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Chapter 1

Quantile regression, Bayesian
methods and risk measures

1.1 Bayesian quantile regression and the robust-
ness problem

Quantile regression has become a very popular approach to provide a wide
description of the distribution of a response variable conditionally on a set
of regressors. While linear regression analysis aims at estimating the condi-
tional mean of a variable of interest, in quantile regression we may estimate
any conditional quantile of order τ with τ ∈ (0, 1). Since the seminal works
of Koenker and Basset (1978) and Koenker and Machado (1999), several
papers have emerged in the literature considering quantile regression anal-
ysis from both a frequentist and a Bayesian point of view. For the former,
following Koenker (2005) and the references therein, the estimation strat-
egy relies on the minimization of a given loss function. Specifically, let
Y = (Y1, Y2, . . . , YT ) a random sample of T observations and Xt = (1, Xt,1,
. . . , Xt,p−1)′, t = 1, 2, . . . , T the associated set of p covariates. Consider the
following linear quantile regression model

Yt = X′tβτ + εt, t = 1, 2, . . . , T, (1.1)

where βτ = (βτ,0, βτ,1, . . . , βτ,p−1)′ is the vector of p unknown regression pa-
rameters varying with the quantile τ level. Here, εt, for any t = 1, 2, . . . , T ,
are independent random variables which are supposed to have zero τ–th
quantile and constant variance. Assuming y = (y1, y2, . . . , yT ) as a realiza-
tion of Y, and xt as a realization of Xt, then the unknown quantile regression
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Figure 1.1: Check function used in the frequentist approach to quantile regression

coefficients vector βτ can be estimated, in the frequentist approach, as the
solution to

min
βτ

T∑
t=i

ρτ (yt − xtβτ ) (1.2)

where

ρτ (u) =

{
τu if u ≥ 0
− (1− τ)u if u < 0,

(1.3)

which, graphically, assumes the form depicted in figure 1.1.

As can be noted from the figure, the empirical check function is not dif-
ferentiable at 0. As a consequence, the minimization of 1.2 can be achieved
through an algorithm proposed by Koenker and D’Orey (1987) since a
closed-form solution is not available.
Moreover, as observed by Koenker and Machado (1999), maximising the
likelihood of the Asymmetric Laplace Distribution (ALD) is closely related
to minimizing the empirical check function (1.2). In particular, a random
variable u has an ALD (µ, σ, τ) with µ = 0, σ > 0 and 0 < τ < 1 if its pdf
is given by

f (u;µ = 0, σ, τ) =
τ (1− τ)

σ
exp {−ρτ (u)} (1.4)

where µ and σ are the location and the scale parameters respectively and
τ is the skewness parameter which is related with the location parameter
in a particular way that allows us to use the ALD for quantile regression
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models. Specifically, the τ -level quantile corresponds to the natural location
parameter, i.e. P (u ≤ µ) = τ , therefore for a given value of τ the estimate
of µ represents an estimate of the τ -level quantile for u.
Using this property, Yu and Moyeed (2001) suggested a Bayesian Quantile
Regression approach using the ALD as likelihood tool. After the paper of
Yu and Moyeed (2001) a wide Bayesian literature followed. Yu et al. (2007)
develop a Bayesian framework for Tobit quantile regression and Kobayashi
(2017) extended it to accounts for endogeneity. Santos and Bolfarine (2015)
propose the use of Bayesian quantile regression for the analysis of response
variables limited to the range (0, 1), making use of the ALD in the likelihood
calculation. Lum and Gelfand (2012) introduce the asymmetric Laplace
process for quantile regression with spatially dependent errors. Reich et al.
(2011) develop a Bayesian spatial quantile method for tropospheric ozone
accounting for spatial variability by modeling the conditional distribution
as a spatial process. Yue and Rue (2011) present a Bayesian quantile infer-
ence method based on the integrated nested Laplace approximations (INLA)
in additive mixed models assigning appropriate Gaussian Markov random
field (GMRF) priors to different types of covariate. Hallin et al. (2010)
present a multivariate extension of quantile based on a directional version
of Koenker and Bassett’s traditional regression quantile using the L1 opti-
mization ideas. Wang et al. (2016) introduce a quantile structural equation
model to provide a comprehensive analysis of the interrelationships among
latent variables still using the ALD. Kottas and Genlfand (2001) and Kot-
tas and Krnjajic (2009) propose a Bayesian semiparametric methodology
for quantile regression modelling. Hu et al. (2015) introduce a Bayesian
quantile regression method for partially linear additive models which explic-
itly models components that have linear and nonlinear effects while Chen
and Yu (2009) propose a nonparametric quantile regression framework us-
ing piecewise polynomial functions with number and location of knots in-
ferred through reversible jump Markov chain Monte Carlo. Nonparametric
Bayesian quantile regression is also considered in Thomson et al. (2010)
that propose to model the dependence of a quantile of one variable on the
values of another using a natural cubic spline. Sriram et al. (2013) provide
justification for assuming ALD for the response in Bayesian Quantile Re-
gression, even if it can represents a misspecification. Empirical likelihood
as a working likelihood for quantile regression in Bayesian quantile infer-
ence is considered in Yang and He (2012) while an approach based on the
pseudo-joint Asymmetric Laplace Likelihood is implemented in Sriram et
all. (2016). Novel application of quantile regression in the risk measure
field is considered in Bernardi et al. (2015) and Meligkotsidou et al. (2009).
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Figure 1.2: The robustness problem in quantile regression analysis

Finally, the problem of variable selection in Bayesian quantile regression
models based on the ALD is considered in Yu et al. (2013), Alhamzawi and
Yu (2012) (2015), Alhamzawi (2016), Ji et al. (2012).

Although the ALD is widely used in the Bayesian framework, its main
disadvantage is displaying medium tails. This may produce misleading in-
formation when extreme quantiles are concerned, and in particular, when
the data are characterized by the presence of outliers and heavy tails. Ab-
sence of a parameter governing tail fatness in the ALD may influence the
final inference. Recently, Wichitaksorn et al. (2014) tried to generalize
the classical Bayesian quantile regression by using some skew distributions,
obtained through a mixture of scaled Normal ones. This class of distribu-
tions allows for different degrees of asymmetry of the response variable also
imposing a given structure of the tails.

To provide an idea about the robustness problem that may arise in quan-
tile regression analysis let consider the case displayed in figure 1.2 in which
we have a set of 100 observations characterized by the presence of the red
colored outlier. All the plotted lines are just examples of lines which are
compatible with the definition of quantile at τ = 0.99 (since they correctly
leave the 99% of observations below) but among them we can observe that
the red one is the most conservative. In this case, Bayesian quantile regres-
sion based on the ALD tends to estimate a quantile function near to the
green line while our goal is to estimate a quantile function as nearest as
possible to the red line.

To overcome this drawback, we propose an extension of the Bayesian
quantile regression by using the Skew Exponential Power (SEP) distribution
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proposed in Zhu and Zinde–Walsh (2009). A useful property of the SEP
distribution, similar to the ALD, is that the natural location parameter
coincides with the τ -level quantile. Differently from the ALD, the SEP
distribution also has a shape parameter governing the decay of the tails.
Using the SEP distribution in quantile regression we are able to increase
robustness of the inference, in particular when outliers or extreme values are
present. One of the potential drawback of the SEP may be that it has one
more parameter to estimate than ALD, so the estimation error/variation of
this additional parameter may have effect on the quantile regression fitting,
beside additional estimating burden. After all, this parameter is crucial to
control the decay of the tails. In chapter 2 we show that, for all the estimated
parameters, the chain rapidly converges toward the target distribution. In
linear regression analysis several works have extensively considered the non-
skewed version of the SEP, i.e. the Exponential Power distribution (EP),
for its related robustness properties given by the shape parameter. Box and
Tiao (1973) first show how to increase robustness of the classical Gaussian
linear regression model, introducing the EP as a distribution assumption for
the error term. Choy and Smith (1997), explore the robustness properties of
posterior moments based on the EP distribution. Choy and Walker (2003)
present further extension of the work of Choy and Smith (1997) proposing a
case in which the shape parameter assumes values greater than two. Finally,
Naranjo et al. (2015) and Kobayashi (2016) suggest the use of the SEP
distribution in regression and stochastic volatility models. To the best of our
knowledge, this thesis is the first attempt to improve robustness of quantile
regression analysis by using the SEP distribution. In chapter 2 linear and
Additive Models (AM) with penalized spline are considered to show the
flexibility of the SEP in the Bayesian quantile regression context. Moreover,
Lasso priors are considered in both cases to account for shrinking parameters
problem when the parameters space becomes wide.

1.2 Quantile regression and risk measures

The interest towards a robust model for the conditional quantile function
is primary in many fields, particularly in finance, where much attention is
posed on methods and models for market risk measurement. Indeed, ac-
curate risk measurement is a primary need for financial institutions and
investors especially after the recent financial crisis. Within the instru-
ments for market risk measurement, Value–at–Risk (VaR) (Jorion, 2007)
and Expected Shortfall (ES) (Artzner et al, 1999) are certainly the most
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popular and used approaches. VaR answers the question on what is the
maximum potential loss that will be exceeded with a certain probability in
the next days. Therefore, it can be simply understood as a specific con-
ditional quantile of the portfolio returns given the current information i.e.
P (Yt < −VaRt | Ft) = τ , where Yt and Ft denote respectively the return of
a portfolio and the information set available at time t, while τ∈ (0, 1) de-
notes the quantile confidence level associated with the VaR. Even though it
is widely used among financial institutions VaR has been criticized because
of the absence of the sub-additivity property, namely it does not guarantee
that diversified portfolio is less risky than concentrated one. Artzner et al
(1999) first recognize this lack of coherency of the VaR and proposed the
ES as a possible alternative coherent risk measure which give more infor-
mation about the distribution of returns in the tails. In particular the ES
is defined as the conditional expected loss given that the loss exceed the
VaR, i.e. E (Yt | yt < −VaR). But even if ES is a coherent risk measure it
is in general more difficult to backtest it, namely, to verify how accurately
the strategy or method would have predicted actual results. Moreover, it is
not as simple to interpret as the VaR and for these reasons there is not a
prevailing risk measure between VaR and ES.
In literature there are several ways to estimate the VaR and the ES, some of
them relying on distributional assumptions and some of them just estimate
them directly. One of the recent approach is based on assuming conditional
autoregressive equation structure, see for example Engle and Manganelli
(2004) and Taylor (2008). In chapter 3 of this thesis we focus our atten-
tion on the Conditional Autoregressive Value–At–Risk (CAViaR) class of
models, introduced by Engle and Manganelli (2004), which belongs to the
family of dynamic quantile autoregressive models proposed by Koenker et
al. (2006), and the Conditional Autoregressive Expectile (CARE) class of
models introduced by Taylor (2008).
The inferential issue for the CAViaR and the CARE class of models has
been addressed in literature both from the frequentist and the Bayesian
point of view. In the frequentist approach the CAViaR models allow to use
the inferential quantile regression methods (Koenker, 2005) by minimizing
the loss function introduced by Koenker and Basset (1978) and showed in
the previous section (i.e. equation (1.2)). As explained before, the Bayesian
approach instead relies on the Asymmetric Laplace distribution (ALD) as-
sumption as a likelihood tool to perform the inferential issue (see e.g. Yu
and Moyeed, 2001, Kottas and Gelfand, 2001, Kottas and Krnjajic, 2009,
and Sriram et al., 2013, Bernardi et al., 2015).
For the CARE models, which permits to estimate the expectile quantities,
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the inferential strategy is instead based on the relation between expectile,
quantile and ES (see Newey and Powell, 1987). In particular, the estimation
relies on the one-to-one mapping from expectiles to quantiles, and the rela-
tionship between VaR and ES. In fact following Efron (1991), the estimator
of the τ − th quantile will be the θ− th expectile for which the proportion of
observations below it is τ%, then the one–to–one mapping from expectiles
to quantiles is used to obtain VaR and ES using equation (3.8) of Section 2
in chapter 3. The estimation procedure for the generic expectile is addressed
in the frequentist approach by using the Asymmetric Least Square (ALS)
estimator as in Newey and Powell (1987) while in the Bayesian paradigm
the literature relies on the Asymmetric Gaussian distribution assumption
(see e.g. Gerlach and Wang, 2015, Gerlach and Chen, 2014; Wichitaksorn
et al, 2014; Gerlach et al, 2016, Gerlach and Chen, 2016)
In this thesis we propose to extend existing literature on conditional autore-
gressive risk measure. First of all, we develop a unified Bayesian Conditional
Autoregressive Risk model (B-CARM) which encompass both the CAViaR
and the CARE one as particular case, again by using the SEP likelihood
tool. As a second result we propose a new Non–Linear and semi–parametric
specification of the B-CARM class of models which uses Penalized Splines
(see De Boor, 2001, Eliers et al., 1996, Lang and Brazger, 2004) to estimate
the relation between the quantile/expectile and the observed variables. The
need for a model that allows for non-linearity without assuming any particu-
lar restrictions is of clear interest in literature. Indeed, all the specifications
of the CAViaR and the CARE models proposed so far emphasize the role of
asymmetry and non–linearity in the relation between the observed variables
and the current quantile or expectile level, but they all impose the form
of this non linearity a priori (see Engle and Manganelli, 2004, Gerlach et
al., 2011 and 2012, Chen et al., 2009 and 2012, Gelach and Chen, 2014).
In chapter 3 we will show that the proposed semi–parametric approach al-
lows to obtain different form of nonlinearity in the CAViaR and the CARE
models without employ any previous assumption about its structure.
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Chapter 2

Bayesian robust quantile
regression

2.1 Introduction

In this chapter we propose the SEP distribution to develop a Bayesian robust
quantile regression framework. In particular due to the specific characteris-
tics of the SEP distribution we will show how to estimate the quantile func-
tion firstly via simple linear regression and secondly by the Additive Models
(AM). For the latter, we adopt the Penalized Spline (P–Spline) approach to
carry out statistical inference. The Bayesian paradigm is implemented by
means of a new adaptive Metropolis MCMC sampling scheme, with a full
set of informative priors. In particular, for the AM framework, the proposed
algorithm turns into an Adaptive Metropolis within Gibbs MCMC, allowing
an efficient estimate of the penalization parameter and the P–Spline coeffi-
cients.
When dealing with model building the choice of appropriate predictors and
consequently the variable selection issue plays an important role. Here we
approach this problem, by considering the Bayesian version of Lasso penal-
ization methodology introduced by Tibshirani (1996). In particular, for the
linear quantile regression model, we assume as prior distribution on each
regressor, the generalized version of the univariate independent Laplace dis-
tribution by Park and Casella (2008), Hans (2009) and Alhamzawi et al.
(2012). Using this prior we shrink each parameter separately. When dealing
with AM, we generalize the Lang and Brezger (2004) second order random
walk prior for the spline coefficients, assuming a multivariate Laplace distri-
bution and accounting for a correlation structure among parameters. This
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prior corresponds to the group lasso penalty of of Yuan and Lin (2006),
Meier et al. (2008) and Li et al. (2010) which in the spline context is im-
mediately interpreted as knots associated with each regressor.
To analyze the performance of the proposed models we perform simulation
studies in which we control for the weight of the outliers, the number of the
parameters, the shape of the regressors and the presence of heteroschedas-
ticity. Furthermore, we analyze three common real datasets: the corrected
version (see Li et al., 2010) of the Boston housing data, first analyzed by
Harrison and Rubinfeld (1978); the Munich rental dataset with geoadditive
spatial effects, considered in Rue and Held (2005) and Yue and Rue (2011)
among others; and the Barro growth data, first studied by Barro and Sala
i-Martin (1995) and then extended in the quantile regression framework by
Koenker and Machado (1999). The models we propose introduce robustness,
variable selection and non-linearity in the estimation process, providing a
more flexible framework and a new interpretation of some regression coeffi-
cients and, on average, lower posterior standard deviations.

The remainder of the chapter is organized as follows. In Section 2.2,
we introduce the SEP distribution and discuss its properties relevant to
model conditional quantiles as functions of exogenous covariates. In Sec-
tion 2.3 we introduce the model specification and the MCMC algorithms
proposed. In Section 2.4 we look at the non–linear extension of the linear
quantile approach via AM. Section 2.5 explores the sampling performance
of the proposed models through simulations. Section 2.6 discusses three well
known empirical applications while Section 2.7 concludes.

2.2 The Skewed Exponential Power distribution

Zhu and Zinde–Walsh (2009) have recently proposed a parametrization of
the SEP distribution introduced by Fernandez and Steel (1998), particularly
convenient when quantiles are the main concern.

Definition 2.2.1. A random variable Y ∈ R is said to be Skewed Expo-
nential Power distributed, i.e. Y ∼ SEP (µ, σ, α, τ), if its density has the
following form:

fSEP (y;µ, σ, α, τ) =


1
σκEP (α) exp

{
− 1
α

(µ−y
2τσ

)α}
, if y ≤ µ

1
σκEP (α) exp

{
− 1
α

(
y−µ

2(1−τ)σ

)α}
, if y > µ,

(2.1)
where µ ∈ < is the location parameter, σ ∈ <+ and α ∈ (0,∞) are the scale
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Figure 2.1: Plot of the SEP distribution for different level of the shape parameter

(2.1(a)) and skewness parameter (2.1(b)) with σ = 1.0 and µ = 0.0.

and shape parameters respectively, while κEP =
[
2α

1
αΓ
(
1 + 1

α

)]−1
with Γ (·)

is the complete gamma function. Moreover, the parameter τ ∈ (0, 1) controls
for the skewness of the distribution.

We propose the use of (2.1) for quantile regression inference, as the lo-
cation parameter µ coincides with the τ–level quantile (demonstrated in the
gray box below). We also show (see Zhu and Zinde–Walsh, 2009) that the
kurtosis of the SEP is directly determined by its parameter α. In Figure 2.1
we present the pdf of the SEP distribution for different values of shape (α)
and skewness (τ) parameters, with fixed values for the location and scale pa-
rameters (µ, σ) = (0, 1). It is worth noting that, for a fixed value of τ = 0.5
(see subfigure 2.1(a)), we retrieve the Laplace and the Normal distribution
when the shape parameter is equal to α = 1 and α = 2, respectively. More-
over, the smaller the value of α, the fatter the tails of the distribution and,
in particular, as α→ 0 the SEP becomes the Chauchy distribution, while as
α → ∞ it becomes equal to the Uniform distribution. Hence, it is evident
that the parameter α is important in capturing the behavior of the tails,
which may be fundamental when outliers or heavy tailed data are modelled.
Furthermore, subfigure 2.1(b) displays the behavior of the SEP for different
combinations of α and τ . In this case, the ALD (α = 1) and the Skew Nor-
mal distribution (α = 2) can be obtained thanks to the skewness parameter
τ . In the same figure, the relation between τ and the location parameter µ
should also be noted. For a fixed µ (µ = 0 in the graph), by varying τ the
shape of the distribution changes in such a way that µ becomes its quantile
of level τ .
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Lemma 2.2.1. Let Y ∼ SEP (µ, σ, α, τ), then the τ–level quantile of Y
coincides with its natural location parameter, i.e. Qτ (Y ) = µ.

Proof. In order to show that P (Y ≤ µ) = τ we compute the cdf of a SEP
in y = µ

P (Y ≤ µ) =

∫ µ

−∞

1

2σ

α−
1
α

Γ
(
1 + 1

α

) [exp

{
− 1

α

(
µ− y
2τσ

)α}
1(y≤µ)

+ exp

{
− 1

α

(
y − µ

2 (1− τ)σ

)α}
1(y>µ)

]
dy

=

∫ µ

−∞

1

2σ

α−
1
α

Γ
(
1 + 1

α

) exp

{
− 1

α

(
µ− y
2τσ

)α}
dy (2.2)

Without loss of generality, let us consider the case when µ = 0 and σ = 1.
The integral reduces to

α−
1
α

2Γ
(
1 + 1

α

) ∫ 0

−∞
exp

{
− 1

α

(
−y
2τ

)α}
dy. (2.3)

By substitute (−y)α = x we have

α−
1
α

2Γ
(
1 + 1

α

) ∫ +∞

0
exp

{
− x

α (2τ)α

}
1

α
(x)

1
α
−1 dx (2.4)

Rearranging equation (2.4) and recognizing the kernel of a Gamma pdf with
shape 1/α and scale α (2τ)α the integral becomes

α−
1
α

2Γ
(
1 + 1

α

) 1

α
Γ

(
1

α

)
(α (2τ)α)

1
α .

By using the property Γ(x+ 1) = xΓ(x) all the terms simplify except for τ ,
concluding the proof.
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2.3 Robust Bayesian linear quantile regression

In this section we propose the use of the SEP distribution to implement the
Bayesian inference for linear quantile regression combined with the prior
distributions specification. Since we are interested in Lasso penalization
problem in order to achieve sparsity within the quantile regression model,
we propose as prior distribution for the regression parameters, a generalized
version of the univariate independent Laplace distribution proposed by Park
and Casella (2008) and Hans (2009). In line with Alhamzawi et al. (2012),
for each quantile regression parameter we assume a Laplace distribution
having different scale parameter in order to shrink each regression parameter
in a different way. To achieve the Bayesian procedure we provide an adaptive
MCMC sampling scheme obtained by running a block-move Independent
Metropolis within Gibbs.

2.3.1 Model specification

Let Y = (Y1, Y2, . . . , YT ) be a random sample of T observations, and Xt =
(1, Xt,1, . . . , Xt,p−1)′, with t = 1, 2, . . . , T equal to the associated set of p
covariates. Consider the following linear quantile regression model

Yt = X′tβτ + εt, t = 1, 2, . . . , T, (2.5)

where βτ = (βτ,0, βτ,1, . . . , βτ,p−1)′ is the vector of p unknown regression pa-
rameters, varying with the quantile τ level. Here, εt, for any t = 1, 2, . . . , T ,
are independent random variables which are supposed to have zero τ–th
quantile and constant variance. Assuming y = (y1, y2, . . . , yT ) as a realiza-
tion of Y, and xt as a realization of Xt, then the likelihood function for the
model (2.5) based on the SEP distribution (2.1) with fixed τ can be written
as:

Lτ (βτ , σ, α, | y,xt) =
T∏
t=1

1

2σ

α−
1
α

Γ
(
1 + 1

α

) [exp

{
− 1

α

(
x′tβτ − yt

2τσ

)α}
1(yt≤x′tβτ )

+ exp

{
− 1

α

(
yt − x′tβτ
2 (1− τ)σ

)α}
1(yt>x′tβτ )

]
=

1

(2σ)T
α−

T
α

Γ
(
1 + 1

α

)T
[

exp

{
− 1

α

T∑
t=1

(
x′tβτ − yt

2τσ

)α}
1(yt≤x′tβτ )

+ exp

{
− 1

α

T∑
t=1

(
yt − x′tβτ
2 (1− τ)σ

)α}
1(yt>x′tβτ )

]
, (2.6)
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in this case the parameter µ of equation (2.1) has been replaced by the re-
gression function µ = x′tβτ . As discussed in the previous section, due to the
property of the SEP distribution, the regression function x′tβτ corresponds
to the conditional τ–level quantile of Yt, i.e. Qτ (Yt | Xt = xt) = x′tβτ . In
what follows, we omit the subscript τ for the sake of simplicity.

The Bayesian inferential procedure requires the specification of the prior
distribution for the unknown vector of parameters Ξ = (β,γ, σ, α). As pre-
viously mentioned, we generalize the prior proposed in Park and Casella for
the β parameter, assuming the hierarchical structure in (2.8) and (2.9); this
allows efficient shrinkage of each parameter. The prior distribution is given
by:

π (Ξ) = π (β | γ)π (γ)π (σ)π (α) , (2.7)

with

π (β | γ) ∝
p∏
j=1

L1 (βj | 0, γj) (2.8)

π (γ) ∝
p∏
j=1

G (γj | ψ,$) (2.9)

π (σ) ∝ IG (a, b) (2.10)

π (α) ∝ B (c, d)1(0,2) (α) , (2.11)

where β ∈ Rp. Here (ψ,$, a, b, c, d) are given positive hyperparameters and
γ = (γ1, γ2, . . . , γp) are the parameters of the univariate Laplace distribu-
tion:

L1 (βj | 0, γj) =
γj
2

exp {−γj |βj |}1(−∞,+∞) (βj) . (2.12)

with zero location and γj scale parameter. In (2.9)-(2.11) G, IG and B denote
the Gamma, Inverse Gamma and Beta distributions, respectively. Given its
characteristics, the Laplace distribution is the Bayesian counterpart of the
Lasso penalization methodology introduced by Tibshirani (1996) to achieve
sparsity within the classical regression framework. The original Bayesian
Lasso introduces the same univariate independent Laplace prior distribution
for each regression parameter, see Park and Casella (2008) and Hans (2009).
Here, as in Alhamzawi et al. (2012), we consider a more general case using
the parameters γj , j = 1, 2, . . . , p. By shrinking each regression parameter
in a different way, we overcome problems that may arise in the presence of
regressors with different scales of measurement.
As shown in Park and Casella (2008) and Kozumi and Kobayashi (2011),
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the Laplace distribution can be expressed as a location–scale mixture of
Gaussians which, adapted to our case, becomes

L1 (βj | 0, γj) =

∫ ∞
0

1√
2πωj

exp

{
−
β2
j

2ωj

}
γ2
j

2
exp

{
−
γ2
jωj

2

}
dωj , (2.13)

for j = 1, 2, . . . , p, where the mixing variable is exponentially distributed
with shape parameter 2/γ2

j . Furthermore, to retain a parsimonious model
parameterization, we introduce a second layer hierarchical prior represen-
tation for the vector of shape parameters γ, in equation (2.9). Using the
location–scale representation of the Laplace distribution, the prior structure
defined in equations (2.8)–(2.9), can be represented as follows

β | ω ∼ Np (β | 0p,Ω) (2.14)

ωj | γj ∼ E
(
ωj | 2/γ2

j

)
(2.15)

γj ∼ G (γj | ψ,$) , (2.16)

where 0p is a column vector of zeros of dimension p, ω = (ω1, ω2, . . . , ωp)
′,

Ω = diag {ωj , j = 1, 2, . . . , p} and E is the exponential distribution. To spec-
ify values for the hyperparameters of the prior distributions, vague priors
are typically imposed on the scale σ, as it is viewed as a nuisance parameter,
see e.g. Yu and Moyeed (2001) and Tokdar and Kadane (2012). We specify
the prior for the shape parameter α by imposing a Beta distribution where
c = 2 and d = 2. This allows for a large prior variance avoiding the prob-
lem of U–shaped Beta distribution that would cause large probability mass
to extreme values. In addition, we extend the Beta distribution to include
the case of α ∈ (0, 2) where α = 2 allows consideration of the so called
conditional “expectile” of Newey and Powell (1987), while α = 1 allows
consideration of conditional quantiles based on the ALD introduced by Yu
and Moyeed (2001). The parameter α regulates the tail–fatness of the SEP
distribution so that smaller values imply larger probabilities of extreme ob-
servations (see Section 2.2). Therefore, by choosing α ∈ (0, 2) we overcome
both quantile and expectile regression issues, and we improve robustness by
relying on a distribution with fatter tails than the Skew Normal.

In the following Section, we introduce the Bayesian parameter estimation
procedure which aims to obtain simulations from the posterior distribution,
using an Adaptive Independent Metropolis–Hastings MCMC algorithm.
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2.3.2 Adaptive IMG for linear quantile regression

The Bayesian inference is carried out using an adaptive MCMC sampling
scheme based on the following posterior distribution

π (Ξ | y,x) ∝ Lτ (β, σ, α | y,x)π (β | γ)π (γ)π (σ)π (α) , (2.17)

where Lτ (β, σ, α | y,x) indicates the likelihood function specified in equa-
tion (3.17). After choosing a set of initial values for the parameter vector
Ξ(0), a block–move Independent Metropolis within Gibbs (IMG) is run it-
eratively to obtain simulations from the posterior distribution at the i–th
iteration of Ξ(i), for i = 1, 2, . . . . As a first step, the simulation algorithm
requires a proposal distribution for the parameters (β, σ, α).

We choose the following proposal distributions to move each block of the
parameters:

q (β) ∼ Np
(
β | µ(i)

β ,Σ
(i)
β

)
(2.18)

q (σ) ∼ N1

(
σ̃ | µ(i)

σ̃ , ψ
(i)
σ̃

) ∣∣∣∂σ̃
∂σ

∣∣∣ (2.19)

q (α) ∼ N1

(
µ(i)
α , ψ

(i)
α

)
1(0,2) (α) , (2.20)

where the scale parameter σ̃ = log (σ) is considered on a log–scale and subse-
quently transformed to preserve positive values. The jacobian term in equa-
tion (3.28) is required for the distribution of the transformation σ = exp (σ̃).
At each iteration i, the IMG algorithm draws a candidate parameter from
each parameter block, i.e. Υ∗ = (ξ∗1 , ξ

∗
2 , ξ
∗
3) = (β∗, σ∗, α∗) which is subse-

quently accepted or rejected. The probability that the candidate parameter
ξ∗j , for j = 1, 2, 3 becomes the new state parameter of the chain is evaluated
on the basis of the following acceptance probability

λ
(
ξ

(i−1)
j , ξ∗j

)
= min

1,
L
(
ξ∗j ,Ξ

(i−1)
−j | y,x

)
L
(
Ξ(i−1) | y,x

) π
(
ξ∗j

)
π
(
ξ

(i−1)
j

) q
(
ξ

(i−1)
j

)
q
(
ξ∗j

)
 ,

for j = 1, 2, 3, where λ
(
ξ

(i−1)
j , ξ∗j

)
indicates the probability of moving to the

new state of the chain, π (·) is the prior given in equations (2.8) - (2.11) and

Ξ
(i−1)
−j refers to the whole set of parameters at iteration i − 1 without the

j–th element of Υ∗. In the last step of the algorithm we sample (ωj , γj), for
j = 1, 2, . . . , p with a Gibbs step, by simulating directly from the respective
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full conditional distributions

ωj | β(i)
j , γ

(i−1)
j ∼ GIG

(
ωj

∣∣∣1
2
, β

(i)
j

2
, γ

(i−1)
j

2
)

γ2
j

(i) | ω(i)
j ∼ G

(
γ2
j

∣∣∣ψ + 1, $ +
ω

(i)
j

2

)
.

where GIG denotes the Generalized Inverse Gaussian distribution. Since
most of the statistical properties of the Markov chain, as well as the perfor-
mance of the Monte Carlo estimators, depend crucially on the definition of
the proposal distribution q (·) (see Andrieu and Moulines, 2006 and Andrieu
and Thoms, 2008), we improve the basic IMG–MCMC algorithm with an
additional step adapting the proposal parameters using the following equa-
tions:

µ
(i+1)
β = µ

(i)
β + ς(i+1)

(
β − µ(i)

β

)
, (2.21)

Σ
(i+1)
β = Σ

(i)
β + ς(i+1)

((
β − µ(i)

β

)(
β − µ(i)

β

)′
−Σ

(i)
β

)
, (2.22)

µ
(i+1)
σ̃ = µ

(i)
σ̃ + ς(i+1)

(
σ̃ − µ(i)

σ̃

)
, (2.23)

ψ
(i+1)
σ̃ = ψ

(i)
σ̃ + ς(i+1)

((
σ̃ − µ(i)

σ̃

)2
− ψ(i)

σ̃

)
, (2.24)

µ(i+1)
α = µ(i)

α + ς(i+1)
(
α− µ(i)

α

)
, (2.25)

ψ(i+1)
α = ψ(i)

α + ς(i+1)

((
α− µ(i)

α

)2
− ψ(i)

α

)
, (2.26)

where ς(i+1) denotes a tuning parameter that should be carefully selected at
each iteration to ensure the convergence and the ergodicity of the resulting
chain (see Andrieu and Moulines, 2006). Roberts and Rosenthal (2007)
provide two conditions for the convergence of the chain: the diminishing
adaptation condition, which is satisfied if and only if ς(i) −→ 0, as i→ +∞,
and the bounded convergence condition, which guarantees that all transition
kernels considered have bounded convergence time. Andrieu and Moulines
(2006) show that both conditions are satisfied if and only if ς(i) ∝ i−d where
d ∈ [0.5, 1]. Given this, we choose ς(i) = 1

Ci0.5
where C = 10. As argued

by Roberts and Rosenthal (2007), these two conditions together ensure for
this algorithm asymptotic convergence and a weak law of large numbers
respectively.

21



2.4 Nonlinear extension

In this section, we propose an additive extension of the robust linear quantile
regression model to the class of Additive Models (AM) introduced by Hastie
and Tibshirani (1986). We set up AM using the SEP likelihood. In order to
define the quantile function, we make use of the P-Spline functions resulting
in a semiparametric problem. The Bayesian analysis is carried out by gener-
alizing the Lang and Brezger (2004) second order random walk prior for the
Spline coefficients, assuming a multivariate Laplace distribution. By doing
so we account for a correlation structure among parameters which consider
the issue of selection variables.

2.4.1 Non–linear model specification

AM extend multiple linear regression by allowing for the response variable to
be modeled as sum of unknown smooth functions of continuous covariates.
In this section we set up a robust non linear and semi–parametric framework
for quantile regression following a AM approach using the SEP likelihood. In
particular, we assume that the τ–level conditional quantile can be modeled
as a parametric component jointly with a sum of smooth functions as follows:

Qτ (Yt | Xt = xt,Zt = zt) = x′tβ +

J∑
j=1

fj (zj,t) , (2.27)

where x′tβ is the parametric component, while each fj (zj,t) is a nonparamet-
ric continuous smooth function and zt = (z1,t, z2,t, . . . , zJ,t)

′ is an additional
set of covariates. To implement the statistical analysis we assume that the
non-parametric component fj (ztj) can be approximated using a polynomial
spline of order d, with k + 1 equally spaced knots between min (zt) and
max (zt). Using the well known representation of splines in terms of linear
combinations of B–splines, we can rewrite equation (2.27) as:

Qτ (Yt | Xt = xt,Zt = zt) = x′tβ +

J∑
j=1

k+d∑
ν=1

θj,νBj,ν (ztj) , (2.28)

where Bj,ν (ztj) denote B–spline basis functions and θj,ν are the unknown
coefficients. In this framework, the value of the estimated coefficients and
the shape of the fitted functions strongly depend upon the number and the
position of the knots. With respect to the position, in the absence of prior
information, we consider equidistant knots as the natural choice. To prop-
erly capture the smoothness of the data, careful consideration must be given
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to the trade-off between too few and too many knots, which may cause un-
derfitting or overfitting respectively. A possible solution to this problem
is known as Penalized Spline (P–Spline) proposed by O’Sullivan (1986 and
1988) and generalized by Eilers and Marx (1996), which relies on the intro-
duction of a penalty element on the first or second differences of the B–Spline
coefficients. This setting has been embedded in the Bayesian framework by
Lang and Brezger (2004), Brezger and Lang (2006) and Brezger and Steiner
(2008) using a second order random walk for all the B–Spline coefficients,
i.e.:

θj,ν = 2θj,ν−1 − θj,ν−2 + uj,ν , ∀j = 1, 2, . . . , J, ∀ν = 1, 2, . . . , k + d,
(2.29)

where the generic stochastic component uj,ν ∼ N (0, hj), θj,1 and θj,2 are
initialized with diffuse priors, i.e., π (θj,ν) ∝ 1, for ν = 1, 2. In their work
Lang and Brezger (2004) assume that the stochastic components uj,ν driving
the random walk process are independent, i.e. uj,ν ⊥ uk,ν , for all j, k =
1, 2, . . . , J with j 6= k. As there are no reasons to assume a priori uj,ν
and uk,ν as being independent (∀j, k), we consider an extension of (2.29)
and assume a multivariate Laplace distribution on the vector of regressors
accounting for a correlation structure amongst them. It can be showed that,
under the assumed prior structure, the original marginal shrinkage effect is
preserved because each marginal prior reduces to a univariate Laplace, see,
e.g., Kotz et al. (2001).
Moreover, using the Laplace distribution as prior distribution allows the
extension of the Lasso approach to the Bayesian paradigm.

Let uj = (uj,1, uj,2, . . . , uj,k+d), we assume uj ∼ ALk+d (0, Ik+d), where
ALk+d denotes the multivariate Laplace distribution and Id+k is the identity
matrix of dimension k + d. Furthermore, let Dδ be the difference matrix of
dimension (k + d− δ) × (k + d), and δ = 2 is the order of the differential
operator, such that Dδθj = uj , then

π (θj | hj) ∼ ALk+d

(
0, hj

(
D′δDδ

))
, ∀j = 1, 2, . . . , J, (2.30)

having density

π (θj | hj) = C|D′δDδ|
1
2hd+k

j exp
{
−hj

[
θ′j
(
D′δDδ

)
θj
] 1
2

}
, (2.31)

where C =
√

2π
Γ( d+k+1

2 )
. As shown in Kotz et al. (2001), the multivariate

Laplace distribution can be expressed as a location–scale mixture of Gaus-
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sians, where the mixing variable follows a Gamma distribution

π (θj | φj) ∼ Nk+d

(
0, φj

(
D′δDδ

)−1
)

(2.32)

π (φj | hj) ∼ G

(
k + d+ 1

2
,
h2
j

2

)
, (2.33)

for j = 1, 2, . . . , J .
It can easily be shown how to retrieve (2.31) from (2.32) - (2.33) by inte-
grating out the augmented variable φj , i.e.

π (θj | hj) =

∫
R

|D′δDδ|
1
2 exp

{
−θ′(D′δDδ)θ

2φj

}
(2πφj)

k+d
2

(
h2j
2

) d+k+1
2

φ
d+k−1

2
j

Γ
(
d+k+1

2

)
× exp

{
−h2

jφj

2

}
dφj

=

(
h2j
2

) d+k+1
2

|D′δDδ|
1
2

(2π)
k+d
2 Γ

(
d+k+1

2

)
×
∫
R
φ
− 1

2
j exp

{
−1

2

[
θ′ (D′δDδ)θ

φj
+ h2

jφj

]}
dφj ,

(2.34)

where the integrand in the previous equation (2.34) is proportional to a
Generalized Inverse Gaussian distribution GIG (p, a, b) with parameters p =
1
2 , a = h2

j and b = θ′j (D′δDδ)θj from which we have

∫
R
φ
− 1

2
j exp

{
−1

2

[
θ′ (D′δDδ)θ

φj
+ h2

jφj

]}
dφj =

2K 1
2

(√
h2
j

(
θ′j
(
D′δDδ

)
θj

))
(

h2j
θ′j(D′δDδ)θj

) 1
4

,

(2.35)

where K 1
2

(z) =
√

π
2z exp {−z}.
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Substituting this latter expression into equation (2.34) we obtain

π (θj | hj) =

(
h2j
2

) d+k+1
2

|D′δDδ|
1
2

(2π)
k+d
2 Γ

(
d+k+1

2

)
√

2π exp
{
−hj

√
θ′j(D′δDδ)θj

}
[h2j(θ′j(D′δDδ)θj)]

1
4(

h2j
θ′j(D′δDδ)θj

) 1
4

=

√
π|D′δDδ|

1
2hd+k

j

Γ
(
d+k+1

2

) exp
{
−hj

√
θ′j
(
D′δDδ

)
θj

}
, (2.36)

which corresponds to the ALD defined in equations (2.30)–(2.31). The pro-
posed prior distribution for θj corresponds to the group lasso penalty of
Yuan and Lin (2006), Meier et al. (2008) and Li et al. (2010), account-
ing for the group structure when performing variable selection. It is worth
emphasizing that, in our context, the group variables have a natural inter-
pretation because they correspond to knots accounting for the smoothness
level of the same regressor over different regions of the support. The overall
smoothness of the fitted curve is controlled by the variance of the error term
hj , and this corresponds to the inverse of the penalization parameter used
by Eilers et al. (1996) in the frequentist framework. We choose a conjugate
Gamma prior for h2

j , that is h2
j ∼ G

(
a(h), b(h)

)
with a(h) = b(h) = 0.001. A

different choice of hyperparameters may be considered, however, they may
all bring very similar results. To sum up, the use of a Gamma prior for h2

j ,
and the assumption of the prior structure defined in equations (2.8)–(2.9)
for the shape and scale parameters (σ, α), provides the following hierarchical
model

yt = x′tβ +
J∑
j=1

Bz
jθj + εt, εt ∼ SEP (0, τ, σ, α) (2.37)

β | ω ∼ Np (β | 0p,Ω) (2.38)

ωk | γk ∼ E
(
ωk | 2/γ2

k

)
(2.39)

γk ∼ G (γk | ψ,$) , ∀k = 1, 2, . . . , p (2.40)

θj | φj ∼ Nk+d

(
0, φj

(
D′δDδ

)−1
)

(2.41)

φj | hj ∼ G

(
d+ k + 1

2
,
h2
j

2

)
(2.42)

h2
j ∼ IG

(
a(h)

2
,
b(h)

2

)
∀j = 1, 2, . . . , J, (2.43)
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where Bz
j = (Bj,1 (ztj) , . . . , Bj,k+d (ztj)).

2.4.2 Adaptive IMG for quantiles AM

In order to perform the Bayesian inference, the Adaptive MCMC algorithm
proposed in Section 2.3.2 is slightly modified to deal with the simulation from
the posterior distribution of the generalized quantiles’ AM parameters. The
posterior distribution becomes equal to

π (Ξ | y,x, z) ∝ Lτ (β, σ, α,ϑ | y,x, z)π (β | γ)π (γ)

× π (ϑ | φ)π (φ | h)π (h)π (σ, α)
(2.44)

where the vector Ξ now contains an additional three sets of parameters,
namely ϑ = (θ1,θ2, . . . ,θJ), φ = (φ1, φ2, . . . , φJ) and h =

(
h2

1, h
2
2, . . . , h

2
J

)
.

The likelihood function Lτ (β, σ, α,ϑ | y,x, z) defined in equation (3.17) for
the linear model, should be adapted to account for the additional spline
coefficients. In order to perform Bayesian analysis, three additional steps to
the algorithm described in Section 2.3.2 are required. In particular, having
updated all the parameters of the linear part of the model, a candidate for
θj , for j = 1, 2, . . . , J is drawn from a Gaussian proposal distribution, i.e.,

q
(
θj,i−1, θ

∗
j

)
∼ Nk+d

(
µ

(i)
θj
,Σ

(i)
θj

)
and accepted on the basis of the following

acceptance probability

λ
(
θ

(i−1)
j ,θ∗j

)
= min

1,
L
(
β(i−1), σ(i−1), α(i−1),θ∗j ,ϑ

(i−1)
−j | y,x, z

)
L
(
β(i−1), σ(i−1), α(i−1),ϑ

(i−1)
j | y,x, z

)
×

π
(
θ∗j

)
π
(
θ

(i−1)
j

) q
(
θ

(i−1)
j

)
q
(
θ∗j

)
 ,

where ϑ−j denote the whole set of B–Spline coefficients without the j–
th component. Furthermore, as specified for the regression parameters in
Section 2.3.2, an adaptive step for the mean and the variance of the proposal
distribution of each θj is implemented using the following equation

µ
(i+1)
θj

= µ
(i)
θj

+ ς(i+1)
(
θj − µ(i)

θj

)
, (2.45)

Σ
(i+1)
θj

= Σ
(i)
θj

+ ς(i+1)

((
θj − µ(i)

θj

)(
θj − µ(i)

θj

)′
−Σ

(i)
θj

)
, (2.46)
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for j = 1, 2, . . . , J , where ς is the vanishing factor, fixed as discussed above.
The hyperparameters (φ,h) are updated by single–move Gibbs sampling
steps, by simulating from the following full conditionals which are propor-
tional to the GIG distribution

φj | θ(i)
j , h

(i−1)
j ∼ GIG

(
φj

∣∣∣1
2
, h

(i−1)
j

2
,θ′j
(
D′δDδ

)
θj

)
h2
j | φ

(i)
j ∼ GIG

(
h2
j

∣∣∣− ah

2
, φ

(i)
j ,

bh

2

)
.

2.5 Simulation Studies

We perform simulation studies to highlight the improvements in robustness
obtained by implementing SEP-based quantile regression, compared with
that obtained by the traditional Bayesian quantile regression, based on the
ADL distribution. Our purpose is to illustrate how the SEP misspecified
model assumption in the quantile regression framework generates posterior
distributions of the regression parameters centered on the true values. The
first simulation experiment assesses the robustness properties of the pro-
posed methodology for quantile estimation when the joint distribution of
the couple (Yi,Xi), for i = 1, 2, . . . , T , is contaminated by the presence of
outliers. The second study shows the effectiveness of the shrinkage effect,
obtained by imposing the Lasso–type prior, used when the multiple quantile
linear model is of key concern. The last experiment aims at highlighting
the ability of the model to adapt to non–linear shapes, when data come
from heterogeneous fat–tailed distributions. The hyperparameters of the
prior distributions are chosen such that the priors are non-informative. In
particular, for the nuisance parameter σ we choose a = b = 0.001 which
corresponds to a proper Inverse Gamma distribution with infinite second
moments. When lasso prior is assumed, the hyperparameters (ψ,$) in the
Gamma priors for γj are set at 0.1.

2.5.1 Simple linear quantile regression

For this experiment we consider a sample of T = 100 drawn from the
following homoskedastic mixture of distributions

f
(
(Y,X)′ ,η,µ1,µ2, . . . ,µL,Σ

)
=

L∑
l=1

ηlϕ (µl,Σ) , (2.47)
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Figure 2.2: Contaminated data example. Comparison between Bayesian quantile re-

gression based on the ALD (blue) and the SEP distribution (red) for different values of

the quantile confidence level τ = (0.1, 0.5, 0.9) and sample sizes T = 100. Shaded areas

denote 95% HPD credible sets.

where ϕ denotes the density function of a Gaussian distribution with mean
µ and variance and covariance matrix Σ, and η = (η1, · · · , ηL) is the vector
of weights. We set the number of components equal to L = 3, with mixture
weights η = (0.85, 0.0725, 0.0725), locations and scale matrix specified as

µ1 =

[
1
0

]
, µ2 =

[
4
0

]
, µ3 =

[
−2
0

]
, Σ =

[
1 0.6

0.6 1

]
. (2.48)

The quantile regression model used is a simple model with only one exoge-
nous variable i.e. Yt = Xtβ+εt for t = 1, 2, . . . T . The aim of this example is
to show the performance of the Bayesian quantile linear regression analysis
assuming both the ALD and the SEP likelihood when the data are strongly
contaminated by the presence of outliers. Since we have only one regres-
sor, for this example we use a simplified version of the sampler proposed
in Section 2.3.2, in which a simple Gaussian prior is considered for β. For
τ = (0.1, 0.5, 0.9) we run the MCMC algorithm with N = 50, 000 iterations
and a burn–in of M = 10, 000. For both the ALD and the SEP distribu-
tion assumptions, initial values for the parameters to be estimated, namely
(β, σ), are randomly drawn from N (0, 1) and IG (0.001, 0.001), respectively.
The additional initial value for the parameter α, required only for the SEP
distribution case, is randomly drawn form B (2, 2).

Figure 2.2 depicts the estimated regression lines as well as the 95% HPD
credible sets. The blue line refers to the ALD estimation while the red
line to the SEP one. It can be easily observed that the two curves overlap
for τ = 0.5 and diverge increasingly for extreme level quantiles i.e. for
τ = (0.1, 0.9). In the case that τ = 0.5 the posterior mean of α is very close
to one, implying that the SEP reduces to the ALD distribution.
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Parameter
ALD SEP

τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

β0
-0.391 1.149 2.688 0.186 1.144 2.011

(0.176) (0.093) (0.237) (0.089) (0.086) (0.100)

β1
0.801 0.735 1.207 0.428 0.709 0.825

(0.151) (0.106) (0.144) (0.094) (0.093) (0.074)

σ
3.844 2.105 3.478 1.049 0.862 0.989

(0.386) (0.212) (0.349) (0.153) (0.112) (0.150)

α
- - - 0.596 0.832 0.504

(0.094) (0.142) (0.068)

Table 2.1: Contaminated data example. Estimated parameters for different levels of
the quantile confidence level τ = (0.1, 0.5, 0.9) and T = 100. Standard deviations in
parenthesis.

The further we move away from the median, the more e the differences
in the estimated regression quantile parameters under the ALD and the
SEP assumptions are noticeable. When using the ALD distribution, the
intercept and slope of the regression line are strongly influenced by the
outliers (7.25% of the total observations) generated by the two external
components of the mixture (2.2(a) and 2.2(c)). In both cases, the estimated
α of the SEP is considerably smaller than one. As a consequence estimation
of the β parameters is made under a distribution with fatter tails than
the ALD, strongly penalizing more extreme observations and providing us
with more robust results. For the regression parameters, Table 2.1 contains
the estimated posterior means and standard deviations under the ALD and
the SEP assumptions. In the data generating process, the theoretical slope
should always be equal to 0.6. When moving from the median to more
extreme quantiles, the ALD-estimated posterior mean of the intercept and
the slope is farther from the true value than those obtained with the SEP.
It is worth noting that the SEP standard errors are always lower, implying
that the estimated parameters are sharper when using the SEP distribution.
Finally, figures 2.3-2.5 provide evidence about the efficiency of the MCMC
algorithm implemented by showing posterior draws, posterior histograms
and Autocorrelation functions for the estimated SEP robust parameters for
the three different values of τ .
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Figure 2.3: Posterior draws, posterior histograms and ACF for estimated robust (SEP)
parameters of simple linear quantile regression simulation with τ = 0.1
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Figure 2.4: Posterior draws, posterior histograms and ACF for estimated robust (SEP)
parameters of simple linear quantile regression simulation with τ = 0.5
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Figure 2.5: Posterior draws, posterior histograms and ACF for estimated robust (SEP)
parameters of simple linear quantile regression simulation with τ = 0.9

2.5.2 Multiple quantile regression

In this section, we carry out a Monte Carlo simulation study specifically
tailored to evaluate the performance of the model when the Lasso prior (2.8)
is considered for the regression parameters. The simulations are similar to
the one proposed in Li et al. (2010) and Alhamzawi et al. (2012). In
particular, we simulate T = 200 observations from the linear model Yt =
X′tβ + εt, where the true values for the regressors are set as follows:

Simulation 1. β = (3, 1.5, 0, 0, 2, 0, 0, 0)′ ,

Simulation 2. β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)′ ,

Simulation 3. β = (5, 0, 0, 0, 0, 0, 0, 0)′ ,

The first simulation corresponds to a sparse regression case, the second to
a dense case, and the third to a very sparse case. The covariates are in-
dependently generated from a N (0,Σ) with σi,j = 0.5|i−j|. Two different
distributions for the error terms generating process are considered for each
simulation study. The first is a Gaussian distribution N

(
µ, σ2

)
, with µ set

so that the τ -th quantile is 0, while σ2 is set as 9, as in Li et al. (2010).
The second distribution is a Generalized Student’t GS

(
µ, σ2, ν

)
with two

31



degrees of freedom, i.e. ν = 2, σ2 = 9 and µ set so that the τ -th quantile
is 0. For three different quantile levels, τ = (0.10, 0.5, 0.9) we run 50 simu-
lations for each vector of parameters (β) and each distribution of the error
term. Table 2.2 reports the median of mean absolute deviation (MMAD),

i.e. median
(

1
200

∑200
t=1 | x′tβ̂ − x′tβ |

)
, and the median of the parameters β̂,

over 50 estimates. Results for the first simulation are reported, since re-
sults from the other two simulations are qualitatively similar. The proposed
Bayesian quantile regression method based on the SEP likelihood performs
better in terms of MMAD for both distributions of the error term. This is
evidence that the presence of the shape parameter α in the likelihood better
capture the behavior of the data. The estimated shape parameter is in-
deed greater and lower than one in the Gaussian and Generalized Student’t
cases, respectively; this provides a more reliable estimation of the vector β,
regardless of the tail weight of the error term distribution. These results are
reinforced in the second and third simulation (not reported here) in which
we exaggerate the density and the sparsity of the predictors structure. Fur-
thermore, the proposed robust method reduces the bias of estimated β for
all quantile confidence levels. Regarding the shrinkage ability of the pro-
posed estimator, when the true parameters are zero, the SEP distribution
performs better than the ALD in identifying the parameters .

Error distribution Par.
ALD SEP

τ = 0.10 τ = 0.50 τ = 0.90 τ = 0.10 τ = 0.50 τ = 0.90

Gaussian

MMAD 1.0131 1.1008 1.0579 0.9096 1.0955 0.9708
β1 3.1323 3.2209 3.2145 3.0744 3.0036 3.2127
β2 1.6408 1.4786 1.6165 1.7656 1.4833 1.6800
β3 0.0444 0.0294 0.0267 0.0428 0.0228 0.0186
β4 0.0453 0.0243 0.0235 0.0248 0.0191 0.0156
β5 1.2731 1.2379 1.3471 1.3969 1.8405 1.4702
β6 0.0185 0.0161 0.0205 0.0124 0.0127 0.0128
β7 0.0112 0.0106 0.0120 0.0067 0.0063 0.0095
β8 0.0073 0.0078 0.0064 0.0038 0.0047 0.0051

Generalized Student t

MMAD 0.5163 0.1807 0.4685 0.4777 0.1789 0.4275
β1 3.0630 2.9884 2.9874 3.0826 2.9877 2.9934
β2 1.0484 1.3700 1.1366 1.0952 1.3951 1.2110
β3 0.0304 0.0144 0.0325 0.0252 0.0135 0.0412
β4 0.0258 0.0181 0.0162 0.0263 0.0163 0.0138
β5 1.7012 1.9036 1.7701 1.7558 1.9111 1.8052
β6 0.0128 0.0085 0.0137 0.0074 0.0072 0.0136
β7 0.0055 0.0057 0.0101 0.0052 0.0066 0.0082
β8 0.0067 0.0009 0.0002 0.0051 0.0011 -0.0021

Table 2.2: Multiple regression simulated data example 1. MMADs and estimated pa-
rameters for Simulation 1 under the SEP and ALD assumption for the quantile error
term.
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2.5.3 Non Linear Model

In this simulation example we illustrate how well the model assumptions
perform when a simple AM is employed with a single continuous smooth
non–linear function and where the parametric linear components are set
to zero. Following Chen and Yu (2009), we consider two data generating
processes yt = fj (xt)+εt, for t = 1, 2, . . . , T and j = 1, 2 where f1 represents
the wave function and f2 the doppler function, defined as follows

f1 (x) = 4 (x− 0.5) + 2 exp
(
−256 (x− 0.5)2

)
1(0,1) (x) (2.49)

f2 (x) = (0.2x (1− 0.2x))
1
2 sin

(
2π (1 + γ)

0.2x+ γ

)
1(0,1) (x) , (2.50)

with γ = 0.15. These functions are usually used (see also Denison et al.
1998) to check the nonlinear fitting ability of a model. Starting from these
two curves, we generate a sample of T = 200 and T = 512 observations for
the wave and the doppler functions respectively, using four different sources
of error

Gaussian noise, εt ∼ N (0, 1) (2.51)

yt = f1 (xt) + σ1εt,

yt = f2 (xt) + σ2εt,

Student–t noise, εt ∼ Tν (0, 1) , (2.52)

yt = f1 (xt) + σ1εt,

yt = f2 (xt) + σ2εt,

Linear heterogeneity, εt ∼ Tν (0, 1) , (2.53)

yt = f (xt) + σ1 (1 + x) εt,

yt = f (xt) + σ2 (1 + x) εt,

Quadratic heterogeneity, εt ∼ Tν (0, 1) , (2.54)

yt = f1 (xt) + σ1

(
1 + x2

t

)
εt,

yt = f2 (xt) + σ2

(
1 + x2

t

)
εt,

where σ1 =
√

0.4, σ2 =
√

0.1 and ν = 2. The set of model specifications
considered are estimated using penalized P–Splines of order 4. imposing a
relatively large number of equally spaced knots and a penalization parameter
δ = 2, as suggested by Eilers et al. (1996). In particular, we use 20 knots
for the wave function and 25 knots for the doppler function due to the
presence of many change points. The sampling process is performed using
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Model Noise
Wave Doppler

τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

ALD

Gaussian
0.0054 0.0022 0.0039 0.0002 0.0000 0.0002

(0.0171) (0.0070) (0.0124) (0.0007) (0.0002) (0.0005)

Student–t
0.0504 0.0034 0.0177 0.0009 0.0001 0.0177

(0.1593) (0.0108) (0.0561) (0.0027) (0.0045) (0.0015)

Lin. Het.
0.1035 0.0054 0.0627 0.0059 0.0002 0.0039

(0.3273) (0.0170) (0.1979) (0.0180) (0.0010) (0.0124)

Quad. Het.
0.0505 0.0067 0.0752 0.0018 0.0001 0.0050

(0.1598) (0.0210) (0.2377) (0.0058) (0.0006) (0.0160)

SEP

Gaussian
0.0071 0.0020 0.0078 0.0002 0.0000 0.0005

(0.0226) (0.0063) (0.0248) (0.0006) (0.0002) (0.0016)

Student–t
0.0251 0.0037 0.0132 0.0007 0.0001 0.0006

(0.0795) (0.0117) (0.0417) (0.0022) (0.0045) (0.0019)

Lin. Het.
0.0986 0.0046 0.0678 0.0008 0.0003 0.0006

(0.3118) (0.0145) (0.2144) (0.0026) (0.0010) (0.0020)

Quad. Het.
0.0234 0.0057 0.0305 0.0011 0.0002 0.0008

(0.0741) (0.0180) (0.0965) (0.0035) (0.0006) (0.0026)

Table 2.3: Non–linear regression simulated data example. MSE of the fitted curves with
four sources of noise evaluated over the 200 synthetic replications. Standard deviations in
parenthesis.

50,000 iterations with the first 10,000 as burn–in. For all described curves,
Table 2.3 shows the average and the standard errors of the mean squared
errors (mse) of three different quantile levels (50 repeats) . It can be noted
that the SEP outperforms the ALD in terms of mse almost systematically.
The difference between the two curves is less evident in the presence of
Gaussian errors, where the ALD also displays a smaller mse for the extreme
quantiles of the wave function. The improvement in terms of estimation bias
becomes larger when looking at more heavy tailed and heteroskedastic error
distributions. Concerning the wave function, the SEP shows a mse equal
to half of that obtained with the ALD at the extreme quantiles. The same
conclusions can be drawn for the doppler function that is generally better
estimated than the wave function.

2.6 Empirical applications

Three empirical datasets are analyzed in this section: Boston Housing, Mu-
nich Rent and Barro growth data. The first dataset is characterized by the
presence of many regressors that emphasizes the usefulness of introducing
a lasso prior for the regression parameters. The second dataset also has a
large set of regressors with some characterized by a non-linear relationship
with the response variable. For this dataset we highlight that the assump-
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tion of a lasso prior within a robust quantile AM framework leads to a more
precise estimation process. Finally we propose the use of our robust quantile
lasso AM to study the Barro growth data in a previously unexplored way
by assuming a non linear representation for some regressors. We find a new
interpretation of regression parameters while maintaining the neoclassical
convergence hypothesis.

2.6.1 Boston housing data

In this section we analyze the Boston Housing data first considered by
Harrison and Rubinfeld (1978) studying the influence of pollution on house
prices. In particular, in this section we consider the corrected data of Li et
al. (2010). The model is based on the log-transformed corrected median
values of owner-occupied housing (values in USD 1000) as the dependent
variable while several exogenous variables are taken into account: the point
longitudes and latitudes in decimal degrees (LON and LAT respectively);
the per capita crime (CRIM); the proportions of residential land zoned and
non-retail business acres per town (ZN and INDUS respectively); a dummy
equal to 1 if tract borders Charles River (CHAS); the nitric oxide concentra-
tion (NOX); the average number of rooms per dwelling (RM); the proportion
of owner-occupied units built prior to 1940 (AGE); the weighted distances
to five Boston employment centers (DIS); the index of accessibility to radial
highways per town (RAD); the full-value property-tax rate per town (TAX);
the pupil-teacher ratios per town (PTRATIO); the transformed Black pop-
ulation proportion (B); and, percentage values of lower status population
(LSTAT). To provide a description of the conditional distribution of the re-
sponse variable we consider five values of τ , i.e. 0.10 0.25 0.50 0.75 0.90.
Moreover, in order to show the advantage and performance of assuming a
Lasso prior for the regressor parameters we also consider a Gaussian prior
distribution. Results are reported in Table 2.4. Independently of the choice
of prior distribution, all variables have a sign similar to previous studies us-
ing the same dataset. Nevertheless, the Lasso prior should be preferred for
at least for two reasons. Firstly, it systematically provides smaller posterior
standard errors. Secondly, the estimated coefficients appear to be more reli-
able at extreme quantile levels, i.e. τ = 0.1 or τ = 0.9, where the estimated
parameters obtained under Gaussian prior become very unstable for some
variables.
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Variable
Gaussian Prior Lasso Prior

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

LON
-0.0614 -0.0297 -0.0203 -0.0114 0.0072 -0.0287 -0.0213 -0.0258 -0.0261 -0.0161

(0.0364) (0.0416) (0.0450) (0.0555) (0.0434) (0.0166) (0.0172) (0.0187) (0.0176) (0.0157)

LAT
-0.0250 0.0251 0.0386 0.0531 0.0816 0.0103 0.0221 0.0168 0.0121 0.0238

(0.0582) (0.0678) (0.0732) (0.0937) (0.0729) (0.0276) (0.0290) (0.0311) (0.0296) (0.0262)

CRIM
-0.0230 -0.0177 -0.0093 -0.0063 -0.0058 -0.0241 -0.0178 -0.0093 -0.0059 -0.0032

(0.0032) (0.0027) (0.0015) (0.0016) (0.0021) (0.0028) (0.0027) (0.0014) (0.0017) (0.0014)

ZN
0.0000 0.0005 0.0008 0.0012 0.0012 -0.0000 0.0006 0.0009 0.0010 0.0009

(0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0002)

INDUS
0.0030 0.0023 0.0027 0.0014 -0.0013 0.0016 0.0017 0.0016 0.0010 -0.0027

(0.0016) (0.0014) (0.0016) (0.0017) (0.0013) (0.0015) (0.0014) (0.0016) (0.0017) (0.0011)

CHAS
0.0482 0.0464 0.0597 0.0737 0.1134 0.0183 0.0377 0.0411 0.0448 0.0834

(0.0264) (0.0197) (0.0264) (0.0308) (0.0302) (0.0190) (0.0205) (0.0236) (0.0275) (0.0312)

NOX
-0.3667 -0.2642 -0.3672 -0.4465 -0.3204 -0.0397 -0.0604 -0.0480 -0.0416 -0.0222

(0.1324) (0.0946) (0.1119) (0.1424) (0.1191) (0.0463) (0.0575) (0.0551) (0.0524) (0.0395)

RM
0.2050 0.2259 0.2139 0.2007 0.2067 0.2318 0.2299 0.2129 0.2262 0.2347

(0.0258) (0.0141) (0.0175) (0.0255) (0.0154) (0.0157) (0.0131) (0.0173) (0.0201) (0.0142)

AGE
-0.0013 -0.0016 -0.0009 -0.0000 0.0006 -0.0019 -0.0018 -0.0011 -0.0008 0.0002

(0.0005) (0.0003) (0.0004) (0.0006) (0.0003) (0.0003) (0.0003) (0.0004) (0.0005) (0.0003)

DIS
-0.0337 -0.0342 -0.0330 -0.0337 -0.0313 -0.0279 -0.0303 -0.0268 -0.0267 -0.0257

(0.0063) (0.0054) (0.0062) (0.0063) (0.0043) (0.0050) (0.0047) (0.0061) (0.0054) (0.0033)

RAD
0.0113 0.0100 0.0074 0.0106 0.0118 0.0103 0.0089 0.0077 0.0095 0.0099

(0.0025) (0.0018) (0.0024) (0.0022) (0.0019) (0.0022) (0.0016) (0.0027) (0.0021) (0.0014)

TAX
-0.0007 -0.0006 -0.0005 -0.0004 -0.0004 -0.0007 -0.0006 -0.0005 -0.0005 -0.0004

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

PRATIO
-0.0295 -0.0292 -0.0318 -0.0302 -0.0253 -0.0300 -0.0270 -0.0280 -0.0245 -0.0199

(0.0037) (0.0032) (0.0039) (0.0047) (0.0033) (0.0024) (0.0027) (0.0037) (0.0035) (0.0027)

B
0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0006 0.0007 0.0008 0.0009

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

LSTAT
-0.0186 -0.0172 -0.0189 -0.0195 -0.0191 -0.0161 -0.0173 -0.0205 -0.0179 -0.0163

(0.0027) (0.0019) (0.0023) (0.0028) (0.0015) (0.0018) (0.0019) (0.0023) (0.0025) (0.0015)

σ
0.2143 0.1954 0.2142 0.2284 0.1906 0.1948 0.1941 0.2147 0.2105 0.1722

(0.0243) (0.0198) (0.0208) (0.0251) (0.0222) (0.0208) (0.0197) (0.0208) (0.0237) (0.0202)

α
0.7565 0.7825 0.8440 0.7929 0.6039 0.7027 0.7766 0.8403 0.7401 0.5674

(0.0603) (0.0558) (0.0620) (0.0627) (0.0390) (0.0470) (0.0541) (0.0602) (0.0569) (0.0335)

Table 2.4: Linear regression model results for Boston dataset. Standard deviations in
parenthesis.

2.6.2 Munich rental guide

In section 2.5.3 we provide empirical evidence that the SEP distribution
produces more reliable estimates of the conditional quantile when there is
heteroskedasticity and heavy tails. To provide example based on real data
we analyze the very well known 2003 Munich rental dataset, characterized
by the presence of heterogeneous variability. Several analyses of this dataset
(see for example Kneib et al, 2011 and Mayr et al, 2012) showed the pres-
ence of spatial effects, modeled by considering a parameter for each of the
380 districts of Munich. For this reason, the parameter space handled is
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quite wide, highlighting the need for a variable selection approach. Here
therefore, we assume a Lasso prior distribution on the unknown parameters
in line with that proposed in (2.31) and we compare its performance with
a Gaussian prior assumption. The response variable is the rent in Euro per
square meters for a flat in Munich. Two sets of covariates describe linear
and non linear relationships between the rent and its determinants. The
linear predictors are a set of 13 dummies for the goodness of location, the
goodness of rooms and the number of rooms in the flat. The floor size and
the year of construction have instead a non-linear impact on the response
variable. Finally, the spatial location of the flat allows the implementation of
a geoadditive model of the kind introduced by Kammann and Wand (2003).
To this end, we use a Bayesian semi–parametric quantile regression model
with a spatial effect similar to the one considered in Rue and Held (2005)
and Yue and Rue (2011) among the others. A complete description of the
dataset can be found in Rue and Held (2005).

We estimate the τ -th conditional quantile for the rent rt , i.e., Qτ (rt | xt, zt)
from the following model:

rt = qt,τ + εt

qt,τ = x′tβτ + fs,τ (zs,t) + fy,τ (zy,t) + fl,τ (zl,t) , (2.55)

where t = 1, 2, . . . , 2035; εt is the error term with zero τ–th quantile and con-
stant variance, xt is the whole set of dummies treated as linear parametric
predictors, zt = (zs,t, zy,t, zl,t) are the predictor variables for “size” , “year”
and “spatial” effect while fs,τ fy,τ and fl,τ are their non-linear functions. The
estimation procedure of three quantile confidence levels τ = (0.25, 0.5, 0.75)
was performed using the Adaptive MCMC procedure for AM described in
subsection 2.4.2.
Figures 2.6 and 2.7 show the estimated non-linear effect for the year of con-
struction and the floor size using Gaussian and Lasso priors respectively.
The points below each sub-figure represent the available observations for
each value of the covariates, while dotted lines represent the 95% posterior
credible intervals. We can observe that both priors provide similar esti-
mated splines for the effect of floor size on house prices. Small flats (less
that 40m2) have a very high rent per square meter, while for big flats the
rent remains almost unchanged. For the year of construction, the estimated
splines are relatively different under the two prior specifications but they
actually contain similar information. When looking at the level and confi-
dence intervals of the variable, the effect of this covariate is almost null until
the 1990s, when a clear positive and increasing effect is shown under both
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Figure 2.6: Estimated non-parametric effect using Gaussian prior with 95% credible

bands for Munich data.

prior specifications. Figure 2.8 displays the estimated spatial effects of 380
subquarters in Munich. Values are normalized to be in the range (0, 1). As
expected, for both Gaussian and Lasso priors, rents are high in the centre
of Munich and some well–known districts, becoming lower on the margins.
Finally, estimated posterior means and standard deviations for the linear
parametric effects are shown in Table 2.5. The signs of the variables are
in line with previous work; however, under Lasso prior some new findings
are associated with the effect of the following variables: No hot water, No
central heating and 6 Rooms. Interestingly, Lasso prior differentiate the
effect of these variables for each quantile. We find that the absence of hot
water and the presence of 6 Rooms have a statistically significant negative
effect only on expensive houses, i.e. for τ = 0.75 while the opposite occurs
for the absence of central heating. We argue that these results highlight the
variety of the consumption choices due to different budget constraints.It is
worth noting that Lasso prior correctly shrinks the effect of Special bath-
room interior, that is not very significant when estimated using Gaussian
prior.

2.6.3 Barro growth data

Our final application, is an analysis of the dataset underlying the interna-
tional economic growth model, firstly considered by Barro and Sala i-Martin
(1995) and extended to the quantile regression framework by Koenker and
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Figure 2.7: Estimated non-parametric effect using Lasso prior with 95% credible bands

for Munich data.

Machado (1999). Since the standard OLS model does not provide a clear
result about the convergence hypothesis of neoclassical growth models, sev-
eral papers have analyzed growth equations using the quantile regression
technique with noteworthy results. Barreto and Hughes (2004) show that
the determinants of economic growth for countries in the left or right tails of
the distribution are very different from those in the mean. Using the Barro
growth model (Barro, 1991), Mello and Perrelli (2003) use quantile regres-
sion to find evidence in favor of the convergence hypothesis for countries
in the upper quantile of the conditional distribution of the response vari-
able. Finally, Laurini (2007) uses spline functions to test the convergence
hypothesis with a dataset of Brazilian municipalities. To the best of our
knowledge, this thesis is the first attempt to propose a Bayesian quantile
Lasso AM in order to study the impact of both linear and non-linear effects
of covariates on the cross-country GDP growth using the Barro and Sala
i-Martin (1995) model. The dataset consists of 161 countries and includes
13 covariates covering the two periods 1965-75 and 1975-85. With a quantile
AMl we are able to combine the theory of non-linear return to education
with that of economic convergence, using spline functions to model the vari-
ables: Male secondary school (MSS), Female Secondary school (FSS), Male
Higher Education (MHE) and Female Higher Education (FHE), adopting a
linear representation for the remaining variables.

The parameter estimates of the linear covariates (Table 2.6) are consis-
tent with previous studies based on quantile regression methods. In par-
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Figure 2.8: Estimated spatial effects using Gaussian (first row) and Lasso (second row)
prior for the 380 subquarters of Munich

ticular, it is worth noting that the coefficients related to the initial per-
capita GDP are always negative, confirming the neoclassical theory about
conditional convergence. Regarding the coefficients related to the public
consumption as a share of GDP, previous studies on this dataset find an in-
creasing but always negative effect of this variable on the economic growth.
Looking at this evidence Koenker and Machado (1999) conclude that this
variable tends to help faster-growing countries proportionally more than
those countries in the lower tail of the growth distribution, thus tending to
accentuate the inequality among nations. Our result increases the evidence
of Koenker and Machado (1999) since our estimates suggest that there is a
statistically significant effect of this variable on growth only for countries in
the lower tail of the growth distribution, thus exasperating inequality among
nations. Figure 2.9 displays the estimated spline functions along with their
credible sets, for three quantile levels τ = (0.25, 0.5, 0.75). A noticeable
non-linear path is present for almost all the selected covariates. For a given
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Variable
Gaussian Prior Lasso Prior

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

Good location
0.6466 0.7454 0.7606 0.6304 0.7042 0.5922

(0.0925) (0.0880) (0.0857) (0.1230) (0.1124) (0.1039)

Excellent location
1.4213 1.6999 1.9381 1.4136 1.6305 1.8450

(0.2770) (0.2879) (0.2829) (0.2376) (0.2454) (0.2527)

No hot water
-1.3361 -1.8499 -2.2199 -0.0353 -0.0335 -2.7652

(0.2410) (0.2664) (0.2738) (0.0475) (0.0454) (0.3731)

No central heating
-1.5449 -1.4206 -1.0610 -1.9830 -2.0557 -0.1316

(0.1759) (0.1957) (0.1867) (0.1872) (0.2076) (0.1193)

No tiles in bathroom
-0.4260 -0.5792 -0.5942 -0.1597 -0.3277 -0.2576

(0.1079) (0.1091) (0.1140) (0.1143) (0.1453) (0.1575)

Special bathroom interior
0.3926 0.3803 0.4897 0.0598 0.0824 0.0598

(0.1462) (0.1580) (0.1489) (0.0606) (0.0779) (0.0581)

Special kitchen interior
0.9145 1.1405 1.2480 1.0824 1.3077 1.3153

(0.1787) (0.1564) (0.1740) (0.3355) (0.2239) (0.1989)

1 Room
7.1564 8.3633 9.3637 6.8372 8.6886 10.0425

(0.1754) (0.1700) (0.1751) (0.1926) (0.1729) (0.1652)

2 Rooms
6.9968 8.4530 10.0062 6.5432 8.5664 10.3823

(0.1002) (0.1024) (0.0922) (0.1154) (0.1126) (0.1084)

3 Rooms
6.7542 8.1964 9.7554 6.2149 8.1500 10.0117

(0.0998) (0.0927) (0.0947) (0.1159) (0.1101) (0.1076)

4 Rooms
6.2745 7.7603 9.2060 5.7041 7.5529 9.3650

(0.1459) (0.1404) (0.1490) (0.1557) (0.1644) (0.1601)

5 Rooms
6.0948 7.6821 9.6398 5.0121 7.0744 9.2734

(0.2659) (0.3047) (0.2956) (0.4154) (0.3538) (0.3514)

6 Rooms
6.3496 7.6293 9.1707 0.4008 0.4462 8.4068

(0.4450) (0.4479) (0.4661) (0.0658) (0.0752) (0.5960)

Table 2.5: Posterior Means and standard errors (in parenthesis) of the linear regressors
for three different quantile levels.

variable, the sign of each estimated spline varies among different quantile
levels, suggesting that the importance of different types of education is not
the same for countries in the lower and upper tails of the growth conditional
distribution. This result is of particular interest since it isolates the positive
and negative contributions of each type of education to the rate of economic
growth. There are two opposite paths characterizing the effect of secondary
schooling and higher education on growth: the first is increasing in the
quantile level τ , and the second is decreasing. In particular, our estimates
suggest that relatively low education levels help countries in the upper tail of
the grow distribution, while higher education levels boost the rate of growth
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Figure 2.9: Barro dataset. Penalized splines with 95% HPD credible sets for the vari-
ables: “Male secondary school” (MSS, first column), “Female secondary school ” (FSS,
second column), “Male Higher education ” (MHE, third column) and Female Higher ed-
ucation ” (FHE, firth column) for five different quantile levels.

for countries in the lower tail. These results can be interpreted in view of
the fact that, high and low GDP growth levels are linked with emerging and
developed nations respectively. Basic schooling is a key factor for developing
countries which base their economies on high labor intense activities. For
these countries, costs resulting from higher levels of schooling outweigh the
returns while the opposite is true for developed countries. The latter, in-
deed, have the possibility to take advantage of skilled labor forces to exploit
the higher returns derived from available technology.

2.7 Conclusion

In this chapter we show how the SEP distribution provides a flexible tool
to model the conditional quantile of a response variable as a function of
exogenous covariates in a Bayesian quantile regression context. In particular,
extreme observations are properly accounted for by the shape parameter
governing the tails decay of the distribution, efficiently handling data with
outliers or with fat tail–decay. Moreover, we extend the linear quantile
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Variable
Quantile levels

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

Initial Per Capita GDP
-0.0266 -0.0270 -0.0307 -0.0293 -0.0322

(0.0043) (0.0048) (0.0055) (0.0045) (0.0047)

Life Expectancy
0.0324 0.0127 0.1947 0.2021 0.1866

(0.0091) (0.0104) (0.0110) (0.0097) (0.0092)

Human Capital
-0.0024 -0.0037 -0.0010 -0.0023 -0.0018

(0.0011) (0.0017) (0.0020) (0.0019) (0.0017)

Education/GDP
-0.2707 -0.1127 -0.2956 -0.2156 -0.0993

(0.1246) (0.1579) (0.1690) (0.1721) (0.1732)

Investment/GDP
0.0999 0.0930 0.0359 0.0343 0.0482

(0.0268) (0.0291) (0.0337) (0.0277) (0.0264)

Public Consumption/GDP
-0.1628 -0.1723 0.0052 0.0251 -0.0206

(0.0387) (0.0443) (0.0463) (0.0384) (0.0280)

Black Market Premium
-0.0227 -0.0267 -0.0360 -0.0319 -0.0316

(0.0063) (0.0074) (0.0077) (0.0064) (0.0072)

Political Instability
-0.0264 -0.0302 -0.0153 -0.0053 -0.0042

(0.0083) (0.0088) (0.0103) (0.0098) (0.0073)

Growth Rate Terms Trade
0.1220 0.1250 0.2274 0.2478 0.2744

(0.0366) (0.0504) (0.0652) (0.0639) (0.0569)

Table 2.6: Posterior Means and standard errors (in parenthesis) of the linear regressors
for three different quantile levels.

regression framework to the AM when quantile functions are approximated
with splines. In both cases we provide a new adaptive Metropolis within
Gibbs algorithm in order to implement statistical inference. In this chapter,
we accommodate for variable selection problems and shrinking parameters
by using the Bayesian version of Lasso penalization methods. In the linear
case, we suggest the use of generalized independent Laplace priors on the
regressor parameters to shrink each parameter separately, and a multivariate
Laplace distribution on the spline coefficients generalizing the Lang and
Brezger (2004) second order random walk prior. Finally, we demonstrate the
power of these models through simulation and real dataset application where
the flexibility of the quantile methodology proposed in terms of robustness
and sparsity is evident.
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Chapter 3

Bayesian Non–Linear
Conditional Autoregressive
Risk Measures

3.1 Introduction

In this chapter we introduce three main innovations on the existing litera-
ture on conditional autoregressive risk measure. First of all, we develop a
unified Bayesian Conditional Autoregressive Risk model (B-CARM) which
encompass both the CAViaR and the CARE one as particular case by us-
ing the Skew Exponential Power (SEP) likelihood tool (see e.g. Zhu and
Zinde-Walsh, 2009 and Bernardi et al., 2016). Using the properties and the
parametrization of the SEP presented in Zhu and Zinde-Walsh (2009) and
extended in the quantile regression framework by Bernardi et al. (2016), we
show how to estimate different class of models by varying a single parameter
of the distribution. A similar idea is developed by Kobayashi (2015) which
proposes a unified framework to analyse skewness, tail heaviness, quantiles
and expectiles of the return distribution based on a stochastic volatility
model using the SEP distribution. Differently from Kobayashi (2015) our
model uses the properties of the SEP distribution in the field of risk models
for Conditional Autoregressive model. As a second result of this chapter
we propose a new Non–Linear and semi–parametric specification of the B-
CARM class of models which uses Penalized Splines (see De Boor, 2001,
Eliers et al., 1996, Lang and Brazger, 2004) to estimate the relation be-
tween the quantile/expectile and the observed variables. The need for a
model that allows for non-linearity without assuming any particular restric-
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tions is of clear interest in literature. Indeed, all the specifications of the
CAViaR and the CARE models proposed so far emphasize the role of asym-
metry and non–linearity in the relation between the observed variables and
the current quantile or expectile level, but they all impose the form of this
non linearity a priori (see Engle and Manganelli, 2004, Gerlach et al., 2011
and 2012, Chen et al., 2009 and 2012, Gelach and Chen, 2014). Finally, a
new Adaptive–Independent Metropolis–Hastings (AIMH) algorithm is im-
plemented to efficiently estimate the model parameters. This approach is
effective in handling the non linearity of our model specification. Adap-
tive MCMC (AMCMC) methods extend standard MCMC algorithms since
they allow the proposal parameters to be updated at each iteration to tailor
the shape of the proposal distribution to that of the target, see e.g. Liang
(2010). These methods do not require the prior specification of the proposal
parameters and their theoretical properties are now well understood, see e.g.
Andrieu and Thoms (2008) and Liang et al. (2010), Atchadé and Rosenthal
(2005), Atchadé et al. (2011).
Ultimately we applied the B-CARM to five stock market indices and we com-
pare its forecasting performances with the ones of some competitive known
models. In particular we conduct a backtesting procedure showing that the
B-CARM performances are in line with those of the competitors without
imposing any restrictive assumption on the relations among variables. By
that we can consider the B-CARM a valid and more general alternative to
the extended models.
The remaining of the chapter is organized as follows: Section 3.2 briefly re-
views conditional autoregressive risk models; Section 3.3 introduces the SEP
as likelihood tool for the Bayesian Conditional Autoregressive Risk Model
with particular case the CAViaR and CARE ones while section 3.4 pro-
poses a non linear and semi parametric extension of it; Section 3.5 discusses
the implemented Bayesian methods; Section 3.6 presents the Adaptive–
Independent–Metropolis–Hastings algorithm; Section 3.7 shows results from
real datasets and section 3.8 provides concluding remarks.

3.2 Conditional Autoregressive Risk Measure mod-
els

The literature on VaR and ES estimation is very wide but it is usually classi-
fied into three broad categories: non-parametric, semi-parametric end fully
parametric methods. Non-parametric methods estimate the VaR without
any assumption on the distribution of the portfolio returns. The most pop-
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ular non-parametric VaR method is called historical simulation and provides
the VaR estimation based on the quantile of the empirical distribution of
historical returns. Once obtained the VaR, in this approach the ES can be
estimated as the mean of the returns that exceed the VaR estimate. On the
opposite side, fully parametric VaR and ES methods are based on a spe-
cific assumption of the return distribution as well as the model dynamics. A
common approach is based on a Generalized Autoregressive Conditional Het-
eroskedastic (GARCH) models (see Bollerslev, 1986; Engle, 1982) to fore-
cast the volatility using a Gaussian or Student’s-t distribution assumption.
Moreover, semi-parametric methods only assume a given model dynamics
and estimates the VaR and the ES using quantile or expectile regression
techniques. While the quantile estimate represents a VaR estimate itself,
the expectile is not an estimate either of the τ quantile nor the θ ES, but
these quantities can be recovered using the known relations between expec-
tile, quantile and ES (Efron, 1991; Taylor, 2008). The most important VaR
and ES semiparametric models are a class of conditional autoregressive risk
measure models known as the CAViaR and the CARE models introduced
by Engle and Manganelli (2004) and Taylor (2008) respectively.

The CAViaR class of models attempt to compute the τ−level VaR by
estimating the τ−level quantile of the portfolio returns through a condi-
tional autoregressive equations structure. Let yt be the return at time t, the
CAViaR models have the following form:

yt = qt + εt (3.1)

qt = ω + γqt−1 + βl (yt−1) (3.2)

where qt is the τ level quantile of yt defined as the value of qt that minimizes
the function E [(θ − I (yt − qt)) (yt − qt)], (ω, γ, β) are parameters and l (·)
is an unknown function of the past returns. Here, εt, for any t = 1, 2, . . . , T ,
are independent random variables which are supposed to have zero τ–th
quantile and constant variance. As noted by Engle and Manganelli (2004),
l (·) can be interpreted as the News Impact Curve (NIC) introduced by Engle
and Ng, (1993) for ARCH–type models. The form of the function l (·) is one
of the most addressed tasks in the risk modeling literature. Indeed, we can
recognize different CAViaR models by considering different form of l (·) such

47



as:

l (yt) =| yt | Symmetric Absolute Value (3.3)

l (yt) = β1 (yt)
+ + β2 (yt)

− Asymmetric Slope (3.4)

l (yt) =

{
β1 | yt |, zt ≤ r
β2 | yt |, zt > r

Treshold CAViaR (3.5)

where, zt is an observed threshold variable that could be exogenous or self-
exciting, i.e. zt = yt and r is the threshold variable, typically set equal to
zero, i.e. r = 0 (Gerlach, Chen and Chan, 2011). In the frequentist approach
CAViaR estimate is obtained through quantile regression methods (Koenker
2005 book, (2004)) by minimizing the loss function introduced by Koenker
and Basset (1978). The Bayesian approach instead relies on the Asymmetric
Laplace distribution (ALD) assumption as a likelihood tool to perform the
inferential issue (see e.g. Yu and Moyeed, 2001, Kottas and Gelfand, 2001,
Kottas and Krnjajic, 2009, and Sriram et al., 2013, Bernardi et al., 2015).
The same structure of the CAViaR models is used to build the CARE models
defined as:

yt = µt + εt (3.6)

µt = ω + γµt−1 + βl (yt−1) (3.7)

where µt is the θ−th expectile of yt defined as the value of µt that minimizes

the function E
[
| (θ − I (yt − µt)) | (yt − µt)2

]
. In this model εt, for any

t = 1, 2, . . . , T , are independent random variables now supposed to have zero
θ–th expectile and constant variance. The specifications of l (·) in equation
(3.3)–(3.5) remain valid to define different CARE models. The estimation
procedure for the generic expectile is addressed in the frequentist approach
by using the Asymmetric Least Square (ALS) estimator as in Newey and
Powell (1987) while in the Bayesian paradigm the literature relies on the
Asymmetric Gaussian distribution assumption (see e.g. Gerlach and Wang,
2015, Gerlach and Chen, 2014; Wichitaksorn et al, 2014; Gerlach et al,
2016, Gerlach and Chen, 2016). Finally, since the expectile do not represent
a risk measure itself an other passage is required to obtain VaR and ES from
the estimated expectile. In the first case we simply use the expectile as an
estimator of the quantile by iteratively searching for the θ− th expectile for
which we observe τ% observations below it. This procedure was suggested by
Efron (1991) and allows to obtain the quantile of interest and consequently
the associated VaR level. The ES is instead obtained using the one to one
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mapping between expectile and ES suggested in Taylor (2008) given by:

ESt (τ) =

(
1 +

θ

(1− 2θ) τ

)
µt (θ)− θ

(1− 2θ) τ
E (yt) (3.8)

In the next two sections we present how to implement a unified framework
for CAViaR and CARE estimation and provide a completely new way to
model the function l (·) that extend and generalize upon all the current
models.

3.3 Bayesian CARM model

We develop a unified Bayesian Conditional Autoregressive Risk model (B-
CARM) which encompass both the CaViaR and the CARE one as particular
case by using the Skew Exponential Power (SEP) likelihood tool (see e.g.
Zhu and Zinde-Walsh, 2009 and Bernardi et al., 2016). Using the proper-
ties and the parametrization of the SEP presented in Zhu and Zinde-Walsh
(2009) and extended in the quantile regression framework by Bernardi et
al. (2016), we show how to estimate different class of models by varying
a single parameter of the distribution. We call this unified framework for
a Bayesian estimation of different risk measure, the Bayesian Conditional
Autoregressive Risk Measure (B–CARM) class of models. This is specified
by the following equation:

yt = gt + εt (3.9)

gt = ω + γgt−1 + βl (yt−1) (3.10)

where gt in this model can be for example either the quantile or the expectile
and εt for any t = 1, 2, . . . , T , are independent random variables than can
have either zero τ–th quantile or θ–th expectile according gt. This can be
obtained basing the Bayesian estimation strategy on the SEP likelihood tool.
We make use of the parametrization of the SEP distribution proposed by
Zhu and Zinde-Walsh (2009), that has the following form:

fSEP (yt; gt, σ, τ, α) =


1
σκEP (α) exp

{
− 1
α

(gt−yt
2τσ

)α}
, if yt ≤ gt

1
σκEP (α) exp

{
− 1
α

(
yt−gt

2(1−τ)σ

)α}
, if yt > gt,

where gt is the location parameter and τ ∈ (0, 1) is the skewness param-
eter. Moreover, σ ∈ <+ and α ∈ (0,∞) are the scale and shape parame-

ters, respectively, while κEP =
[
2α

1
αΓ
(
1 + 1

α

)]−1
and Γ (·) is the complete
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gamma function. In their papers Ayebo and Kozubowski (2004) and Zhu
and Zinde-Walsh (2009) presented the most important properties of the SEP
distribution. They highlight that the SEP can be seen as a generalization
of the Asymmetric Laplace (AL) and the Asymmetric Gaussian (AG) dis-
tributions that can be recovered for α = 1 and α = 2 respectively. This
imply that if we do not estimate the parameter α from the data, gt becomes
either the quantile (for α = 1) or the expectile (for α = 2) of yt obtaining
the specification of the CAViaR and the CARE models respectively, i.e.:

gt = qt for α = 1 (3.11)

gt = µt for α = 2 (3.12)

As before, since the expectile do not represent a risk measure itself,
when α is choosed to be equal to two, i.e. α = 2, we estimate the VaR by
iteratively searching for the expectile for which we observe a given percentage
of observations below it, while the ES is obtained using the one to one
mapping between expectile and ES given in equation (3.8).

3.4 Bayesian Non–linear CARM model

To keep as general as possible the model specified in equation (3.10) we
present a new Bayesian Non–linear CARM (BNL–CARM) model that ac-
counts for any possible non–linearity between the risk measure of interest
and the observed information by using a spline approach, in particular B–
spline functions.
To this aim in equation (3.10) we approximate l (·) by a B–spline of order d
with k equally spaced knots. Using the properties of the B–spline, we can
define the BNL–CARM model as follows:

yt = gt + εt (3.13)

gt = ω + γgt−i +

k+d∑
ν=1

βνBν (yt−1) (3.14)

where Bν (yt−1) denote B–spline basis functions and βν are unknown coef-
ficients to be determined. The proposed B-CARM equation (3.14) allows
to answer the need for non linearity assuming a more general structure. In
fact, the form of the non linearity between innovations and the risk measure,
introduced by the existing models, is always imposed a priory by specify-
ing a given function for the past returns as in equation (3.3)-(3.5). Using
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B–Spline instead, we model the function l (·) that is implicit in the data,
without assuming any a priori structure for it.
As it is well known in equation (3.14) it is important to take into account
for the sensitivity of the values of the estimated coefficients and the shape of
the fitted Spline functions upon the number and the position of the knots.
In absence of any prior information about their position, equidistant knots
is a natural choice and it becomes crucial to establish the number of equis-
paced knots. To catch properly the smoothness of the data a trade off arise
since few knots or too many knots may cause underfitting or overfitting re-
spectively. A possible solution of this problem is known as Penalized Spline
(P–Spline) and proposed by O’Sullivan (1986 and 1988) and generalized
by Eilers and Marx (1996). To ensure enough flexibility without incurring
in the overfitting problem they propose to use a relatively large number of
knots jointly with some form of penalization to smooth sufficiently the fitted
curve. Specifically, the approach followed by Eilers and Marx (1996) relies
on the introduction of a penalty element on the first or second differences of
the B–Spline coefficients. This setting was translated in a Bayesian frame-
work by Lang and Brezger (2004), Brezger and Lang (2006) and Brezger
and Steiner (2008), where they use a random walk as stochastic analogous
of the frequentist approach. In this work we assume a second order random
walk for all the B–Spline coefficients, that is

βν = 2βν−1 − βν−2 + uν , ∀ν = 1, 2, . . . , k + d, (3.15)

where the generic stochastic component uν has a Gaussian distribution with
zero mean and variance equal to φ2, i.e. uν ∼ N

(
0, φ2

)
and βν−1 and βν−2

are initialized with diffuse priors (i.e. ∝ 1). The smoothness of the fitted
curve is controlled by the variance of the error term which correspond to
the inverse of the penalization parameter used by Eilers and Marx (1996)
in the frequentist framework. We choose a conjugate Inverse Gamma prior
for φ2, that is φ2 ∼ IG

(
a(φ), b(φ)

)
with a(φ) = b(φ) = 0.001. Different

choices of hyper parameters are allowed but they all bring to very similar
results. Finally, it is possible to write the prior distribution for the B–Spline
coefficients that is

π (β | φ) ∝ Nk+d

(
0, φ2

(
D′2D2

)−1
)
, (3.16)

where β = (β1, β2 . . . , βk+d)
′ and D2 is the difference matrix of dimension

(k + d− 2) × (k + d) and order 2 derived by the order of the random walk
in equation (3.15)
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3.5 Bayesian Methods

Bayesian inference requires the specification of the likelihood function as
well as the prior distribution for all the parameters of interest. Using the
parametrization of the SEP distribution showed in section 3.3 we can write
the likelihood function of the model, for a given τ as:

Lτ (Ω, σ, | α,y) =
T∏
t=1

1

2σ

α−
1
α

Γ
(
1 + 1

α

) [exp

{
− 1

α

(
gt (Ω)− yt

2τσ

)α}
1(yt≤gt(Ω))

+ exp

{
− 1

α

(
yt − gt (Ω)

2 (1− τ)σ

)α}
1(yt>gt(Ω))

]
=

1

(2σ)T
α−

T
α

Γ
(
1 + 1

α

)T
[

exp

{
− 1

α

T∑
t=1

(
gt (Ω)− yt

2τσ

)α}
1(yt≤gt(Ω))

+ exp

{
− 1

α

T∑
t=1

(
yt − gt (Ω)

2 (1− τ)σ

)α}
1(yt>gt(Ω))

]
, (3.17)

where the vector Ω = (ω, γ,β) collects all the BNL–CARM parameters.
The parameter α is fixed equal to 1 or 2, i.e. α = 1 or α = 2, depending on
the model we want to estimate, as showed in previous section. Concerning
the prior specification, we assume the following hierarchical prior structure
independent on the value of τ :

π (Ξ) = π
(
β | φ2

)
π
(
φ2
)
π (ω)π (γ)π (σ) , (3.18)

with

π
(
β | φ2

)
∝ Nk+d

(
0, φ2

(
D′2D2

)−1
)
, (3.19)

π
(
φ2
)
∝ IG

(
a(φ), b(φ)

)
(3.20)

π (γ) ∝ N
(
0, σ2

γ

)
(3.21)

π (ω) ∝ N
(
0, σ2

ω

)
(3.22)

π (σ) ∝ IG (a, b) , (3.23)

where Ξ =
(
β, φ2, ω, γ, σ

)
,
(
a(φ), b(φ), σ2

γ , σ
2
ω, a, b

)
are given positive hyperpa-

rameters, while N (·) and IG (·) denote the Normal and the Inverse Gamma
distributions respectively.
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3.6 The Adaptive Metropolis within Gibbs sam-
pler

The Bayesian inference is carried out using an adaptive MCMC sampling
scheme based on the following posterior distribution

π (Ξ | y) ∝ L (Ω, σ | α,y)π
(
β | φ2

)
π
(
φ2
)
π (ω)π (γ)π (σ) , (3.24)

where L (Ω, σ | α,y) indicates the likelihood function specified in equa-
tion (3.17). After choosing a set of initial values for the parameter vector
Ξ(0), simulations from the posterior distribution at the i–th iteration of Ξ(i),
for i = 1, 2, . . . , are obtained by running iteratively a block–move Indepen-
dent Metropolis within Gibbs (IMG). The simulation algorithm requires as
first step the specification of a proposal distribution for parameters (Ω, σ).
To propose a move for each block of the parameters, we choose the following
proposal distributions:

q
(
βi−1,β

∗
i

)
∼ N k+d

(
µ

(i)
β ,Σ

(i)
β

)
(3.25)

q (ωi−1, ω
∗
i ) ∼ N

(
µ(i)
ω , ψ

(i)
ω

)
(3.26)

q (γi−1, γ
∗
i ) ∼ N

(
µ(i)
γ , ψ

(i)
γ

)
(3.27)

q (σi−1, σ
∗
i ) ∼ Nσ̃

(
µ

(i)
σ̃ , ψ

(i)
σ̃

)
1/σ∗i (3.28)

where the scale parameter σ̃ = log (σ) is proposed on a log–scale and subse-
quently transformed to preserve positiveness. The jacobian term in equation
(3.28) is required to get the distribution of the transformation σ = exp (σ̃).
At each iteration i = 1, 2, . . . , the IMG algorithm proceeds by simulat-
ing a candidate draw from each parameter block, i.e. Υ∗ = (ξ∗1 , ξ

∗
2 , ξ
∗
3 , ξ
∗
4) =

(β∗, ω∗, γ∗, σ∗) which is subsequently accepted or rejected. The generic prob-
ability that the proposed candidate parameter ξ∗j , for j = 1, 2, 3, 4 becomes
the new state of the chain is evaluated on the basis of the following accep-
tance probability

λ
(
ξ

(i−1)
j , ξ∗j

)
= min

1,
L
(
ξ∗j ,Ξ

(i−1)
−j | y,x

)
L
(
Ξ(i−1) | y,x

) π
(
ξ∗j

)
π
(
ξ

(i−1)
j

) q
(
ξ

(i−1)
j

)
q
(
ξ∗j

)
 ,

for j = 1, 2, 3, 4, where λ
(
ξ

(i−1)
j , ξ∗j

)
indicates the probability to move from

the old to the proposed state of the chain, π (·) is the generic prior given in
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section 3.5 and Ξ
(i−1)
−j refers to the whole set of parameters at iteration i−1

without the j–th element of Υ∗.
Following Brezger and Steiner (2008) the variance parameters φ2

1, . . . , φ
2
J are

updated by single–move Gibbs sampling steps since the full conditional dis-
tributions for these parameters is still proportional to an Inverse Gamma

with shape a
(φ)
i = a

(φ)
i−1 + rank

(
D2′D2

)
/2 and scale b

(φ)
i = b

(φ)
i−1 +β′D2′D2β.

Since most of the statistical properties of the Markov chain as well as the
performance of the Monte Carlo estimators crucially depend on the defi-
nition of the proposal distribution q (·) (see Andrieu and Moulines, 2006
and Andrieu and Thoms, 2008) we improve the basic IMG–MCMC algo-
rithm with an additional step adapting the proposal parameters using the
following equations:

µ
(i+1)
β = µ

(i)
β + δ(i+1)

(
β − µ(i)

β

)
, (3.29)

Σ
(i+1)
β = Σ

(i)
β + δ(i+1)

((
β − µ(i)

β

)(
β − µ(i)

β

)T
−Σ

(i)
β

)
, (3.30)

µ(i+1)
ω = µ(i)

ω + ς(i+1)
(
ω − µ(i)

ω

)
, (3.31)

ψ(i+1)
ω = ψ(i)

ω + ς(i+1)

((
ω − µ(i)

ω

)2
− ψ(i)

ω

)
, (3.32)

µ(i+1)
γ = µ(i)

γ + ς(i+1)
(
γ − µ(i)

γ

)
, (3.33)

ψ(i+1)
γ = ψ(i)

γ + ς(i+1)

((
γ − µ(i)

γ

)2
− ψ(i)

γ

)
, (3.34)

µ
(i+1)
σ̃ = µ

(i)
σ̃ + ς(i+1)

(
σ̃ − µ(i)

σ̃

)
, (3.35)

ψ
(i+1)
σ̃ = ψ

(i)
σ̃ + ς(i+1)

((
σ̃ − µ(i)

σ̃

)2
− ψ(i)

σ̃

)
, (3.36)

where ς(i+1) denotes a tuning parameter that should be carefully selected
at each iteration to ensure the convergence and the ergodicity of the resulting
chain (see Andrieu and Moulines, 2006). Roberts and Rosenthal (2007)
provide two conditions for the convergence of the chain: the diminishing
adaptation condition, which is satisfied if and only if ς(i) −→ 0, as i→ +∞,
and the bounded convergence condition, which essentially guarantees that
all transition kernels considered have bounded convergence time. Andrieu
and Moulines (2006) show that both conditions are satisfied if and only if
ς(i) ∝ i−d where d ∈ [0.5, 1]. For those reasons we choose ς(i) = 1

Ci0.5
where

C is set to 10, i.e. C = 10. As argued by Roberts and Rosenthal (2007),
together these two conditions ensure asymptotic convergence and a weak
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law of large numbers for this algorithm.

3.7 Empirical applications

To assess the goodness of the proposed models we evaluate their forecasting
performance over five stock market indices: Nasdaq (US); Straits Times In-
dex (STI, Singapore); Hang Seng Index (Hong Kong); Corea SE (Corea) and
AEX (Holland). Daily closing stock prices (Pt) from January 1, 1988 to June
1, 2015 are obtained from the Thomson Reuters (Datastream) database.
The percentage returns are computed as yt = (log(Pt) − log(Pt−1)) × 100
and the full sample is divided into an in-sample period (from January 1,
1988 to December 30, 2005) and a forecast (out-of-sample) period of 2456
observations (from January 1, 2006 to June 1, 2015), which covers both the
2008-2009 General Financial Crisis and the following Sovereign Debt Crisis.
Summary statistics are displayed in Table 3.1. All the series present the
typical stylized facts of financial returns such as positive kurtosis and nega-
tive skewness. Moreover, the p-value of the Jarque-Bera test (9-th column)
always reject the null hypothesis of normality. The following two subsections
aim to evaluate the forecast ability of the BNL-CAViaR, i.e. BNL-CARM
with α = 1, and BNL-CARE model, i.e. BNL-CARM with α = 2, for all the
series considered. Tables 3.2 and 3.3 show the results of the out-of-sample
estimation exercise conduced on all the series specified above.

Mean Median Std. Min Max Q1 Q3 Skewness Normality test Kurtosis

NASDAQ 0.0482 0.1189 1.7123 -11.1149 17.2030 -0.7369 0.8655 0.0535 0.0010 9.0442
STI 0.0204 0.0225 1.2346 -10.5446 12.8738 -0.5361 0.6005 -0.0883 0.0010 11.8515
Hang Seng 0.0347 0.0000 1.5914 -24.5202 17.2471 -0.6120 0.7641 -0.5602 0.000 20.5566
Corea SE 0.0194 0.0000 1.6768 -12.8047 11.2844 -0.7112 0.7781 -0.1339 0.000 8.4068
AEX 0.0258 0.0362 1.3050 -9.5903 10.0283 -0.5399 0.6472 -0.1622 0.000 10.0313

Table 3.1: Summary statistics.

3.7.1 CAViaR forecast evaluation

CAViaR models allow to obtain dynamic VaR measures. The accuracy of the
VaR estimate is evaluated toward back-testing procedure to verify how accu-
rately the strategy or method predict actual results. Therefore we consider
some common criteria to evaluate actual returns with their 1 day ahead VaR
forecast and compare the results obtained using the BNL-CAViaR model
with those from four very known competing Bayesian models: the Symmet-
ric Absolute Value (SAV) model; The Asymmetric Slope (AS) model; the
Threshold CAViaR (T-CAViaR) and the Inverse Garch (IG) model. Table
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3.2 shows the results of the most common back-testing methods applied to
all the series for two τ levels 0.01 and 0.05. The first column reports the
ratio between the actual and the expected number of violations for a given
coverage level τ , i.e. A/E = 1

mτ

∑n+m
t=n+1 I (yt < −V aRt), where m = 2456 is

the length of the forecast window. The last three columns report p-values for
three very common back testing methods: the unconditional (UC) and con-
ditional (CC) coverage tests of Kupiec (1995) and Christoffersen (1998) and
the CAViaR Dynamic Quantile (DQ) test of Engle and Manganelli (2004).
The first two are likelihood ratio tests based on the assumption that the hit
variable It (τ) defined as

It (τ) =

{
1, if yt < −V aRt|t−1

0, else

has a Bernoulli distribution with probability τ . Under this hypothesis, the
UC test verifies that the violation probability is equal to the coverage rate,
i.e. P (It (τ)) = E (It (τ)) = τ , while the CC test, in addition to UC test,
also examines the independence hypothesis between violations observed at
two different dates. The DQ test is instead a regression type test based
on the de-meaned process associated to It (τ), namely Ht (τ) = It (τ) − τ .
This test uses a regression model to assess the hypothesis of a linear relation
between Ht, its lagged values and other relevant regressors and is known to
be more powerful than the UC and the CC tests.

3.7.2 CARE forecast evaluation

As described in section 3.2, CARE models are used to estimates the θ − th
expectile for which the proportion of observations below it is τ%. The value
of θ that satisfies this condition is obtained by estimating models for different
values of θ, over a grid with step size 0.0001, stopping the process when the
condition stated above become true. The θ values, founded in this way and
referred to the same set of models used to asses CAViaR forecast ability, are
reported in table 3.3. As said in section 3.2, unlike CAViaR models, CARE
models are not a risk measure themselves, hence another step is required to
produce VaR and ES estimates. For the former, it is sufficient to replace
µt (θ) with qt (τ) since, by construction, µt (θ) represents an estimate of the
τ quantile. For the latter, equation (3.8) allows to map the θ-th conditional
expectile, µt (θ), in to the τ -th expected shortfall, ESt (τ). A complete and
recent review for backtesting VaR and ES is proposed by Roccioletti (2016).
VaR results are evaluated using the same techniques showed in the previous
subsection, i.e. CC, UC and DQ test. ES results are instead more difficult
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to evaluate and optimal assessment for ES forecasts is still an issue under
investigation. Here we follow the approach of McNeil et al. (2005) and Tay-
lor (2008) based on a direct test of the residuals, i.e. the difference between
the observations and the ES level, for only those observations beyond the
quantile VaR prediction. The test assess whether the residuals, standard-
ized by the conditional volatility (the conditional quantile estimate in our
case), are i.i.d with zero mean. Specifically, a bootstrap test is implemented
(as in Efron and Tibshirani, 1993 page 224) in order to avoid distributional
assumptions. Moreover, we implement the three test proposed by Acerbi
and Szekely (2014) and further described in Roccioletti (2016), to which
we refer for details. Shortly, the first test is based on the same idea of the
residual test proposed by McNeil et al. (2005), the second test derives from
the representation of the ES as an unconditional expectation and, finally,
the third test relies on the possibility to backtest the tails of a model by
checking if the observed ranks are i.i.d. U (0, 1) as they should if the model
distribution is correct.

3.7.3 Summary of VaR and ES results

Overall, the BNL-CARM method proposed here for VaR and ES estimation
shows a forecast performance in line with the competitors. For a given
series, the VRate/α levels are similar among the models and consequently
it is not possible to define a model that clearly outperforms the others in
terms of number of violations. Moreover, following the traffic light approach
suggested by the Basel Commettee (1996), all the models considered can be
classified as acceptable (green zone) or at least disputable (yellow zone)
but they never appear to be seriously flawed (red zone). Also looking at
the p-values we can see that the proposed BNL-CARM model has similar
performances to that of competitors. The results printed in tables 3.2 and
3.3 allow us to consider the proposed BNL-CARM as a valid alternative
method for VaR and ES estimation, despite the very long out of sample
period that exasperate the possibility that the markets moved in a way
that could not be anticipated. In figures 3.1 and 3.2 we plot the posterior
estimate of the NICs from the BNL-CAViaR (BNL-CARM with α = 1) and
BNL-CARE (BNL-CARM with α = 2) models respectively. For each figure,
left panels exhibit the NIC (black line) along with the 95% HPD regions
(grey areas) at the quantile confidence levels τ = (0.05), while right panels
exhibit the NIC (black line) along with the 95% HPD regions (grey areas)
at the quantile confidence levels τ = (0.01).

Although the performance comparisons do not reveal a uniformly superior
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model, our non linear specification based on the P-Spline functions should
be preferred since it has at least two important advantages. First, from
figures 3.1 and 3.2 we can see that the proposed BNL-CARM provides an
estimate of the entire shape of NIC differently from the other models known
in the literature which impose a given structure of the NIC and provide only
a partial estimate of its shape. From the figures it can be seen different NIC
naturally arise from each model giving us unconstrained information on the
relation between the risk measure at a given time t and the past observation
yt−1.
Second, the P-Spline approach used to model the NIC, also allows us to
obtain an estimate of the threshold level of return from which an asymmet-
ric response to the risk is observed. A common stylized fact of financial
time series is that positive and negative returns have a different impact
on volatility. For this reason models like Asymmetric Slope and Threshold
CAViaR/CARE with r = 0 (see equation (3.4) and (3.5)) consider two dif-
ferent parameters for positive and negative returns. A drawback of these
models is represented by the fact that a threshold equal to zero is assumed
while in most cases this does not happen and a threshold slightly higher than
zero can be observed. In our model, the threshold level of return that deter-
mines an asymmetric response to the risk is naturally estimated through the
NIC. In fact it corresponds to the point of (local) minimum of the NIC that,
in figures 3.1 and 3.2, is in general slightly greater than zero. This evidence
is besides consistent with the recent financial crisis which has increased the
degree of risk aversion among traders.
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τ = 0.01 τ = 0.05

Name A/E
AD Viol.

Viol. LRuc LRcc DQ A/E
AD Viol.

Viol. LRuc LRcc DQ
Mean Max Mean Max

NASDAQ
BNL-CAViaR 0.9294 8.1873 16.8951 22.0000 0.7285 0.7659 0.1647 1.1153 4.9302 15.0650 132.0000 0.2042 0.1617 0.0081
SAV 0.8450 7.8827 18.4128 20.0000 0.4372 0.6236 0.0021 1.1238 4.8217 14.5786 133.0000 0.1736 0.2368 0.0073
AS 0.9717 6.8868 16.6069 23.0000 0.8910 0.7904 0.7459 1.1491 4.7502 15.2862 136.0000 0.1026 0.0753 0.0054
T-CAViaR 1.0562 6.5224 16.5475 25.0000 0.7838 0.7374 0.0166 1.1660 4.7278 15.3603 138.0000 0.0699 0.0486 0.0061
IG 0.7605 7.5507 16.3418 18.0000 0.2221 0.4134 0.1445 1.0646 4.7801 15.1120 126.0000 0.4721 0.5928 0.0002
STI
BNL-CAViaR 1.6779 5.5242 12.4027 40.0000 0.0024 0.0093 0.0402 1.4178 3.7918 15.8468 169.0000 0.0000 0.0000 0.0001
SAV 1.1326 6.1693 12.2386 27.0000 0.5228 0.4902 0.4106 1.1997 4.0479 15.2211 143.0000 0.0295 0.0926 0.3659
AS 1.4262 5.9951 13.0748 34.0000 0.0491 0.0360 0.0357 1.1829 4.1119 16.8616 141.0000 0.0457 0.0903 0.0284
T-CAViaR 1.3842 5.8490 12.6181 33.0000 0.0744 0.0462 0.0393 1.1913 4.1962 17.2827 142.0000 0.0368 0.1111 0.0469
IG 1.2584 6.2053 13.4765 30.0000 0.2220 0.3236 0.4469 1.1326 4.2092 14.8665 135.0000 0.1443 0.3031 0.5170
HANG SENG
BNL-CAViaR 0.8554 7.0580 16.8589 21.0000 0.4615 0.6361 0.2374 1.1568 5.0442 24.2631 142.0000 0.0808 0.1508 0.2853
SAV 0.9776 6.9059 17.3296 24.0000 0.9124 0.7842 0.2460 1.0509 5.3408 21.5952 129.0000 0.5627 0.8029 0.6653
AS 0.7739 7.3706 18.0361 19.0000 0.2419 0.4347 0.9304 1.2057 5.2312 24.2745 148.0000 0.0230 0.0412 0.1990
T-CAViaR 1.1405 7.4650 17.8806 28.0000 0.4924 0.4901 0.7147 1.2464 5.3132 25.7873 153.0000 0.0068 0.0169 0.0452
IG 0.9776 7.2290 17.7004 24.0000 0.9124 0.7842 0.3500 1.0998 5.3182 21.4609 135.0000 0.2619 0.4527 0.4413
COREA SE
BNL-CAViaR 0.8554 9.0909 19.2306 21.0000 0.4615 0.6361 0.0285 1.0916 5.1322 16.4552 134.0000 0.3021 0.2357 0.0899
SAV 0.9369 8.8752 21.0103 23.0000 0.7522 0.7653 0.0471 1.2464 4.8307 17.0654 153.0000 0.0068 0.0031 0.0000
AS 0.8961 8.3305 17.3556 22.0000 0.5999 0.7142 0.0009 1.2464 4.8185 17.8016 153.0000 0.0068 0.0134 0.0206
T-CAViaR 0.8961 8.7924 21.6213 22.0000 0.5999 0.7142 0.0005 1.3116 4.5555 17.7849 161.0000 0.0007 0.0023 0.0034
IG 0.7739 9.5466 21.4519 19.0000 0.2419 0.4347 0.0391 1.1813 4.9746 17.5884 145.0000 0.0444 0.0250 0.0002
AEX
BNL-CAViaR 1.1813 6.3214 15.9358 29.0000 0.3791 0.4801 0.5302 1.1976 4.5020 16.3289 147.0000 0.0288 0.0840 0.2291
SAV 1.3035 6.7077 17.6953 32.0000 0.1482 0.2304 0.0503 1.2301 4.6909 15.7095 151.0000 0.0113 0.0266 0.0123
AS 1.1405 6.6591 18.0329 28.0000 0.4924 0.5719 0.5881 1.2464 4.6245 16.5510 153.0000 0.0068 0.0183 0.1031
T-CAViaR 1.1405 6.7541 17.7252 28.0000 0.4924 0.5719 0.7629 1.2546 4.6429 17.0975 154.0000 0.0052 0.0183 0.0852
IG 1.5071 6.4840 18.6003 37.0000 0.0187 0.0358 0.0232 1.1813 4.6609 16.4337 145.0000 0.0444 0.0923 0.1995

Table 3.2: Summary statistics for CAViaR models. The columns, denoted by LRuc, LRcc

and DQ, report the p–values of unconditional and conditional coverage tests of Kupiec
(1995) and Christoffersen (1998) and those of the CAViaR Dynamic Quantile (DQ) test
of Engle and Manganelli (2004).
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τ = 0.01 τ = 0.05

Name A/E
AD Viol.

Viol. LRuc LRcc DQ A/E
AD Viol.

Viol. LRuc LRcc DQ
Mean Max Mean Max

NASDAQ
BNL-CARE 0.5495 9.7970 17.0521 13.0000 0.0161 0.0515 0.0148 0.9552 5.4016 15.0456 113.0000 0.6179 0.4426 0.0023
SAV 0.5917 8.8546 16.4286 14.0000 0.0309 0.0896 0.0755 1.1243 4.9644 15.1434 133.0000 0.1721 0.1344 0.0058
AS 0.7185 8.4857 16.4863 17.0000 0.1479 0.3104 0.1938 1.1158 4.9261 15.6430 132.0000 0.2025 0.0222 0.0019
T-CAViaR 0.6762 8.5946 16.5967 16.0000 0.0931 0.2189 0.1550 1.0651 4.9908 15.9801 126.0000 0.4692 0.0644 0.0011
IG 0.5495 9.1913 16.3818 13.0000 0.0161 0.0515 0.0456 1.0482 5.0311 15.7148 124.0000 0.5903 0.7025 0.0043
STI
BNL-CARE 1.1514 7.2479 16.7349 27.0000 0.4706 0.4689 0.0006 1.3049 4.1243 14.8784 153.0000 0.0012 0.0048 0.0007
SAV 1.1087 7.5478 16.2270 26.0000 0.6015 0.5025 0.0000 1.1940 4.3083 13.9796 140.0000 0.0358 0.0968 0.0565
AS 1.2367 7.5753 17.2724 29.0000 0.2657 0.3614 0.0000 1.2793 4.3044 14.9382 150.0000 0.0028 0.0114 0.0000
T-CAViaR 1.2793 7.0945 14.8624 30.0000 0.1918 0.2994 0.0021 1.2623 4.3091 15.2040 148.0000 0.0050 0.0192 0.0000
IG 0.9382 7.5553 16.2511 22.0000 0.7626 0.7756 0.0373 0.7591 5.0063 14.0010 89.0000 0.0053 0.0143 0.0007
HANG SENG
BNL-CARE 0.6897 10.4212 23.0460 16.0000 0.1120 0.2530 0.0232 1.1638 5.5433 22.0030 135.0000 0.0766 0.0241 0.0528
SAV 0.5172 7.0467 18.0908 12.0000 0.0101 0.0343 0.0284 0.9914 5.5299 23.4589 115.0000 0.9278 0.9475 0.9531
AS 0.6034 6.0396 10.0313 14.0000 0.0384 0.1077 0.4178 1.2414 5.3341 25.0204 144.0000 0.0099 0.0194 0.0194
T-CARE 0.7328 8.2293 12.4659 17.0000 0.1750 0.3516 0.8843 1.1724 5.4944 15.6011 136.0000 0.0626 0.0868 0.0141
IG 0.7759 7.1842 17.4372 18.0000 0.2596 0.4601 0.0976 1.1466 5.4345 22.1726 133.0000 0.1121 0.2295 0.5137
COREA SE
BNL-CARE 0.7290 9.6112 19.1914 17.0000 0.1676 0.3406 0.1873 1.0978 5.2079 16.0184 128.0000 0.2838 0.0547 0.0735
SAV 0.8148 9.3384 20.9001 19.0000 0.3540 0.5567 0.1052 1.0377 5.3919 17.3147 121.0000 0.6742 0.0392 0.0035
AS 0.6861 8.6568 17.7857 16.0000 0.1067 0.2438 0.2074 1.0806 5.2674 18.2211 126.0000 0.3751 0.1068 0.0692
T-CARE 0.7719 8.5588 17.7789 18.0000 0.2495 0.4480 0.0012 1.1578 4.9948 18.0399 135.0000 0.0868 0.0234 0.0678
IG 0.7719 9.9378 21.3648 18.0000 0.2495 0.4480 0.0206 1.0720 5.3474 17.5268 125.0000 0.4271 0.0223 0.0001
AEX
BNL-CAViaR 1.1647 7.6630 17.1928 28.0000 0.4277 0.5248 0.2678 1.2313 4.7551 15.6930 148.0000 0.0117 0.0339 0.0733
SAV 1.4559 7.9988 16.7691 35.0000 0.0352 0.0649 0.0000 1.2562 4.9312 15.0831 151.0000 0.0054 0.0183 0.0033
AS 1.1647 7.7921 16.1030 28.0000 0.4277 0.5248 0.0530 1.2146 4.9075 15.8170 146.0000 0.0191 0.0489 0.0119
T-CARE 1.4143 7.9595 17.4213 34.0000 0.0544 0.0964 0.0000 1.3062 4.7539 15.5217 157.0000 0.0010 0.0042 0.0020
IG 1.4143 7.5696 16.6859 34.0000 0.0544 0.0964 0.0000 1.1897 4.8737 15.8861 143.0000 0.0376 0.1000 0.1301

Table 3.3: Summary statistics for CARE models. The columns, denoted by LRuc, LRcc

and DQ, report the p–values of unconditional and conditional coverage tests of Kupiec
(1995) and Christoffersen (1998) and those of the CAViaR Dynamic Quantile (DQ) test
of Engle and Manganelli (2004).

τ = 0.01 τ = 0.05

Name BNL-CARE SAV AS T-CARE IG BNL-CARE SAV AS T-CARE IG

Nasdaq 0.0130 0.0150 0.0180 0.0170 0.0140 0.1139 0.1339 0.1329 0.1279 0.0010
STI 0.0290 0.0280 0.0320 0.0340 0.0240 0.1548 0.1449 0.1518 0.1489 0.0909
Hang Seng 0.0200 0.0210 0.0010 0.0250 0.0240 0.1439 0.1349 0.1558 0.1548 0.1419
Corea SE 0.0190 0.0230 0.0200 0.0200 0.0200 0.1369 0.1379 0.1359 0.1429 0.1339
AEX 0.0310 0.0380 0.0300 0.0360 0.0370 0.1518 0.1548 0.1538 0.1598 0.0010

Table 3.4: Bootstrap test p-values for zero mean of the standardardized residuals. Test
based on 1000 post sample estimates of the conditional 1% and 5% ES.
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Figure 3.1: Posterior estimate of the Non–Linear CAViaR NIC, for three
representative series, from the empirical application of section 3.7. Left
panels exhibit the NIC (black line) along with the 95% HPD regions (grey
areas) at the quantile confidence levels τ = (0.05). Right panels exhibit
the NIC (black line) along with the 95% HPD regions (grey areas) at the
quantile confidence levels τ = (0.01).
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Figure 3.2: Posterior estimate of the Non–Linear CARE NIC, for three
representative series, from the empirical application of section 3.7. Left
panels exhibit the NIC (black line) along with the 95% HPD regions (grey
areas) at the quantile confidence levels τ = (0.05). Right panels exhibit
the NIC (black line) along with the 95% HPD regions (grey areas) at the
quantile confidence levels τ = (0.01).
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3.8 Conclusion

In this chapter we present a new extension of the CAViaR and CARE models
embedded in a Bayesian quantile regression framework. We combine the
P–spline approximation of the models with the Skew Exponential Power
(SEP) likelihood tool. The introduction of these two innovations allows to
capture the well known stylized facts about financial time series. Moreover
the SEP enable to estimate both CAViaR and CARE models using a unique
statistical framework. The Bayesian estimation methodology is carried out
using a new adaptive MCMC technique. The results from five stock market
indexes show that the model and the estimation methodology effectively
capture the nonlinear relation between the unobserved τ–level quantile and
its determinants.
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