
This hypothesis is acceptable only under the condition of this theorem: “given the
variables x1,x2, ...,xn, an additive aggregation function exists if and only if these
variables are mutually preferentially independent” (Debreu, 1960, Keeney and Raiffa,
1993, Krantz et al., 1971).
Note that a subset of indicators I is preferentially independent of Ic =Q (the com-
plement of I) only if any conditional preference among elements of I, holding all
elements of Q fixed, remain the same, regardless of the levels at which Q are held.
The variables x1,x2, ...,xn are mutually preferentially independent if every subset I of
these variables is preferentially independent of its complementary set of evaluators.
Preferential independence is a very strong condition implying the independence
between the trade-off ratio of two variables Sx,y and the values of the n−2 other
variables, i.e. ∂Sx,y

∂q = 0, ∀x,y ∈ I,q ∈Q (Ting, 1971). An additive aggregation func-
tion permits the evaluation of the marginal contribution of each variable separately
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and so the possibility to sum together the single contributions to obtain a total value.
However, in empirical applications there often exists collinearity among variables, in
this case a linear aggregation could generate biased CIs and so it is better to use
nonlinear aggregation rules.

Other main hypothesis are the positive monotonicity and convexity (see Subsection
3.2.2) of the aggregation function.

The principal drawbacks regard, instead, the obtained weights being country
specific, thus cross-country comparisons are not possible and so without imposing
constraints on weights multiplicity of equilibria problem arises i.e. weights are not
uniquely determined (multiple solutions have been proposed: please see Allen et al.,
1997, Thanassoulis et al., 2004, Estellita-Lins et al., 2007, Cooper et al., 2009 for
some methods that incorporate the “value judgment” of the specialists (bounds on
the weights) in the classical DEA specification and Takamura and Tone, 2003, Lauer
et al., 2004, Mazziotta and Vidoli, 2009, Rogge, 2012 in the case of BoD; or see
e.g. Kao et al., 2008 for a method that introduces a priori weights); the frontier is
sensitive to extreme values and outliers (please see Cazals et al., 2002, Daraio and
Simar, 2005 for a robust version of nonparametric frontier estimations).

Finally, the BoD model assumes the compensability among simple indicators, namely
allowing lower values in some indicators to be compensated by higher values in the
others, but this property is not even verified in the practical application, especially
if they have to be interpreted as importance coefficients (Bouyssou and Vansnick,
1986; Bouyssou, 1986; Vansnick, 1986; Keeney and Raiffa, 1993; Podinovskii, 1994;
Munda and Nardo, 2005).

Compensability and sensitivity to extreme values and outliers issues will be the
focus of the following innovative Chapters 8 and 9.
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8.1 Introduction

In the previous Chapter (7) the BoD drawback of the Compensability has been high-
lighted as a strong assumption of the model unverified when in practical application
a preference structure on indicators exists.

In this section the main proposals existing in literature will be presented and a new
method in the field of CI, which enables taking into account the preference structure
among simple indicators in a BoD framework will be proposed.

“A preference relation is compensatory if weights are considered as intensities
or non-compensatory if weights are considered as importance coefficients” (please
see Munda and Nardo, 2005, Munda and Nardo, 2009, Munda and Saisana, 2011,
Munda, 2012a, Munda, 2012b for a recent discussion).
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Recently, multiple solutions have been proposed to avoid the compensability
assumption introducing weight constraints, weighting each tensor that links the
single point to the frontier (see e.g. Tsutsui et al., 2009) or including a penalty
according to the different mix of simple indicators.

In particular, considering the third approach, Vidoli and Mazziotta (2013) sug-
gested to incorporate the Method of Penalties for Coefficient of Variation (MPVC -
De Muro et al., 2010) idea in the basic BoD method, i.e.:

BoD-PVCi =BoDi · (1− cv2
i ),∀i= 1, ...,n (8.1)

where cv2
i represents the coefficient of variation for the unit i among all indicators.

This approach, therefore, allows to take into account the benchmark units on the
frontier (as in BoD) and to penalize, in the case of non-compensatory issues, the
presence of unbalanced data (as in MPVC).
In this method, however, given the chosen penalty criteria, the aggregate function
does not always satisfy the weakly positive monotonicity property (see Section 7.2).
Figure 8.1 shows how the BoD-PVC (solid line) modifies the BoD (dashed line)
level curves; in some cases the BoD-PVC does not satisfy the monotonicity property
(e.g. if the simple indicator I2 increases from point B to point A, the value of CI
decreases).

Figure 8.1: Comparison between BoD and BoD-PVC

114



Non-compensatory issue in CIs framework: Directional BoD

Therefore, with the aim of finding an increasing non-compensatory CI it is
important that the resulting aggregation function is monotone positive.

8.2 Directional BoD (D-BoD)

Fusco, E. (2015) Enhancing non-compensatory composite indicators:
A directional proposal. European Journal of Operational Research,
242, 620 - 630, DOI:10.1016/j.ejor.2014.10.017.

Cited in:

Sahoo, B. K., Singh, R., Mishra, B., and Sankaran, K. (2016). Research
productivity in management schools of india during 1968-2015: A directional
benefit-of-doubt model analysis. Omega:
[...]“The solutions proposed in the literature for dealing with the foregoing prob-
lems of multiple and/or zero weights (cf. Fusco [74] on the detailed references
on these) include value judgments by either imposing bounds on the weights or
setting a priori weights. Since such value judgments vary across analysts/experts,
the weights suffer from obvious arbitrariness. Therefore, we adjudged the ratings
based on the arbitrary weight restrictions principle as unacceptable. Moreover, as
Podinovski [104] also pointed out, the BOD model imposes the compensatory pref-
erence relation among individual indicators without actually verifying whether
this relation actually exists in the data. We saw merit in following the advice of
Fusco [74] who recommended including directional penalties in the BOD model.
More specifically, the directional distance function (DDF) of Chamber et al.
[105] accommodates the non-compensatory preference relations among indicators
rather well.[...].

Amado, Carla A.F., Sao Jose, Jose M.S. and Santos, Sergio, (2016). Measuring
active ageing: A Data Envelopment Analysis approach, European Journal of
Operational Research, 255, issue 1, p. 207-223.

Van Puyenbroeck, Tom and Rogge, Nicky. (2017). Geometric mean quantity
index numbers with Benefit-of-the-Doubt weights, European Journal of Opera-
tional Research, 256, issue 3, p. 1004-1014.

115

10.1016/j.ejor.2014.10.017


Non-compensatory issue in CIs framework: Directional BoD

In order to take into account the preference structure among simple indicators and
to apply a monotone positive aggregation function, Fusco (2015) suggested including
in the BoD model (equation 7.2) a "directional" penalty using the directional distance
function introduced by Chambers et al. (1998) (see Section 2.3 for a methodological
discussion):

−→
DT (x,y;g) = sup{e : (x− egx,y+ egy) ∈Ψ} (8.2)

where g = (gx,gy) is the directional vector.

Given that, as again assumed, x is fixed and equal to 1 and y is a vector of
k simple indicators in [0,1] (from this point denoted by I), and it is considered a
directional output distance function, where the directional vector is g = (0,g1, ...,gk).
As a consequence, following Bogetoft and Otto (2011), the output distance of a
specific unit o to the frontier in g-units is evaluated as:

−→
D(1,Io;Ψ,g) = max{e ∈ R+|(1,Io + eg) ∈Ψ}. (8.3)

The Directional BoD (D-BoD - Fusco, 2015) estimator of the output distance e is
obtained by solving the following linear program:

max
e,γ1,...,γn

e

s.t. Io + eg≤
n∑
i=1

γiIi

γi ≥ 0

(8.4)

Finally, the Shepard output distance for the specific unit o function can be derived
from the directional distance function as:

D(1,Io;Ψ) = 1
−→
D(1,Io;Ψ,g) + 1

,∀o (8.5)

For the sake of simplicity, and in order to better visually illustrate the method,
from this point, a bivariate case of two simple indicators i.e. I = (I1, I2) will be
considered.
Figure 8.2 compares the CI scores obtained with BoD (dashed line) and D-BoD
(solid line) formulation in a hypothetical case in which the direction favors greater
values of indicator I1 with respect I2. The two straight lines represent the directions
underlying the models: gBoD = (I1, I2) and gD−BoD = (I1, I2 ·0.5).
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Figure 8.2: Comparison between BoD and Directional BoD

Given this representation, point A, B and C lie on the same level curve (the red
dashed line) in a BoD model, while in a D-BoD model points A and C have a lower
level of the CI score than B.
As a matter of fact, the D-BoD model rewards the combinations of I1 and I2 on the
main direction (point B) and penalizes, in a different way, the combinations of low
values of I1 and high values of I2 (point A) with respect to combinations of high
values of I1 and low values of I2 (point C).

It can be observed that on the main direction the BoD level curve coincides with
the D-BoD one and that the two curves are overlaid on the frontier. The proposed
model is, therefore, a more general formulation of the basic BoD model where I1 and
I2 have the same importance, i.e. gBoD = (I1, I2).

Against this background, in literature, a crucial question in a directional framework
is the correct choice of the direction g in which inputs have to be contracted and/or
outputs have to be expanded to reach the boundary.
Some authors (see e.g. Briec and Lesourd, 1999, Färe et al., 2005) suggested choosing
g = (1, ...,1) which is mathematically equivalent to seeking the Chebyshev distance l∞
to the frontier of the technology; Bogetoft and Otto (2011) conversely proposed four
approaches: (i) to use the direction of the actual value of input consumption (output
production), i.e. gx = xo (or gy = yo), (ii) to fix a part of the input-vector (output-
vector) i.e. gx = (1, ...,1,0, ...,0) (or gy = (1, ...,1,0, ...,0)), (iii) to use the potential
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improvements or multi-directional efficiency analysis based on the bargaining theory
and (iv) consider the subjective user point of view.
In the fourth approach methods able to identify a preference structure can also be
included, as the multi-criteria approach (please see e.g. Munda, 2004, Roy, 1996,
Figueira et al., 2005, Munda, 2014) that evaluates economic, social or environmental
issues by establishing objectives that could be translated into the direction vector.

In the D-BoD method all of above proposals could be used to determine the
direction, but with the drawback, however, of assuming exogenous choices of the
researcher. Therefore, Fusco (2015) proposed to find the direction vector directly
from the data, estimating the endogenous preference structure among indicators,
getting through to PCA.
The preference structure estimated is hypothesized to be based on the variability
of each indicator by following the Mazziotta and Vidoli (2009) idea. Following this
criteria, a simple indicator with a high variability is more “important” than an
indicator with a low variability in discriminating units.

In order to strengthen the estimate, the variability is evaluated by calculating a
robust kernel variance of all indicators projected onto all principal components. As
matter of fact, PCA allows to create a ranking in which the first principal component
has the largest variance and each succeeding component has the highest variance
possible under the constraint that it is orthogonal to the preceding components.

In our framework, therefore, the slope of the first principal component gives the
direction g and the ratio between the kernel variances of the indicators projected onto
the principal components Î gives the intensity of the average rates of substitution
among indicators, i.e.:

g =
IPC1, IPC2 ·

var(ÎPC2)
var(ÎPC1)

, ..., IPCk ·
var(ÎPCk)
var(ÎPC1)

 (8.6)

where e.g. IPC1 is the original simple indicator most correlated with the PC1.

This approach, consequently, allows to derive both the preference structure and
the direction from the data avoiding subjective judgments of the researcher.
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Therefore, the D-BoD adds the following properties to the classical BoD model:

4. non-compensability property: the directional vector gy rewards units
along a generic direction (not only along the bisector direction) by penal-
izing units far from the chosen direction; therefore full compensability
can be seen as a special case when gy = I.

5. Translation property: D-BoD is invariant to the chosen mean nor-
malization method, i.e. D(1,y +αgy;gy) = D(1,y;gy)−α for α ∈ R+.

As highlighted in Section 7.3 a drawback of DEA and consequently of BoD and
D-BoD is the sensitivity to extreme values and outliers that will be discussed in the
following Chapter (9).

8.3 Simulation

In order to test and to better explain the model proposed in Section 8.2 a simulation,
has been conducted, on a standardized unbalanced data set (Figure 8.3) composed
of two groups:

• A major homogeneous group (G1) containing units that follow a specific
direction, where I1 is a vector of 3,000 multivariate normal random numbers,
i.e. N1...1000(0.5,0.3), N1001...2000(0.4,0.1) , N2001...3000(0.7,0.1) and I2 is a
multiple of I1 plus a noise term, i.e. I2 = 0.1 · I1 + 0.1 ·N(0,0.2);

• An isolated minor group (G2) containing units with a different preference
structure, where I1 and I2 are two vectors of 100 multivariate normal random
numbers, i.e. I1 =N3001...3100(0,0.05) and I2 =N3001...3100(0.3,0.02).
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Figure 8.3: Simulated data

The first step of the analysis is intended to find the main preference structures
between I1 and I2 through PCA. In this simulation it has been obtained that 98.39%
of the total variance is explained by the first principal component given that most
of the information is contained in the first eigenvalue. Figure 8.4 shows the two
principal components PC1 and PC2.
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Figure 8.4: Principal components PC1 and PC2
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Non-compensatory issue in CIs framework: Directional BoD

Afterward, the robust bivariate kernel density of the rotated data points and the
kernel variance of the projected values of I1 and I2 onto the principal components
denoted by Î1 and Î2 are calculated. In this way, the direction and the intensity of
the rates of substitution between I1 and I2 can be obtained from equation (8.6), i.e.
g =

(
I1, I2 · vark(Î2)

vark(Î1)

)
= (I1, I2 ·0.325) .

Figure 8.5 shows the kernel densities and the directions in the case of a simple
BoD model where I1 and I2 have the same importance (blue line) and in the case
of D-BoD model where I1 is the most important in the construction of the CI (red
dashed line).
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Figure 8.5: Kernel density

Finally, having estimated g the CI score can be calculated in a Shephard formula-
tion.
Figure 8.6 compares BoD and D-BoD models results confirming that the directional
approach rewards units nearby the main direction. For G2 group, in fact, a reduction
of the average efficiency from 83.46% to 63.76% has been obtained . In addition, it
can be observed that the biggest differences are detected, as expected, for the units
with low values of I1 and especially in the units of the isolated group (G2) with low
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values in both indicators where the CI score falls from 65.40% to 38.17%.
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Figure 8.6: Comparison between BoD and D-BoD on simulated data
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9.1 Introduction

The D-BoD (Fusco, 2015) as highlighted in Section 8.2 still suffers a serious drawback:
the lack of robustness with respect to outliers, that shifts the frontier biasing the CI
of all units in the sample, as shown in Figure 9.1.

123



Robustness issue in D-BoD approach: Robust directional BoD

B

C

D

E

Figure 9.1: BoD and D-BoD sensitivity to outliers

To overcome this significant shortcoming, as discussed in Section 3.2.3 (in an
input-oriented framework), the production set Ψ can be translated in a probabilistic
framework following Daraio and Simar (2005)’s proposal.

9.2 Robust directional BoD (RD-BoD)

Vidoli, F., Fusco, E., and Mazziotta, C. (2015). Non-compensability
in composite indicators: A robust directional frontier method. So-
cial Indicators Research, 122(3):635–652.,
DOI:10.1007/s11205-014-0710-y.

Cited in:

González, E.; Cárcaba, A. & Ventura, J. (2016). Weight Constrained DEA
Measurement of the Quality of Life in Spanish Municipalities in 2011. Social
Indicators Research.

In an output-oriented framework, where x is univariate and constant equal to 1
and y is a vector of k simple indicators in [0,1] (denoted by I), considering a sample
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of m random variables with replacement Sm = {Ii}mi=1 drawn from the density of I,
the random set Ψ̃m is defined as:

Ψ̃m = {(1,I) ∈ R1+Q
+ |X ≡ 1,Ii ≥ I}. (9.1)

Therefore, the effect of an abnormal or outlier unit is dampened, in fact, the single
unit is not compared to all the others but to a sample subset of size m.

This generalization allows to calculate iteratively the sample subset of size m (for
b= 1, ...,B times) and for each b iteration the output directional distance function,
where the directional vector is g = (0,g1, ...,gk).

The output distance at iteration b for the single unit from the maximum values can
be defined as:

D̃b
m(1,I; Ψ̃m,g) = max{e ∈ R+|(1,I + eg) ∈ Ψ̃m},∀b= 1, . . . ,B (9.2)

More specifically equation (9.2) can be practically computed, in a multivariate setting,
as suggested by Daouia et al. (2010), by using the dimensionless transformation by
minimum for the I∗ = g · I:

D̃b
m(1,I; Ψ̃m,g) = max

i=1,...,m

{
min

k=1,...,K

(
I∗bik
I∗.k

)}
(9.3)

and the order-m directional distance estimator D̃m(1,I; Ψ̃m,g) i.e. the Robust
Directional BoD (RD-BoD - Vidoli, Fusco and Mazziotta, 2015) as:

D̃m(1,I; Ψ̃m,g) = E
[
D̃b
m(1,I; Ψ̃m,g)

]
(9.4)

Following Cazals et al. (2002), finally, the order-m directional distance estimator
can be approximated - even in a Shephard formulation - by computing the empirical
mean over B:

D̂m(1,I; Ψ̃m,g) = 1/Ê
[
D̃b
m(1,I; Ψ̃m,g)

]
(9.5)

The RD-BoD adds the following property to classical BoD and D-BoD models:

6. External robustness property: RD-BoD allows to remove outliers
influence on the estimated frontier and, as a consequence, on the resulting
CI ranking.

For the sake of clarification, Section 9.3 illustrates a graphical representation of
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the method using simulated data, in order to highlight that units’ scores are not
affected by outliers.

9.2.1 Robust PCA directional BoD

In the previous section in the RD-BoD a generic direction g has been included, but
as highlighted at page 118 for practical computation the direction g, can be seen,
for example, as the marginal rate of substitution among indicators; following this
criteria, in case of additional information, it may be imposed by the researcher or
derived directly from the data, for example through a PCA as in Fusco (2015).

PCA, in fact, allows for identifying the first principal component with the largest
variance showing the internal structure and the main pattern of the data with the
advantages of ease of calculation.
Despite this attractive feature, however, PCA models have several shortcomings;
among others, all the classical PCA algorithms - based on least squares techniques -
are set up on the assumption that outliers are not included in the dataset.
In order to bypass PCA outliers drawback, several robust versions of PCA have been
developed by a modification of the covariance matrix (see e.g. Campbell, 1980),
by Projection Pursuit (see e.g. Li and Chen, 1985) or by weighting Singular Value
Decomposition (SVD) (see e.g. Gabriel and Zamir, 1979).
In particular, the Robust PCA by Projection Pursuit is preferable with respect to use
a more robust covariance matrix that can be computationally intensive, especially if
the involved covariance matrices must be estimated in a robust way (see in particular
Croux et al., 2007 and Filzmoser et al., 2006).

This particular choice of g, based on PCA by Projection Pursuit, adds the
following property to the RD-BoD:

7. Internal robustness property: Robust PCA directional BoD Robust-
ness allows to remove outliers influence on the main direction estimated.

Simulation in Section 9.3 highlights the robustness of the main direction estimated
in presence of outliers.

9.3 Simulation

In the present section multiple simulations are introduced with the aim of testing
the validity of RD-BoD approach and illustrating the required properties of the
suggested methods, rather than proving the stability towards another one.
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More specifically, a two-dimensional dataset of 300 units i with a marginal rate of
substitution between first and second indicator equal to 0.5 has been generated i.e.:

Ii1 ∈N(0.5,0.1)
Ii2 = 0.5 · Ii1 +N(0,0.05)

In order to test the robustness of the measure, an outlier set with a marginal rate
of substitution between first and second indicator higher than 1.5 has been added to
the dataset.

More specifically, in the following Figures 9.2 and 9.3, the simulated simple
indicators I1 and I2 with an increasing size and color for higher values of CI are
plotted and the composite indicator isoquants are also displayed (light green for
lower values of the composite indicator, dark green for higher values).
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Figure 9.2: Robust directional BoD on simulated data

Figure 9.2 confirms that RD-BoD is able to satisfy the requested properties
outlined in Chapter 8; in particular, it can be highlighted that - without imposing a
priori compensability or non-compensability among indicators - directional measure
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Robustness issue in D-BoD approach: Robust directional BoD

lets to obtain a monotonic increasing of CI when I1 or I2 increase.

At the same time, it can be observed how outliers clearly influence (estimated
rate of substitution equal to 0.71) the estimated direction g (internal robustness
property) when classical PCA is used, while they do not have any impact on the
frontier estimation (external robustness property) and on the relative ranking.

Finally, it can be noted that the CI is greater than 1 for the outlier units; this
finding (in agreement with the order-m model) does not affect the scores of the other
units and it is indicative of its characteristic.

With the aim of correctly estimating the real direction the Robust PCA by
Projection Pursuit to the same dataset has been applied obtaining an estimated rate
of substitution equal to 0.51 (see Figure 9.3) very similar to the real one (0.5).
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Figure 9.3: Robust PCA (by Projection Pursuit) directional BoD on simulated data

128



Robustness issue in D-BoD approach: Robust directional BoD

9.4 Strengths, drawbacks and possible enhance-
ments

In conclusion, D-BoD is an innovative method, in a CI framework, for constructing
a CI with fewer subjective choices as possible.

In fact, it allows to obtain a CI where (i) weights are endogenously determined
by the observed performances and the benchmark is not based upon theoretical
bounds, but on a linear combination of observed best performances; (ii) CI is
positive monotone; (iii) the weighting scheme is the highest possible; (iv) CI allows
considering a preference structure i.e. the non-compensability among indicators; (v)
CI is invariant to the chosen mean normalization method.
Moreover, by adding the ulterior property (vi) the external robustness of the RD-BoD
is obtained allowing to remove outliers influence on the estimated frontier and, as a
consequence, on the resulting CI ranking.

Another element of objectivity is introduced in the choice of the direction, that
represents the relationship among simple indicators, by hypothesizing a preference
structure based on the variability of each indicator. To identify the importance
ranking of simple indicators in terms of variability a PCA in the D-BoD and a robust
PCA in the RD-BoD have been used by adding in the latter also the (vii) property
(internal robustness property) that allows to remove outliers influence on the main
estimated direction.

A possible enhancement of the RD-BoD, but also of BoD and D-BoD, is to
consider instead of the constant return to scale case the other specifications discussed
in Subsection 3.2.2 as proposed in Sahoo et al. (2016) that has cited the paper Fusco
(2015), in Omega journal, in a positive way and changed the D-BoD constraint to
have a variable return to scale.
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C
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a
p

t
e

r

COMPIND R PACKAGE

10.1 Introduction

To implement the D-BoD and RD-BoD approaches proposed in Chapters 8 and 9, a
new package named Compind has been implemented in R. Compind allows also to
construct CI with a plurality of other methods proposed in literature, focusing on
the normalisation and weighting-aggregation steps and to supports researchers into
robustness analysis through repeated simulations on subsamples of units or variables.

Below are reported the “Reference manual” and the vignette entitled “ Compind:
Composite indicators functions based on frontiers in R” published on CRAN.
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Package ‘Compind’
June 27, 2016

Type Package

Title Composite Indicators Functions

Version 1.1.2

Date 2016-06-21

Author Francesco Vidoli, Elisa Fusco

Maintainer Francesco Vidoli <fvidoli@gmail.com>

Description Contains several functions to enhance approaches to the Composite Indicators meth-
ods, focusing, in particular, on the normalisation and weighting-aggregation steps.

Depends Benchmarking, psych, boot

Imports Hmisc, MASS, GPArotation, lpSolve, nonparaeff

License GPL-3

Suggests R.rsp

VignetteBuilder R.rsp

NeedsCompilation no

Repository CRAN

Date/Publication 2016-06-27 13:07:48

R topics documented:
Compind-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ci_bod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ci_bod_dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ci_bod_var_w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ci_bod_vrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ci_factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ci_mean_geom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ci_mean_min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ci_mpi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ci_rbod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ci_rbod_dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ci_wroclaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1

Compind R package

10.2 Reference manual
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2 Compind-package

EU_2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
EU_NUTS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
normalise_ci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Index 21

Compind-package Composite Indicators - Compind

Description

Compind package contains functions to enhance several approaches to the Composite Indicators
(CIs) methods, focusing, in particular, on the normalisation and weighting-aggregation steps.

Details

Package: Compind
Type: Package
Version: 0.1
Date: 2014-01-01
Depends: Benchmarking, Hmisc, MASS, ggplot2, psych, GPArotation, lpSolve, nonparaeff, boot
License: GPL-3
Built: R 3.0.2; ; 2014-02-06 13:14:40 UTC; unix

Index:

Compind-package Composite Indicators - Compind
EU_2020 Europe 2020 indicators
EU_NUTS1 EU NUTS1 Transportation data
ci_bod Benefit of the Doubt approach (BoD)
ci_bod_dir Directional Benefit of the Doubt (D-BoD) model
ci_bod_var_w Variance weighted Benefit of the Doubt approach

(BoD variance weighted)
ci_factor Weighting method based on Factor Analysis
ci_mean_geom Weighting method based on geometric aggregation
ci_mpi Mazziotta-Pareto Index (MPI) method
ci_rbod Robust Benefit of the Doubt approach (RBoD)
ci_rbod_dir Directional Robust Benefit of the Doubt

approach (D-RBoD)
ci_wroclaw Wroclaw Taxonomic Method
normalise_ci Normalisation and polarity functions
plot_influent Plot influents units in terms of horizontal

mean and variability

Author(s)

Francesco Vidoli, Elisa Fusco Maintainer: Francesco Vidoli <fvidoli@gmail.com>
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References

Daraio, C., Simar, L. "Introducing environmental variables in nonparametric frontier models: a
probabilistic approach", Journal of productivity analysis, 2005, 24(1), 93?121.

Fusco E., "Enhancing non compensatory composite indicators: A directional proposal", 2013, un-
published.

OECD, "Handbook on constructing composite indicators: methodology and user guide", 2008.

Mazziotta C., Mazziotta M., Pareto A., Vidoli F., "La sintesi di indicatori territoriali di dotazione
infrastrutturale: metodi di costruzione e procedure di ponderazione a confronto", Rivista di Econo-
mia e Statistica del territorio, n.1, 2010.

Melyn W. and Moesen W.W., "Towards a synthetic indicator of macroeconomic performance: un-
equal weighting when limited information is available", Public Economic research Paper 17, CES,
KU Leuven, 1991.

Simar L., Vanhems A., "Probabilistic characterization of directional distances and their robust
versions", Journal of Econometrics, 2012, 166(2), 342?354.

UNESCO, "Social indicators: problems of definition and of selection", Paris 1974.

Vidoli F., Fusco E., Mazziotta C., "Non-compensability in composite indicators: a robust direc-
tional frontier method", Social Indicators Research, Springer Netherlands.

Vidoli F., Mazziotta C., "Robust weighted composite indicators by means of frontier methods with
an application to European infrastructure endowment", Statistica Applicata, Italian Journal of Ap-
plied Statistics, 2013.

ci_bod Benefit of the Doubt approach (BoD)

Description

Benefit of the Doubt approach (BoD) is the application of Data Envelopment Analysis (DEA) to the
field of composite indicators. It was originally proposed by Melyn and Moesen (1991) to evaluate
macroeconomic performance.

Usage

ci_bod(x,indic_col)

Arguments

x A data.frame containing simple indicators.

indic_col A numeric list indicating the positions of the simple indicators.
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Value

An object of class "CI". This is a list containing the following elements:

ci_bod_est Composite indicator estimated values.

ci_method Method used; for this function ci_method="bod".

ci_bod_weights Raw weights assigned to the simple indicators (Dual values - prices - in the
DUAL Dea formulation).

Author(s)

Vidoli F.

References

OECD, Handbook on constructing composite indicators: methodology and user guide, 2008.

Melyn W. and Moesen W.W., "Towards a synthetic indicator of macroeconomic performance: un-
equal weighting when limited information is available", Public Economic research Paper 17, CES,
KU Leuven, 1991.

Witte, K. D., Rogge, N. "Accounting for exogenous influences in a benevolent performance eval-
uation of teachers". Tech. rept. Working Paper Series ces0913, Katholieke Universiteit Leuven,
Centrum voor Economische Studien, 2009.

See Also

ci_bod_dir,ci_rbod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod(Indic)
# validating BoD score

w = CI$ci_bod_weights
Indic[,1]*w[,1] + Indic[,2]*w[,2]

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_bod(data_norm$ci_norm,c(1:2))
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ci_bod_dir Directional Benefit of the Doubt (D-BoD) model

Description

Directional Benefit of the Doubt (D-BoD) model enhance non-compensatory property by intro-
ducing directional penalties in a standard BoD model in order to consider the preference structure
among simple indicators.

Usage

ci_bod_dir(x, indic_col, dir)

Arguments

x A data.frame containing score of the simple indicators.
indic_col Simple indicators column number.
dir Main direction. For example you can set the average rates of substitution.

Value

An object of class "CI". This is a list containing the following elements:

ci_bod_dir_est Composite indicator estimated values.
ci_method Method used; for this function ci_method="bod_dir".

Author(s)

Vidoli F., Fusco E.

References

Fusco E., Enhancing non compensatory composite indicators: A directional proposal, 2013, un-
published

See Also

ci_bod, ci_rbod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_dir(Indic,dir=c(1,1))

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_bod_dir(data_norm$ci_norm,c(1:2),dir=c(1,0.5))
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ci_bod_var_w Variance weighted Benefit of the Doubt approach (BoD variance
weighted)

Description

Variance weighted Benefit of the Doubt approach (BoD variance weighted) is a particular form of
BoD method with additional information in the optimization problem. In particular it has been
added weight constraints (in form of an Assurance region type I (AR I)) endogenously determined
in order to take into account the ratio of the vertical variability of each simple indicator relative to
one another.

Usage

ci_bod_var_w(x,indic_col,boot_rep = 5000)

Arguments

x A data.frame containing score of the simple indicators.

indic_col Simple indicators column number.

boot_rep The number of bootstrap replicates (default=5000) for the estimates of the non-
parametric bootstrap (first order normal approximation) confidence intervals for
the variances of the simple indicators.

Details

For more informations about the estimation of the confidence interval for the variances, please see
function boot.ci, package boot.

Value

An object of class "CI". This is a list containing the following elements:

ci_bod_var_w_est

Composite indicator estimated values.

ci_method Method used; for this function ci_method="bod_var_w".

Author(s)

Vidoli F.

References

Vidoli F., Mazziotta C., "Robust weighted composite indicators by means of frontier methods with
an application to European infrastructure endowment", Statistica Applicata, Italian Journal of Ap-
plied Statistics, 2013.
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See Also

ci_bod, ci_rbod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_var_w(Indic)

ci_bod_vrs Benefit of the Doubt approach (BoD) VRS

Description

Benefit of the Doubt approach (BoD) is the application of Data Envelopment Analysis (DEA) to the
field of composite indicators. It was originally proposed by Melyn and Moesen (1991) to evaluate
macroeconomic performance.

Usage

ci_bod_vrs(x,indic_col)

Arguments

x A data.frame containing simple indicators.

indic_col A numeric list indicating the positions of the simple indicators.

Value

An object of class "CI". This is a list containing the following elements:

ci_bod_vrs_est Composite indicator estimated values.

ci_method Method used; for this function ci_method="bod_vrs".
ci_bod_vrs_weights

Raw weights assigned to the simple indicators (Dual values - prices - in the
DUAL Dea formulation).

Author(s)

Vidoli F.

Compind R package

138



8 ci_factor

References

OECD, Handbook on constructing composite indicators: methodology and user guide, 2008.

Melyn W. and Moesen W.W., "Towards a synthetic indicator of macroeconomic performance: un-
equal weighting when limited information is available", Public Economic research Paper 17, CES,
KU Leuven, 1991.

Witte, K. D., Rogge, N. "Accounting for exogenous influences in a benevolent performance eval-
uation of teachers". Tech. rept. Working Paper Series ces0913, Katholieke Universiteit Leuven,
Centrum voor Economische Studien, 2009.

See Also

ci_bod,ci_rbod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_vrs(Indic)
# validating BoD score

w = CI$ci_bod__vrs_weights
Indic[,1]*w[,1] + Indic[,2]*w[,2]

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_bod_vrs(data_norm$ci_norm,c(1:2))

ci_factor Weighting method based on Factor Analysis

Description

Factor analysis groups together collinear simple indicators to estimate a composite indicator that
captures as much as possible of the information common to individual indicators.

Usage

ci_factor(x,indic_col,method="ONE",dim)

Arguments

x A data.frame containing score of the simple indicators.

indic_col Simple indicators column number.
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method If method = "ONE" (default) the composite indicator estimated values are equal
to first component scores; if method = "ALL" the composite indicator estimated
values are equal to component score multiplied by its proportion variance; if
method = "CH" it can be choose the number of the component to take into
account.

dim Number of chosen component (if method = "CH", default is 3).

Value

An object of class "CI". This is a list containing the following elements:

ci_factor_est Composite indicator estimated values.

loadings_fact Variance explained by principal factors (in percentage terms).

ci_method Method used; for this function ci_method="factor".

Author(s)

Vidoli F.

References

OECD, Handbook on constructing composite indicators: methodology and user guide, 2008

See Also

ci_bod, ci_mpi

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_factor(Indic)

data(EU_NUTS1)
CI = ci_factor(EU_NUTS1,c(2:3), method="ALL")

data(EU_2020)
data_norm = normalise_ci(EU_2020,c(47:51),polarity = c("POS","POS","POS","POS","POS"), method=2)
CI3 = ci_factor(data_norm$ci_norm,c(1:5),method="CH", dim=3)
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ci_mean_geom Weighting method based on geometric aggregation

Description

Geometric aggregation lets to bypass the full compensability hypothesis using geometric mean.

Usage

ci_mean_geom(x, indic_col, na.rm=TRUE)

Arguments

x A data.frame containing simple indicators.

indic_col Simple indicators column number.

na.rm Remove NA values before processing; default is TRUE.

Value

An object of class "CI". This is a list containing the following elements:

ci_mean_geom_est

Composite indicator estimated values.

ci_method Method used; for this function ci_method="mean_geom".

Author(s)

Vidoli F.

References

OECD, Handbook on constructing composite indicators: methodology and user guide, 2008.

See Also

ci_bod, ci_factor

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_mean_geom(Indic)

data(EU_NUTS1)
CI = ci_mean_geom(EU_NUTS1,c(2:3))
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ci_mean_min Mean-Min Function

Description

The Mean-Min Function (MMF) is an intermediate case between arithmetic mean, according to
which no unbalance is penalized, and min function, according to which the penalization is maxi-
mum. It depends on two parameters that are respectively related to the intensity of penalization of
unbalance (α) and intensity of complementarity (β) among indicators.

Usage

ci_mean_min(x, indic_col, alpha, beta)

Arguments

x A data.frame containing simple indicators.

indic_col Simple indicators column number.

alpha The intensity of penalisation of unbalance among indicators, 0 ≤ α ≤ 1

beta The intensity of complementarity among indicators, β ≥ 0

Value

An object of class "CI". This is a list containing the following elements:

ci_mean_min_est

Composite indicator estimated values.

ci_method Method used; for this function ci_method="mean_min".

Author(s)

Vidoli F.

References

Casadio Tarabusi, E., & Guarini, G. (2013) "An unbalance adjustment method for development
indicators", Social indicators research, 112(1), 19-45.

See Also

ci_mpi, normalise_ci

Examples

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)
CI = ci_mean_min(data_norm$ci_norm, alpha=0.5, beta=1)
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ci_mpi Mazziotta-Pareto Index (MPI) method

Description

Mazziotta-Pareto Index (MPI) is a non-linear composite index method which transforms a set of
individual indicators in standardized variables and summarizes them using an arithmetic mean ad-
justed by a "penalty" coefficient related to the variability of each unit (method of the coefficient of
variation penalty).

Usage

ci_mpi(x, indic_col, penalty="POS")

Arguments

x A data.frame containing simple indicators.

indic_col Simple indicators column number.

penalty Penalty direction; Use "POS" (default) in case of ’increasing’ or ’positive’ com-
posite index (e.g., well-being index)), "NEG" in case of ’decreasing’ or ’nega-
tive’ composite index (e.g., poverty index).

Value

An object of class "CI". This is a list containing the following elements:

ci_mpi_est Composite indicator estimated values.

ci_method Method used; for this function ci_method="mpi".

Author(s)

Vidoli F.

References

De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An
Application to MDGs", Social Indicators Research, Volume 104, Number 1, pp. 1-18.

See Also

ci_bod, normalise_ci
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Examples

data(EU_NUTS1)

# Please, pay attention. MPI can be calculated only with two standardizations methods:
# Classic MPI - method=1, z.mean=100 and z.std=10
# Correct MPI - method=2
# For more info, please see references.

data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)
CI = ci_mpi(data_norm$ci_norm, penalty="NEG")

data(EU_NUTS1)
CI = ci_mpi(EU_NUTS1,c(2:3),penalty="NEG")

ci_rbod Robust Benefit of the Doubt approach (RBoD)

Description

Robust Benefit of the Doubt approach (RBoD) is the robust version of the BoD method. It is based
on the concept of the expected minimum input function of order-m so "in place of looking for the
lower boundary of the support of F, as was typically the case for the full-frontier (DEA or FDH), the
order-m efficiency score can be viewed as the expectation of the maximal score, when compared to m
units randomly drawn from the population of units presenting a greater level of simple indicators",
Daraio and Simar (2005).

Usage

ci_rbod(x,indic_col,M,B)

Arguments

x A data.frame containing score of the simple indicators.

indic_col Simple indicators column number.

M The number of elements in each of the bootstrapped samples.

B The number of bootstrap replicates.

Value

An object of class "CI". This is a list containing the following elements:

ci_rbod_est Composite indicator estimated values.

ci_method Method used; for this function ci_method="rbod".

Author(s)

Vidoli F.
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References

Daraio, C., Simar, L. "Introducing environmental variables in nonparametric frontier models: a
probabilistic approach", Journal of productivity analysis, 2005, 24(1), 93 - 121.

Vidoli F., Mazziotta C., "Robust weighted composite indicators by means of frontier methods with
an application to European infrastructure endowment", Statistica Applicata, Italian Journal of Ap-
plied Statistics, 2013.

See Also

ci_bod, ci_bod_var_w

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_rbod(Indic,B=10)

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_rbod(data_norm$ci_norm,c(1:2),M=10,B=20)

ci_rbod_dir Directional Robust Benefit of the Doubt approach (D-RBoD)

Description

Directional Robust Benefit of the Doubt approach (D-RBoD) is the directional robust version of the
BoD method.

Usage

ci_rbod_dir(x,indic_col,M,B,dir)

Arguments

x A data.frame containing score of the simple indicators.

indic_col Simple indicators column number.

M The number of elements in each of the bootstrapped samples.

B The number of bootstap replicates.

dir Main direction. For example you can set the average rates of substitution.
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Value

An object of class "CI". This is a list containing the following elements:

ci_rbod_dir_est

Composite indicator estimated values.

ci_method Method used; for this function ci_method="rbod_dir".

Author(s)

Fusco E., Vidoli F.

References

Daraio C., Simar L., "Introducing environmental variables in nonparametric frontier models: a
probabilistic approach", Journal of productivity analysis, 2005, 24(1), 93 121.

Simar L., Vanhems A., "Probabilistic characterization of directional distances and their robust
versions", Journal of Econometrics, 2012, 166(2), 342 354.

Vidoli F., Fusco E., Mazziotta C., "Non-compensability in composite indicators: a robust direc-
tional frontier method", Social Indicators Research, Springer Netherlands.

See Also

ci_bod, ci_rbod

Examples

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_rbod_dir(data_norm$ci_norm, c(1:2), M = 25, B = 50, c(1,0.1))

ci_wroclaw Wroclaw Taxonomic Method

Description

Wroclaw taxonomy method (also known as the dendric method), originally developed at the Uni-
versity of Wroclaw, is based on the distance from a theoretical unit characterized by the best per-
formance for all indicators considered; the composite indicator is therefore based on the sum of
euclidean distances from the ideal unit and normalized by a measure of variability of these distance
(mean + 2*std).

Usage

ci_wroclaw(x,indic_col)
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16 ci_wroclaw

Arguments

x A data.frame containing simple indicators.

indic_col Simple indicators column number.

Details

Please pay attention that ci_wroclaw_est is the distance from the "ideal" unit; so, units with higher
values for the simple indicators get lower values of composite indicator.

Value

An object of class "CI". This is a list containing the following elements:

ci_wroclaw_est Composite indicator estimated values.

ci_method Method used; for this function ci_method="wroclaw".

Author(s)

Vidoli F.

References

UNESCO, "Social indicators: problems of definition and of selection", Paris 1974.

Mazziotta C., Mazziotta M., Pareto A., Vidoli F., "La sintesi di indicatori territoriali di dotazione
infrastrutturale: metodi di costruzione e procedure di ponderazione a confronto", Rivista di Econo-
mia e Statistica del territorio, n.1, 2010.

See Also

ci_bod, ci_mpi

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_wroclaw(Indic)

data(EU_NUTS1)
CI = ci_wroclaw(EU_NUTS1,c(2:3))

data(EU_2020)
data_selez = EU_2020[,c(1,22,191)]
data_norm = normalise_ci(data_selez,c(2:3),c("POS","NEG"),method=3)
ci_wroclaw(data_norm$ci_norm,c(1:2))
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EU_2020 Europe 2020 indicators

Description

Europe 2020, a strategy for jobs and smart, sustainable and inclusive growth, is based on five EU
headline targets which are currently measured by eight headline indicators, Headline indicators,
Eurostat, year 1990-2012 (Last update: 21/11/2013).

For more info, please see http://ec.europa.eu/europe2020/index_en.htm.

Usage

data(EU_2020)

Format

EU_2020 is a dataset with 30 observations and 12 indicators (190 indicator per year).

geo EU-Member States including EU (28 countries) and EU (27 countries) row.

employXXXX Employment rate - age group 20-64, year XXXX (1992-2012).

perc_GDPXXXX Gross domestic expenditure on R&D (GERD), year XXXX (1990-2012).

gas_emissXXXX Greenhouse gas emissions - base year 1990, year XXXX (1990-2011).

share_renXXXX Share of renewable energy in gross final energy consumption, year XXXX (2004-
2011).

prim_enerXXXX Primary energy consumption, year XXXX (1990-2011).

final_energyXXXX Final energy consumption, year XXXX (1990-2011).

final_energyXXXX Early leavers from education and training - Perc. of the population aged 18-24
with at most lower secondary education and not in further education or training, year XXXX
(1992-2012).

tertiaryXXXX Tertiary educational attainment - age group 30-34, year XXXX (2000-2012).

risk_povertyXXXX People at risk of poverty or social exclusion - 1000 persons Perc. of total
population, year XXXX (2004-2012).

low_workXXXX People living in households with very low work intensity - 1000 persons Perc.
of total population, year XXXX (2004-2012).

risk_povertyXXXX People at risk of poverty after social transfers - 1000 persons Perc. of total
population, year XXXX (2003-2012).

deprivedXXXX Severely materially deprived people - 1000 persons Perc. of total population, year
XXXX (2003-2012).

Author(s)

Vidoli F.

Compind R package

148



18 EU_NUTS1

References

http://ec.europa.eu/europe2020/index_en.htm

Examples

data(EU_2020)

EU_NUTS1 EU NUTS1 Transportation data

Description

Eurostat regional transport statistics (reg_tran) data, year 2012.

For more info, please see http://ec.europa.eu/eurostat/data/browse-statistics-by-theme.

Usage

data(EU_NUTS1)

Format

EU_NUTS1 is a dataset with 34 observations and two indicators describing transportation infras-
tructure endowment of the main (in terms of population and GDP) European NUTS1 regions:
France, Germany, Italy, Spain (United Kingdom has been omitted, due to lack of data concern-
ing railways).

roads Calculated as (2 * Motorways - Kilometres per 1000 km2 + Other roads - Kilometres per
1000 km2 )/3

trains Calculated as (2 *Railway lines double+Electrified railway lines)/3

Author(s)

Vidoli F.

References

Vidoli F., Mazziotta C., "Robust weighted composite indicators by means of frontier methods with
an application to European infrastructure endowment", Statistica Applicata, Italian Journal of Ap-
plied Statistics, 2013.

Examples

data(EU_NUTS1)
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normalise_ci Normalisation and polarity functions

Description

This function lets to normalise simple indicators according to the polarity of each one.

Usage

normalise_ci(x, indic_col, polarity, method=1, z.mean=0, z.std=1, ties.method ="average")

Arguments

x A data frame containing simple indicators.

indic_col Simple indicators column number.

method Normalisation methods:

• 1 (default) = standardization or z-scores using the following formulation:

zij = z.mean± xij −Mxj

Sxj

· z.std

where ± depends on polarity parameter and z.mean and z.std represent the
shifting parameters.

• 2 = Min-max method using the following formulation:
if polarity="POS":

x−min(x)

max(x)−min(x)

if polarity="NEG":
max(x)− x

max(x)−min(x)

• 3 = Ranking method. If polarity="POS" ranking is increasing, while if
polarity="NEG" ranking is decreasing.

polarity Polarity vector: "POS" = positive, "NEG" = negative. The polarity of a in-
dividual indicator is the sign of the relationship between the indicator and the
phenomenon to be measured (e.g., in a well-being index, "GDP per capita" has
’positive’ polarity and "Unemployment rate" has ’negative’ polarity).

z.mean If method=1, Average shifting parameter. Default is 0.

z.std If method=1, Standard deviation expansion parameter. Default is 1.

ties.method If method=3, A character string specifying how ties are treated, see rank for
details. Default is "average".

Value

ci_norm A data.frame containing normalised score of the choosen simple indicators.

norm_method Normalisation method used.
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Author(s)

Vidoli F.

References

OECD, "Handbook on constructing composite indicators: methodology and user guide", 2008,
pag.30.

See Also

ci_bod, ci_mpi

Examples

data(EU_NUTS1)

# Standard z-scores normalisation #
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=0, z.std=1)
summary(data_norm$ci_norm)

# Normalisation for MPI index #
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)
summary(data_norm$ci_norm)

data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)
summary(data_norm$ci_norm)
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Compind: Composite indicators

functions based on frontiers in R
(Compind package version 1.1)

F. Vidoli and E. Fusco

September 4, 2015

Introduction

CI’s methods are increasingly recognized as a useful tool in policy analysis and
public communication (Nardo et al., 2005) for a variety of policy matters such as
public units benchmark, industrial competitiveness, sustainable development,
quality of life assessment, globalization and innovation. They provide simple
comparisons of units that can be used to illustrate complex and sometimes
elusive issues in wide ranging fields, e.g. the environmental, economical, social
or technological development. These indicators often seem easier to interpret
by the general public finding a common trend in many separate indicators and
have proven useful in benchmarking country performance.
Along such lines the Joint Research Centre of European Commission asserts that
”no uniformly agreed methodology exists to weight individual indicators before
aggregating them into a composite indicator”1.

Several steps are involved in creating composite indicators: investigating the
structure of simple indicators by means of multivariate statistics, handling the
problem of missing data that can be missing either in a random or in a non-
random fashion, bringing the indicators to the same unit by normalization and
finally selecting an appropriate weighting and aggregation model. (for a com-
plete explanation of every step, please see Nardo et al., 2005).
A much wider ranging literature is found for the aggregation methods than the
one regarding weight systems; however, the two aspects are related and inter-
woven and often lead to the same solutions.
Several weighting techniques exist in literature2, derived both from statistical
methodologies, such as factor analysis, DEA and unobserved components models
(UCM), or from more specific methods like budget allocation processes (BAP),
analytic hierarchy processes (AHP) or conjoint analysis (CA).

1http://composite-indicators.jrc.ec.europa.eu/S6\_weighting.htm
2For a complete review, please see Nardo et al. (2005) and Freudenberg (2003) for major

applications and papers.
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The applicative difficulties in applying composite indicators (CI) methods de-
rived from the production frontier analysis (i.e. Benefit of the Doubt - BoD)
have often discouraged the practical adoption of the more complex methods,
while having desirable properties.
Compind package make comparable and easily calculable composite indicators
developed with a plurality of methods and supports researcher into robustness
analysis through repeated simulations on subsamples of units or variables.
Given that, the first question is: why a frontier CI package in R? Answer is
easy: R is the most comprehensive statistical analysis package available (over
4800 packages), R is free, cross-platform and open source software, but especially
R is a programming language (no specific pull-down menu software) allowing to
rethinking CI not only as an evaluation tool, but as a part of the main research
flow making easy carry on sensitivity analysis through bootstrap replications.

So the subsequent question become: how design a CI package in R? In our
opinion, the package would have these basis properties:

� It has to be as simple as possible to use;

� The syntax has to be easy and independent (as possible) from the chosen
method;

� Package must cover several steps of the CI calculation (not only the weight-
ing and aggregation step).

Given these premises, Compind R package contains a plurality of methods can
be divided into:

� Frontier methods;

� Non frontier methods;

� Utilities.

1 Frontier methods

1.1 Benefit of the Doubt approach

”The Benefit of the Doubt approach is formally tantamount to the original input-
oriented CRS-DEA3 model of Charnes et al. (1978), with all questionnaire items
considered as outputs and a dummy input equal to one for all observations”,
Witte & Rogge (2009).

In particular BoD approach offers several advantages:

1. Weights are endogenously determined by the observed performances and
benchmark is not based on theoretical bounds, but it’s a linear combina-
tion of the observed best performances.

3Constant Returns to Scale Data Envelopment Analysis.
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2. Principle is easy to communicate: since we are not sure about the right
weights, we look for ”benefit of the doubt” weights (such that your overall
relative performance index is as high as possible).

3. BoD CI is weak monotone.

So, let’s draw a sample of 100 units for two simple indicators i1 and i2 ∈ [0, 1]
and two ”particular” rows: the first one is an outlier, while the second one have
a NA on the second indicator.

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.05)

i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.05)

dati = data.frame(i1, i2)

random1 = data.frame(i1=0.6, i2=1)

random2 = data.frame(i1=0.5, i2=NA)

Indic = rbind(dati,random1,random2)

As pointed out by the OECD Handbook on Constructing Composite Indi-
cators, dataset must not contain missing data; to overcome this issue researcher
can make imputation or delete the observations. For this reason, all the Compind
functions alert users to the presence of missing values within the data (depend-
ing on the function the calculation can stop or not).

CI1 = ci_bod(Indic)

## Pay attention: NA values at column: 102 , row 2 . Composite indicator

has been computed, but results may be misleading, Please refer to OECD

handbook, pg. 26.

Given that, in this example, missing row has been deleted and the BoD
composite indicator by ci_bod function recalculated; Figure 1 show the sample
data highlighting the contribution of the outlier on the composite scores of the
other units.

Indic = Indic[complete.cases(Indic),]

CI1 = ci_bod(Indic)

Indic_CI = data.frame(Indic, CI_est= CI1$ci_bod_est)

ggplot(data = Indic_CI, aes(x = i1, y = i2)) +

geom_point(aes(colour = CI_est),size=3)

It may be readily noted that the BoD composite score depends exclusively
on the frontier’s distance; in this framework one drawback is directly linked
with the DEA problem solution: since the weights are unit specific, cross-unit
comparisons are not possible and the values of the scoreboard depend on the
benchmark performance.
There are also three other drawbacks we will discuss in the following para-
graphs: the multiplicity of equilibria, the lack of robustness and perfect non
compensability among indicators.

3
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Figure 1: Simple indicators and BoD CI

1.2 Multiplicity of equilibria: Variance weighted BoD

As pointed out before, BoD formulation can hide the problem of the multiplicity
of equilibria thus weights are not uniquely determined (even though the CI is
unique). The weight values for the units are to be chosen from many (infinite)
possibilities. It is also worth noting that multiple solutions are likely to depend
upon the set of constraints imposed on the weights of the maximization problem:
the wider the range of the variation of weights, the lower the possibility of
obtaining a unique solution.

The optimization process could lead to many zero weights (see table 1) if no
restrictions on the weights are imposed.

Weights Freq
1 0 - 1 75
2 1.667 - 0 26

Table 1: BoD weights

There is a wide choice for incorporating “value judgements” in a DEA clas-
sical model and in general in efficiency analysis (please see Allen et al., 1997,
Estellita-Lins et al., 2007 and Thanassoulis et al., 2004); three basic approaches
are the most used:

� Direct restrictions on the weights;

� Adjustment of the observed input-output levels;

� Restrictions on the virtual inputs and outputs.
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In recent years many additional weighting schema have been proposed (i.e.
Rogge, 2012); Mazziotta & Vidoli (2009), for example, proposed the inclusion of
additional ”Assurance regions”, type I (AR I) constraints in order to highlight
indicators with a higher sample variance than the others.

The basic thesis involves weighting simple indicators by their own sample
variance; thus, indicators with a high variability will strongly affect the com-
posite indicator. There are however consequences to this approach: our mea-
surement has to be read as a ”gap indicator” among the unit characteristics.
The preliminary hypothesis is that every single indicator Iq, q = 1, . . . , Q is a
probabilistic variable, following a Normal Gaussian distribution4:

Iq ∼ N(µIq , σIq ),∀q = 1, . . . , Q (1)

In this way, the variance of each indicator can be computed in a standard
probabilistic setting and the unbiased variance confidence interval is:

P (
n− 1

χ2
n−1,1−α/2

S
2
< σ2 <

n− 1

χ2
n−1,α/2

) = 1− α (2)

which, for the sake of compactness, can be written:

P (lowIq < σ2 < highIq ) = 1− α (3)

Even when the underlying distribution is not Normal, the procedure can be
still used to obtain the approximate confidence bounds for the variance esti-
mated. If the distribution is not too far from the Normal one, we have tested
the robustness of our procedure. We can use lowIq and highIq for each indicator
to reconstruct the marginal rates of substitution among indicators:

lowIi
highIj

≤ wIi
wIj
≤ lowIj
highIi

,∀i, j = 1, . . . , Q (4)

When the confidence interval inferior limit of the variance is contrasted with
the maximum of another, one assumes a ”benefit of doubt” attitude in that an
exact relationship among weights is not imposed, thereby establishing a range
in which every unit obtains the maximum relative weight.

In Compind package the implementation of this model thought the ci_bod_var_w
function is easy and quite similar to the BoD model; Figure 2 shows how the
variance weighted CI is, for construction, lower than the BoD one.

CI_w1 = ci_bod_var_w(Indic)

Indic_CI2 = data.frame(Indic_CI, CI_w_est= CI_w1$ci_bod_var_w_est)

ggplot(data = Indic_CI2, aes(x = CI_est, y = CI_w_est)) +

geom_point(size=3)+

geom_abline(intercept = 0, slope = 1, linetype="dashed")+

xlab("BoD estimated CI") +

ylab("Variance weighted BoD estimated CI")

4To bypass this assumption, future developments of this methodology may involve the
analysis of the kernel density estimate of the simple indicators and their own sample variance.
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Figure 2: BoD and Variance weighted BoD estimated CI

1.3 Robust BoD

As mentioned in paragraph 1.1, one of the main drawbacks of DEA/FDH non-
parametric estimators is their sensitivity to extreme values and outliers.

To introduce Robust BoD we first expose the simplified idea (based on the
Order-m idea, Daraio & Simar, 2005).

Figure 3: Outlier effects in a frontier framework

We extend the Daraio & Simar (2005) idea into CI’s framework by repeatedly
and with replacement drawing m observations from the original sample of n
observations, choosing only from those observations which are obtaining higher
basic indicators (I1, I2) - red lines - than the evaluated observation C.

In other words and practically speaking:
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Figure 4: Support of the generic unit C

� we draw m observation only from those observations which are obtaining
higher basic indicators than the evaluated observation C;

� we label this set as SETbm;

� we estimate BoD scores relative to this sub-sample SETbm for B times;

� having obtained the B scores, we compute the arithmetic average.

Figure 5: Order-m calculation criteria

This is certainly a less extreme benchmark for the unit C than the ”absolute”
maximum achievable level of output.
Unit C is compared to a set of m peers (potential competitors) having higher
basic indicators than its level and we take as a benchmark, the expectation of
the maximum achievable CI in place of the absolute maximum CI.
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Figure 6: BoD and Robust BoD estimated CI

Compind package lets to calculate Robust BoD via ci_rbod function; two other
options, respect to the ci_bod function, are available: M to fix the number of
peers for the generic unit i in each sample and B to indicate the number of
bootstrap replicates.

CI_r1 = ci_rbod(Indic, B=100)

Indic_CI3 = data.frame(Indic_CI2, CI_r_est= CI_r1$ci_rbod_est)

ggplot(data = Indic_CI3, aes(x = CI_est, y = CI_r_est)) +

geom_point(size=3)+

xlab("BoD estimated CI") +

ylab("Robust BoD estimated CI")

Figure 6 allows to detect the outlier (with robust score greater than 1) and,
above all, to obtain a score distribution (see Figure 7) not affected by outliers.

per_plot = melt(data.frame(Indic_CI3$CI_est,Indic_CI3$CI_r_est))

ggplot(per_plot, aes(x=value, fill=as.factor(variable))) +

geom_density(alpha=.5)+

labs(x = "Composite indicator", y="Kernel density")+

theme(legend.position="bottom")+

scale_fill_manual(values=c("#999999", "#E69F00"),

name="CI estimated value",

labels=c("BoD", "Robust BoD"))
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Figure 7: BoD and Robust BoD CI kernel density

1.4 Directional BoD

Most of aggregation methods assume, in weighting phase, the compensability
among simple indicators (Bouyssou & Vansnick, 1986) namely allowing lower
values in some indicators to be compensated by higher values in others. This
property, even not verified in the practical application, is not appropriate espe-
cially if CI has to be interpreted as ”importance coefficients” (Munda & Nardo,
2005).
In last years multiple solutions have been proposed to avoid this strong assump-
tion introducing weight constraints, weighting each tensor that links the single
point to the frontier (see e.g. Tsutsui et al., 2009) or including a penalty ac-
cording to the different mix of simple indicators (De Muro et al., 2010).
Given that in practical application most often exist a preference structure and
with the aim to respect the weakly positive monotonicity property (Casadio
Tarabusi & Guarini, 2013), Fusco (2015) suggest to include in the BoD model
a ”directional” penalty using the directional distance function introduced by
Chambers et al. (1998).
Even if in literature a crucial question in a directional approach is the correct
choice of the direction, this issue is irrelevant with the illustration of this pack-
age and for this reason it’s left to the research decisions.
To better illustrate the characteristics of the Directional BoD method the Euro-
pean regional transport data, year 2012, for 34 NUTS1 regions has been used5;
Figure 8 relates the kilometres of roads and railways highlighting as, for most
of the regions, the ”desired” ratio can be set equal to 2 to 10.

5In the ode below function normalise ci has been used; see paragraph 3 for more info.
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Figure 8: Eu regional transport data, year 2012

data(EU_NUTS1)

data_norm = normalise_ci(EU_NUTS1,c(2:3),

polarity = c("POS","POS"), method=2)

ggplot(data = data_norm$ci_norm, aes(x = roads, y = trains)) +

geom_point(size=3)+

geom_abline(intercept=0, slope=0.2, linetype="dashed")+

annotate("text", x=0.7, y=0.2, label="Main direction")+

xlab("Roads") +

ylab("Trains")

Function ci_bod_dir allows to calculate Directional BoD given a direction
dir, expressed as the ratio between the first and the second indicator; Figure
9 highlight as the main differences between BoD CI and Directional BoD CI
occur for the units with the lowest values along the chosen direction.

CI_bod_est = ci_bod(data_norm$ci_norm,c(1:2))

CI_bod_dir_est = ci_bod_dir(data_norm$ci_norm,c(1:2),

dir = c(1,0.2))

Diff = CI_bod_dir_est$ci_bod_dir_est - CI_bod_est$ci_bod_est

Indic_tot = data.frame(data_norm, Diff)

ggplot(data = Indic_tot,

aes(x = ci_norm.roads, y = ci_norm.trains)) +

geom_point(aes(colour = Diff),size=3)+

theme(legend.position="bottom")+
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Figure 9: Eu regional transport data - difference between BoD and Directional
BoD

scale_colour_continuous(name="Difference")+

xlab("Roads") +

ylab("Trains")

1.5 Directional Robust BoD

Directional Robust BoD method, proposed in Vidoli et al. (2015), is the logical
union between the Robust BoD and the directional BoD methods; Figure 10
compares the directional measure with the directional robust one, highlighting
how, even in this case, the main differences occur for the units with the lowest
values.

CI_rbod_dir_est = ci_rbod_dir(data_norm$ci_norm,c(1:2),

dir = c(1,0.2))

Indic_tot = data.frame(data_norm,

CI_dir = CI_bod_dir_est$ci_bod_dir_est,

CI_rdir = CI_rbod_dir_est$ci_rbod_dir_est)

ggplot(data = Indic_tot, aes(x = CI_dir, y = CI_rdir)) +

geom_point(size=3)+

geom_abline(intercept = 0, slope = 1, linetype="dashed")+

xlab("Directional BoD estimated CI") +

ylab("Directional Robust BoD estimated CI")
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Figure 10: Directional BoD vs Directional Robust BoD estimated CI

2 Non frontier methods

This section provides some functions commonly used in the calculation of com-
posite indicators; Compind implements the main methodologies proposed in the
OECD manual more closely linked with mathematical procedure avoiding all
methods which in some way would provide for a subjective choice of the weights.

2.1 Weighting method based on Factor Analysis

Factor Analysis (FA) aims to describe a set of Q indicators i1, i2, . . . , iQ in
terms of a smaller number of m factors and to highlight the relationship between
these variables. Contrary to the Principal Component Analysis, the FA model
assumes that the data is based on the underlying factors of the model, and that
the data variance can be decomposed into that accounted for by common and
unique factors.
On the issue of how factors should be retained in the analysis without losing
too much information, methodologists are divided; Compind package with the
ci_factor function offers three possibilities: 1) method="ONE" (default) the
composite indicator estimated values are equal to first component scores; 2)
method="ALL" the composite indicator estimated values are equal to component
scores multiplied by its proportion variance and 3) method="CH" it can be choose
the number of the component to take into account.

After choosing five indicators it was applied factorial analysis choosing to
weigh the scores on the three components with the associated loadings.
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data(EU_2020)

data_norm=normalise_ci(EU_2020,c(47:51),

polarity = c("POS","POS","POS","POS","POS"),

method=2)

CI1 = ci_factor(data_norm$ci_norm,c(1:5),method="CH", dim=3)

summ = summary(as.data.frame(CI1$ci_factor_est))

print(xtable(summ,caption = "Factor Analysis scores based

on first 3 components",label="tab_factor1"),

include.rownames=FALSE)

V1
Min. :-1.6549
1st Qu.:-0.4842
Median : 0.1630
Mean : 0.0000
3rd Qu.: 0.4416
Max. : 1.1475

Table 2: Factor Analysis scores based on first 3 components

The associated loadings ..

round(CI1$loadings_fact,3)

[1] 0.698 0.285 0.010
The robustness of the results can be tested even varying the number of com-

ponents; in this case it was decided to retain only the first factor (method="ONE").

CI2 = ci_factor(data_norm$ci_norm,c(1:5),method="ONE")

summ2 = summary(as.data.frame(CI2$ci_factor_est))

print(xtable(summ2,caption = "Factor Analysis scores based

on first component",label="tab_factor2"),

include.rownames=FALSE)

CI2$ci factor est
Min. :-3.1144
1st Qu.:-0.2607
Median : 0.1247
Mean : 0.0000
3rd Qu.: 0.6264
Max. : 1.3446

Table 3: Factor Analysis scores based on first component

It can be noted however very good correlation between the two scores (0.926).
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2.2 Weighting method based on geometric aggregation

Geometric aggregation (GA) is a simple method less compensatory approach
than the additive ones; in other terms, units with low scores in some indicators
would prefer a linear rather than a geometric aggregation, that is an increase in
an indicator value would have higher marginal utility on the composite indicator
if the indicator value is low.
Since in GA compensability degree is not constant, because is higher for com-
posite indexes with high values and vice versa, units with low scores tend to
prefer use of linear aggregation, trying to improve their position in ranking.
The implementation in Compind package is trivial.

data(EU_NUTS1)

CI_geom_estimated = ci_mean_geom(EU_NUTS1,c(2:3))

2.3 Mazziotta-Pareto Index (MPI) method

The MPI is a non-linear composite index which, starting from a linear aggrega-
tion, introduces a penalty for the units with unbalanced values of the indicators
(De Muro et al., 2010). It is composed of two parts (a measure of the mean
level and a measure of the amount of unbalance) and, differently from other
methods, may be used for building both ”positive” and ”negative” composite
indices (penalty direction).
MPI method need to normalize simple indicator following two standardizations
methods:

� For classic MPI it must use normalize_ci function with method=1, z.mean=100
and z.std=10;

� For Correct MPI it must use normalize_ci function with min-max stan-
dardization (method=2).

data(EU_NUTS1)

data_norm = normalise_ci(EU_NUTS1,c(2:3),

c("NEG","POS"),

method=1,z.mean=100, z.std=10)

CI_pi_estimated = ci_mpi(data_norm$ci_norm, penalty="NEG")

2.4 Mean-min Function

The Mean-Min Function (MMF), proposed by Casadio Tarabusi & Guarini
(2013), can be seen as an intermediate method between arithmetic mean, ac-
cording to which no unbalance is penalized, and min function, according to
which the penalization is maximum. It depends on two parameters that are
respectively related to the intensity of penalization of unbalance (α, 0 ≤ α ≤ 1)
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and the intensity of complementarity (β, β ≥ 0) among indicators.
MMF index can be expressed as:

MMFi = MZi
− α( 2

√
(MZi

−minj(zij)) + β2 − β) (5)

where Z is the normalized matrix of the data.
The function reduces to the arithmetic mean for α = 0 (in this case β is irrele-
vant) and to the minimum function for α = 1 and β = 0. Moreover, with α = 1
the function has incomplete compensability; with β = 0 and 0 ≤ α ≤ 1 it has
proportional compensability.
Therefore, authors write that: ”by choosing the values of parameters appropri-
ately one can obtain the form of this aggregation function that best suits the
specific theoretical approach”.
Once fixed α and β, the implementation in Compind package is trivial.

data(EU_NUTS1)

CI_mean_min_estimated = ci_mean_min(EU_NUTS1,c(2:3),

alpha=0.5, beta=1)

2.5 Wroclaw Taxonomic Method

Wroclaw Taxonomic Method is a technique originally developed at the Univer-
sity of Wroclaw, which has experienced a fairly widespread in Italy, especially for
the development of economic and social indicators (see e.g. Schifini D’Andrea,
1982; Quirino, 1990; Mazziotta, 1998) and recently by Cwiakala-Malys, 2009.
It’s based on a very simple principle: the benchmark is the one that has the
least distance from an ”ideal” unit, characterized by the best performance for
all the indicators considered; following the calculation of (Euclidean) distances
of all units by the ”ideal” one, it can build a list in which the different units are
ordered in proportion with the distance from the optimum situation.
The implementation in Compind package is trivial.

data(EU_NUTS1)

CI_wroclaw_estimated = ci_wroclaw(EU_NUTS1,c(2:3))

3 Utilities: Normalisation and polarity functions

Although presented at the end, the normalize_ci is a crucial function that lets
to normalise simple indicators according to the polarity of each one.
Compind provides three different methods: the standardization or z-scores (method=1),
the min-max method (method=2) and the ranking method (method=3); each
method provides for the indication of the polarity of the single indicator in
order to obtain standardized indicators with the same polarity.
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11.1 Spatial stochastic frontier models:controlling
spatial global and local heterogeneity

Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier mod-
els: controlling spatial global and local heterogeneity. International
Review of Applied Economics, 27(5):679–694, http://dx.doi.org/10.
1080/02692171.2013.804493.

11.1.1 Introduction

The SSFA model outlined in Chapter 5 has also been applied to the agricultural
sector in Italy for 2009.

The main reason for this choice is that agricultural production, as well as the
individual firm’s productivity, can be strongly influenced by random factors such
as climatic and local factors related to the specific characteristics of the region or
technical specifications, such as "protected designation of origin" (PDO).11

In particular, the Organisation for Economic Co-operation and Development
(OECD) (see e.g. OECD (2011)) suggest that the main determinants of agricultural
competitiveness are either the farm size and the farm specialization linked to consumer
demand, either the natural environment and the presence of a specialized agri-
food industry (for the complete literature, please see Latruffe, 2010). These key
determinants can be ideally divided into two groups: external factors that involve
the firm’s production, on which the company cannot act and therefore suffers, and
internal factors on which the company may develop policies for improvements.

Agricultural production efficiency, therefore, as also noted by Coelli (1995) in his
pioneering work, must be estimated "using the stochastic frontier method because
measurement error, missing variables and weather play a significant role in this field".

In addition to random factors outlined by Coelli (1995), there are many other
factors which affect, both qualitatively and quantitatively, the production and its
commercialization like the soil conformation, the rigid production rules in the PDO
or in protected geographical indication (PGI) products areas or the presence of a
specific local district.

11Council Regulation (EEC) No 2081/92 of 14 July 1992.

174

http://dx.doi.org/10.1080/02692171.2013.804493
http://dx.doi.org/10.1080/02692171.2013.804493


SSFA: Two applications on agricultural sector in Italy

11.1.2 Variables and data

These are the specific spatial factors that we want to highlight, analyzing Italian
FADN12 data, year 2009, specifically focusing our attention on 975 wine companies13

located throughout the country, but with well-defined spatial cluster, as shown in
Figure 11.1 for the Trentino-Alto Adige (north), Tuscany (centre) and Apulia (south)
regions.

Gross production (Sum) 900 - 17740 17879 - 38563 38736 - 78791

78857 - 142424 145679 - 277131 281864 - 11543471

Figure 11.1: Wine gross production at the municipal level, (source: INEA 2009)

In Italy, FADN survey is carried out every year by the National Institute of
Agricultural Economics (INEA), as the liaison agency between the EU and each
Member State. The European Commission provides guidelines to define the instruc-
tions and recommendations for the design of the FADN selection plan. It must

12The Farm Accountancy Data Network (FADN) is an annual survey carried out by the Member
States of the European Union and it represents an instrument to evaluate the income of agri-
cultural holdings and the impacts of the Common Agricultural Policy. Derived from national
surveys, FADN is the only source of micro-economic data that is harmonised (in other words
the bookkeeping principles are the same in all countries). For further information on the FADN
methodology for the selection and extrapolation to the population, please see the EU FADN at
http://ec.europa.eu/agriculture/rica/methodology1_en.cfm.

13The Community typological scheme provides 58 different combinations of production which are
grouped into three successive levels of detail: General, Main and Particular farm type. "Specialist
wine" correspond to Main farm type = 31, (Particular farm type: 3110, 3120, 3130).
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ensure the representativeness of the returning holdings as a whole and defines the
number of farms to be selected by region, farm type and classes of economic size
and also specifies the rules applied for selecting the holdings. The Italian FADN
sample is selected using the stratified random sampling technique and comprises
only commercial farms, or those with an economic size of more than 4 Economic Size
Units (ESU).14

Following recommendations outlined in earlier studies (see e.g. Hani et al., 2003
and Reig-Martinez et al., 2011) concerning production in agriculture, we have built
a basic analysis framework schematically illustrated in Table 11.1.

Table 11.1: Variables involved in the estimation.

Variable Role in the analysis Abbreviation
Gross production Output PL
Land farm capital Input CAP_L
Operating farm capital Input CAP_O
Agricultural employment Input LAB
Energy and Water consumption Input E_W

As shown in Table 11.1, the response variable (PL) represents gross production. It
would have been preferable to choose a measure of physical output in order to sterilize
the influence of agricultural prices, which differ greatly in various Italian regions,
but it was not possible due to a lack of data.15 Labor (LAB, measured in terms
of total number of hours worked per year) and capital (CAP_L, land farm capital
and CAP_O, operating farm capital) are the aggregate inputs usually included in
the production function estimation. We have also included one other input variable
that, from an economic point of view, characterizes environmental sustainability also:
E_W, Energy and water consumption.

Since the farms’ geolocation16, were not included in the FADN database, we have
calculated a distance matrix between municipalities using the shape file provided
by Italian National Institute of Statistics at the municipal level and selecting a
threshold distance of 50 km radius. Since different farms could belong to the same
municipalities (we provide an extract in Table 11.2 as an example), we have calculated

14EEC Regulation No. 1859/82 establishes the minimum threshold of economic size for inclusion
in the FADN field of observation. The economic size of a farm is defined by the total standard
gross margin expressed in ESU, where 1 ESU corresponds to 1,200 e.

15This critical issue, however, is partially mitigated in our analysis in that we had considered an
homogeneous production sector.

16This is a shortcoming that in the future will be resolved.
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a 975×975 distance matrix (called W2), which contains the distance value between
each municipal centroid, if the companies are based in different municipalities, and 0
otherwise.17 This matrix was finally standardized by row, dividing each value for its
row total Toti.

Table 11.2: Matrix W2: an extract. Distance in km

Firm Municipality
Alba Barbaresco Barbaresco Barolo . . .

ID1 Alba 0 5.084/Tot1 5.084/Tot1 10.730/Tot1 . . .
ID2 Barbaresco 5.084/Tot2 0 1/Tot2 15.798/Tot2 . . .
ID3 Barbaresco 5.084/Tot3 1/Tot3 0 15.798/Tot3 . . .
ID4 Barolo 10.730/Tot4 15.798/Tot4 15.798/Tot4 0 . . .
ID5 . . . . . . . . . . . . . . . . . .

11.1.3 Estimation

In order to test the absence of spatial heterogeneity, we used the Moran’s I index (see
Anselin, 1995); in our application we found a positive global spatial autocorrelation
(value: 0.12).

However global spatial auto-correlation statistics, like Moran’s I, are based on
the assumption of stationarity or structural stability over space, which is unrealistic
in many contexts. Spatial association can also be detected using local spatial auto-
correlation indices which allow for local instabilities in overall spatial association,
instabilities that are the most interesting "object" in our application.

Anselin (1995) has shown that Moran’s I can be decomposed into local values,
introducing the LISA index.

17If two companies belonged to the same municipality, we chose to assign a dummy distance of 1
km.
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Figure 11.2: Moran LISA plot - SFA residuals VS Spatially lagged SFA residuals

Figure 11.2 shows a positive relation indicating positive spatial autocorrelation.18

In particular, the first and the third quadrants (high-high, low-low) show spatial
cluster, while the second and the fourth (high-low, low-high) show spatial outliers.

Instead of simulated data example, where we induced a strong global spatial
auto-correlation, the global Moran’s I in the agricultural data appears very low;
however, we are interested in removing the effects of global heterogeneity, and above
all, in sterilizing the local effects on some specific spatial clusters of units.

Following steps given in the previous example, we applied both SFA and SSFA
methods, obtaining the results shown in Table 11.3.

Once the relative robustness of SFA estimates are verified on the "average level",
we are interested in the presence of a local spatial heterogeneity. To test local
perturbations we analyzed the differences in terms of efficiency estimated between
the SFA model with and without spatial interactions, calculating the following
measure of distance di:

di = EffSFA−EffSSFA
EffSFA

∗100,∀i= 1, . . . ,n (11.1)

The measure di allows the spatial evaluation of two effects: the absolute magnitude
of the effect of territory on the efficiency of each company, while the sign shows
whether the interdependencies between firms are positive or not (a negative di shows

18The slope of linear scatterplot smoother is equal to the global Moran’s I.
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Table 11.3: Estimation results by method. Wine firms.

SFA SSFA
Intercept 1.9422 2.0704
β1 - Agricultural employment 0.8388 0.8535
β2 - Land farm capital 0.0423 0.0411
β3 - Operating farm capital 0.1857 0.1823
β4 - Energy and Water consumption 0.0549 0.0552
σu 0.5165 0.5002
σv 0.2514 0.2537
Moran’s I 0.12 0.02
ρ - 0.2734

a positive local effect of territory); this is because even in the face of a global index
of high spatial dependence, dependencies do not occur uniformly over the whole
territory examined.

To test the results obtained, especially with regard to the existence of spin-offs
between contiguous firms, we have chosen three traditionally important wine regions:
Trentino-Alto Adige, Tuscany and Apulia.

From -1.5% to -0.5%

From -0.5% to 0

From 0 to 0.5%

From 0.5% to 1.5%

More than 1.5%

Pisa

Trento

Grosseto

Bolzano/Bozen

Firenze

Siena

Foggia

Bari

Taranto

Brindisi

Lecce

Figure 11.3: Percentage of difference between non-spatial vs spatial SFA - Region:
Trentino-Alto Adige, (source: INEA, 2009)
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Regarding the region of Trentino-Alto Adige, our analysis shows evident spin-
offs between contiguous firms in the so-called "South Tyrolean Wine Road"19, a
production zone in the province of Trento. These spatial spinoffs, however, seem to
gradually decline as we move away from a cluster of highly specialized municipalities.

Another well-known production area is where some of the most famous Italian
red wines come from, "Chiantishire" in the province of Siena.

Low values to -1.5%

From -1.5% to -0.5%

From -0.5% to 0

From 0 to 0.5%

From 0.5% to 1.5%

Pisa

Trento

Grosseto

Bolzano/Bozen

Firenze

Siena

Foggia

Bari

Taranto

Brindisi

Lecce

Figure 11.4: Percentage difference between non-spatial vs spatial SFA - Region:
Tuscany, (source: INEA, 2009)

In Tuscany, the presence of production consortia and very strict rules of production,
create a common way of producing with strong local links over a wide area.

19This area is particularly famous for its white and sparkling wine production.
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Figure 11.5: Percentage difference between non-spatial vs spatial SFA - Region:
Apulia, (source: INEA, 2009)

In the last region, the Apulia,(see Figure 11.5) the production of "protected
designation of origin" wines is geographically very localized, in particular the areas
of Negramaro and Primitivo di Manduria wine production, near Brindisi.
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11.2 Spatial nonstationarity in the stochastic fron-
tier model: an application to the Italian wine
industry

Vidoli, F., Cardillo, C., Fusco, E., and Canello, J. (2016). Spatial
nonstationarity in the stochastic frontier model: an application to
the italian wine industry. Regional Science and Urban Economics -
accepted for publication.
http://dx.doi.org/10.1016/j.regsciurbeco.2016.10.003

11.2.1 Introduction

The globalization of productive processes and liberalization of trade activities have
generated a strong competition between regional economic systems: paradoxically,
rather than drastically reducing the role of spatial proximity, this new open scenario
has shed new light on the key relevance of local and agglomeration externalities
in the generation of competitive advantage (Porter, 2000). The relevance of these
aspects is particularly evident in certain sectors, such as wine production, where the
rapid transformations which have taken place in the last few decades have fostered a
rapid process of technological change in which firms are constantly required to be at
the forefront of the productive process in order to survive in the competitive arena
(Cusmano et al., 2010). In this context, the role of intangible factors associated with
the ‘business climate’ is crucial in stimulating the process of knowledge accumulation
and learning through continuous interaction with peers located in close proximity:
in several circumstances, the presence of these mechanisms ensures the diffusion of
new productive practices that prevents local firms from increasing their gap with the
technological frontier.

The classical stream of literature linking productive efficiency to territorial deter-
minants assumes that the dynamic process leading firms to concentrate in specific
subregions is only associated to specific tangible aspects: this assumption leads to
neglecting the role of spatial non-stationarity, intended as “a condition in which a
simple global model cannot explain the relationships between some sets of variables”
(Brunsdon et al., 1996). This problem is particularly evident in the parametric
frontier framework, where it is essential to specify a priori an explicit functional form
of the boundary of the production set: however, in the early contributions the spatial
dependence among productive units has often been ignored and associated to the
stochastic error. A number of recent works have attempted to address this issue by
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specifically including a set of contextual factors in the model (see e.g. Hughes et al.,
2011,Brehm, 2013): however, such a strategy is not always effective as it ignores
the fact that the relationship between the dependent variable and the covariates (a)
tends to vary in a continuous rather than a discrete manner among spatial units
and (b) may not be necessarily related to measurable local factors. This problem is
particularly evident in specific spatial contexts, such as industrial districts, character-
ized by the presence of global intangible factors that cannot be measured empirically
(Vidoli and Canello, 2016).

Ignoring spatial autocorrelation among residuals limits the validity of the em-
pirical investigation for several reasons. First, it causes serious consequences to
statistical inference, reducing both the efficiency and consistency of the estimations
and generating a negative impact on the validity of testing procedures and on the
predicting capability of the model. This drawback generates significant distortions in
the interpretation of the stochastic frontier model, as higher values of the inefficiency
term may be associated with a territorial effect rather than the ability of a productive
unit to generate more output with the same amount of inputs. In this respect, the
inclusion of spatial autocorrelation into the stochastic frontier production framework
has been the subject of a lively debate in the econometrics literature in the recent
past, generating a multitude of approaches aimed to address this issue: in this
context, the SSFA specification proposed by Fusco and Vidoli (2013) appears to be
particularly suitable in that the spatial autoregressive specification is modelled in
the error term, generating results that can be directly compared with those of the
classic stochastic frontier approach.

In this paper, the above mentioned spatial stochastic frontier approach is im-
plemented in a sample of Italian firms specialized in wine production, using data
extracted from the 2013 FADN Survey. This archive is particularly suitable for
the scope of the analysis, as it allows to account for a wide variety of structural
and economic factors that are believed to influence the territorial effects: moreover,
the presence of specific reference to a wide variety of inputs allows to build a solid
production function with several benefits for the estimation process. The aim of
the empirical exercise proposed in this paper is to evaluate the contribution of
both tangible and intangible factors in influencing the performance of these firms,
discussing how the space can play a different role for the different members of a local
network. In this respect, the specification proposed is of particular use as it allows
to isolate the local intangible factors, often statistically and economically difficult to
capture through specific proxies, that nonetheless are determinant in influencing the
firms productivity. The role of tangible factors is nonetheless evaluated through a
second stage estimation.
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11.2.2 The recent trends in the Italian wine industry and
the role of agglomeration effects

Italy has played, together with France, a key role in the wine industry for several
decades, dominating the international scenario in terms of both exported volumes
and values. This established pattern has radically changed since the 1990s, when the
entrance of the New World producers (United States, Australia, Chile, Argentina,
South Africa) in the global market has fostered a radical transformation of the
existing competitive arena (Cusmano et al., 2010). The increased complexity of the
new global environment has further been influenced by several exogenous risk factors,
such as the increased climate variability and the radical changes in wine consumption
habits, with a shift in preferences towards high quality wines (Bardaji and Iraizoz,
2015). In this context, the sector has experienced a process of rapid modernization
and technological change, identified by Crowley, 2000 as a “wine revolution”. This
radical transformation process is pushing wine producers to adopt improvement
strategies in the quality and production process and acquire new knowledge in order
to effectively respond to the volatile needs of the global markets. The potential gains
from selecting an effective strategy are especially important in the wine sector where,
despite the existence of a moderate correlation between price and quality, several
price setting possibilities are available for wine producers given the incomplete quality
information held by consumers (Oczkowski and Doucouliagos, 2015).

The current scenario generates several challenges for the Italian wine sector, which
has recently faced a significant downturn in domestic demand and is characterized
by a higher degree of fragmentation relative to other countries, such as Australia or
Chile (Cusmano et al., 2010). Italian wine producers are often small and medium
businesses that lack the financial and managerial resources to handle the increased
complexity of the surrounding environment. This limit is especially problematic in
the new global context, characterized by the constant need to update productive
knowledge and acquire new skills and competences. In fact, small businesses are
not generally equipped to gather relevant information outside the locality in which
they are embedded; moreover, they cannot rely on the same formal channels used
by leader firms, such as formal collaborations with research institutions (Giuliani
et al., 2010) and interaction with foreign competitors, often through the presence of
foreign subsidiaries (Felzensztein and Deans, 2013) or simply through the creation of
relational networks with producers that are at the forefront of the industry (Turner,
2010). Given these opportunities are not generally accessible to small producers,
the main source of learning and developing new competencies is the community
in which these entrepreneurs are embedded. The role of this factor is especially
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relevant in Italy, where contrary to other countries, such as Australia, the wine sector
cannot count on institutional assets and top-down measures to stimulate the above
mentioned upgrading process.

Although several contributions have stressed the increasing importance of codified
knowledge in the wine industry (e.g. Giuliani, 2007), the sector is still dependent on
context-specific and localized informal practices of learning, that are crucial to take
advantage of the specificities of each terroir (Turner, 2010). The effect generated by
the local business climate and the informal interaction among local actors can be
explained through the concept of “industrial atmosphere”, that has generally been
used in the industrial districts literature (Marshall, 1920): other than generating
tangible benefits such as reputation, greater international demand and access to
skilled labour pool, spatial proximity among wine producers stimulates everyday
interaction, facilitating the opportunities for face-to-face contacts that are crucial
to generate tacit knowledge flows and incremental learning. In this respect, wine
clusters can be seen as communitarian networks, characterized by resource sharing
and continuous informal interaction (Turner, 2010). The presence of interpersonal
networks can be beneficial in many respects: producers can be rapidly informed of the
presence of new business opportunities, but also of new sellers or providers that can
form new partnerships and generate further spillovers. Inter-firms market cooperation
can also foster marketing collaboration strategies, facilitating development of joint
sales in foreign markets and allowing to overcome the limited exporting capabilities
of several small and medium firms (Felzensztein and Deans, 2013). More importantly,
the presence of a collaborative environment can allow small producers to fill the
technological gap with competitors, as collaboration can foster the shared use of new
technology, exchange of technical advices and information on the effective use of
machinery and inputs (Morrison and Rabellotti, 2009).

A certain number of agglomeration externalities generates spontaneously as a
consequence of spatial proximity between wine producers. For example, the suc-
cessful performance of neighbouring wineries stimulates the development of positive
marketing-related externalities for the whole area (Giuliani and Bell, 2005): these
positive spillovers in terms of reputation for the neighbouring producers have been
classified by Beebe et al. (2013) as “halo” effect. However, spatial proximity itself
is not sufficient to guarantee the diffusion of agglomeration externalities among
all the members of a local community. Indeed, two elements are required to en-
hance this process, i.e. the willingness of givers to share their knowledge and the
absorptive capacity of the receiver: these conditions are generally met when the
cognitive proximity among the members of a network is present (Boschma, 2005).
The presence of diversified abilities/attitudes to access to local informal knowledge
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has been documented in different regional contexts in the wine industry (Giuliani and
Bell, 2005; Morrison and Rabellotti, 2009): according to Giuliani and Bell (2005),
the presence of barriers to knowledge exchange is testified by the presence of different
production methods within the same wine cluster. What is the profile of those
firms which are more often engaged in networking activities? The core of these local
networks is generally represented by small firms, which are generally more inclined
to cooperate and share information in order to overcome their structural limits: the
lack of competencies among small firms act as stimulus to share different experiences
and spread knowledge among the community. On the other hand, large firms tend to
be located at the periphery of the local network and provide a limited contribution
to the local learning system: these actors generally have stronger connections with
external sources of knowledge and often prefer to share the acquired competencies
with a restricted number of partners that are directly involved in their production
process (Morrison and Rabellotti, 2009). This trend is confirmed by the empirical
investigation of Turner (2010), who has shown that small wine producers are more
interested with marketing practices associated with the territory while large firms
are more interested in developing their own brand.

The brief review presented in this section has shown that the tangible and
intangible local effects play a key role in determining the performance of wine
producers. Against this background, the aim of the following section is to propose
an empirical framework that can be effectively used to account for both effects in
the estimation of productive efficiency, allowing to evaluate the role of the different
spatial factors in a consistent manner.

Therefore, in this Section, SSFA is used also to evaluate the role of local effects
in the Italian wine industry: the recent technological advances in the sector have
increased the importance of both the tangible and intangible factors associated with
the specific territorial effects that cannot always be captured by the inclusion of
contextual variables. In this respect, the spatial technique proposed in the previous
section appears to be especially effective in accounting for these factors and evaluating
their role in influencing firm-level efficiency. The empirical investigation is focused on
year 2013 and is implemented on a detailed database that includes a wide variety of
economic and structural variables: the main features of this database are presented
in the following subsection.

11.2.3 Variables and data

The Farm Accountancy Data Network (FADN) is a yearly survey carried out by
the Member States of the European Union and established in 1965 by the Council
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Regulation No 79/65/EEC: this measure was aimed to establish a network for the
systematic collection of accountancy data on incomes and business operations of
agricultural holdings in the European Economic Community. According to Regulation
n. 1859/82, this database includes all the agricultural holdings having an economic
size equal to or greater than a minimum threshold, i.e. that identified to be considered
commercial: in Italy, this threshold is set in 4,000 eof standard output. The selection
of the holdings that take part in the survey is carried out according to sampling
plans defined at the national level, following the guidelines and recommendations
provided by the European Commission. The sampling procedure must ensure the
representativeness of the identified subset and defines the number of farms to be
selected, specifying the approach followed to select the productive units. According
to FADN methodology, stratification variables are territorial location, economic size
and type of farming.

The Italian section of the survey is based on the Agricultural Census, updated on
a two-year basis by the Farm Structure Survey (FSS) carried out by ISTAT: this main
data source is complemented with further sources of agricultural statistics. The Italian
FADN sample is selected using the stratified random sampling technique described
above: in particular, the territorial location corresponds to the 21 administrative
regions; the economic size is expressed in terms of Standard Output and defined
through several classes, the lowest of which starts from 4,000 eand the highest
refers to those with more than 3 million e; the type of farming corresponds to the
particular level grouped according to the importance of the specific agricultural
activity in the region. According to the procedure, some types of farming and some
classes of Standard Output could be aggregated in order to have a sufficient number
of observations in each strata. Following the above mentioned approach, the 2013
version of the Italian FADN survey, which is the one used in this paper, includes a
total number of about 700,000 farms.

The productive units of the survey are allocated in each stratum according to
strategic variables such as Standard Output, Utilized Agricultural Area, Livestock
Units and Working days. To get the desired level of precision for each strategic
variable sampling errors are fixed, in terms of percentage of coefficients of variation20,
they represent the errors that may possibly occur, with a fixed probability, estimating
a variable compared to its real value, hence they determine the reliability of estimates.
Sample size and its distribution among the strata are established by setting the
precision required in terms of percentage of coefficients of variation for strategic
variables, both at national and at regional level. The methodology used to allocate

20The coefficient of variation of a variable is the ratio between the standard deviation of the
variable layer and the estimate of the total layer of variable.
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the sample among the strata is a combination of Neyman and Bethel methods (Bethel,
1989).

The main benefits associated with the use of this database can be summarized by
the following two aspects:

• harmonization: FADN is the only source of micro-economic data that is
harmonised at European level, i.e. the book-keeping principles are the same
in all countries, and it represents an important tool for the evaluation of the
income of agricultural holdings and the impacts of the Common Agricultural
Policy. In Italy the FADN survey is carried out by the Center for Policy and
Bio-economy of the Council for Research in Agriculture and the Agricultural
Economics Analysis - CREA21, as liaison agency between EU and Member
State.

• information assets: The FADN survey collects more than 1,000 variables that
refer to physical and structural data, such as location, crop areas, livestock
units, labour force. It also contains economic and financial data, such as
the value of production of the different crops, stocks, sales and purchases,
production costs, assets, liabilities, production quotas and subsidies, including
those connected with the application of CAP measures and recently information
linked to environmental aspects was also added. These variables are extremely
convenient for the purpose of this paper, as they allow to create both a solid
production function and include a wide variety of local effects that are associable
with the performance of these firms.

In this paper a sub sample of 853 wineries has been extracted from the Italian FADN
database, which includes a total number of 11.319 farms in year 2013. Using this
data, the application presented in the following sections compares the results of
the traditional specifications of the production function with those of the SSFA
model, showing the benefits associated with the use of the latter approach. An
important caveat relates to the variable used to evaluate output, i.e. the litres of
wine produced by each unit: given the information available it is not possible to
evaluate the qualitative aspects of production (which are nonetheless relevant in the
sector), the concept of efficiency should be interpreted from a technical point of view,
avoiding any considerations on the quality of output produced.

21Previously National Institute of Agricultural Economics - INEA.
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11.2.4 Estimation

The production function of the Italian wine firms has been initially estimated using
a simple OLS approach, choosing a Cobb-Douglas22 log-log functional form and
relating the produced quantity of output with labour, machinery, water-energy-fuel
and land capital inputs. The basic statistics of the variables used in the analysis and
the relative units of measurement are given in Table 11.4.

Statistic N Mean St. Dev. Min Max
Production output (Physical units) (log) 853 6.599 1.236 2.890 10.953
Labour input (Hours) (log) 853 8.071 0.746 6.125 11.613
Machinery capital input (Kw) (log) 853 4.672 0.786 1.609 7.553
Water, energy and fuel input (e) (log) 853 5.837 2.331 0.000 12.468
Land capital input (Ha) (log) 853 6.806 1.097 3.434 10.787
OTE = 3510 (yes) 853 0.715 0.452 0 1
Physical disadvantage (slope) (yes=1) 853 0.216 0.412 0 1
Physical disadvantage (climate) (yes=1) 853 0.284 0.451 0 1
Biophysical disadvantage (yes=1) 853 0.699 0.459 0 1
Economic infrastructure indicator (index) 853 96.038 57.679 26.668 397.647
Network infrastructure indicator (index) 853 86.356 30.926 18.400 187.976
Scholastic drop-out indicator (index) 853 13.499 4.482 8.394 24.026
DOCG production area (yes=1) 853 0.356 0.479 0 1
EU subsidies (1,000 e) 853 3.339 8.093 0.000 87.108
Financial charges (1,000 e) 853 −0.313 2.771 −51.183 0.000
Family owned (Direct family members=1) 853 0.431 0.496 0 1
Gender (M=1) 853 0.779 0.415 0 1
Young owner (yes=1) 853 0.117 0.322 0 1
Diversified production (yes=1) 853 0.109 0.312 0 1
Organic production (yes=1) 853 0.036 0.187 0 1

Table 11.4: Production function variables - main statistics

The results of the estimation (Table 11.5) appear to confirm the validity of the
specification, given the significance of all covariates and the high R2 = 0.593; it is
also worth noting that the intercept is negative and statistically significant.

Using OLS as baseline for the analysis, the stochastic frontier model has been
estimated (Table 11.6) and the results of the two specifications compared: the
analysis confirms the stability of the latter model, since the values of the coefficients
are similar in the two cases, except for the intercept that decreases in absolute
value. This trend is expected and can be explained by the fact that the production
function has been shifted from the average values to efficient ones without affecting
the relationship between output and inputs. The specific parameters of SFA (σ2, γ
and the average efficiency equal to 0.59) confirm the validity of the proposed model.

22This model has also been estimated using a Translog specification for the production function.
However, given the lack of significance of composite terms, a simpler model has been chosen for
this part of the analysis.
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Dependent variable: production output (log)
Intercept −2.068∗∗∗ (0.309)
Labour input 0.641∗∗∗ (0.055)
Machinery capital input 0.307∗∗∗ (0.045)
Water, energy and fuel input 0.067∗∗∗ (0.014)
Land capital input 0.245∗∗∗ (0.037)
Observations 853
R2 0.593
Adjusted R2 0.591

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.5: Wine production function - OLS estimators

In particular, γ = σ2
u
σ2 depends on two relevant parameters, σ2

u and σ2
v , that are the

variances of the noise and inefficiency effects. Note that γ varies from 0 to 1: when
the value is close to zero deviations from the frontier are attributed to noise, while in
the opposite case the deviations are entirely explained by the technical inefficiency
of the firm.

Dependent variable: production output (log)
Estimate Std. Error z value Pr(> |z|)

Intercept -1.411159 0.322292 -4.3785 1.195e-05 ***
Labour input 0.637796 0.055230 11.5480 < 2.2e-16 ***
Machinery capital input 0.314146 0.044574 7.0477 1.819e-12 ***
Water, energy and fuel input 0.071348 0.013375 5.3346 9.573e-08 ***
Land capital input 0.233026 0.037678 6.1847 6.224e-10 ***
σ2 1.003306 0.116481 8.6135 < 2.2e-16 ***
γ 0.581710 0.097161 5.9871 2.136e-09 ***

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.6: Wine production function - SFA estimator

As discussed in Chapter 5, the SFA model is based on the hypothesis of mutual
independence among the productive units: therefore, this specification ignores the
role of any spatial effects that may be present in the data. However, the evolutionary
trend emerging from the brief overview of the Italian wine industry presented in this
paper suggests that efficiency in this sector could be influenced by a multiplicity of
tangible and intangible local factors. To evaluate the role of these effects, a formal
statistical test has been implemented to verify the presence of spatial correlation
among residuals: specifically, the global and local indicators proposed by Geary (1954)
have been used, previously specifying a distance matrix to map the neighbourhood
of each production unit. The correct definition of the matrix is crucial to ensure
the consistency of the spatial analysis: in this respect, the identification of a correct
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unit of distance must be driven by economic considerations associated with the
peculiarities of the sector under investigation. In this specific case, characterized by
the presence of productive units often concentrated in narrow geographical areas,
a particularly close neighbourhood (nearest neighbour, n= 10) has been chosen in
order to account for the specificities of the wine industry: the contiguity matrix
resulting from the application of this criterion is graphically represented in Figure
11.6.
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Figure 11.6: Contiguity matrix, nearest neighbour (n= 10)

Using this distance matrix, the presence of spatial autocorrelation among residuals
for the SFA model has been formally tested using the Geary C statistic23: the
estimated value of this variable (0.733) leads to reject the null hypothesis of mutual
independence among firms, confirming the presence of a positive neighbourhood
effect among the Italian wineries that cannot be isolated and estimated through
the traditional stochastic frontier model. This scenario motivates the need to use a
spatial stochastic frontier approach with the data at disposal: in this respect, the
SSFA model proposed in equation (5.3) seems a particularly effective tool to isolate
and evaluate the territorial component separately from the individual performance of
the productive units. The results of the estimation are reported in Table 11.7: in all

23The value of Geary C lies between 0 and 2. Values lower than 1 demonstrate increasing
positive spatial autocorrelation, whereas values higher than 1 indicate increasing negative spatial
autocorrelation. C=1 is consistent with no spatial autocorrelation in the data.
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cases, the value of the coefficients for the inputs are consistent with those obtained
from the SFA specification, with the expectation of the intercept that becomes not
significant; however, this result is expected as the spatial specification generates a
further shift in the production curve with respect to the SFA as a consequence of the
isolation of the spatial effect, transforming the average value of β0 into a multiplicity
of individual effects. Interestingly, the value of the γ parameter (0.433) is lower than
the one estimated with the SFA model: this evidence supports the hypothesis that
part of the technical inefficiency was mistakenly attributed to the production process
rather than to neighbourhood effects.

Dependent variable: production output (log)
Estimate Std. Error z value Pr(> |z|)

Intercept -0.0707772 0.7387170 -0.09581 0.923671
Labour input 0.6081372 0.0525574 11.57091 < 2e-16 ***
Machinery capital input 0.3328368 0.0436632 7.62282 < 2e-16 ***
Water, energy and fuel input 0.0500784 0.0132213 3.78770 0.000152 ***
Land capital input 0.3250007 0.0401612 8.09240 < 2e-16 ***
σ2
dmu 0.3253159 0.1250316 2.60187 0.009272 **
σ2
v 0.3591916 0.0456068 7.87584 < 2e-16 ***

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.7: Wine production function - SSFA estimator

The benefits of the proposed framework are also evident in terms of global and
local spatial autocorrelation: indeed, the global Geary C statistic equal to 1.048
suggests that global autocorrelation has been effectively removed from the residuals,
while local ci (for each unit i) associated with the SSFA estimates is significantly
lower with respect to the unconditional SFA scenario (Figure 11.7).
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Figure 11.7: Local ci kernel density of the SFA and SSFA efficiency

11.2.5 Explaining the spatial effect through the analysis of
territorial imbalances

The analysis presented in the previous section has confirmed the presence of a spatial
effect in the data that has been successfully isolated using the SSFA specification
proposed in Chapter 5. In this part of the empirical investigation, the focus is moved
to the spatial effect itself, in an attempt to explain its structural characteristics and
interpret its nature in light of the considerations emerged in the brief review of the
wine sector presented in section 11.2.2. In order to do so, the analysis is focused
on the territorial imbalances, defined as the difference between the efficiency term
estimated in the SFA specification and that identified with the SSFA approach24:
in general, higher values of territorial imbalance suggest the presence of a stronger
territorial component.

A geographical representation of the territorial imbalances is presented in (Figure
11.8): the map shows the presence of a heterogeneous distribution of the spatial
effect, with areas characterized by a strong territorial factors while in other cases the
role of the locality appears to be negligible in determining the performance of the
productive units.

24this term is generally positive, given in the SFA the spatial effect is mistakenly incorporated
into the error term, generating higher values relative to those estimated with the SSFA.
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Diff. betw. SFA and SSFA efficiency [−0.0764,0.0226) [ 0.0226,0.0555) [ 0.0555,0.1062) [ 0.1062,0.2780]

Figure 11.8: Differences between SFA and SSFA efficiencies per quantile, q = 4

Having established the presence of a relevant and heterogeneous spatial effect
in the Italian wine industry, the immediate question is whether this effect can be
satisfactorily explained by a plurality of tangible local factors. To address this issue,
a second stage analysis has been implemented regressing the territorial imbalances on
a plurality of contextual variables, following previous findings in earlier studies (see
e.g. Hani et al., 2003, Reig-Martinez et al., 2011 and Bardaji and Iraizoz, 2015) and
incorporating other determinants that are believed to have an impact on firm-level
productivity in agriculture. In this respect, the wide variety of variables available in
the FADN database can be effectively used to incorporate a number of relevant factors
that are believed to explain the spatial effect in the wine industry25: specifically, the
set of covariates include (i) endogenous factors linked to the productive process or
to the corporate characteristics, (ii) exogenous physical factors and (iii) exogenous
economical indicators related to the local supply factors.

The results of the estimation are reported in Table 11.8: in most cases, the
coefficients are significant and the sign is that expected. As far as the endogenous
factors are concerned, the first interesting result is determined by the key role played

25Note that the physical/contextual data used in the estimation do not exhaust the multiplicity
of issues that characterize the production within a territory.
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by quality and reputation: in fact, firms producing a better wine quality (OTE
= 3510, wineries specialized in the production of quality wine) appear to benefit
from a larger territorial effect. Moreover, being located in an area characterized by
a higher reputation of the production process (i.e. DOCG production area) is also
associable with an increase in territorial imbalances, irrespective of the quality of
wine produced by the firm. The data also reveals the importance of the territorial
effect for family-owned firms (Family owned) and those productive units characterized
by an higher degree of product differentiation.

Regarding the exogenous physical factors26 it is worth noting that the coefficients
of both Physical disadvantage (climate) and the Biophysical disadvantage are negative
and statistically significant: this result is not surprising considering the beneficial
effects associated with a temperate climate, an advantageous slope inclination and
slope exposure on wine production.

Finally, a set of exogenous economical factors27 have been included in the model,
in order to account for the role of elements external to firms and internal to the
region that generate a competitive advantage among economic agents. The results
are consistent with the expectations, showing that a higher level of the surrounding
economic and network infrastructure has indirect beneficial effects for the productive
units specialized in wine production; on the other hand, the presence of a lower level
of human capital in the region (higher Scholastic drop-out indicator) has a negative
impact on the territorial imbalances.

Despite the results of the estimation confirming the important role played by the
above mentioned variables, it is worth noting that the presence of these tangible
factors is not sufficient itself to explain the variance of the territorial imbalances
(R2 = 0.214). This evidence indirectly confirms the presence of intangible factors
associated with context specific and informal practices of learning that cannot be
evaluated through the mere inclusion of specific contextual variables in the model:
in this respect, the implementation of a SSFA approach can effectively address this
issue, allowing to isolate the intangible effects associated with tacit knowledge flows
and incremental learning that are peculiar to the wine industry and cannot be merely
proxied through the inclusion of specific contextual variables.

26This data is available at an extremely detailed territorial level, i.e. the municipality (CREA,
2013).

27These composite indicators are present in the Istituto Tagliacarne (2013) database and defined
at a narrow territorial level, i.e the municipality.
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Dependent variable:
Difference between SSFA and SFA efficiency

Constant 0.076∗∗∗ (0.012)
Endogenous factors

OTE = 3510 (yes=1) 0.021∗∗∗ (0.005)
DOCG production area (yes=1) 0.016∗∗∗ (0.004)
Gender (M=1) −0.018∗∗∗ (0.005)
Family owned 0.015∗∗∗ (0.004)
Diversified production (yes=1) 0.014∗∗ (0.006)
EU subsidies (1,000 e) 0.001∗∗ (0.0002)
Financial charges (1,000 e) −0.0004 (0.001)
Young owner (yes=1) −0.005 (0.006)
Organic production (yes=1) 0.001 (0.010)

Exogenous physical factors
Physical disadvantage (slope) 0.022∗∗∗ (0.005)
Physical disadvantage (climate) −0.030∗∗∗ (0.006)
Biophysical disadvantage −0.011∗∗ (0.005)

Exogenous economical factors
Economic infrastructure indicator 0.0001∗∗ (0.00004)
Network infrastructure indicator 0.0002∗∗ (0.0001)
Scholastic drop-out indicator −0.002∗∗∗ (0.001)
Observations 853
R2 0.214
Adjusted R2 0.200

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.8: Determinant of the SFA - SSFA differences, OLS estimator
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11.2.6 Do spatial effects vary with size? The different role
played by the local network in small and large firms’
efficiency

The analysis implemented in the previous section has highlighted that a combination
of tangible and intangible factors explain the presence of a spatial effect in the
Italian wine industry. In this scenario, the role of intangible effects appears to be
particularly significant and possibly associable with the local business climate and
informal interaction among local actors: in this respect, the results support the
empirical evidence which has emerged in previous contributions focusing on case
studies in specific wine regions, suggesting the presence of communitarian networks,
characterized by resource sharing and informal interaction.

However, as several recent contributions have shown, access to these networks
appears not to be uniform among local actors: not infrequently, small firms tend to
be more inclined to engage in informal interaction practices with local peers, given
the higher expected benefits, while large firms tend to acquire new knowledge from
external sources, using the wide variety of formal channels at their disposal.

The possible presence of this differential has been evaluated by plotting the
difference between the SFA and the SSFA efficiencies against the size of the firm.
Figure 11.9 confirms that an inverse relationship exists between the two variables,
with a higher territorial effect for small firms that tends to decrease when firm size
becomes larger: however, the presence of a negligible spatial effect among large wine
producers seems not to be associated with lower levels of technical efficiency: in fact,
Figure 11.9 shows that these firms are more efficient than small producers.

This apparently contrasting trend can be easily interpreted in light of the pat-
terns already identified in Section 11.2.2: the presence of a negligible spatial effect
among large firms should not be motivated by their difficulty to access local net-
works, but rather by a voluntary choice aimed at focusing on alternative sources
of knowledge, such as internal learning, interaction with producers located outside
the neighbourhoods and formal collaborations with institutional actors. The choice
of these alternative forms of learning enables these firms to stay at the forefront of
technical development, focusing on the most efficient technologies and maintaining
high levels of technical efficiency. On the other hand, small producers who cannot
access external knowledge are required to rely on the informal learning practices
associated with continuous interaction with the local community, generating the
spatial effect identified for this subset of the firm population in the model. Although
these intangible factors allow to reduce the gap with the leaders, small firms still
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display a lower level of efficiency relative to the larger ones.

The main finding introduced in this section confirms that spatial proximity does
not necessarily generate knowledge spillovers. The main reasons explaining this
pattern are probably two: on the one hand, large producers generally do not need
to link to local networks to access informal sources of learning; on the other hand,
leader firms may not be willing to share the knowledge acquired through access to
external or formal sources, generating positive externalities for small firms located
in the close neighbourhood. In this respect, the behaviour of large firms could be
interpreted as a rational strategy aimed at retaining a competitive advantage in the
production process, ensuring higher levels of technical efficiency.
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Figure 11.9: SSFA efficiency and difference with SFA per produced output (log) and
ownership

11.2.7 Concluding remarks

The empirical exercise, implemented on a sample of wine producers extracted from
the Italian FADN survey, shows that the spatial specification proposed by Fusco and
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Vidoli (2013) is extremely effective in disentangling the spatial effect that is present
in the data, isolating a specific component that is erroneously attributed to the error
term in the standard SFA approach.

The main features of the spatial effect are evaluated through a second stage
analysis, in which the territorial imbalances (i.e. the difference between the inef-
ficiency term calculated with the SFA specification and that identified with the
SSFA approach) are regressed against a set of contextual variables that are generally
associated with the presence of a stronger effect: although the role of these factors
is confirmed by the results of the estimation, a relevant share of the variance in
the model remains unexplained, suggesting that a key role is played by intangible
factors that cannot be formally included in the model. Following the recent findings
in the literature, it is reasonable to assume that this intangible component is the
consequence of a network effect associable with the local business climate: in most
localities, the presence of an embedded community stimulates a process of local
learning that generates the diffusion of tacit knowledge through continuous interac-
tion among the local actors. Although the investigation does not allow to evaluate
whether this flow relates more to business information of technical knowledge, the
identification of such aspect is by itself a key finding of the contribution.

The analysis of the degree to which the spatial effect varies with firm size provides
evidence of a clear tendency of this effect to be significantly lower among large firms.
This finding is in line with previous research, confirming that firms interacting in
economic networks are not an homogeneous entity, but play different roles in the
local scenario: although it is not a direct consequence of the results of the paper, it
can be speculated that the different size of the territorial effect found in small and
large wine producers is associated with different abilities and willingness to interact
and share knowledge with neighbours located in close vicinity: such a scenario would
confirm the trend already identified in case studies on wine sector (Giuliani, 2007;
Morrison and Rabellotti, 2009), showing that large firms have a strong tendency to
access to external and formal sources of knowledge, sharing the information acquired
from outside with a small number of firms who collaborate on a regular basis. The
regular interaction with external sources of knowledge enable these firms to stay
at the forefront of the technological frontier, enabling them to face the challenges
required by the rapid technological change: such a trend would be consistent with
the higher levels of technical efficiency found among large firms in the empirical
analysis.
The results of this investigation open some interesting avenues for further research.
The SSFA specification can be extended to accommodate the use of panel data: the
implementation of such an approach would be particularly convenient to control for

199



SSFA: Two applications on agricultural sector in Italy

seasonal or other unobserved factors that can influence harvesting in a particular
year, such as the presence of parasites or other transient factors.
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Input distance functions: Level of services, spatial dependence and allocative efficiency in the local
governments expenditure needs framework

Under review on: Empirical Economics

12.1 Introduction

Recent economic crisis, different territorial dynamics in innovation, as well as, the
international shifting of the production centres, are having a profound impact on the
macro economics dynamics and therefore on the long-term sustainability of public
national accounts.
The crisis of the social state induced by the economic slowdown, by demographic
changes together with the construction of the European Monetary Union lead to
tighter fiscal disciplines in Member States, put under pressure the government
spending schemes and, in particular, the equalisation transfers to the local level
reinforcing the trends towards decentralisation.
The focus of public national accounts is, therefore, shifting to the need, both in the
short term, but especially in the medium-long term, to build stable, flexible and
proactive control spending systems, both at central level and, mainly, at local level.
Given these constraints, the real challenge for governments is to build spending
perequation and account control systems that allow to maintain public service levels,
as much as possible, unchanged by minimizing the overspending due to inefficiency,
incorrect allocations of production factors or chronic misalignments in optimal Local
Authorities (LAs) sizing.

Over the recent years, the general trend in Europe has been towards increased
decentralisation.
In several EU15 Member States, decentralisation dates back to the late 1970s - early
1980s when the first legislation improvements were implemented and proceeded even
further over the following decade (e.g. 1978 in Spain, 1982 and 1983 in France, 1988
in Belgium, 1990 in Italy). The process of decentralisation was pursued further
during the following decades.
Although in OECD countries fiscal equalisation absorbs 5% of total public expendi-
ture, it represents the primary aspect and most delicate of all fiscal and administrative
decentralization processes, since equalisation transfers limit the territorial imbalances
amplified by devolution. This issue is particularly important in countries, such as
Italy, characterized by wide territorial differences.
A greater institutional decentralization implies a greater financial autonomy for LAs
and, on the other hand, it assigns a portion of richer communities resources to the
disadvantaged ones; in other terms, institutional decentralization could enhance

202



Input distance functions: Level of services, spatial dependence and allocative efficiency in the local
governments expenditure needs framework

the horizontal equalisation systems compensating territorial imbalances avoiding
excessive public spending or allocations of public goods characterized by uncertainty
and misallocation across districts, as pointed out by Besley and Coate (2003).
Horizontal equalisation policies, as a matter of fact, have the aim to reduce resources
and/or charges disparities between LAs; these policies, principally refer to the seminal
concept of "territorial equity" (Buchanan 1950), consist in equalising the purchasing
power of LAs in local public services (i.e. the ratio benefit/tax effort, Thurow 1970).
Generally, financial equalisation policies contribute to a certain equal opportunity
between LAs: moderating the vertical imbalances, diminishing the tax competition
(even between regional and local governments, Zhuravskaya, 2000), limiting the risks
of uncertainties and also maintaining social cohesion.

Due to these needs, an innovative autonomy path for LAs has started in Italy
in 2009 linked to a fundamental change in the funding criteria. The statutory law
on fiscal federalism (Law No. 42, May 5th 2009) and the determination of standard
requirements for LAs (Municipalities, Provinces and Metropolitan cities) issued
through Legislative Decree No. 216, November 26th 2010, are allowing to modernize
intergovernmental financial relations and to minimize LAs cost (overall 77 billion
Euro in 2010, equal to 5% of GDP and 10% of consolidated public spending).
This constitutional reform intersects, also, with a more contingent need caused by the
structural Italian public finances imbalances, removing disparity conditions at territo-
rial and national level. In 2012, the Legislative Decree No. 95 (also called "spending
review") emphasized the necessity to adopt in the short term "urgent measures for the
reduction of public spending keeping constant level of services".28 However, efficiency
analysis and local grants perequation criteria still remain separated both in the
theoretical systematization and in the practical implementation.

Against this background, in the existing literature (see e.g. OECD 1981, Reschovsky
2006, Reschovsky 2007, Blochliger et al. 2007, Blochliger and Charbit 2008, Dafflon
and Mischler 2007) local governments expenditure needs, cost efficiency and the
levels of services provided by LAs have been analysed separately.
An integrated model of cost and allocative efficiency equalization would lead to a
greater territorial equity and, at the same time, it would empower LAs to provide
better services to users.

The main purpose of this paper is, therefore, to combine in a single framework,
the need for a more accurate allocation of intergovernmental transfers for providing
a higher level of service thanks to the increment of production factors efficiency.
Equity and efficiency are two aspects that must be pursued and evaluated together

28Whereas, in practice, the levels of service were not taken into account in the spending actual
cuts criteria.
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with the aim of increasing the collective well-being.

From a methodological point of view, departing from previous approaches based
on regression techniques or on traditional frontier models, a comprehensive method
for the estimation of standard needs which simultaneously takes into account the
different production efficiency of LAs is proposed. In the classical standard needs
techniques, in fact, the allocative inefficiency is not included in the analysis.
Another issue, often neglected, is the spatial autocorrelation of the residuals in the
classical estimation linear models; this issue, besides representing a serious problem
from a statistical point of view, may involve the systematic allocation of more transfer
to some territories compared to other ones.

The procedure is based on a three steps approach (for further details, see section
12.3). In the first step standard level of services, according to demand and supply
local factors, is evaluated; in the second step, the relationship among the level of
service (output) and the inputs is identified by estimating a parametric frontier, and
then the allocative efficiency is estimated taking advantage of the duality theory for
the inputs shadow prices computation.
Finally, in the third step, by using the the allocative efficiency previously determined
and given the standard level of services, a spatial autoregressive cost function is
estimated.

12.2 Cost and efficiency of Local Governments

In a decentralized public sector the achievement of a reform is strictly related to the
measurement of the local government performance.29

As a matter of fact, a comparative performance evaluation ensures transparency
and accountability of services providers to citizens, it is useful in the decision making
process, encourages the audit of managerial performance and highlights the contextual
dimensions influencing the operating environment.

However, there are several critical issues in measuring accurately the performance
(in terms of costs and services) in the public local sector. The complexity and/or the
multiplicity of outputs, the difficulty in establishing cause-effect relations between
services and final outcomes, the interplay of many institutional levels that require a
wide range of governmental performance information and, finally, the stakeholders
restrictions that influence the theoretical ability to improve performance, represent

29Please see Worthington and Dollery (2000) for a complete survey of frontier efficiency measure-
ment techniques in local public sector.
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some of the main issues.

The performance evaluation can be assessed through two different dimensions: the
effectiveness that provides information about the achievement of the policy objectives
in terms of appropriateness, accessibility and quality of the services and the efficiency
that describes how a government manages its resources in producing services and
that is generally estimated by parametric and/or non-parametric frontier techniques.

In fact, as underlined by Worthington and Dollery (2000), “the complex politicised
milieu of local government implies that the effectiveness of services is at least as
important as economic efficiency in gauging the success of specific municipalities
facing different demands. Frontier efficiency measurement is concerned only with the
dimensions of economic efficiency and takes no account of the effectiveness of service
provision. It is thus, at best, only a partial view of the operations of councils".

The construction of effectiveness indicators in the public sector face with several
difficulties, especially related to the definition of objectives and the verification of
their achievement since: (i) public services often pursue simultaneously multiple
goals requiring a weighting criterion, (ii) public outputs are not always related with
a "measurable" outcome and (iii) outcomes may occur over a long time period.

The efficiency assessment in the public sector, although with its specific peculiari-
ties, is less complex and starting from the ’90s has been widely developed from both
a theoretical and applied point of view.

In early studies, the Stochastic Frontiers Analysis (SFA) have been applied to
examine municipal service efficiency in terms of cost (see e.g. Hayes and Chang 1990,
Deller 1992) or production (see e.g. Jayasuriya and Wodon 2003), while from ’90s,
the most employed approach to investigate the local public sector efficiency has been
the nonparametric techniques such as Data Envelopment Analysis (DEA) (see e.g.
Cook 1991, Deller 1992, Prieto and Zofio 2001, Afonso and Fernandes 2006) and
Free Disposal Hull (FDH) approach (see e.g. Vanden Eeckaut et al. 1993, De Borger
and Kerstens 1996b, Herrera and Pang 2005).

Empirical applications to local public services highlight three important critical
issues: (i) the choice about the inclusion of non-discretionary inputs/outputs in
the analysis: Banker and Morey (1986) and Golany and Roll (1993) suggested a
“single-stage” procedure based on the maximisation of the sub-vector of discretionary
inputs/outputs; De Borger (1994), instead, proposed a “two-stage” approach in
order to obtain a residual as a “pure” allocative efficiency (see e.g. also Ruggiero
2004, Balaguer-Coll et al. 2007, Afonso and Fernandes 2008); (ii) the choice of
the input or output orientation in efficiency measures: many contributions have
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focused the analysis on input efficiency measures (see e.g. Hayes and Chang 1990
and Vanden Eeckaut et al. 1993), while De Borger (1994) affirmed that the exact
formulation depends on the particular empirical context; (iii) the robustness of the
efficiency measure results (rankings): De Borger and Kerstens (1996a) suggested
using a broad variety of methods as sensitivity analysis.

Finally, from a territorial point of view, previous studies analysed only a sample of
Local Governments (e.g. 235 Belgian Municipalities, Vanden Eeckaut et al. 1993; 589
Belgian municipalities, De Borger and Kerstens (1996a); 172 Greek municipalities,
Athanassopoulos and Triantis 1998; 1,103 Brasilian municipalities, Sousa and Ramos
1999; 166 Australian municipalities, Worthington 2000; 209 Spanish municipalities
from Castilla and Leon, Spain Prieto and Zofio 2001; 353 Finnish municipalities,
Loikkanen and Susiluoto 2005; 278 Portuguese municipalities, Afonso and Fernandes
2008; 262 Italian municipalities, Boetti et al. 2012; 414 Spanish municipalities,
Balaguer-Coll et al. 2007) or carried on comparative analysis at international level.

However, these levels of analysis are deeply influenced by specific issues linked
to the local supply and demand being affected by sample size bias drawbacks in
local studies, or, in the matter of international analysis, not avoiding the com-
parative analytical problems related to different structures of the administrative
decentralization.

In conclusion, national level, as also suggested by Wolman (2008), is a good
trade-off between local and international level, especially, as in the present case,
where cost, input and output data are available for all Italian LAs.

12.3 Methodologies for the estimation of Local
governments’ expenditure needs

The evaluation of local governments’ expenditure needs is the core of any intergov-
ernmental fiscal equalisation system which aims to remove differences in the actual
costs of providing local public services and it is the foundation of intergovernmental
fiscal relations (Blochliger et al., 2007).

There is a wide variety of methods for the estimation of local governments
expenditure requirements. This heterogeneity is not only due to the multiplicity of
available techniques, but also to the specific arrangements in the concrete experiences
of different countries, which adopt variants and particular features based on specific
needs and on their own historic and cultural traditions.
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However, international literature (Dafflon and Mischler, 2007) discerns various
primary methodologies in which the practical experiences of different countries can
relate.

According to the complexity and the amount of data required, the allocation
techniques can be summarized into two sub-groups: (i) basic techniques: historical
expenditure, uniform per capita expenditure or requirements weighted indexes
expenditure and (ii) advanced standard needs techniques: for example Representative
Expenditure System (RES) or Regression Cost Base Approach (RCA).
The two major approaches differ considerably in terms of information and calculation
requirements. The basic techniques do not require the support of “hard” statistical
and/or econometric methodology, thus minimizing the need for data; in this case,
standard needs are established in relation to what was previously accounted for in
the last available budget or in a certain number of past financial accounts.

The advanced standard needs criteria, instead, are based on the idea that the
financial needs of a LA are linked to the territorial and socio-demographic character-
istics of its resident population. These aspects, on the one hand, have an impact on
the needs of citizens and consequently on the demand of services; on the other hand,
they influence directly the production costs.

OECD suggests the adoption of standard needs as a “best practice" to be used in
the planning of financial systems for local government. In particular, it is argued
that provisions of transfers based on mathematical formulas are preferable to systems
based on historical expenditures or on discretionary criteria, because they guarantee
greater transparency, more equity in the redistribution of resources and greater
efficiency thanks to more rigid budget constraints for local government.

According to these principles, standard needs may be obtained by following a
RES (or bottom-up) approach, i.e. identifying a minimum basket of goods/services
in order to ensure a basic level of benefits30, or by using an RCA (or top-down)
approach in which the standard needs for each authority are obtained according to
the relevant factors of demand variability between regions and to the local services
production costs.

The RCA approach, adopted by the majority of developed countries, implies the
use of a structural model of demand and supply of local public good, in which the
method of instrumental variables is used to solve the endogeneity issues related to
the historical level of output.

30Requirements for each authority are determined by the linear combination of goods/services
with a plurality of weights (prices); usually the choice of these factors is entrusted to experts or it
is submitted to a political decision.
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More specifically, following an RCA approach, the selection of variables is based on
a theoretical model in which the demand for public services expressed by citizens
interacts with the supply of public services expressed by the local government. In this
framework, the efficient cost for each service depends on three basic dimensions: the
optimal quantity of service offered, the prices for the inputs used in the production
process (primarily labour costs) and the contextual demand and supply covariates.31

Formally, the RCA basic model can be expressed32 in terms of unitary cost (y) as:

y = f(o,w,x) (12.1)

where o are the exogenous outputs or workloads, w the labour and capital input
prices vector (wl,wk) and x are the demand factor or the supply contextual variables
that represent morphological and socio-economic constraints, which affect the unitary
service costs.

12.4 The estimation strategy

The estimation strategy of the equation (12.1) has to face essentially with three
critical issues:

(i) the endogeneity of the output variables; the presence of the output variables in
the estimation model provides three disadvantages: (i) outputs are not always
measurable and there may be a very serious lack of information, (ii) they might
be external to the initial theoretical model (e.g. if individual LA provides
specific service in accordance with the Central Authorities), (iii) they might
be endogenous, since their optimal quantity is determined simultaneously in
terms of cost.
Given these premises, several studies (see e.g. Andrews et al., 2014) suggest
using the Instrumental Variable (IV) approach in order to obtain unbiased
estimates of the outputs (oiv); this two-stage estimation technique helps to
estimate oiv given the endogenous values of the outputs o and the correct
instrumental variables iv: oiv = g(iv)

y = f(oiv,wl,wk,x)
(12.2)

31For example, the external factors that, all things being equal, can favour or hinder the supply
of local public goods, such as the morphological characteristics of the territory or the surface area.

32Please note that the notation is different from the standard one in order to to be consistent
with the following paragraphs.
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Moreover, oiv may be referred to an average or a frontier level, as a function of
supply and demand covariates, as a single composite indicator of the outputs
(see e.g. Porcelli et al., 2016) or by setting, over the years, higher level of services
estimated taking into account different quantiles of the output distribution.33

After estimating each oiv through the instrumental variables34, unbiased stan-
dard needs can be estimated by usual regression techniques. In this framework,
all cost differentials are determined within a model that can correctly represent
the real determinants of the expenditure requirements (especially when LAs
are extremely heterogeneous).

(ii) the non-inclusion of allocative efficiency in the model; equation (12.2) hides the
effect of different relationships between labour (Il) and capital input (Ik) and
the output produced, assuming a ratio (or more generally an efficiency) equal
for every unit; this issue appears a serious lack, because the different efficiency
among units deeply impacts on output and consequently on cost. In other
terms, LAs best practices are not taken into account given that the efficiency
of each LA is neglected both in the definition of oiv and in the setting of the
input prices w.
Kumbhakar and Lovell (2000) suggested the use of the shadow price approach
since “[...] estimating cost inefficiency was easy, but decomposing estimated cost
inefficiency into its technical and allocative component was not. Decomposition
was impossible in a single equation framework, and while decomposition is
theoretically possible in a system of equations framework, it proved to be difficult
econometrically. Perhaps the shadow price approach will be more productive”.
Given that, the allocative efficiency (Eall) has been calculated as the result of
a shadow-pricing model formulated by a Shephard input distance function (see
Chapter 2), in terms of the market capital price.35


oiv = g(iv)
Eall =DI(o, Il, Ik,wk)
y = f(oiv,wl,wk,x,Eall)

(12.3)

“Comparing shadow price ratio with actual price ratio” (Fried and Lovell, 2008)
allows to obtain a measure of the inefficient use of resources that in a perequation
framework should not be granted to the inefficient LAs.

33This approach is suitable for policies which aim to improve the overall performance of the
LAs as a whole by progressively increasing the standard level of services given the available macro
budget.

34In the section 12.5 we’ll refer, without loss of generality, to an univariate output oiv.
35The model is specular in case of optimal capital price given the labour one.
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(iii) the criteria of selection of the local supply and demand covariates x in order
to catch all the territorial characteristics; it can be noted that a uniform
agreement about a consistent criteria is not yet reached in literature even if
two main practical approaches are generally followed: the first one introduces
into analysis a multitude of variables in order to capture all the cost variability,
while the second one introduces regional dummies in order to catch all the
territorial regularities not included directly in the analysis.

In this paper, a Spatial AutoCorrelation (SAC, Kelejian and Prucha, 1998)
estimation model has been proposed (see Subsection 4.3.3) with the aim of
combining model simplicity and unbiased estimates. This estimator, named
fSAC , lets to include the omitted variables and more generally all the intangible
factors as a spatial lag and, more generally, to reduce the covariate terms; on
the other side, it allows to control the spatial autocorrelations of the error term
obtaining unbiased estimates.


oiv = g(iv)
Eall =DI(o, Il, Ik,wk)
y = fSAC(oiv,weffl ,wk,x,Eall)

(12.4)

Equation (12.4), finally, allows to estimate expenditure standard needs y in
an unitary approach that simultaneously takes into account the standard (or
desired, target, minimum) level of services oiv and the allocative efficiency Eall
where spatial dependence between territorial authorities is controlled.

In the following subsections the fundamentals behind the methodologies used in steps
ii) and iii) are briefly outlined.

12.5 Empirical analysis

12.5.1 Variables and data

In 2009, Italian government started a challenging reform process in order to equalise
transfers to LAs according to standard needs criteria; the statutory law on fiscal
federalism (Law No. 42, May 5th 2009) and the subsequent Legislative Decree No.
216, November 26th 2010 assigned these tasks to SOSE S.p.A., a subsidiary of Italian
Ministry of Economy and Finance and Bank of Italy.
The standard needs assessment for each LA (Municipalities, Provinces and Metropoli-
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tan cities) has started with the construction of a very extended database36 covering
a plurality of information for each service provided.

Structural data collected through the questionnaires has allowed to collect ex-
tremely detailed information about specific factors of supply and demand, expen-
ditures and revenues, inputs (personnel employed, instrumental allotments, local
units used, etc.), output produced (services implemented) and procedures for the
implementation of services (e.g. forms of association between Municipalities) into a
unitary and coherent framework for each “essential” function.37

Structural data, after having passed stringent consistency and quality checks in order
to correct anomalies and serious inconsistencies, has been integrated with structural
and accounts information drawn from official sources.
In the following empirical analysis, the focus has shifted on a sub-function of the
General Administration, more in particular on services delivered by the Municipal
Registry office; this is essentially because the quality of services provided can be
assumed as uniform in all 6,702 municipalities analysed while providing a variety of
services.38

Finally, data (year 2009) are freely downloadable at:
http://www.opencivitas.it/open-data.

12.5.2 Estimation of the standard level of services oiv

The first step of our analysis involves the estimation of the standard level of services
oiv according to the equation (12.2).
For sake of simplicity and in the absence of a desired or regulatory level, in this
application, vector oiv is set equal to a single output estimated as the mean level of the
historical composite outputs; this approach can be made more general by imposing a
multi-output – multi-input system of linear equations where the expected level of
each output is set as dependent by some covariates, but also by the interrelationships
with the other ones (for more details please see Porcelli et al., 2016).

Table 12.1 shows the OLS estimation results (and in particular the most complete
model OLS3) highlighting the positive contribution of the local demand covariates
related to the effects of the population (both domestic - Daytime population -
and foreign - Tourist presence) and the complexity of the Municipality (Surface

36More information at: http://tinyurl.com/cz9stat.
37The “essential” functions for the Italian Municipalities are: General Administration, Local Police,

Education (complementary services), Public Roads and Transport, Planning and Environment and
Social care.

38In public services, in fact, we are often in the presence of multi-input and multi-output processes;
in this case the different quality of the output can heavily affect the estimation of efficiency.

211

http://www.opencivitas.it/open-data
http://tinyurl.com/cz9stat


Input distance functions: Level of services, spatial dependence and allocative efficiency in the local
governments expenditure needs framework

area) on the level of services.

Dependent variable:
Historical output

(OLS1) (OLS2) (OLS3)
Daytime population 0.587∗∗∗ 0.545∗∗∗ 0.541∗∗∗

Surface area 0.372∗∗∗ 0.362∗∗∗

Tourist presence 0.015∗∗∗

Constant 0.318∗∗∗ -0.014 -0.012

Observations 4,336 4,336 4,336
R2 0.659 0.659 0.660
Adjusted R2 0.659 0.659 0.660
Residual Std. Error 1.040 1.040 1.038
F Statistic 44,185.790∗∗∗ 4,185.790∗∗∗ 2,807.336∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12.1: Estimation results - Standard level of services oiv

Studentized Breusch-Pagan test39 equal to 652.69 (p-value < 2.2e−16) and Jarque
Bera test40 (X-squared = 1335200, p-value < 2.2e−16) show a good adaptation of
the estimated model to the primary OLS assumptions.

12.5.3 Estimation of the allocative efficiency Eall

The second step involves the calculation of the allocative efficiency Eall through the
estimation of the labour input shadow price wshl ; as pointed out in equation (2.9),
a frontier production model must be initially estimated in which the inverse of a
single input (in this case, the capital k since the relative price41 was not affected by
errors) is correlated with the ratio between labour (w, number of the employees42

divided by its average) and capital input k (office, square meters divided by its
average) and the ratio between the output level (o, historical output) and the
capital input k.

log(1/k) = f(log(w/k), log(o/k)) (12.5)
39It test the heteroskedasticity of the residuals, namely if the estimated variance of the residuals

are dependent on the values of the independent variables.
40It is a goodness-of-fit test, testing the normality of the residuals through the skewness and

kurtosis.
41Estimation based on the cost of renting properties at the provincial level.
42Data source: IX General census of industry and services - Survey public institutions, ISTAT.

The elementary data, available only for the total of the municipality, has been re-proportioned by
the percentage of the costs of the Municipal Registry function on the total expenses for employees.
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The SFA 43 results are reported in table 12.2; in particular a satisfying covariate
fitting can be noted and a very significant percentage of total error variance due
to inefficiency (σ2

U/σ
2 = λ2/(λ2 + 1) = 75%, mean efficiency = 0.61) showing that

the 75% of the total variation is due to inefficiency and that the remaining 25% is
random variation.

Estimate Std. Error z value Pr(>|z|)
Intercept 0.955355 0.023745 40.2339 < 2.2e−16 ***
log(w/k) 0.525679 0.020999 25.0333 < 2.2e−16 ***
log(o/k) -0.122719 0.017275 -7.1038 1.214e−12 ***
σU 0.719213 0.026516 27.1234 < 2.2e−16 ***
σV 0.406405 0.014242 28.5355 < 2.2e−16 ***
λ 1.769697 0.119584 14.7988 < 2.2e−16 ***

Table 12.2: Stochastic frontier analysis results

Finally, the estimation of the stochastic frontier has been functional to the
calculation of the derivatives ∂DI(I,o)/∂Ik and ∂DI(I,o)/∂Il and subsequently to
the estimation of Eall by equation (2.10).

12.5.4 Estimation of the spatial cost function given oiv and
Eall

The last step of our analysis involves the estimation of the standard cost given
standard level of service (oiv) and the allocative efficiency (Eall) depurated by
the autocorrelation both in the residuals (SAC) both in the explicative variables
(SAC-mixed).
In a second step the fitted values (the standard cost) of the estimated cost function
has been calculated penalizing the units presenting the lowest efficiency values.

Results44 are reported in table 12.3; please note that the cost function follows
the specification of equation (12.4) in which the demand factors x are represented
by the advanced computer equipment and by the decentralized office (these factors
indeed affect the cost positively). Note that because of the dependence structure of
the SAC model, coefficient estimates do not have the same interpretation as in OLS.
The β parameter reflects only45 the short-run direct impact of xi on yi.

Some issues can be noticed: (i) the estimated coefficients look stable and significant
43In the error components frontier formulation, see Battese and Coelli (1992).
44In the estimation dependent variables and covariates are logged and divided by the mean.
45The indirect impacts of xi on yi (that yi exerts on its neighbours yj , which in turn feeds back

into yi) are not yet available for SAC models in R spdep package.
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Dependent variable:
Per capita cost

(OLS1) (OLS2) (OLS3) (OLS4) (SAC) (SAC mixed)
Constant 0.075∗∗∗ −6.030∗∗∗ −6.208∗∗∗ −2.606∗∗∗ −4.333∗∗∗ 3.733∗

Output IV 0.586∗∗∗ 0.527∗∗∗ 0.494∗∗∗ 0.462∗∗∗ 0.487∗∗∗ 0.486∗∗∗

wk 0.446∗∗∗ 0.437∗∗∗ 0.557∗∗∗ 0.533∗∗∗ 0.528∗∗∗

wl 0.512∗∗∗ 0.524∗∗∗ 0.197∗∗∗ 0.359∗∗∗ 0.351∗∗∗

Decentralized office 0.179∗∗∗ 0.195∗∗∗ 0.168∗∗∗ 0.168∗∗∗

Advanced equipment 0.217∗∗∗ 0.206∗∗∗ 0.180∗∗∗ 0.180∗∗∗

Eall −0.349∗∗∗ −0.271∗∗∗ −0.279∗∗∗

Lagged Output IV −0.401∗∗∗

Lagged wk −0.214∗∗∗

Lagged wl −0.715∗∗∗

Lagged Decentralized office 0.027

Lagged Advanced equipment -0.072

Lagged Eall −0.168∗

AIC 4582.448 4224.015 4091.897 3831.333 3228.728 3202.994
R2 0.545 0.597 0.616 0.648
Adjusted R2 0.545 0.597 0.615 0.648
F Statistic 3,523.516∗∗∗ 1,455.743∗∗∗ 941.934∗∗∗ 903.485∗∗∗
λ (deterministic part) 0.043 0.694∗∗∗
ρ (error part) 0.741∗∗∗ 0.035

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12.3: Results
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in all models; (ii) the minimum AIC is reached by increasing the complexity of the
model; (iii) the coefficient of the allocative efficiency (Eall) is negative confirming
that an improved efficiency decreases the cost of the service;(iv) the coefficient of
the capital price (wk) is increasingly statistically significant with the increasing
complexity of the model, but in particular it becomes economically significant in the
SAC-mixed model; (v) finally ρ is positive and significant in the SAC formulation46

while it becomes not significant in the SAC-mixed formulation for the benefit of λ; this
result shows that the strong residuals autocorrelation, initially in the SAC attributed
to the positive demand effects of the omitted variables, was linked, as was expected,
to the spatial dependence of the output and especially the prices. In addition to this,
note that the spatial lagged covariates more related to the single implementation of
each Municipality (Decentralized office, Advanced equipment and Allocative
efficiency) are not significant.

The incorporation of the local spatial factors into the estimation is necessary as it
is confirmed in figure 12.1; the SAC-mixed residuals - right figure - unlike the OLS
ones - left figure - in fact are not correlated with the own spatially lagged residuals,
that is, there is no more global spatial autocorrelation in estimation SAC residuals.
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Figure 12.1: Comparing the estimation residuals - Moran plot

The benefits of the proposed estimation method are evident even in terms of local
spatial autocorrelation: as shown in figure 12.2, the proposed method allows to reduce
substantially the local spatial autocorrelation with respect to the unconditional OLS
estimations.

46Please note that we used the Kelejian and Prucha notation.
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Figure 12.2: Kernel density of local Geary c - OLS, SAC and SAC mixed

Limitations related to the OLS static model (from a territorial point of view) are
also evident analysing the single local covariates importance on cost varying location;
but how demonstrate this? GWR (see Subsection 4.3.4) is a valid answer given that
performs a series of weighted least squares regressions on subsets of the data, where
the influence of an observation i decreases with the Euclidean distance to a regression
point j. These distance-dependent weights are determined by a kernel function and
the range of the input data is set according to a specific bandwidth in order to carry
on a LWR (Fotheringham et al., 2002) for each spatial subset.
The aim of this part, therefore, is not so much to estimate the cost locally, but to
highlight how and where the covariates coefficients remain stable; in other words,
stable coefficients in space justify the adoption of a static model as OLS, while
variable coefficients suggest the need for spatial models.

Figure 12.3 and table 12.4 show how, especially for the prices, the impact on
cost is not homogeneous from a territorial point of view pushing to sharply reject a
prediction model that does not take into account the different organizational models
that insist on heterogeneous territories.

After identifying the correct estimation model, the last task of our empirical
analysis is the application of the estimated SAC-mixed model47 to a dataset in which

47The authors thanks Roger Bivand and Martin Gubri for their advice regarding the predictions
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Figure 12.3: Semi-parametric smoothing function of the GWR wl coefficient

Statistic N Mean St. Dev. Min Max
Output coefficient 3,413 0.545 0.045 0.393 0.683
wk coefficient 3,413 0.185 0.142 −0.319 0.733
wl coefficient 3,413 0.522 0.210 −0.383 1.109

Table 12.4: Summary of the GWR coefficients
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Input distance functions: Level of services, spatial dependence and allocative efficiency in the local
governments expenditure needs framework

all variables had the same historical values except allocative efficiency that was equal
to maximum for all units; this means that, in the application phase more inefficient
units receive a transfer minor than the value assigned to the efficient ones (see figure
12.4) given that the efficiency coefficient is negative.
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Figure 12.4: Estimated cost saving (e per capita) and allocative efficiency

Finally, figure 12.5 show the cost saving territorial distribution highlighting that
major savings could be obtained in metropolitan areas near Milan and Naples and
in the Apulia region.

12.6 Concluding remarks

This paper presents a novel framework to incorporate spatial dependence, allocative
efficiency and standard level of service into a public cost setting: a more accurate
allocation of intergovernmental transfers let reach a higher level of equity and
efficiency, two aspects that must be pursued and evaluated together.
Without taking into account spatial dependence, in fact, full territorial equity cannot
be attained; without fixing a given standard level of service nothing guarantees
that the differences in terms of social equity can be mitigated; without estimating
allocative efficiency between output and input in terms of prices a lower cost of

in spatial autoregressive models; more in particular we used the sppred function - still not public in
R spdep package - with the KP3 (Kelejian and Prucha, 2007) predictor in order to obtain the best
linear unbiased prediction (BLUP).
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Figure 12.5: Semi-parametric smoothing function of per capita estimated cost saving

service can not be reached; in other words, without taking into account these issues
nothing guarantees reaching the main aim of the public action.

The proposed approach has been tested on a novel very extended dataset covering
more than 6.000 Italian Municipalities highlighting the heterogeneous relationship
among cost, prices, output and demand factors and the need to explain this complexity
through flexible empirical models.

It is possible and desirable - especially in Italy - to finally address the issue of
financing LAs with a new approach: (i) more transparent straightforward by basing
equalization standard on objective and correct criteria, (ii) more equitable by taking
into account the standard level of service without penalizing LAs that produce a
good level of service and (iii) more consistent by maintaining a stable evaluation
system over time.
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Working paper:
Fusco E. and Maggi B. (2016). Bank Financial world crisis:

Inefficiencies and Responsibilities. DSS Empirical Economics and
Econometrics Working Papers Series, DSS-E3 WP 2016/2,

University of Rome La Sapienza.
http://www.dss.uniroma1.it/RePec/sas/wpaper/20162_fm.pdf

13.1 Introduction

Untill recently, most of the literature regarding banking systems efficiency neglected
the question of problem loans. Under the influence of the 2008-9 crisis, this question
started receiving growing consideration. Berger and DeYoung (1997) pioneered
this field trying to face the study of the relations between problem loans and
efficiency by means of the Granger-causality method, Hughes and Mester (1993)
considered problem loans inside the frontier function. However, both these attempts
are not satisfactory because, the former is a mere statistical tool based on the VAR
methodology and so deprived of an economic interpretation of causality, the latter is
incoherent since an increase of efficiency may be due simply to an increasing number
of regressors. Only at the beginning of the first decade of the 20s with the works of
Pastor (2002) and Pastor and Serrano (2005) the question under consideration has
been addressed properly with a non parametric approach, which is of less powerful
insight from a modelization point of view. Pastor and Serrano (2006) adopted a
parametric approach but did not find a functional relationship between stochastic
frontier and non performing loans (NPLs) and focused their investigation on the
connection between NPLs and X-efficiency. Maggi and Guida (2011) addressed this
point by considering an indirect function linking NPLs with stochastic frontier.

With the present work we go further by directly inserting the NPLs variable in
the stochastic frontier as a negative output, taking advantage of the fact that our
definition of efficiency relies on the concept of the distance function. In this way we
are capable of assessing on the quality of the problem loans adopted by banks and
on their responsibility in the risk management. The former question is addressed by
calculating the price of non performing loans per year, bank and country considered
in our dataset, the latter by comparing the management - in terms of variance
analysis - of NPLs and their price across geographic areas and bank dimension over
time. In doing so we provide a methodology which allows on one hand to alert in
advance on an incumbent state of crisis and, on the other hand to evaluate the
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responsibility to be imputed to the main actors in the credit sectors, i.e. banks
and local governments. Furthermore, an economic policy in terms of regulatory
activities focused on the NPLs price comes out naturally as an implication of the
analysis implemented. In fact, notably, the NPLs price is unknown and therefore not
normally observable. Instead, our methodology allows its calculation from the first
order conditions underlying the estimation performed. Indeed, in Maggi and Guida
(2011) there is also the possibility of evaluating a similar indicator. However, from
the cost function there considered, the marginal cost calculated cannot be assumed
as a price-quality indicator in that this would have been possible only with perfect
competition which is not the case for a credit market. Moreover, that methodology
passes through the definition of a density function which inevitably involves a degree
of arbitrariness in its form of definition. From an econometric point of view, we are
-to our knowledge- the first to adopt the semi-nonparametric Fourier specification
which, among the functional-flexible-form alternatives, is capable of guaranteeing
the convergence of the estimated parameters and the related X-efficiency to the true
ones (Gallant, 1981, Berger et al., 1997).

Our goals consist in: 1) finding a map of the responsibilities of the last financial
crisis, 2) finding a road to regulate the risk in the credit market, 3) alerting the crisis
period, 4) providing a rigorous method to calculate efficiency in case of a production
function with undesired outputs. In order to cope with the need of monitoring the
credit sector, for the reasons mentioned above, our prime necessity is to calculate
the shadow-price applied to NPLs.

We intend to derive the X-inefficiency and a closed form solution for price of
problem loans conceived as a negative output. Such a closed form will be used for the
estimation in the next section. The representative commercial bank uses a positive
vector of N inputs, denoted by x = (x1, ...,xN ) , x ∈RN+ to produce a positive vector
of M outputs, denoted by u = (u1, ...,uM ) , u ∈ RM+ . The production technology of
the bank can be defined by the output set, P (x) that can be produced by means of
the input vector x, i.e., P (x) =

{
u ∈ RM+ : x can produce u

}
. It is also assumed that

technology satisfies the usual axioms initially proposed by Shephard (1970), which
allow to define the distance function -in terms of output- as the reciprocal of the
maximum radial expansion of a given output vector proportional to the maximum
output attainable. In such a way the resulting output vector remains within P (x),
being attainable using the available resources and technology. The output distance
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can be formally defined as 48:

Do(x,u) = inf
{
θ :
(u
θ

)
∈ P (x)

}
(13.1)

where Do(x,u) is the distance from the bank’s output set to the frontier, and
θ ∈ [0,1] is the corresponding level of efficiency. The output distance function seeks
the largest proportional increase in the observed output vector u provided that the
expanded vector (u

θ )) is still an element of the original output set (Färe and Primont,
1995). Such an expression defines the weak disposability of outputs and therefore the
inefficiency, which could explain, in our context, the presence of NPLs (undesirable
outputs) that banks generate in their production processes, and that cannot be freely
eliminated either because it would require a greater use of inputs, and/or because
resources would have to be diverted from marketable production.

In fact, by considering the NPLs as an output of a production process, other
than giving the advantage of deriving the correspondent price, it eliminates the
empirical complications that would have occurred using a cost function approach.
In fact, in this case a simultaneity problem would have arisen between inefficiency
and therefore costs- and NPLs considered as an explicative variable. Our approach
exploits the duality of maximum revenue problem, expressed in terms of distance
function (13.1), where the correspondence between the primal and the dual problems
relies on efficiency and output prices. Furthermore, such an approach allows the
definition of inefficiency as a function of outputs and prices, included that one of
NPLs, on which the empirical analysis is focused. More specifically, undesirable
outputs, such as NPLs, have non-positive shadow prices that may be obtained
empirically by exploiting the above mentioned duality. Now we set primal and
revenue function problems in order to find the two corresponding shadow prices
vectors in natural numbers and normalized for the revenue function, respectively.
Then, we find the NPLs price in natural numbers from the revenue function (see
Section 2.2 for a methodological discussion).

13.2 Variables and data

Data are from Bankscope and are referred to 517 Commercial Banks in Europe and
2404 in the U.S., the sample period is 2000-2008. Europe includes the Euro system
plus UK, Sweden, Norway and Turkey. The list of countries considered is reported in
the following Tables 13.1 and 13.2. The large database used allows for a very specific

48This expression is equivalent to the reciprocal of the output oriented efficiency measure of
Farrell (Farrell, 1957 and Fare and Knox Lovell, 1978).

224



Output distance functions: “Bank Financial world crisis: Inefficiencies and Responsibilities”

assessment both on the responsibilities of the single country policy and legislation
and on the bank discipline during the last financial crisis.

The specification we adopt for the distance function is the production approach
with three outputs and two inputs. Among desirable outputs we consider deposits
(u1), loans (u2) and services (u3), NPL (u4) is the undesirable output and inputs
are capital (x1) and labor (x2). Deposits are regarded as an output, rather than an
input, for the diminishing importance of the corresponding interest rate still in the
commercial banking system. All variables are expressed in nominal (dollar) values
at constant prices (year 2000). The labor price is calculated as total personnel cost
divided by the number of employees. Fixed assets have been transformed from the
historical cost evaluation of balance sheet (International Accounting Standards 16)
to current cost. As for capital price we estimate the following indirect function where
the total capital is proxied49:

log(CapitalCostkt) =
K∑
k=1

dpck · log(pck0) +β1log
(
At+Lt

2

)
+ εkt (13.2)

for k = 1, ...,K,t= 2000, ...,2008
where At stands for total assets, Lt for total liabilities, pck are estimated coefficients
of the dummy variables dpck representing the capital price for each branch and
β1log

(
At+Lt

2

)
is the proxied total capital.

The services variable is constructed as the total value of "net" services.

Importantly, NPLs have different definitions across European countries and in
the U.S.. In particular, the U.S. definition includes only the protested credits whilst
a more prudential definition is adopted in Europe where uncertain loans are also
considered. We may now calculate a first indicator of the banking system risk
consisting in the empirical NPLs failure probability for loans given by NPLs out of
loans and reported in Figure 13.1.

The descriptive statistics are shown below. We consider the mean and the stan-
dard deviation of the variables used in the estimation.

49We tried also direct functions both linear and logarithmic and other indirect functions with
less qualitative results available upon request.
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Table 13.1: Descriptive statistics: Europe∗

Non
Country Statistics Deposits Loans Services Capital Labour Performing

(u1) (u2) (u3) (x1) (x2) loans (u4)

Austria Mean 1747,04 1213,82 18,32 5985,93 267 12,09
St. Dev. 5977,25 4553,54 32,11 18095,67 797 27,11

Belgium Mean 2031,03 1306,25 20,79 4488,13 404 17,84
St. Dev. 2170,53 1677,11 26,58 4974,75 407 15,84

Denmark Mean 4661,29 4252,55 47,77 15587,65 885 27,34
St. Dev. 17543,28 14334,46 151,75 55413,08 2459 60,31

Finland Mean 21048,81 14555,98 238,64 67574,18 3183 91,98
St. Dev. 23227,00 15318,52 294,19 87932,30 3372 68,33

France Mean 13656,28 6885,30 164,02 37467,77 1777 37,99
St. Dev. 68586,04 30746,82 799,17 205861,30 6327 88,48

Germany Mean 8495,53 5686,36 64,33 21259,51 815 30,50
St. Dev. 43770,04 25874,97 331,86 107016,10 3456 81,58

Great Britain Mean 1425,02 661,53 18,11 3747,84 134 9,62
St. Dev. 3006,67 1646,89 41,26 9392,71 209 14,44

Greece Mean 20988,58 14953,53 225,88 47050,90 5307 95,79
St. Dev. 19250,46 13110,13 247,78 43570,73 4192 61,60

Ireland Mean 1628,32 876,27 4,16 11277,91 28 14,63
St. Dev. 1351,37 752,11 13,56 18714,80 24 9,34

Italy Mean 9368,70 8047,37 151,08 29230,47 2156 51,09
St. Dev. 25245,42 21729,86 405,87 83840,79 5555 76,63

Luxembourg Mean 6482,70 1791,80 51,02 14633,63 253 21,08
St. Dev. 9543,99 2645,64 86,90 20937,75 429 21,58

Norway Mean 8917,08 8516,49 91,95 20680,95 1067 57,94
St. Dev. 12749,99 11497,77 127,96 28475,77 1309 62,61

Holland Mean 1739,90 961,61 19,54 3634,53 181 16,90
St. Dev. 573,13 327,12 17,51 1263,83 181 3,88

Portugal Mean 12354,38 9385,98 183,55 32140,49 1924 58,88
St. Dev. 17147,59 13751,15 214,46 45620,39 2535 71,89

Spain Mean 28746,29 21868,65 305,62 73064,57 6056 107,96
St. Dev. 50308,91 35403,95 654,43 140552,40 12693 120,13

Sweden Mean 12186,94 6861,50 123,59 31601,42 1401 39,05
St. Dev. 28378,89 16713,39 290,24 74676,69 3093 75,51

Switzerland Mean 8456,13 3261,29 150,64 19532,63 677 17,27
St. Dev. 65926,16 22076,50 1158,58 151058,40 4533 66,77

Turkey Mean 6663,87 3679,48 177,47 15626,92 6039 33,50
St. Dev. 7067,57 4082,52 197,98 16380,99 7292 34,09

Europe Mean 8864,66 5420,21 105,41 23524,42 1246 32,79
St. Dev. 43645,11 21728,41 588,05 116975,50 4685 72,43

*Note: Time average data are expressed in millions of Dollars
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Table 13.2: Descriptive statistics: U.S.∗

Non
Country Statistics Deposits Loans Services Capital Labour Performing

(u1) (u2) (u3) (x1) (x2) loans (u4)

Alabama Mean 138,33 105,40 1,28 461,65 60 1,46
St. Dev. 153,33 126,36 1,71 509,40 69 2,05

Alaska Mean 1069,90 744,94 17,38 3502,90 484 9,98
St. Dev. 457,51 219,85 12,38 1661,77 225 2,51

Arizona Mean 104,74 93,13 0,67 332,77 35 1,26
St. Dev. 54,12 45,70 0,55 175,67 21 1,07

Arkansas Mean 216,39 165,79 2,69 698,86 99 2,40
St. Dev. 277,49 219,59 4,65 893,72 121 3,19

California Mean 317,58 274,19 3,38 1050,45 107 3,73
St. Dev. 429,59 424,74 5,87 1487,87 134 5,45

Colorado Mean 291,00 227,30 3,38 910,52 99 2,96
St. Dev. 368,11 313,67 4,69 1131,38 107 4,50

Connecticut Mean 359,14 337,63 1,90 1224,77 105 3,25
St. Dev. 216,80 236,87 2,30 770,70 54 2,16

Delaware Mean 572,83 440,43 17,46 1859,01 138 7,05
St. Dev. 795,49 601,74 30,20 2570,17 131 10,10

Florida Mean 219,11 179,88 2,28 704,21 80 2,35
St. Dev. 274,42 239,94 5,50 887,63 112 3,25

Georgia Mean 162,21 134,68 1,65 519,78 64 2,01
St. Dev. 159,96 142,80 2,46 513,98 64 2,41

Idaho Mean 259,08 216,61 3,64 827,18 143 3,47
St. Dev. 199,31 179,38 3,34 631,46 102 3,07

Illinois Mean 250,90 191,98 2,69 806,28 87 2,46
St. Dev. 535,00 396,56 7,18 1728,90 169 6,08

Indiana Mean 302,54 252,21 4,19 1009,05 127 2,90
St. Dev. 327,11 276,36 8,03 1093,48 142 3,21

Iowa Mean 122,67 103,12 1,15 410,98 45 2,46
St. Dev. 146,09 134,27 1,76 509,43 49 10,93

Kansas Mean 111,72 88,82 1,75 364,69 52 1,23
St. Dev. 128,16 105,72 4,76 423,43 64 1,62

Kentuchy Mean 156,75 130,23 1,84 514,18 68 1,68
St. Dev. 175,14 156,02 3,35 559,22 68 2,06

Louisiana Mean 166,92 122,56 2,14 530,11 92 1,80
St. Dev. 137,55 109,59 2,13 432,44 77 2,43

Maine Mean 357,92 332,59 3,99 1239,64 133 3,99
St. Dev. 218,25 184,48 4,15 752,53 47 2,63

Maryland Mean 256,04 225,10 2,50 843,20 121 2,63
St. Dev. 253,44 220,72 3,81 851,96 148 2,58

Massachusetts Mean 170,91 140,21 1,38 572,73 59 1,60
St. Dev. 228,99 184,21 2,72 791,37 73 2,49

Michigan Mean 232,37 209,43 2,26 771,86 91 3,01
St. Dev. 323,53 294,21 3,85 1081,65 135 4,49

Minnesota Mean 168,90 142,17 1,46 544,25 55 1,92
St. Dev. 226,04 184,37 2,14 732,36 52 2,69

Mississipi Mean 207,18 158,74 2,65 671,60 99 2,24
St. Dev. 227,22 195,03 4,30 742,07 118 2,54

Missouri Mean 167,02 136,90 1,94 536,07 70 1,86
St. Dev. 212,98 172,58 5,02 689,62 85 2,80

Montana Mean 152,25 126,38 1,44 501,07 64 1,88
St. Dev. 141,65 124,18 1,69 469,14 51 2,00

Nebraska Mean 157,92 134,32 1,70 507,59 65 2,09
Continued on Next Page.
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Table 13.2: Descriptive statistics: U.S.∗

Non
Country Statistics Deposits Loans Services Capital Labour Performing

(u1) (u2) (u3) (x1) (x2) loans (u4)
St. Dev. 234,49 207,96 3,77 748,72 90 3,83

Nevada Mean 296,77 232,23 0,09 930,84 81 3,57
St. Dev. 450,03 367,39 8,84 1412,74 97 6,81

New Hampshire Mean 278,76 236,47 2,15 923,97 114 2,89
St. Dev. 180,83 148,04 1,83 593,58 75 2,46

New Jersey Mean 403,32 291,87 2,06 1311,36 103 3,86
St. Dev. 722,25 431,84 5,49 2398,59 195 7,58

New Mexico Mean 177,40 135,37 1,77 568,59 75 1,79
St. Dev. 211,24 190,84 2,11 684,07 65 2,12

New York Mean 503,54 302,44 4,61 1653,79 135 4,19
St. Dev. 938,82 420,23 8,81 3146,15 153 7,61

North Carolina Mean 388,06 340,69 3,74 1277,65 149 4,70
St. Dev. 316,63 286,39 3,73 1022,51 127 4,33

North Dakota Mean 170,11 145,40 2,10 545,12 76 2,04
St. Dev. 248,47 234,69 4,28 794,56 107 3,21

Ohio Mean 155,69 124,61 1,47 518,19 68 1,45
St. Dev. 202,46 161,72 3,26 706,08 86 2,24

Oklahoma Mean 144,26 113,47 1,91 461,54 73 1,31
St. Dev. 167,05 140,41 2,70 537,30 78 1,76

Oregon Mean 298,07 272,26 3,35 951,79 147 3,82
St. Dev. 298,40 302,82 3,34 956,51 127 5,42

Pennsylvania Mean 306,48 238,52 2,95 1040,64 121 2,66
St. Dev. 244,16 190,12 3,81 823,73 112 2,24

Rhode Island Mean 844,72 740,07 7,07 3027,55 245 10,01
St. Dev. 121,37 130,17 1,71 615,99 29 1,39

South Carolina Mean 216,28 185,88 2,37 716,97 88 2,32
St. Dev. 220,79 211,66 3,45 712,27 95 2,80

South Dakota Mean 215,88 179,46 3,33 689,67 88 2,11
St. Dev. 354,76 300,89 11,95 1102,97 122 3,30

Tennessee Mean 173,61 140,24 1,77 554,16 74 5,09
St. Dev. 202,39 176,61 2,14 646,64 63 26,92

Texas Mean 255,25 177,31 4,20 809,56 115 2,18
St. Dev. 559,52 427,80 11,81 1813,10 217 4,98

Utah Mean 223,56 187,50 3,01 713,14 99 2,95
St. Dev. 178,44 153,63 3,03 557,56 87 3,58

Vermont Mean 200,52 163,03 2,18 644,51 102 1,94
St. Dev. 73,33 67,46 1,53 259,36 34 0,95

Virginia Mean 243,88 199,92 2,94 790,76 111 2,48
St. Dev. 197,69 169,57 4,81 664,15 90 2,43

Washington Mean 275,15 233,72 3,37 898,31 111 3,24
St. Dev. 401,96 368,43 6,59 1317,89 151 5,52

West Virginia Mean 230,27 187,14 2,14 761,62 101 2,25
St. Dev. 507,27 415,63 6,14 1764,97 219 5,21

Wisconsin Mean 243,59 204,84 2,54 794,74 77 2,73
St. Dev. 1095,49 900,07 16,11 3614,55 309 12,84

Wyoming Mean 117,28 79,66 0,94 363,87 45 0,82
St. Dev. 85,91 60,73 1,10 265,02 37 0,49

U.S. Mean 219,53 174,83 2,44 714,60 85 2,43
St. Dev. 426,82 332,39 6,68 1405,78 137 6,91

*Note: Time average data are expressed in millions of Dollars

Figure 13.1, coherently with the wider definition of non performing loans in
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Europe, shows that the ratio NPLs/LOANS is always higher in Europe with an
average of 2.7% compared with 1.4% of the U.S.. We note however that in Europe the
ratio decreases during the years considered in contrast to the U.S. where it increases
especially in 2008, raised from 1.36% to 1.57%.

2000 2001 2002 2003 2004 2005 2006 2007 2008
1,20%

1,70%

2,20%

2,70%

3,20%

NPL/LOANS

Europe The US

Figure 13.1: NPLs/Loans series of Europe and the U.S. (years 2000-2008)

13.3 Empirical methodology

In order to be able to calculate the shadow prices of the NPLs as described in section
2.2, in this section we estimate with a Feasible Generalized Least Squares regression
(FGLS) the distance function. Following Aigner and Chu (1968) the problem to be
solved is:

max
K∑
k=1

[
logDo(xk,uk)− log(1)

]
(13.3)

where k = 1, ...,K indexes individual banks.

This function is subject to the following constraints:

(i) logDo(xk,uk)≤ 0,k = 1, ...,K

(ii) ∂logDo(xk,uk)
∂loguk

m
≥ 0,m= 1, ...,h;k = 1, ...,K

(iii) ∂logDo(xk,uk)
∂loguk

m
≤ 0,m= h+ 1, ...,M ;k = 1, ...,K

(iv) ∑M
m=1αm = 1 , ∑M

m=1αmm′ =
∑M
m=1 γnm = 0,
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(v) βnn′ = βn′n,αmm′ = αm′m,γnm = γmn, δij = δji,λij = λji,
m= 1, ...,M,n= 1, ...,N, i, j = 1, ...,N +M.

where the first h outputs are desirables and the next (M-h) outputs are undesirables.

The objective function "minimizes" the sum of deviations of individual observa-
tions from the frontier of technology. The set of restrictions in (i) implies that each
observation is located either on or below the technological frontier; the restrictions
contained in (ii) ensure that desirable outputs will have nonnegative shadow prices
for all firms, while (iii) undesirable outputs will have nonpositive shadow prices, also
for all firms. The assumption of weak disposal of outputs is introduced by restriction
(iv) that imposes homogeneity of degree 1 in outputs; finally (v) imposes symmetry.

The specification we adopt is the Fourier Flexible Functional form (FFF) which
can globally approximate the unknown true function50. In order to test the robustness
of our results, we also estimate the Translog (TL) being the most broadly used flexible
functional form51.

The FFF can be expressed as follows:

lnDo = α0 +
N∑
n=1

βn · lnxn+
M∑
m=1

αm · lnum+ 1
2

N∑
n=1

N∑
n′=1

βnn′ · (lnxn) · (lnxn′)

+ 1
2

M∑
m=1

M∑
m′=1

αmm′ · (lnum) · (lnum′) +
N∑
n=1

M∑
m=1

γnm · (lnxn) · (lnum)

+
M+N∑
i=1

δi · sin(zi) +
M+N∑
i=1

λi · cos(zi) +
M+N∑
i=1

M+N∑
j=1

δij · sin(zi+ zj)

+
M+N∑
i=1

M+N∑
j=1

λij · cos(zi+ zj) +
M+N∑
i=1

M+N∑
j=1

M+N∑
l=1

δijl · sin(zi+ zj + zl)

+
M+N∑
i=1

M+N∑
j=1

M+N∑
l=1

λijl · cos(zi+ zj + zl) + ε

(13.4)

As for the determination of the frontier, Do needs to be equal to unity and, in that
case, the logarithm of the term on the left side of the equation (13.4) will equate zero.

50The FFF, developed by Gallant (1981), combines the standard TL with the non-parametric
Fourier form. The number of trigonometric terms in the FFF has been chosen, following the rule
of thumb expounded in Eastwood and Gallant (1991) to get a total number of parameters equal
to the number of the observations raised to the power of two-thirds. Such a rule serves to obtain
consistent and asymptotically normal estimates. However, as suggested in Gallant (1981), the
effective number of coefficients may be corrected, by reducing the number of trigonometric terms,
to avoid possible multicollinearity consequences.

51Results available upon request.

230



Output distance functions: “Bank Financial world crisis: Inefficiencies and Responsibilities”

Consequently, it is necessary that outputs meet the homogeneity condition of degree
1 in order to satisfy the restriction (iv). Following Lovell, Travers, Richardson and
Wood (1994), this condition has been imposed by normalising the distance function
with one of the outputs. This starts from the assumption that homogeneity implies
that:

Do

(
x,

u
uM

)
= Do(x,u)

uM
(13.5)

Substituting u∗m = um
uM

,m= 1, ...,M−1 in (13.4) we obtain a regression of the general
form:

ln(Do/uM ) = FFF (x,u∗,α,β,γ,λ,δ) (13.6)

where u∗ = ( u1
uM

, u2
uM

, ...,
uM−1
uM

).
Equation (13.6) can be written as:

− ln(uM ) = FFF (x,u∗,α,β,γ,λ,δ)− ln(Do) (13.7)

In equation (13.7) the −ln(Do) can be interpreted as an error term which captures
the technical inefficiency.

Finally, in order to improve the quality of the FFF approximation, and to have a
reference with the Taylor expansion, outputs (u) and inputs (x) are all expressed as
differences from the sample mean.

Therefore, the estimated FFF is:

−lnuM = α0 +
N∑
n=1

βn · lnxn+
M−1∑
m=1

αm · lnu∗m+ 1
2

N∑
n=1

N∑
n′=1

βnn′ · (lnxn) · (lnxn′)

+ 1
2

M−1∑
m=1

M−1∑
m′=1

αmm′ · (lnu∗m) · (lnu∗m′) +
N∑
n=1

M−1∑
m=1

γnm · (lnxn) · (lnu∗m)

+
M−1+N∑
i=1

δi · sin(zi) +
M−1+N∑
i=1

λi · cos(zi) +
M−1+N∑
i=1

M−1+N∑
j=1

δij · sin(zi+ zj)

+
M−1+N∑
i=1

M−1+N∑
j=1

λij · cos(zi+ zj) +
M−1+N∑
i=1

M−1+N∑
j=1

M−1+N∑
l=1

δijl · sin(zi+ zj + zl)

+
M−1+N∑
i=1

M−1+N∑
j=1

M−1+N∑
l=1

λijl · cos(zi+ zj + zl) + ε

(13.8)

where u∗m = um
uM

,m= 1, ...,M −1 and ε=−ln(Do) + ln(v).
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For coherency purposes we have transformed the original independent variables in
radiants to be used in the trigonometric part of the function as in Berger et al. (1997):
zi = 0.2 ·π−µ ·a+µ · ln(yi) where µ≡ 0.9·2π−0.1·2π

(b−a) and [a,b] is the range of ln(yi).
In this case ln(yi) with i= 1, ...,6 refers to the sequence of deposits, loans, services,
NPLs, capital and labor.
Once the distance function is estimated, we calculate the efficiency by adopting the
"Free efficiency" method (see Berger, 1993):

TEk = exp
{
−
[
max
k

(ε̂.k)− ε̂.k
]}

(13.9)

where ε̂.k =∑
t εtk/T.

Then the shadow price of NPLs may be found according to the procedure ex-
pounded above.
Hence, we estimate the price of loans by assuming that its shadow price is equal
to its market price. So, we compute normalized shadow prices r∗(x,u) of desirable
and undesirable outputs for each bank, using (2.16), and we calculate the shadow
revenue R using the (2.18). Given the shadow revenue, we derive absolute shadow
prices for NPLs using the (2.19).

13.4 Estimation

In this section we report the results of our estimation. All variables have been divided
by its sample mean so that the first-order coefficients can be interpreted as distance
elasticities evaluated at the sample means. The linear homogeneity in outputs is
imposed using the output "Deposits" as a numeraire52. Due to multicollinearity
we consider the Fourier approximation till the third term and drop some of the
regressors53 54.

13.4.1 Europe

52The choice of the output is arbitrary and the resulting estimates are invariant to the normaliza-
tion (see Cuesta and Orea, 2002).

53All estimations and calculations have been done with Stata 11 software.
54Please see section 13.2 at page 224 for the meaning of the variables notations.
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Table 13.3: Distance function estimation: Europe

Dependent variable: Coef. Std. Err. z P > z 95% Conf. Interval
ln(1/u1)

ln(u2/u1) 0.349 0.113 3.080 0.002 0.127 0.572
ln(u3/u1) 0.153 0.049 3.120 0.002 0.057 0.249
ln(u4/u1) -0.352 0.204 -1.730 0.084 -0.751 0.047
ln(x1) -0.466 0.064 -7.240 0.000 -0.593 -0.340
ln(x2) -0.771 0.033 -23.030 0.000 -0.836 -0.705
ln(u2/u1)2 0.084 0.011 7.810 0.000 0.063 0.105
ln(u2/u1)ln(u3/u1) -0.050 0.006 -8.360 0.000 -0.062 -0.039
ln(u2/u1)ln(u4/u1) 0.017 0.003 4.970 0.000 0.010 0.024
ln(u3/u1)2 -0.007 0.016 -0.470 0.640 -0.039 0.024
ln(u3/u1)ln(u4/u1) 0.008 0.002 3.760 0.000 0.004 0.012
ln(u4/u1)2 -0.052 0.020 -2.630 0.009 -0.092 -0.013
ln(x1)2 -0.029 0.017 -1.690 0.092 -0.062 0.005
ln(x1)ln(x2) -0.043 0.006 -7.730 0.000 -0.054 -0.032
ln(x2)2 -0.106 0.020 -5.180 0.000 -0.146 -0.066
ln(u2/u1)ln(x1) -0.017 0.008 -1.970 0.048 -0.033 0.000
ln(u2/u1)ln(x2) 0.011 0.009 1.180 0.236 -0.007 0.029
ln(u3/u1)ln(x1) -0.049 0.015 -3.370 0.001 -0.078 -0.021
ln(u3/u1)ln(x2) -0.048 0.012 -3.940 0.000 -0.072 -0.024
ln(u4/u1)ln(x1) 0.005 0.003 1.980 0.047 0.000 0.010
ln(u4/u1)ln(x2) -0.029 0.003 -10.350 0.000 -0.034 -0.023
sin(z2) -0.029 0.549 -0.050 0.957 -1.106 1.047
sin(z4) -1.879 1.011 -1.860 0.063 -3.860 0.102
sin(z5) -0.054 0.272 -0.200 0.844 -0.586 0.479
cos(z22) -0.124 0.086 -1.440 0.149 -0.292 0.044
sin(z22) -0.526 0.209 -2.520 0.012 -0.935 -0.116
cos(z33) 0.326 0.059 5.490 0.000 0.210 0.443
sin(z33) -0.465 0.042 -10.960 0.000 -0.548 -0.382
cos(z44) -0.244 0.152 -1.610 0.108 -0.542 0.053
sin(z44) -0.515 0.264 -1.950 0.051 -1.033 0.003
cos(z55) 0.127 0.039 3.230 0.001 0.050 0.204
sin(z55) -0.224 0.090 -2.490 0.013 -0.401 -0.048
cos(z66) 0.092 0.077 1.200 0.231 -0.058 0.242
sin(z66) -0.212 0.068 -3.130 0.002 -0.344 -0.079
cos(z23) -0.176 0.043 -4.110 0.000 -0.259 -0.092
sin(z23) 0.251 0.023 10.840 0.000 0.206 0.297
sin(z24) -0.121 0.030 -4.040 0.000 -0.180 -0.062
cos(z25) -0.095 0.043 -2.220 0.026 -0.180 -0.011
sin(z25) 0.036 0.024 1.500 0.135 -0.011 0.082
cos(z26) 0.005 0.042 0.130 0.898 -0.076 0.087
sin(z26) -0.054 0.027 -2.010 0.045 -0.108 -0.001
cos(z35) -0.271 0.074 -3.650 0.000 -0.417 -0.125
sin(z35) -0.270 0.042 -6.420 0.000 -0.353 -0.188
cos(z36) -0.050 0.059 -0.850 0.396 -0.165 0.065
sin(z36) -0.256 0.035 -7.380 0.000 -0.324 -0.188
cos(z56) -0.132 0.022 -5.880 0.000 -0.176 -0.088
sin(z56) 0.032 0.018 1.760 0.079 -0.004 0.069
cos(z222) -0.099 0.039 -2.540 0.011 -0.176 -0.023
cos(z333) 0.260 0.030 8.610 0.000 0.201 0.319
cos(z444) -0.115 0.051 -2.250 0.024 -0.215 -0.015
cos(z555) -0.010 0.016 -0.640 0.524 -0.043 0.022
cos(z666) 0.078 0.023 3.410 0.001 0.033 0.123
sin(z222) -0.175 0.060 -2.940 0.003 -0.292 -0.058
sin(z333) -0.079 0.021 -3.770 0.000 -0.120 -0.038

Continued on Next Page.
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Table 13.3: Distance function estimation: Europe

Dependent variable: Coef. Std. Err. z P > z 95% Conf. Interval
ln(1/u1)

sin(z444) -0.088 0.054 -1.620 0.106 -0.194 0.018
sin(z555) -0.017 0.026 -0.650 0.517 -0.069 0.035
sin(z666) -0.132 0.030 -4.450 0.000 -0.190 -0.074
t -0.005 0.003 -1.670 0.096 -0.011 0.001
t(u2/u1) -0.007 0.002 -4.700 0.000 -0.010 -0.004
t(u3/u1) -0.001 0.001 -0.450 0.652 -0.003 0.002
t(u4/u1) 0.005 0.001 4.940 0.000 0.003 0.006
t(x1) 0.006 0.001 4.110 0.000 0.003 0.008
t(x2) -0.003 0.001 -1.870 0.061 -0.006 0.000
Austria -0.928 0.150 -6.180 0.000 -1.223 -0.634
Belgium -1.019 0.151 -6.730 0.000 -1.316 -0.722
Denmark -0.756 0.150 -5.050 0.000 -1.050 -0.463
F inland -1.031 0.158 -6.540 0.000 -1.340 -0.722
F rance -0.988 0.150 -6.600 0.000 -1.282 -0.695
Germany -1.108 0.150 -7.390 0.000 -1.402 -0.814
Greece -0.718 0.153 -4.690 0.000 -1.018 -0.418
Great Britain -0.954 0.151 -6.320 0.000 -1.251 -0.658
Ireland -1.496 0.173 -8.650 0.000 -1.835 -1.157
Italy -1.042 0.150 -6.950 0.000 -1.336 -0.748
Luxembourg -1.443 0.151 -9.560 0.000 -1.739 -1.147
Netherlands -0.641 0.163 -3.920 0.000 -0.961 -0.321
Norway -1.285 0.160 -8.030 0.000 -1.598 -0.971
P ortugal -0.844 0.159 -5.320 0.000 -1.155 -0.533
Spain -1.038 0.152 -6.850 0.000 -1.336 -0.741
Sweden -1.136 0.151 -7.540 0.000 -1.431 -0.841
Switzerland -1.151 0.150 -7.660 0.000 -1.446 -0.857
T urkey (omitted)
Constant 2.570 0.303 8.490 0.000 1.976 3.163

We get estimates significant and coherent with the literature (see among others Cuesta
and Orea (2002)). In particular, looking at the elasticities of the first order terms,
we find positive coefficients for desirable outputs (Loans, deposits and services)55

and negative for the undesirable output (NPLs). The negative sign of the latter
represents the opportunity cost measurable in terms of the loss in desirable outputs
production that banks would incur in case of compliance with a regulation directed
to compensate the NPLs.
As regards the management of inputs, the labor factor has a greater impact (0.771)
on the production possibilities frontier than capital (0.466).
Looking at the country dummies, we can identify the spatial effect on efficiency (with
respect to Turkey, the reference state). These differences can be caused by factors not
considered in the analysis such as technology, environmental factors, externalities,
etc.
The dummies are all negative, which means that they increase -other things being
equal- the efficiency with respect to the base country (Turkey).

55Remember that the function is homogeneous of degree 1 in outputs, so that the coefficient of
deposits is given by 1−

∑M−1
m=1 αm.
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From this analysis it would seem that Ireland is the most efficient country compared
to Turkey, and that the most inefficient are Netherlands, Greece and Denmark. These
results seem implausible in light of the past financial crisis. Hence, we think that the
distance function lacks considering, among inputs, the risk arising from the amount
of NPLs.
Finally, the time variable (trend) has a negative coefficient (-0.01), which suggests
that over time, there was on average an efficiency decrease of 1%.
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13.4.2 The U.S.

Table 13.4: Distance function estimation: U.S.

Dependent variable: Coef. Std. Err. z P > z 95% Conf. Interval
ln(1/u1)

ln(u2/u1) 0.302 0.043 7.040 0.000 0.218 0.386
ln(u3/u1) 0.165 0.024 6.800 0.000 0.117 0.212
ln(u4/u1) -0.275 0.124 -2.210 0.027 -0.518 -0.032
ln(x1) -0.215 0.023 -9.380 0.000 -0.260 -0.170
ln(x2) -0.862 0.023 -38.100 0.000 -0.907 -0.818
ln(u2/u1)ln(u3/u1) 0.012 0.009 1.330 0.185 -0.006 0.029
ln(u2/u1)ln(u4/u1) -0.060 0.009 -6.360 0.000 -0.078 -0.041
ln(u3/u1)2 -0.087 0.017 -5.210 0.000 -0.120 -0.055
ln(u3/u1)ln(u4/u1) -0.010 0.005 -1.800 0.072 -0.020 0.001
ln(x1)2 0.028 0.016 1.820 0.069 -0.002 0.059
ln(x1)ln(x2) -0.137 0.005 -29.180 0.000 -0.147 -0.128
ln(x2)2 -0.118 0.024 -4.920 0.000 -0.166 -0.071
ln(u2/u1)ln(x1) 0.217 0.020 10.970 0.000 0.179 0.256
ln(u2/u1)ln(x2) -0.203 0.034 -5.910 0.000 -0.270 -0.136
ln(u3/u1)ln(x1) -0.078 0.016 -4.970 0.000 -0.109 -0.047
ln(u3/u1)ln(x2) -0.123 0.004 -28.490 0.000 -0.132 -0.115
ln(u4/u1)ln(x1) -0.032 0.003 -11.820 0.000 -0.038 -0.027
ln(u4/u1)ln(x2) -0.040 0.003 -11.320 0.000 -0.046 -0.033
cos(z2) 0.436 0.256 1.710 0.088 -0.065 0.937
sin(z4) -0.811 0.385 -2.100 0.035 -1.566 -0.055
cos(z22) 0.094 0.143 0.660 0.510 -0.186 0.374
sin(z22) -0.033 0.021 -1.580 0.115 -0.074 0.008
sin(z33) -0.214 0.022 -9.650 0.000 -0.257 -0.171
cos(z44) 0.169 0.016 10.600 0.000 0.138 0.200
sin(z44) -0.199 0.112 -1.780 0.075 -0.417 0.020
cos(z55) 0.104 0.023 4.410 0.000 0.058 0.150
sin(z55) 0.201 0.015 13.210 0.000 0.171 0.231
cos(z66) -0.476 0.035 -13.450 0.000 -0.546 -0.407
sin(z66) 0.061 0.043 1.440 0.150 -0.022 0.145
cos(z25) 0.279 0.025 10.970 0.000 0.229 0.329
sin(z25) -0.126 0.015 -8.210 0.000 -0.156 -0.096
cos(z26) -0.245 0.033 -7.530 0.000 -0.309 -0.181
sin(z26) 0.116 0.027 4.340 0.000 0.063 0.168
cos(z34) -0.025 0.013 -1.910 0.057 -0.051 0.001
sin(z34) 0.008 0.009 0.940 0.345 -0.009 0.025
cos(z35) -0.431 0.042 -10.180 0.000 -0.514 -0.348
sin(z35) -0.136 0.013 -10.270 0.000 -0.162 -0.110
cos(z222) -0.064 0.042 -1.520 0.128 -0.145 0.018
cos(z333) -0.041 0.005 -7.910 0.000 -0.051 -0.031
cos(z444) 0.052 0.007 7.320 0.000 0.038 0.066
cos(z555) 0.018 0.009 2.050 0.040 0.001 0.036
cos(z666) -0.125 0.010 -12.550 0.000 -0.144 -0.105
sin(z333) -0.121 0.011 -11.020 0.000 -0.142 -0.099
sin(z444) -0.013 0.024 -0.550 0.582 -0.060 0.034
sin(z555) 0.038 0.007 5.680 0.000 0.025 0.051
sin(z666) 0.115 0.017 6.870 0.000 0.082 0.148
t 0.013 0.001 9.860 0.000 0.010 0.015
t(u2/u1) 0.008 0.002 3.650 0.000 0.004 0.013
t(u3/u1) 0.008 0.001 8.700 0.000 0.006 0.010

Continued on Next Page.
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Table 13.4: Distance function estimation: U.S.

Dependent variable: Coef. Std. Err. z P > z 95% Conf. Interval
ln(1/u1)

ty(u4/u1) -0.002 0.001 -3.380 0.001 -0.004 -0.001
t(x1) 0.014 0.001 16.570 0.000 0.012 0.015
t(x2) -0.011 0.001 -11.030 0.000 -0.013 -0.009
Alabama 0.106 0.010 10.620 0.000 0.087 0.126
Alaska -0.004 0.038 -0.110 0.916 -0.079 0.071
Arizona -0.053 0.023 -2.300 0.022 -0.098 -0.008
Arkansas 0.095 0.010 9.640 0.000 0.075 0.114
California -0.036 0.010 -3.740 0.000 -0.055 -0.017
Colorado 0.031 0.012 2.450 0.014 0.006 0.055
Connecticut -0.148 0.024 -6.240 0.000 -0.194 -0.101
Delaware -0.167 0.034 -4.910 0.000 -0.233 -0.100
F lorida 0.000 0.010 0.000 1.000 -0.019 0.019
Georgia 0.009 0.008 1.140 0.255 -0.007 0.025
Idaho 0.182 0.016 11.670 0.000 0.151 0.212
Illinois 0.018 0.008 2.430 0.015 0.004 0.033
Indiana 0.097 0.010 9.960 0.000 0.078 0.117
Iowa 0.031 0.008 3.700 0.000 0.015 0.047
Kansas 0.100 0.009 11.420 0.000 0.083 0.117
Kentuchy 0.085 0.009 9.300 0.000 0.067 0.103
Louisiana 0.151 0.009 15.900 0.000 0.132 0.169
Maine -0.014 0.019 -0.740 0.459 -0.051 0.023
Maryland 0.125 0.016 7.950 0.000 0.094 0.155
Massachusetts 0.030 0.008 3.900 0.000 0.015 0.045
Michigan 0.044 0.011 4.120 0.000 0.023 0.066
Minnesota -0.027 0.011 -2.540 0.011 -0.048 -0.006
Mississipi 0.057 0.011 5.140 0.000 0.035 0.079
Missouri 0.113 0.008 14.430 0.000 0.097 0.128
Montana 0.082 0.014 5.970 0.000 0.055 0.108
Nebraska 0.057 0.010 5.640 0.000 0.037 0.077
Nevada -0.024 0.024 -1.040 0.300 -0.070 0.022
New Hampshire 0.053 0.024 2.230 0.026 0.006 0.100
New Jersey -0.038 0.012 -3.090 0.002 -0.062 -0.014
New Mexico 0.097 0.019 5.140 0.000 0.060 0.134
New Y ork -0.004 0.011 -0.340 0.731 -0.025 0.018
North Carolina 0.006 0.012 0.510 0.613 -0.017 0.029
North Dakota 0.089 0.012 7.230 0.000 0.065 0.114
Ohio 0.126 0.011 11.490 0.000 0.104 0.147
Oklahoma 0.144 0.009 16.480 0.000 0.127 0.161
Oregon 0.179 0.016 11.090 0.000 0.147 0.211
P ennsylvania 0.048 0.010 4.640 0.000 0.028 0.068
Rhode Island -0.052 0.058 -0.910 0.364 -0.166 0.061
South Carolina 0.007 0.012 0.560 0.574 -0.017 0.031
South Dakota 0.058 0.017 3.430 0.001 0.025 0.092
T ennessee 0.068 0.009 7.240 0.000 0.050 0.087
T exas 0.080 0.008 10.230 0.000 0.065 0.096
Utah -0.064 0.030 -2.140 0.032 -0.123 -0.005
V ermont 0.157 0.020 7.780 0.000 0.117 0.197
V irginia 0.114 0.011 10.110 0.000 0.092 0.136
W ashington 0.056 0.012 4.640 0.000 0.033 0.080
W est V irginia 0.133 0.014 9.600 0.000 0.106 0.160
W yoming (omitted)
Constant 1.279 0.205 6.250 0.000 0.877 1.680
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Also in this case the coefficients of inputs and outputs are significant and with correct
sign.
Making a comparison with Europe we can say that in the U.S. there is a greater
impact of labor (-0.86 vs -0.77) and the opposite for capital (-0.22 vs -0.47). This
means that the labor factor (capital factor) in the U.S. performs more (less) than in
Europe, in fact, increasing the latter the negative effect on efficiency is more limited.
This is probably due to the lower dimension of capital employed in Europe compared
to labor.
If we analyze the spatial dummies, there are two groups of countries placed above
and below the baseline country (Wyoming) in terms of efficiency level. This leads us
to question the inefficiencies and responsibilities of countries and banks.

13.5 Inefficiencies and responsibilities

In this section we report and comment the results of efficiency evaluations obtained
for Europe and the U.S..
First, the distance function satisfies all constraints listed in section 13.3.
Table 13.5 shows the ranking of efficiency of banks in Europe56 and Table 13.6 in the
U.S.. The efficiency score for Europe and the U.S. has been calculated as average
over banks.

Table 13.5: Efficiency: Europe (Time average data)

Country Efficiency Country Efficiency
Great Britain 0.8136 Denmark 0.8116
Germany 0.8133 Sweden 0.8116
Austria 0.8132 Portugal 0.8113
France 0.8132 Ireland 0.8112
Belgium 0.8129 Luxembourg 0.8108
Italy 0.8128 Switzerland 0.8101
Greece 0.8120 Spain 0.8078
Netherlands 0.8117 Europe 0.8120

56We omit in table 13.5 Finland, Norway and Turkey given the limited available number of banks
for these countries.
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Table 13.6: Efficiency: U.S. (Time average data)

Country Efficiency Country Efficiency Country Efficiency
Wyoming 0.8507 Arkansas 0.8456 Virginia 0.8445
Nevada 0.8496 Georgia 0.8453 New Jersey 0.8445
Connecticut 0.8480 Alaska 0.8453 North Carolina 0.8443
New Mexico 0.8476 Missouri 0.8452 Wisconsin 0.8443
Louisiana 0.8470 Iowa 0.8452 Michigan 0.8443
Montana 0.8466 Oregon 0.8451 Alabama 0.8439
North Dakota 0.8465 Texas 0.8451 Florida 0.8438
California 0.8465 Maryland 0.8450 Minnesota 0.8437
Mississipi 0.8464 Illinois 0.8450 Vermont 0.8436
Tennessee 0.8461 Oklahoma 0.8450 Colorado 0.8436
Ohio 0.8461 Pennsylvania 0.8450 Maine 0.8435
Idaho 0.8460 Nebraska 0.8450 New York 0.8433
South Carolina 0.8459 Kansas 0.8449 Washington 0.8430
Massachusetts 0.8459 Kentuchy 0.8449 Delaware 0.8409
South Dakota 0.8458 West Virginia 0.8448 Utah 0.8374
New Hampshire 0.8457 Indiana 0.8447
Rhode Island 0.8456 Arizona 0.8446 U.S. 0.8451

We note that the average value of efficiency is high both in Europe (0.812) and
even more in the U.S. (0.845) with a slight difference of about 3%. However, such
a result may be due once again - as seen for the efficiency performance of Ireland
in Europe - to the fact that the distance function does not consider the default
risk. Actually, the NPLs price may well be different for the banks of these two
countries even if the efficiency is similar. To verify this it suffices to think that the
efficiency is defined by the distance function while the NPLs price (normalized) by its
first derivative. Pastor and Serrano (2006) arrived to the same conclusion although
with a non parametric approach, which shows that our result is not peculiar to the
methodology here adopted. With the aim to consider a measure of the default risk
we calculate the shadow prices of the NPLs. In Tables 13.757 and 13.8 shadow prices
of the NPLs are shown in absolute value.

Table 13.7: Shadow price of NPL: Europe (Time average data)

Country P oNPL Country P oNPL
Sweden 0.3281 Denmark 0.1394
Netherlands 0.2684 Austria 0.1167
Belgium 0.2392 Germany 0.1167
Switzerland 0.2138 Italy 0.1084
Luxembourg 0.2042 Spain 0.1057
France 0.1822 Greece 0.0821
Great Britain 0.1770 Portugal 0.0371
Ireland 0.1551 Europe 0.1580

57We omit in table 13.7 Finland, Norway and Turkey given the limited available number of banks
for these countries.
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Table 13.8: Shadow price of NPL: U.S. (Time average data)

Country P o
NP L Country P o

NP L Country P o
NP L

New Hampshire 0.3987 Mississipi 0.2395 Michigan 0.2060
Vermont 0.3852 Arizona 0.2367 Delaware 0.2055
Rhode Island 0.3795 California 0.2327 Tennessee 0.2051
Maine 0.3722 Louisiana 0.2316 North Carolina 0.2047
New Jersey 0.3511 South Carolina 0.2302 Idaho 0.2041
Pennsylvania 0.3300 Washington 0.2290 Arkansas 0.1979
Alaska 0.2988 Iowa 0.2273 Georgia 0.1969
Connecticut 0.2986 Ohio 0.2261 Nebraska 0.1963
Wyoming 0.2691 Illinois 0.2248 Nevada 0.1913
Virginia 0.2688 Kentuchy 0.2232 Alabama 0.1877
Indiana 0.2679 West Virginia 0.2228 Oklahoma 0.1872
Maryland 0.2639 Montana 0.2221 Kansas 0.1868
Oregon 0.2586 Minnesota 0.2205 New Mexico 0.1865
New York 0.2583 Missouri 0.2199 North Dakota 0.1740
Massachusetts 0.2575 Florida 0.2153 Utah 0.1672
Wisconsin 0.2513 Colorado 0.2143
South Dakota 0.2406 Texas 0.2138 U.S. 0.2272

2000 2001 2002 2003 2004 2005 2006 2007 2008
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Shadow price of NPL 

Europe The US

Figure 13.2: Shadow price of NPLs series of Europe and the U.S. (years 2000-2008)

As can be seen from Tables 13.7 and 13.8 even if the banks in our sample are
very efficient and even more so than those in the U.S., this result may be reasonably
due to a risky management of the credit activity. In fact, the average shadow price
of NPL is quantitatively relevant in both areas but more costly in the U.S.. More
specifically, on average, the cost of the debt collection amounts to 22% in the U.S.
and 16% in Europe.
The graph in Figure 13.2 shows how in both cases the price of NPLs has greatly
risen since 2002 with a peak between years 2006 and 2007 and has fallen during 2008
for the regulatory actions of the governments as a consequence of the crisis. In 2008
the two NPLs prices become almost equal.
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But who is the responsible between countries and banks?

To answer this question we move from the consideration that if the bank risk is
controlled across countries by each single bank, then the banking system would be
reliable. On the other hand, if the risk doesn’t vary across banks per each single
country, then the regulation imposed by countries is effective. If the autonomy of
the banks to manage the risk across countries is high, then the responsibility is more
referable to banks. This problem can be analyzed in terms of between-variances,
applied to the variable representing the risk, evaluated across countries (σ2

Bcountries
)

and across banks (σ2
Bbanks

): the former represents the capacity of the banks to control
the risk and the latter the capacity of counties to set appropriate regulations capable
to control the risk. We normalize the former to the latter to make a comparison. We
consider two variables of interest, NPLs/L and NPLs price, and conclude that the
higher is the σ2

Bcountries
/σ2

Bbanks
ratio the less the attention devoted by countries to

the control the risk of the banking system.

We set up an analysis of variance of both the ratio NPLs/L and NPLs shadow
prices by decomposing the total variance for banks and countries, and found that in
both cases the between variance is the largest one.

Table 13.9: Analysis of variance of NPLs/L∗

Year Europe U.S.
2000 2.358 0.036
2001 2.062 0.033
2002 2.232 0.024
2003 2.384 0.010
2004 2.367 0.002
2005 2.299 0.001
2006 2.302 0.001
2007 1.972 0.002
2008 1.950 0.014

*
(
σ2

Bcountries(NP Ls/L)/σ
2
Bbanks(NP Ls/L)

)
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Table 13.10: Analysis of variance of the shadow price of the NPLs∗

Year Europe U.S.
2000 0.431 5.516
2001 0.096 3.180
2002 0.098 1.264
2003 0.202 1.704
2004 0.199 2.049
2005 0.221 3.020
2006 0.286 2.897
2007 0.221 2.088
2008 0.362 0.383

*
(
σ2

Bcountries(PNP Ls)/σ
2
Bbanks(PNP Ls)

)

Tables 13.9 and 13.10 show that European countries are careful with the NPLs
management (σ2

Bcountries
(NPLs/L)> σ2

Bbanks
(NPLs/L)), while the quality of NPLs

- i.e. their price - is defined by the banks (σ2
Bcountries

(PNPLs)< σ2
Bbanks

(PNPLs)).

Surprisingly we obtain for the two variables two unequivocally opposite evidences
attesting the U.S. system, compared to Europe, as more vigilant on banks default
when considering NPLs/L and the opposite for the NPLs price. The explanation of
such apparently different results is that the definition of NPLs in the U.S. is not so
prudent as in Europe in that in the former case the NPLs refer only to the loans
declared officially non reimbursable while in the latter one is much more cautious
including also the loans declared protested against. Actually the main difference
between the two regulatory systems is that, under the US the generally accepted
accounting principles (GAAP), the statement financial accounting standard (SFAS)
n.5 defines a very broad and vague criterion to detect the NPLs, based on the
“probable” and “reasonably estimated” loss. As a consequence the loss provision
becomes a strategic variable for banks which may increase it in case of bad evaluation
from the markets to show a greater credibility or, on the contrary, may enhance it in
the opposite case in order to improve profits by reducing the tax base. This of course
artificially lowers or raises the variance across countries of NPLs/L of the banks in
the U.S. and Europe respectively 58. Instead, according to the Basel agreements II
and III, in Europe there is a lower bound of 1.25% of the “risk weighted asset” for the
loss provision and an upper bound of 50% of the “regulatory capital requirements”59.

58Note that such a result does emerge notwithstanding we considered the different definitions of
the NPLs, in the two countries under exam, after having normalized between the variances.

59Moreover, still in the definition of the “risk weighted asset” the weights are more compelling in
Europe than in the US.

242



Output distance functions: “Bank Financial world crisis: Inefficiencies and Responsibilities”

13.6 Final Remarks and Policy implications

In the analysis developed we discuss the credit market, country’s policy actions and
efficiency of the banking system.

With regard to the credit market our analysis identifies an increasing NPLs price
in the considered period as shown in Figure 13.2 and we underline that in a usual
risk analysis it is difficult to take properly into account this trend as the NPLs price
is not normally observable.

Moreover, comparing the NPLs price with the interest rate of loans, we reckon
that the banks measure incorrectly the real risk and the cost of recovery of the NPLs
by fixing an interest rate that does not contain adequately the effective NPLs price.
Given such an excessive cost of NPL’s recovery, it would be appropriate to monitor
the lending banks policy with apposite regulations which take into account the NPLs
price as a margin to be stored in case of loss.

A second point is that there is the necessity to homogenize the definition of
NPLs through countries in order to avoid the ratio NPLs/L being systemically and
artificially lower in the US than in Europe. Contrarily our analysis shows that the
NPLs price is always higher in the U.S. with respect to the European one.

Another significant result of our study is the importance of countries in explaining
the recent financial crisis. In fact, from Table 13.10 in the U.S. the
σ2
Bcountries

(PNPLs)/σ2
Bbanks

(PNPLs) ratio is very high from 2000 to 2007 showing a
great responsibility of the countries in not having preserved a homogeneous risk
management of banks (low σ2

Bbanks
(PNPLs)). This is confirmed by the low NPLs/L

ratio obtained in 2008 when the U.S. government intervened by introducing market-
wide support measures and assisting failing financial institutions. In light of these
facts, legislative measures for monitoring the banks would be important to avoid
future crisis. In Europe, instead, this supervision was already effective as shown
by the low σ2

Bcountries
(PNPLs)/σ2

Bbanks
(PNPLs) ratio. Therefore, in order to improve

the quality of loans in Europe the other direction is to look for some improvements
in terms of efficiency. In effect, in such a respect we note that in Europe the risk
strategies, concerning the ratio between non performing loans and loans, are very
different among banks (high σ2

Bcountries
(NPLs/L)/σ2

Bbanks
(NPLs/L)), which is likely

to be referred to different levels of efficiency in the loans management. Actually,
Tables 13.5 and 13.6 show a pronounced lower efficiency in Europe than in the U.S..
A possible explanation of this fact is that European banks try to bypass the stricter
rules on the NPLs registration by improving profits with a reduction in the regulatory
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capital60. A way to solve this problem would be to penalize risky banks by asking
them to pay the NPLs price as a penalty. This would be a counterincentive to the
expansion of NPLs as a strategy to gather more funds irrespective of the risk.

13.7 Conclusion

The analysis conducted in this paper showed that the recent bank crisis could have
been anticipated if appropriate indicators had been used. We propose here the NPLs
price which is not observable. Our econometric methodology based on the Fourier
expansion validates significantly the theoretical set up adopted. Actually we found
that the market interest rates do not adequately account for the risk of loans loss.
Further, Europe and the U.S. have different peculiarities concerning the inefficiencies
of the bank system and the responsibilities of the two countries. We found more
countries’ responsibility in terms of low regulations for the U.S. and a slightly more
inefficiency for Europe. A proposal to monitor both aspects is to penalize risky banks
by asking to pay the NPLs price as a penalty.

60Slovik (2012) finds the same result on the base of an analysis of the ratio between the risk-
weighted assets to total asset.
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14.1 Introduction

The D-BoD model outlined in section 8.2 has also been applied to the terrestrial trans-
port infrastructure endowment in European Regions following Vidoli and Mazziotta
(2013) proposal.
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14.2 Variables and data

The data set61 includes information on two simple indicators62 concerning roads
(IRoads) and railways (ITrains) endowment for France, Germany, Italy and Spain.
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Figure 14.1: European infrastructure endowment - Data

14.3 Results

Figure 14.1 shows a similar path to the simulation in section 8.3 with three de-
partments (GE-BER- Berlin, GE-BRE - Bremen and GE-HA - Hamburg) with low
values of IRoads and high values of ITrains. Table 14.1 and Figure 14.2 show results
obtained with BoD and D-BoD methods. In particular, while the Spearman Index
between the two approaches is very high (equal to 0.938), the average CI score of the
isolated departments falls (please see Table 14.1) from 55.86% to 14.19% in GE-BRE
- Bremen and from 57.92% to 17.31% in GE-HA - Hamburg.
Finally, we highlight that Berlin remains at the top of the ranking because on the
frontier the BoD level curve coincides with the D-BoD one (please see Figure 8.2).

61Source: Eurostat, Statistics by theme, 2012
62For variables and the method of construction of simple indicators, please see Vidoli and

Mazziotta (2013).
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Table 14.1: European infrastructure endowment: Comparison between BoD and
D-BoD

NUTS2 Department Country Bod D-Bod
FR-BAS Bassin Parisien France 0.72579 0.72579
FR-CES Centre-Est (FR) France 0.72935 0.72935
FR-EST Est (FR) France 0.54597 0.54597
FR-MED Méditerranée France 0.54767 0.54767
FR-NPC Nord - Pas-de-Calais France 0.78384 0.78384
FR-OUE Ouest (FR) France 0.75227 0.75227
FR-PAR Île de France France 1.00000 1.00000
FR-SOU Sud-Ouest (FR) France 0.67219 0.67219
GE-BAY Bayern Germany 0.30602 0.30602
GE-BER Berlin Germany 1.00000 1.00000
GE-BRA Brandenburg Germany 0.18692 0.14226
GE-BRE Bremen Germany 0.55858 0.14190
GE-BW Baden-Württemberg Germany 0.29817 0.26998
GE-HA Hamburg Germany 0.57922 0.17308
GE-HE Hessen Germany 0.32695 0.25981
GE-ME Mecklenburg-Vorpommern Germany 0.13439 0.12965
GE-NI Niedersachsen Germany 0.23789 0.23278
GE-NW Nordrhein-Westfalen Germany 0.44095 0.36605
GE-RP Rheinland-Pfalz Germany 0.31083 0.30717
GE-SAA Saarland Germany 0.33017 0.20871
GE-SAC Sachsen Germany 0.26706 0.22757
GE-SCA Sachsen-Anhalt Germany 0.20525 0.15678
GE-SCH Schleswig-Holstein Germany 0.18842 0.18842
GE-THU Thüringen Germany 0.18239 0.18239
IT-CEN Centro (IT) Italy 0.23567 0.23567
IT-ISO Isole Italy 0.17049 0.17049
IT-NES Nord-Est Italy 0.34354 0.33554
IT-NOV Nord-Ovest Italy 0.27881 0.27881
IT-SUD Sud Italy 0.28023 0.28023
SP-CEN Centro (ES) Spain 0.32009 0.32009
SP-EST Este (ES) Spain 0.22460 0.22460
SP-MAD Comunidad de Madrid Spain 0.20997 0.11784
SP-NOR Noreste (ES) Spain 0.16303 0.16303
SP-SUR Sur (ES) Spain 0.22607 0.22607
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Figure 14.2: European infrastructure endowment: Comparison between BoD and
D-BoD
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15.1 Introduction

The evaluation and the improvement of the national health system performance
has become a key policy subject in most developed nations; in recent years many
national authorities, as the United Kingdom National Health Service (NHS) and the
Canadian Institute for Health Information, or research analysis on national health
system (see e.g Jencks et al. (2000), Kwon (2003) or Nuti et al. (2011) for the Italian
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health care system), have put in place.
Many subjects and objectives may be considered behind a health system evaluation
framework: the scope of performance indicators, for this reason, can be ranged con-
siderably for examining the state of a nation’s health system to reflect the experiences
of the individual patients. Performance, efficiency or analysis on the supply side
could be carried out at international, national, regional, local or institutional level
Ibrahim (2001).

So a key question, especially in the complex healthcare system is: what should
be measured? In general, health care systems can be evaluated with respect to the
quality/quantity of care, to the access to care or to the cost (which, however, are not
the only analytical dimensions); Paakkonen and Seppala (2014), for example, takes
into account in its analysis the accessibility, the efficiency and equality.

But the real challenge in the evaluation models is the multidimensionality of
health systems closely linked with the development of composite measures; in order
to assess, compare and improve performance, quality or supply between or inside
countries it is crucial to dispose of: i) a set of measurable and reliable indicators
built up from a good information system, ii) a robust and stable method to integrate
indicators in a composite one and to set benchmarks.
Smith (2002), more specifically, discusses three methodological issues in the health
sector related to composite indices: i) the development of a set of weights, ii) the
treatment of exogenous influences on system performance and iii) the modelling
of efficiency; he notes that there isn’t a wide consensus regarding methodology
issues, such as the weights to be used to form the composite index. In addition,
composite measures of health system performance “lack precision and combine
uncertain weighting systems, imprecision arising from the potential non-comparability
of component measures, and misleading reliability in the form of whole-population
averages that mask distribution issues” Bankauskaite and Dargent (2007).
Moreover, in our opinion, there are other issues related to the correct choice of the
weights not yet fully highlighted in the literature; these matters are related to the
public nature of the service: i) optimal weights may not coincide with the marginal
utility of the citizen and ii) weights can not be assumed as invariant to the increase
of the Local Authorities dimension (see the results of Tiebout (1956)).

Given these premises, it seems even more appropriate to propose a method with
these particular characteristics: i) weight endogeneity (property #1), variance of
optimal weights among units (linked to the property #3), iii) robustness to outliers
(property #6) and easily extendible to a model that also controls the effect of
contextual variables (see Vidoli and Mazziotta (2013)).
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From an economic point of view, in this paper research questions are linked to
administrative changes occurred in the last 15 years in Italy; we focus, therefore,
on structural changes and on the different trends - only on the supply side of the
Italian regions - due to the administrative devolution from the central government
to the single local authority. More specifically, the aim of our application is the
measurement of the variations on the supply side and the evaluation of territorial
differences between richest regions (northern ones) and the less developed regions
(southern ones).

15.2 Variables and data

For this purpose, we used the database of indicators regarding the health system
in Italy63, provided by ISTAT for the years 1998-2010, containing more than 4,000
indicators on the socio-demographic aspects, lifestyles, disabilities and dependencies,
monetary and input resources and health care supply.
Specifying that the accurate analysis of the whole health system is beyond the scope
of this paper, we focus our attention, as previously mentioned, exclusively on the per
capita outputs evaluating if the regional spending and legislative autonomy of each
region has brought the healthcare system supply towards a territorial balance or not.
In order to avoid collinearity among the elementary indicators, linked to the mul-
tidimensionality nature of the informative setting, in a first step we get two main
independent and informative factors through principal component analysis64 (see
table 15.1).

15.3 Results

Principal component analysis highlights two factors: the first one can be interpreted
as the dimensional factor, while the second one appears to be more dependent on
the proxies of the quality of the health system.

Figures 15.1 and 15.2 show a different temporal evolution among different regions:
in fact, while supply, in terms of dimension, remains fairly stable or slightly decreasing
(due to the national spending review laws), quality seems to be very differentiated.

In figure 15.3 we plot the main [gy = (1,1.24)] and the compensative [gy = (1,1)]
63This database is named “Health for all”, available at http://www.istat.it/it/archivio/

14562.
64Total variance explained by the two factors: 77%; printed values are multiplied by 100 and

rounded to the nearest integer; values greater than 0.6 are marked with “*”; values less than 0.3
are not printed.

251

http://www.istat.it/it/archivio/14562
http://www.istat.it/it/archivio/14562


RD-BoD: Supply levels in Italian health system

Table 15.1: Principal component analysis, output provided, source: ISTAT

Elementary indicators Factor1 Factor2
Total hospitalization (number) 96 * .
Inpatient acute care (number) 96 * .
Inpatient private hospitals (number) 95 * .
Acute care hospitalization (days) 94 * .
Total hospitalization (days) 94 * .
Inpatient private hospitals (days) 93 * .
Inpatient rehabilitation private hospitals (number) 82 * .
Inpatient rehabilitation hospitals (number) 80 * .
Inpatient rehabilitation hospitals (days) 80 * .
Inter-hospital mobility (active-passive) - for 10,000 inhabitants . 73 *
Inter-hospital mobility (active-passive) - for admissions residents . 73 *
Average number of resident assisted by a physician . 48 *
Utilization rate of hospital beds . 48 *
Average number of 0-14 y. resident assisted by a paediatrician . 48 *
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Figure 15.1: Factor 1 annual evolution (dimension) per region
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Figure 15.2: Factor 2 annual evolution (quality) per region

direction on Factor 1 (dimension) and Factor 2 (quality) by regional code (lower
values = northern regions, higher values = southern regions); given this plot, we
expect that, introducing the main direction respectively in the BoD and in R-BoD
models, the overall composite indicators remain stable.
Table 15.2 confirms this conjecture showing how, at least in ranks, the composite
indicator is very robust to changes in the estimation model.

Table 15.2: Spearman’s rank correlation coefficient by methods

BoD RBoD Dir. BoD Dir. RBoD
BoD . 0.95 0.92 0.89
RBoD 0.95 . 0.92 0.99
Dir. BoD 0.92 0.92 . 0.92
Dir. RBoD 0.89 0.99 0.92 .

Even if in most regions there was an increase of the provided output - in terms
of composite indicator - from a relative point of view, we observe a highest level
of performance in the northern regions (Lombardia, Veneto, Emilia Romagna and
Piemonte, with a maximum in Lombardia, see figure 15.4). The chosen dataset
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highlights one of the limitations of our approach: not being able to disentangle the
increase due to technical progress (frontier shifting) and due to the improvement of
a single region; in this setting, in other terms, all regions are analysed in a cross
section framework, i.e. all units are compared to a single frontier.

0.4

0.6

0.8

1.0

1.2

Figure 15.4: Output composite indicator (Directional RBoD) by regions, year 2010

From an economic point of view, it is interesting to verify if the higher level of
service provided by the northern regions in the last year (2010) is due to better
initial conditions or whether it is the result of better management of resources over
time; for this purpose we have computed, for each region i, the main trend of the
composite indicator βi regressing the directional robust composite indicator on years
t:

Dir_RBoDit = α+βi · t,∀i (15.1)

In figure 15.5 it is straightforward to note that northern regions65 have increased
their supply level while the southern ones have, even more, decreased their services
both in qualitative and quantitative terms.

The last research question concerns the robustness and reliability of the results;
in fact, even if there is a good correlation between methods in global terms (see
table 15.2), figure 15.6 shows that this result is not always verified for all regions;
more specifically, in terms of rank differences (between the RD-BoD and BoD), the
variation of the weighting scheme seems to have a lower impact in northern regions
(closer to the frontier), while it is more consistent for the southern ones.

65Except for Trentino-Alto Adige - regional code 4 - since it’s a autonomous status region.
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Figure 15.5: Composite indicator (Dir RBoD) main trend 1998-2010 by regional code
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Figure 15.6: Difference in rank by regional code, year 1998-2010
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