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Abstract

This thesis describes an experimental, numerical and theoretical investigation of
nonlinear optical phenomena in disordered photorefractive ferroelectrics in proximity
of their phase-transition temperature. The work addresses different physical issues
that find in nonlinear optics a common fertile research arena and are closely related
to each other in the considered systems. Nonlinear wave dynamics in the spatial do-
main, where self-interaction of propagating waves generally results into non-spreading
localized wavepackets such as spatial solitons, is extended in photorefractive ferro-
electrics to non-equilibrium regimes characterized by stochastic instabilities and large
material fluctuations. We discover the emergence of rogue waves, localized perturba-
tions of abnormal intensity, whose understanding is challenging in various physical
contexts and resides in the general problem of long-tail statistical distributions in
complex systems. We identify their origin in spatiotemporal soliton dynamics in a
saturable nonlinearity which can support scale-invariant waveforms. Properties and
predictability of the observed extreme events are investigated, and, in particular, we
demonstrate their active control through the spatial incoherence scale of the optical
field. Moreover, we report how their emergence is sustained by turbulent transitions
to an incoherent and disordered optical state triggered by modulational instability.
The onset of strong turbulence for propagating optical waves has remained unob-
served up to now and our results demonstrate a new experimental setting for its
study. When the functional form of the nonlinearity is turned into a nonlocal one due
to diffusive fields, this setting also exploits photonics to address fundamental physical
problems and access to otherwise hidden phenomena. The natural spreading of waves
during propagation, representing the wavelength-defined ultimate limit to spatial
resolution, can be eliminated and reversed leading to diffraction cancellation and
anti-diffraction of light. Since these behaviors on modifying the nature of underlying
Schrödinger equation, we are the first to demonstrate how nonlinearity can make
the spatial light distribution behave as the wavefunction of a quantum particle with
negative mass. All these findings have roots in the nonlinear optical response of
critical disordered ferroelectric crystals, which are also extremely interesting from
the condensed matter point of view. In fact, competition of different microscopic
structural phases and the associated polar-domain dynamics at the nanoscale results
into non-ergodic dipolar-glass behaviors giving giant responses such as giant polar-
ization, piezoelectricity and electro-optic effect. Disordered ferroelectrics crystals
are investigated electro-optically across their ferroelectric phase-transition, where
we report the observation of an anomalous electro-optic effect compatible with
ultracold dipolar reorientation. In compounds presenting spatial inhomogeneity in
their chemical composition, we discover a new ferroelectric phase of matter in which
polar domains spontaneously coordinate into a mesoscopic coherent polarization
super-crystals. This phase mimics standard solid-state structures but on scales that
are thousands of times larger and represent the first spontaneous three-dimensional
photonic crystal.

The thesis is structured in two main parts. The first one presents achievements
in the electro-optic response and dipolar phases of critical disordered ferroelectric
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crystals. The second reports results in spatial nonlinear wave dynamics supported
by photorefraction in these media. The main experimental findings, together with
numerical analysis and some novel theoretical approaches, are uniformly presented
and connected to relevant studies in the various research areas according to the
following chapters. Chapter 1 introduces the general context, the basic physical
mechanisms and methods on which rely most of the phenomena investigated. In
particular, photorefraction and nonlinear wave equations leading to photorefractive
solitons are derived. Chapter 2 and Chapter 3 reports original experimental results
on the electro-optic response of potassium-sodium-tantalate-niobate (KNTN) and
potassium-lithium-tantalate-niobate (KLTN) single crystals in proximity of their
ferroelectric phase transition. An anomalous electro-optic effect is observed and
modelled in Chapter 2, whereas in Chapter 3 is described the discovery of spontaneous
polarization super-crystals in microstructured samples. Chapter 4 reports the first
observation of spatial rogue waves in photorefractive ferroelectrics. Experimental
results are corroborated by numerical simulations of beam propagation in highly-
nonlinear regimes and the first key points for their understanding are pointed out.
Predictability of the observed extreme events is also addressed using analysis methods
typical of nonlinear dynamical systems. In Chapter 5 evidence of turbulent transitions
in optical wave propagation is reported. We study shot-to-shot fluctuations and
correlations in the modulation instability process triggering the transition and in the
incoherent optical turbulent regime supporting rogue waves. In Chapter 6 control
of optical extreme events through spatial incoherence is demonstrated. This allows
us to present the full understanding of abnormal waves in spatial propagation in
terms of turbulent dynamics of non-stationary solitons. Chapter 7 describes the
theory of scale-free optics and light anti-diffraction in diffusive nonlinearities, with
experiments in photorefractives through which we demonstrate the phenomena
from paraxial to sub-wavelength beam propagation regimes. In Chapter 7 we show
through experiments, theory and numerics how anti-diffracting nonlinear waves
evolving into an optical potential made by an integrated slab waveguide give rise to
the dynamics of a negative-mass quantum particle.
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Chapter 1

Beam propagation in
photorefractive media

In this Chapter the general concept of nonlinear wave is briefly introduced and
applied in detail to optical spatial propagation in photorefractive media. We present
the photorefractive mechanism and the physics of photorefractive solitons, that is
the basic physics on which rely part of the phenomena investigated in this thesis,
focusing our attention on the specific aspects that characterize the experimental
activity and the understanding of the results. The novel case of spatial solitons in a
lattice nonlinearity, that we have recently introduced and addressed in this context
[217], is also illustrated.

1.1 Introduction

Nonlinear phenomena are natural manifestations of a physical system whose evolution
cannot be described in terms of oscillations around an equilibrium point. Generally,
the dynamics of a system near a stationary configuration is studied expanding
the relevant physical quantities around that equilibrium condition. This gives
linear differential model equations, from which emerges the fundamental notion of
normal mode as suitable concept to describe the dynamics. Due to the linearity
of the system, any solution can be expressed as a superposition of its normal
modes. Moreover, the system evolution when it is excited through a localized
perturbation leads to the broadening of its own structure, since each mode is
characterized by a specific eigenvalue or phase velocity. In optics this fact gives
the diffraction and dispersion phenomena. On the contrary, when interactions in
the system have energies comparable to that binding it in equilibrium, nonlinear
phenomenology arises. Different modes can be made to interact and energy and
momentum can be transferred from one mode to the other (wave-mixing) [44]. When
the interaction strength is so large that also the concept of mode comes less, the
system behavior can be understood only as a collective response, through universal
physical entities constituted from elementary components but without an analogous
in linear theories. Solitons [2, 3] and shock waves [296, 139, 117, 72, 116, 301]
are the most important ones. Optical solitons are highly-localized electromagnetic
perturbations that propagate in the supporting medium without spreading their
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spatial or temporal structure [148]. In fact, nonlinear interaction exactly balances the
dispersive character of the pulse. In the spatial domain they appear as self-trapped
beams that remain localized transversely to the propagation direction [277, 60].
They arise as the optical intensity is able to change the index of refraction spatial
distribution of the medium, a process generally referred to as Kerr effect and governed
in centrosymmetric media by the susceptibility tensor χ(3) [44]. Since the index
variation is a function of the intensity itself, the soliton formation mechanism can be
understood as light self-interaction: the optical beam modifies the hosting material,
whose response changes beam propagation as to compensate its delocalization. The
wave induces a waveguide and concomitantly is a guided mode of its own waveguide,
whose stability strongly depends on the specific case considered. Hereafter all this
picture is described for waves interacting through a saturable nonlinearity, as the
one occurring in photorefractive media [245].

1.2 Photorefractive propagation
The photorefractive effect is the self-local modulation of the refractive index of a
medium traversed by a light beam [21], a process occurring in materials manifesting
both photoconductivity and electro-optic response [304, 129]. In these media interac-
tion with optical radiation leads to local charge separation, with the corresponding
generation of a space-charge field that modulates the index of refraction via an
electro-optic effect induced by the electromagnetic field. As the resulting nonlinearity
depends on the transport properties of the free carriers excited in the materials, it
cannot be described in terms of a generic susceptibility tensor χ(m) that implies
a series expansion of the polarizability with respect to the optical field. However,
this nonlinearity can support extensive nonlinear wave dynamics and different kinds
of spatial optical solitons through different underlying mechanisms. Although a
general approach is given, our interest is dedicated to self-focusing dynamics in
centrosymmetric media.

1.2.1 Band-transport model

The standard model of photorefraction is based on semiclassical nonlinear rate
equations [157]. The main properties pointed out by this approach are a substantial
dependence from material impurities, slow response times (10−3−102s) and non-local
features. As shown in Fig. 1.1, we consider a dielectric medium with deep donor
impurities density ND and acceptor impurities density NA, with ND � NA. Light of
wavelength λ excites locally free carriers that are subject to drift and diffusion fields
and then recombines with acceptor impurities. As a result of this average response,
a difference in charge distribution between bright and dark region is generated, with
the corresponding electric field acting on the illuminated area. The dynamics of the
system under the intensity flux I(r, t) is described by the effective rate equation

∂N+
d

∂t
= (β + sI)(Nd −N+

d )− γNeN
+
d , (1.1)

where N+
d = N+

d (r, t) is the ionized donors density, Ne = Ne(r, t) the local concen-
tration of free carriers in the conduction band, β the thermal excitation rate, s the
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photo-ionization coefficient associated with the absorption cross-section and γ is
the electron-donor recombination constant. Under the hypothesis that the average
carrier motion occurs on temporal scales much larger than the ones related to the
electron free path, drift and diffusion processes gives the macroscopic electric current
density

J(r, t) = qµNeE + kbTµ∇Ne, (1.2)
where q is the electronic charge, µ the electronic mobility, kb the Boltzman constant,
T the system temperature and E = E(r, t) the quasi-static electric field distribution.
The second term in Eq. (1.2) represents the diffusive current according with the
Einstein relation D = kbTµ/q. The above relations are connected through the
continuity equation,

∂ρ

∂t
+∇ · J = 0, (1.3)

with the average charge density distribution ρ determined by

ρ = q(N+
d −Na −Ne). (1.4)

The electric field satisfies the Maxwell equations{
∇ · (εE) = ρ,

∇×E = 0.
(1.5)

The solution for the above set of nonlinear equations gives the field E that rules the
nonlinearity acting on the optical beam. However, the system is not analytically
solvable and a several approximations are needed. We address the issue in the
next subsection through the space-charge field approach [80, 86]. In this regard, we
note that two different time scales come into play: the free carriers recombination
time, τr = 1/(Naγ), and the dielectric relaxation time τd = ε/(qµNe). In fact, τr
takes into account local excitation events, whereas τd is related to the macroscopic
dielectric response and is the average time needed to screen an arbitrary electric field
distribution inside the material. Generally, it is τd � τr, so that the microscopic
process can be considered at equilibrium with ∂N+

d /∂t = 0. Equation (1.1) therefore
becomes

(β + sI)(Nd −N+
d ) ' γNeN

+
d . (1.6)

Moreover, the scale τd is the basis of the temporal nonlocality characterizing non-
linear waves in photorefractives. Since Ne is proportional to the optical intensity,
the relation between τd and Ne implies that the stationary state is reached in a
characteristic time τ ∝ 1/I.

1.2.2 Self-induced space-charge field

We now derive from the band-transport model a single nonlinear equation relating the
induced space-charge field E with the intensity distribution I. The first assumption,
based on the typical experimental conditions, is the low intensity regime, in which
Ne satisfies the condition Ne � Nd, Na. Using Eq. (1.2) and the first relation of Eq.
(1.5), J can be rewritten as

∇ ·
[
ε
∂E
∂t

+ qµNeE + µkbT∇Ne

]
= 0. (1.7)
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Figure 1.1. Band structure scheme and physical mechanism of charge separation in the
standard model of the photorefractive effect. (From [129]).

The first Maxwell equation can also be exploited in Eq. (1.4) to have

N+
d = Ne +Na

[
1 +∇ ·

(
εE
qNa

)]
, (1.8)

in which Ne can be neglected respect to the second term. Substituting it in Eq. (1.6),
the carriers density in the conduction band reads

Ne = (β + sI)
γ

[
Nd −N+

d

N+
d

]
, (1.9)

that, through Eq. (1.8) for N+
d , can be finally expressed as

Ne = (β + sI)
γ

 Nd−Na
Na

−∇ ·
(
εE
qNa

)
1 +∇ ·

(
εE
qNa

)
 . (1.10)

Introducing the parameter α = Nd−Na
Na

(α� 1) and substituting it in Eq. (1.7), we
obtain the implicit equation for the space-charge field as a function of the optical
intensity

∇ ·
[
γε

qµsα

∂E
∂t

+ E(β/s+ I)
1− ∇·(εE)

αqNa

1 + ∇·(εE)
qNa

+kbT

q
∇ ·

(β/s+ I)
1− ∇·(εE)

αqNa

1 + ∇·(εE)
qNa

 = 0,

(1.11)

where β/s ≡ Id is the dark intensity, the light-independent thermal contribution to
the ionization process. This term is generally included in the background intensity
Ib, which take into account all the secondary illuminations on the material. The
dielectric constant ε is referred at zero frequency since Eq. (1.11) holds on the time
scales where the dielectric response is quasi-static. As α� 1, the first term of Eq.
(1.11) is negligible, so that in the quasi-stationary case (∂E/∂t ≈ 0) we have

E(Ib + I) 1
1 + ∇·(εE)

qNa

+ kbT

q
∇ ·

(Ib + I) 1
1 + ∇·(εE)

qNa

 = g, (1.12)
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with g constant value to be determined by the boundary conditions, such as the
external voltage applied to the material in the direction transverse to beam prop-
agation. For instance, V = 0 implies g = 0, and the space-charge field reduces
to

E = −kbT
q

∇I
Ib + I

, (1.13)

which is the diffusive electric field used in Chapter 7 and Chapter 8. In the general
case where g 6= 0 Eq. (1.12) has a non-trivial structure. We start its perturbative
treatment for one-dimensional waves (1+1D). We normalize the physical quantities
to the dimensionless variables

Y ≡ E
E0
, Q ≡ Ib + I

Ib
, ξ ≡ x

xq
= x

qNa

εE0
,

where E0 is the intensity-independent local electric field and xq is the saturation
length. Since the illuminated region l� L, L being the transverse dimension of the
medium, the field E0 can be approximated as E0 ' V/L. Through these variables
Eq. (1.12) reads [86]

YQ
1 + Y′

+ a

[
Q′

1 + Y′
− Q(

1 + Y′
)2Y′′

]
= G, (1.14)

with a = NakbT/εE
2
0 e G = g/E0Ib, the symbol ′ indicating ( ddξ ). Eq. (1.14) can be

formally rendered explicit

Y = G

Q
− aQ

′

Q
+ GY′

Q
+ a

Y′′

1 + Y′
. (1.15)

The first term represent the local contribution, whereas the spatial derivative makes
non-local the others. We note that a nonlinearity similar to that occurring in Kerr
media (Kerr-saturated) emerges when non-local terms are weak. In conditions where
l� xq nonlocal effects play a minor role and we can follow a perturbative approach
[80]. Since the spatial derivatives scale as xq/l and a is of the order of unity, η = xq/l
represents a smallness parameter so that

Y(0) = G

Q
+ o(η). (1.16)

A first correction is found iterating this solution in (1.15) and reads

Y(1) = G

Q
− aQ

′

Q
− Q′

Q

(
G

Q

)2
+ o(η2). (1.17)

The first term, which is the dominant in biased conditions, gives the so-called
Kerr-saturated or screening nonlinearity at the basis of photorefractive solitons. It
implies a decrease of the effective field E respect to E0 (G ' −1) as a result of
charge rearrangements. The second term can be identified with the diffusive field,
whereas the third emerge from its coupling with the saturation (screening) field.
Both gives an antisymmetric contribution to the space-charge field; for symmetric
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pulses I(x) = I(−x) this fact leads to counterintuitive effects such as ballistic light
propagation [87].

The field E we have derived leads to a modulation of the index of refraction
through the electro-optic effect. However, in order to have significant variations
∆n, a large electro-optic response of the material is required. It can be obtained in
non-centrosymmetric phases, such as in poled ferroelectrics, and in centrosymmetric
paraelectric phases in proximity of the ferroelectric phase transition. In general,
the optical properties of an anisotropic media are described through the coefficients(

1
n2

)
ij

of the indexes ellipsoid [41]. The presence of an external quasi-static electric
field E modify these indexes respect to their value in zero field. The variation
∆
(

1
n2

)
ij
of the dielectric tensor is approximately local and can be expressed through

the power series expansion

∆
( 1
n2

)
ij

=
∑
k

rijkEk +
∑
kl

sijklEkEl + · · · , (1.18)

with rijk and sijkl, respectively, the linear and quadratic electro-optic tensor. In
this section we focus our attention on the case of centrosymmetric media, where the
linear response vanishes due to the system symmetry. The quadratic electro-optic
effect can be observed only in crystals having a dielectric constant ε that strongly
depends on the actual temperature. For this reason, instead of Eq. (1.18), it is
more appropriate considering an expansion as a function the linear polarization
P = ε0(εr − 1)E. We have

∆
( 1
n2

)
ij

=
∑
kl

gijklPkPl, (1.19)

where gijkl are the elements of the electro-optical tensor that is now expressed
through the P components. Contrarily to sijkl, these coefficients are independent
from T . The response assumes a scalar form when the optical axes are chosen as
reference system, so that gijkl is diagonal and the index of refraction variation ∆n(E)
becomes

∆n(E) = −1
2n

3geffε
2
0 (εr − 1)2E2. (1.20)

Using this expression in Eq. (1.16) we obtain the Kerr-saturated nonlinearity

∆n(I) = −∆n0
1

(1 + I/Ib)2 (1.21)

with ∆n0 = (1/2)n3geffε
2
0 (εr − 1)2E2

0 . This nonlinearity, depending on the sign of
geff , has a focusing or defocusing effect on the propagating beam for ∆n0 > 0 and
∆n0 < 0, respectively. The fact that the intensity appears only through the ratio
I/Ib relies in the cumulative response and is the basis for the low powers needed for
nonlinear optics in photorefractive media.

1.2.3 Nonlinear wave equation

To understand nonlinear waves dynamics and soliton formation, we show how an
index change induced by photorefraction as Eq. (1.21) modifies beam propagation.
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We consider a monochromatic electromagnetic wave with frequency ω = 2πc
λ

Eopt(r, t) = Eω(r, t)eiωt + c.c.. (1.22)

From Maxwell equations its propagation in a media homogeneous on scales of order
λ follows the linear differential scalar equation (Helmholtz equation) [41]

∇2Eω + k2
0n

2Eω = 0 (1.23)

where k0 = ω/c and n is the refraction tensor, which depends on the spatial coordi-
nates via the electro-optic effect (n = n(r, ω)). Assuming that it can be expressed as
a small perturbation to the linear index of refraction, n(r, ω) = n0(ω) + ∆n(r, ω),
con ∆n(r, ω)� n0(ω), we have: n2(r) ' n2

0 + 2n0∆n(r), where the ω-dispersion
has been omitted. For propagation along the z-direction, the field reads

Eω(r) =
∑
i=x,y

A(w),i(x, y, z)e−ikiz (1.24)

with ki = k0ni, ni now indicating the generic diagonal term of n in zero external field.
Under the slow-varying amplitude approximation, that implies ∂zzA(w),i(x, y, z) ≈ 0,
from Eq. (1.23) we thus obtain the paraxial wave equation

∑
i

[
∂

∂z
+ i

2ki
∇2
⊥

]
A(w),i(x, y, z) = −

∑
j

iki
ni

∆nijA(w),j(x, y, z). (1.25)

The underlying assumption means that A(w),i(x, y, z) varies on scales much larger
than λ, that is the beam is spatially localized in the transverse plane on scales l� λ
(paraxial regime). In an actually homogeneous media, the ni values are degenerate
and, for the one-dimensional case, we have[

∂

∂z
+ i

2k
∂2

∂x2

]
Aw(x, z) = − ik

n
∆nAw(x, z). (1.26)

This equation is known as generalized nonlinear Schrödinger equation (generalized
NLSE) when ∆n = ∆n(I = |Aω|2) and describes paraxial nonlinear wave propagation
in the spatial domain. An analogous equation also holds for temporal propagation
[9]. The term

(
i

2k
∂2

∂x2

)
represent light diffraction and can be exactly balanced for

specific values of the nonlinearity depending on the external parameters. This
compensation leads to an amplitude solution Aω spatially-localized and stationary:
a spatial soliton. In particular, with a nonlinearity given by Eq. (1.21) we obtain
photorefractive screening solitons. Since numerical simulations has been used to
support different experimental results obtained in this thesis, we conclude this section
briefly describing how beam propagation according to Eq. (1.26) can be numerically
resolved using the split-step Fourier method [107, 281, 78]. Specifically, introducing
the diffraction D̂ and nonlinear N̂ operators, Eq. (1.26) reads ∂

∂zA = (D̂ + N̂)A.
As we are dealing with slow amplitude dynamics along the propagation, there exist
an interval h short enough to make separable the action of these two operators.
This means A(x, z + h) ≈ ehD̂ehN̂A(x, z), with an O(h2) error related to [D̂, N̂ ] 6= 0
according with the Trotter expansion [281]. Moreover, the error reduces to O(h3)
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considering an intermediate step so that A(x, z+h) ≈ e
h
2 D̂ehN̂h/2e

h
2 D̂A(x, z). Due to

the linearity of the diffraction operator, the diffractive steps can be computed passing
in the Fourier space; in the more general two-dimensional case with h/2 = ∆z we
have

A(x, y, z + ∆z) =
∫∫

Ã(kx, ky, z)e
i

2k (k2
x+k2

y)∆zei(kxx+kyy)dkxdky. (1.27)

Differently, nonlinearity is an algebraic operator and can applied in the direct space
according to A(x, y, z + ∆z) = A(x, y, z)e−

ik
n

∆n∆z. Iterating this tecnique over a
carefully selected number of steps results in numerical integration of the generalized
nonlinear Schrodinger equation.

1.3 Photorefractive solitons
As anticipated, photorefractive solitons are localized waves supported by the Kerr-
saturated nonlinearity in which beam self-focusing is mediated by the bias field. Two
conditions can be identified: localization can be stationary (steady-state) [248] or
transient (quasi-steady-state) [97]. Although temporal stability may be dependent on
the experimental configuration [247], we show hereafter that also non-stationary spa-
tial solitons are characterized by specific existence conditions, since their properties
will result strictly related to rogue waves formation in photorefractives. Differently,
steady-state photorefractive solitons in the one-dimensional centrosymmetric case
can be identified as non-evolving solution of Eq. (1.26) with Eq. (1.21). Soliton
amplitude depends on the propagation coordinate z only through a phase factor so
that, using a self-consistent method, we look for solutions of the form

A(x, z) = u(x)eiΓz
√
Ib, (1.28)

where Γ is the propagation constant. We renormalize the spatial coordinate x
according to the following definitions

ξ ≡ x

d
d ≡ (±2kb)−1/2 b = k

n

[
1
2n

3geffε
2
0(εr − 1)2

(
V

L

)2
]

The quantity d is the so-called nonlinear length ant its sign reflect the focusing
(geff > 0) or defocusing (geff < 0) character of the nonlinearity. From the paraxial
equation we obtain the dimensionless nonlinear wave equation [246]

d2u(ξ)
dξ2 = ±

[
1

1 + u2
0
− 1

(1 + u(ξ)2)2

]
u(ξ), (1.29)

with the dimensionless intensity u2
0 = I/Ib ad the ± sign corresponding to that

of ∆n(I) [59, 291]. We consider here the focusing case, which gives bright optical
solitons. Since Eq. (1.29) is nonintegrable, its solutions identifying specific soliton
waveforms are found via numerical integration. These solutions represent an attractor
for the optical dynamics and the input beam profile reshapes itself to excite them. In
experiments, the accessible parameters are the nonlinear length b, the beam full-width-
at-half-maximum (FWHM) ∆x and the intensity u2

0. Therefore the fundamental role
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(a)
(b)

Figure 1.2. Photorefractive soliton existence curve. (a) Numerical prediction (dashed
line), experimental results and analytical asymptotic result of segmented wave harmonic
theory (black line). (From [82]). (b) Observed soliton waveforms in the steady-state
case (blue points) and in non-stationary conditions (green points). (From [208]).

of Eq. (1.29) is to relate at each value of the nonlinearity the corresponding values
of u0 and ∆ξ. The parameter space (u0,∆ξ) is the nonlinear wave phase-space and
that points leading to z-independent solutions define the soliton existence curve.
The attractive nature of the existence points can thus be rephrased affirming that
the soliton will have approximately the same u0 and ∆ξ of the gaussian input beam.
In Fig. 1.2(a) is reported the theoretical existence curve with experimental data
in photorefractive potassium-lithium-tantalate-niobate (KLTN) crystals [79]. For
(u0 > 1) the behavior can be approximated as ∆ξ = (π/2)(1 + u2

0)/u0, whereas
in highly-saturated regimes (u0 � 1) segmented wave harmonic theory gives the
asymptotic linear trait ∆ξ = (π/2)u0 [82]. In Fig. 1.2(b) soliton waveforms
observed in a paraelectric sample of potassium-sodium-tantalate-niobate (KNTN)
are shown in comparison with non-stationary self-trapped waves violating stationary
existence conditions [208]. This picture can be partially extended to the (2+1)D
(two-dimensional) case, where it becomes a three-dimensional nonlinear problem and
assumes anisotropy and spatial nonlocality. In this case, nonlocal contribution in
the space-charge field are crucial to soliton existence, since the circular symmetry
is broken by the tensorial nature of electro-optic response via the direction of the
applied external field. The added spatial dimension implies a field E with components
in both transverse dimensions according with Eq. (1.11), although the electro-optic
index modulation maintains its scalar form. Following the discussion in section 1.2.2,
we have the nonlinear system {

∇ · (YQ) = 0
∇×Y = 0

(1.30)

Its numerical solution gives the nonlinearity spatial distribution reported in Fig.
1.3. When only the local contribution is taken into account anisotropic self-focusing
occurs and symmetric light needles cannot form. Including nonlocal contribution of
η-order gives symmetric index patterns supporting two-dimensional spatial solitons.
However, a rigorous formulation of the existence curve is not possible in this case,
although the phenomenology remains analogous in the (u0,∆ξ) space [216].
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Figure 1.3. Two-dimensional space-charge field. Numerical solution for the local (left) and
nonlocal case (right), in which a symmetric pattern allows soliton propagation. (From
[83]).

1.3.1 Nonlocal effects and non-stationary dynamics

We extend the treatment to generic non-equilibrium conditions, that is the case in
which the beam acquires a temporal dynamics and solitons are transient [111, 312].
Phenomenologically, the initially diffracting light beam undergoes a cycle during
which it first progressively self-focuses and settles into a self-trapped wave; then it
undergoes a decelerated evolution during which the actual transverse beam intensity
changes slightly, but the balancing of self-focusing and diffraction is approximately
maintained; finally, it decays into a distorted and once again diffracting beam,
ending the cycle. To reveal the peculiar properties of the soliton state we have
to reconsider the general case of Eq. (1.11). Introducing the so-called dielectric
relaxation time τd = εγ/(qµsαIb) so that the temporal variable is τ = t/τd, we can
write the temporal-dependent counterpart of Eq. (1.16) as

∂Y (0)(ξ, τ)
∂τ

+Q(ξ, τ)Y (0)(ξ, τ) = G. (1.31)

Therefore, the dynamic space-charge field satisfies the integral equation

Y (0) = Ge−
∫ τ

0 Qdτ ′
[
1 +

∫ τ

0
dτ ′e

∫ τ ′

0 Qdτ ′′
]
. (1.32)

Although the model relies on a specific scale τd related to charge mobility, the
dynamics described by Eq. (1.31) manifest several time scales. In particular, a
stretched exponential behavior characterizes the process leading to non-stationary
solitons [76]. Time integration in Eq. (1.32) implies that Y at τ depends on Q at
τ ′ < τ ; the propagation have temporal nonlocality and allows memory effects. In
proximity of the localization condition the normalized beam intensity Q becomes
approximately time independent and, being Q� 1, Eq. (1.32) becomes

Y ' e−Qτ + 1
Q
− 1
Q
e−Qτ −→ Y ' e−Qτ . (1.33)

The index variation associated to this space-charge field for a quadratic electro-optic
response is the exponential nonlinearity ∆n = −∆n0e

−2Qτ . Generalizing the self-
consistent approach of Eq. (1.28) with the spatiotemporal dimensionless variable
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(a) (b)

Figure 1.4. Properties of non-stationary photorefractive solitons. (a) Existence conditions
with insets showing waveforms in specific points of the curve. Localization occurs at w′0.
(b) Predicted and measured dependence of the minimum soliton transverse size on the
external electric field. (From [84]).

w(ξ) =
√

2τu(ξ), the nonlinear soliton profile equation reads [84]

d2w(ξ)
dξ2 = −


(
1− e−w2

0
)

w2
0

− e−w2

w(ξ) (1.34)

where w0 = w(ξ = 0) =
√

2τu0. The resulting generalized existence conditions are
reported in the (w0,∆ξ) space in Fig. 1.4(a). Relevance of this curve is limited to the
conditions for which waveforms are approximately independent of time, which means
that the parameters of interest must be those for which the beam shape changes
little as w0 increases. This occurs in proximity of the minimum at w′0 corresponding
to the onset of strong saturation in the nonlinearity, which also indicates a maximum
value of nonlinear self-action. The minimum conditions in Eq. (1.34) gives a soliton
width [84]

∆xmin = ∆ξminλ
2πn2ε

√
geff

E−0 1 (1.35)

with ∆ξmin ' 3.07. The dependence on the bias field is reported in Fig. 1.4(b).
This scale has the peculiar properties of being independent of the wave amplitude, a
feature does not occurring in standard stationary solitons. These properties is the
key to understand rogue waves statistics and its control, as described in Chapter
6. Another interesting case can also be derived from Eq.(1.32): an optical beam
with random phase and amplitude variations on a fast spatial or temporal scale
(coherence scale). Considering Q = Q̄+ ∆Q, with fluctuations ∆Q having typical
amplitude Q̄ around zero, we found [86]

Y (0) = Ge−Q̄τ + G

Q̄

(
1− e−Q̄τ

)
, (1.36)

that, for τ � 1/Q̄, reduces to the time-independent case Y (0) = G/Q̄. Therefore,
the nonlinear response averages out fast intensity fluctuations leading to the steady
state condition as for a coherent beam. This is the basis for incoherent spatial
solitons and it can be further generalized to temporally incoherent (white) light
[188, 63].
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1.3.2 Continuous solitons in a lattice nonlinearity

In this section we describe a novel study we have addressed in the context of photore-
fractive solitons in discrete media [217]. Generally, the coupling between different
and matched spectral components of the optical field is one of the fundamental
effects governing propagation through periodic systems. The interplay between this
coherent effect and nonlinearity has been extensively investigated allowing diffraction
control [100, 108] and giving rise to self-localized states, such as discrete and gap
solitons [146, 109, 181]. Experiments on discrete trapping are generally based on
photonic lattices made from etched waveguide arrays [99, 180] or created through
optical induction in photorefractive media [98, 172]. Studies have spanned a wide
variety of physical mechanisms affecting these kind of solitons, such as nonconven-
tionally biasing [309]. However, in all cases the soliton has always evolved in a fixed
linear/nonlinear pattern, i.e., in conditions in which the underlying lattice is not
appreciably affected by the wave. We here study theoretically and experimentally
an entirely opposite condition: spatial solitons that form in a lattice nonlinearity. A
lattice nonlinearity is a periodic variation in the nonlinear response that is in turn
negligible in the linear response. This means the lattice itself depends on the soliton,
and both lattice and soliton are strongly interacting during propagation. This
fundamental difference with respect to previous studies is schematically illustrated in
Fig. 1.5, where the optical propagation in a photonic lattice is compared with that
in a lattice nonlinearity. The standard physical condition (Fig. 1.5(a)) consist in a
media with a periodic index of refraction variation δnlatt, affecting parametrically
the superimposed soliton nonlinearity δnsol. So, while the nonlinear waves evolve
into a lattice-dependent trapped state, δnlatt remains almost completely unaffected
by the waves dynamics. On the contrary, if the beam and lattice are mutually
nonlinear, δn = δn(δnsol, δnlatt), the nonlinear propagation modifies spatially the
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Figure 1.5. Nonlinear propagation in periodic systems. (a) Trapping in photonic lattices:
the periodic pattern δnlatt affects the spatial propagation but is not affected by the wave.
(b) Trapping in lattice nonlinearity: optical field and lattice are mutually coupled and
δnlatt depends on the waveform. (From [217]).
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Figure 1.6. Light propagation in the lattice nonlinearity embedded in a microstructured
KLTN. (a) Observed beam dynamics from the starting delocalized discrete pattern to
the continuous soliton: (a1) input and (a2) output beam when the lattice nonlinearity is
deactivated, (a3) output discrete spatial distribution as soon as the lattice nonlinearity is
enabled and (a4) continuous soliton at the steady state. (b) Intensity Fourier transform
of (a3) (cyan line) and (a4) (magenta line). (From [217]).

underlying periodic pattern itself (Fig. 1.5(b)).
We investigate the issue using spatial photorefractive solitons in a volume mi-

crostructured KLTN crystal with a built-in oscillating low-frequency dielectric
constant. This systems is also the basis for discoveries presented in Chapter 3, where
details on the crystal structure and properties are also reported. Here we consider
how the pattern causes an oscillating electro-optic response that induces a periodic
optical nonlinearity. In fact, the resulting on-axis propagation dynamically shows a
transition from a discrete pattern to a soliton with the peculiar property of being
continuous in the transverse dimension, irrespective of the beam size compared to
the grating period. The effective continuous Kerr-saturated solitons form out of the
combined compensation of diffraction and of the underlying periodic volume pattern.
In particular, the lattice nonlinearity arising from the optically induced space-charge
field reads

∆n(x) = δn cos(Kx)− 1
2n

3geffε
2
0ε

2
r

[
1 + 2δTC

T − TC
cos(Kx)

](
E0

1 + u(x)2

)2
, (1.37)

where δn contains the linear contribution of the Sellmeier’s refractive index grating,
K = 2π/Λ the grating number, being Λ the grating period, with the lattice amplitude
δTC that can be controlled through the critical temperature TC . It should be noted
that the first linear term only weakly affects propagation; differently, the field-
dependent lattice term is not at all a perturbation to the screening nonlinearity.
Beam propagation experiments are carried out with µW paraxial one-dimensional
waves at λ = 532 nm in a transmission configuration with respect to the grating,
with the main wavevector k = kz orthogonal to the grating vector K (grating period
Λ = 5.5 ± 0.3µm) and to the bias field. Numerical results are obtained using the
beam propagation method (BPM) to resolve Eq. (1.26) with the nonlinearity given
by Eq. (1.37) and parameters that match those from our experiments.

The observed beam propagation dynamics is shown in Fig. 1.6(a). When the
electro-optical response is not activated through the bias field, the input Gaussian
beam with full width at half maximum FWHM= 7µm experiences quasi-linear
diffraction, resulting in an FWHM= 26µm output distribution (Fig. 1.6(a1-a2)). In
these conditions, only the liner part of the lattice is involved in the beam propagation
and, from the spectrum (Fig. 1.6(b)), it seems to be negligible. However, when the
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Figure 1.7. Soliton propagation: experimental and numerical results. Observed (a) input,
(b) diffracted and (c) self-trapped output at applied bias field for (top) 1D beams
and (bottom) 2D beams. In all the cases continuous localization emerge as confirmed
numerically by (d) propagation and (f) associated spatial index of refraction modulation
(blu line) compared with just the contribution of the photorefractive response in biased
condition (orange line). (e) Experimental relation between normalized intensity and
external field for 1D solitons with linear fit (dashed line).(From [217]).

beam is exposed to the lattice nonlinearity, that is, the sample is biased, it instan-
taneously (at fast electro-optic response times) rearranges itself over the periodic
index of refraction pattern. Considering the µW power used in the experiments, the
photorefractive response begins changing the pattern only approximately 10− 20s
after this initial stage. The discrete light distribution emerging in the first instants,
before the light is able to produce the space-charge field, is shown in Fig. 1.6(a3),
for u0 =

√
Ipeak/Ib ' 8 and V = 400V, and appears delocalized compared to the

input beam distribution. The operational temperature in this case is T = TC + 2K,
so that, from Eq. (1.37), we expect a nonlinear lattice with the same amplitude
of the “homogeneous” photorefractive nonlinearity (∆n of the order of 10−3). The
build-up of the space-charge field causes the progressive local screening of the peri-
odic lattice until the continuous steady-state soliton forms after few minutes (Fig.
1.6(a4)). The soliton transverse profiles have no trace of a periodic feature, so the
lattice nonlinearity allows the transition from a discrete delocalized pattern to a
continuous soliton. In Fourier space (transverse spatial spectrum), the spectrum of
the output intensity distribution passes from having a dominant peak compatible
with K = 2π/Λ to a monotonous decay without dominant resonances (Fig. 1.6(b)).
This continuous soliton behavior is demonstrated in Fig. 1.7. When no bias field is
applied the input beam with FWHM= 7µm experiences homogeneous diffraction
resulting in an FWHM= 24µm output distribution (Fig. 1.7(a1-b1)). Applying
a V= 580V static potential a steady-state soliton propagation is obtained for an
intensity ratio u0 ' 5 (Fig. 1.7(c1)). This absence of discrete features is confirmed
by numerical simulation revealing a soliton shape typical of continuous solitons, as
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Figure 1.8. Soliton interaction in a lattice nonlinearity. Numerical results showing (a)
repulsion in the linear regime, (b-c) bound state in a lattice nonlinearity for input beams
in (b) even and (c) odd configuration respect to the underlying lattice, which is sketched
in the insets with the beam center indicated by the blue dot.

reported in Fig. 1.7(d1). Interestingly, this finding does not match what is expected
for photorefractive solitons in a fixed bulk grating, where waveforms satisfying a
two-parameter existence condition are characterized by modulated components [67].
This underline the role of the lattice nonlinearity. The continuous property has roots
in the coupling between periodic and non-periodic terms in the soliton supporting
nonlinearity. Indeed, simulations demonstrate an index of refraction variation losing
the sinusoidal shape in the soliton region (Fig. 1.7(f1)); the screening field locally
leads the underlying lattice into a latent state. This effect is independent both of the
grating amplitude and of the beam width. The first statement is verified spanning the
experimental soliton parameters (u0, E0) (Fig. 1.7(e)) and changing the operational
temperature; in particular, we note that even when the lattice amplitude is larger
than the standard photorefractive term the continuous picture remains unchanged.
Although experimentally we cannot access into this regime, simulations confirm this
behavior, stressing the local interaction between wave intensity and nonlinear lattice.
Independence from the beam waist is demonstrated launching beams whose size
covers several grating periods (weak-binding). As reported in the middle row of
Fig. 1.7, a FWHM= 22µm, u0 = 2.5 input beam weakly diffracts when unbiased;
it self-focuses up to 8µm in the nonlinear case. Even in this case the output lacks
marked discrete features, as numerically verified. We also demonstrate that what
has been achieved occurs in the same spatial lattice geometry for two-dimensional
solitons; a 2D continuous soliton, 8µm sized, is shown in Fig. 1.7(c3) at u0 = 8.5.
Fig. 1.7(e) reports the relation between normalized intensity and external field for
observed 1D solitons (existence conditions); the linear behavior is coherent with
the general relationship at high saturation (section 1.3), even though the slope
observed is considerably reduced, this underlining the fundamentally different nature
of our present continuous solitons compared to conventional photorefractive nonlinear
waves. The continuous picture is expected to change if the electro-optical lattice can
be decoupled from the photorefractive nonlinear response. Since these two responses
act on different time scales, being the electro-optic modulation instantaneous with
respect to the photorefractive one, the grating can be decoupled dynamically. This
is exactly the decoupling occurring in the first stages of propagation into the lattice
nonlinearity and leading to a discrete pattern, as discussed and reported Fig. 1.6(a).

An interesting consequence of the lattice nonlinearity action relies in how it
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affects soliton interaction. Unfortunately, our specific sample is not suitable for
this experimental investigation due to the small fabricated lattice period Λ, that
for solitons in adjacent lattice sites implies an ultra-tight regime where existence
of photorefractive solitons is at risk [85]. However, from numerical simulations we
predict an interesting phenomenon: we found the interaction properties typical of
a discrete system [197, 103] but with continuous solitons. Numerically, we have
considered the same nonlinear parameters describing our setup, except for the lattice
period, that is Λ = 10m, and we set δn = 0, dTc = 1K and T = Tc + 2K. Results
are reported in Fig. 1.8 and show the interaction dynamics of two adjacent π-out of
phase spatial solitons. In the linear case, that is without the lattice nonlinearity, as
expected there is repulsion between the π-out of phase solitons. On the other hand,
a bound state exist in the presence of the nonlinear lattice, both when the beam is
initially centered in a minimum of the lattice (we call this configuration “even” in
Fig. 1.8(b)) or in a maximum of the lattice (“odd”, Fig. 1.8(c)). In both these cases
the discrete bound states have a continuous feature, a paradigmatic property ever
found in other systems.
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PART I

Electro-optics of disordered
ferroelectrics
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Chapter 2

Anomalous electro-optic effect

The electro-optical response of critical disordered ferroelectric crystals are investi-
gated in this Chapter. The peculiar properties we have found not only form the basis
for accessing unconventional regimes of nonlinear wave propagation but represent an
insight in the rich and debated physics of these complex materials. We demonstrate
electro-optics as an experimental method to probe dipolar dynamics in proximity
of the ferroelectric phase transition. In particular, we report observations of the
giant electro-optic effect in a potassium-sodium-tantale-niobate (KNTN) crystal
and we unveil an anomalous behavior of its symmetry [218]. We relate these effects
to a super-polarization of the medium, which is directly connected to an anoma-
lously reduced thermal agitation in the reorientational response of the underlying
polar-nanoregions.

2.1 Disordered ferroelectrics: an overview

Compositional disorder in ABO3 perovskites can profoundly change their ferroelectric
response [240]. The presence of different compounds at the atomic level introduces
for specific composition concentrations competing structural phases that at the
morphotropic phase boundaries [10, 175], such as low-symmetry bridging phases and
ferroelectric-antiferroelectric ordering boundaries [40], result into unique polarization
properties, examples being anomalously large capacitance and giant piezoelectricity
[158, 272]. Moreover, disorder on the nanoscale can lead to dispersion in the
dielectric response, thermal, electric-field and strain hysteresis, and anomalous
relaxation times, traits that are typical of relaxor ferroelectric behavior [256, 37].
In many respects, the unique properties of the disordered ferroelectric state can
be modelled as arising from a network of randomly interacting polar-nanoregions
(PNRs) embedded in a highly polarizable medium [276, 122, 299, 300]. Although
the microscopic origin of these PNRs and the role played by random fields is still
an open question [11, 225, 151, 214, 183], it is established that they can lead to
dipolar-glasses with non-ergodic properties when appropriately supercooled [38]. In
fact, dipolar dynamics in some relaxor ferroelectric crystals is characterized by the
so-called freezing temperature, a temperature at which the dielectric relaxation time
diverges and polarization fluctuations result quenched [285, 143, 144]. Percolation
of PNRs has been proposed as the physical mechanism underlying the dipolar-
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Figure 2.1. Electro-optical experiments in critical KNTN crystals. (a) Experimental
setup (see text). (b) Transmission microscopy images (intensity is in arbitrary units) in
zero-field-cooling at T = 287K and (c) at T = Tm = 285.5K; (d) applying a 0.85kV/cm
dc field the glassy state at Tm turns into ferroelectric domains with geometrically fixed
boundaries at 45◦ with respect to the principal axes of the crystal. Normalized intensity
of the two-dimensional Fourier transform (insets in (b), (c) and (d)) that highlights the
appearance of a diagonal feature in the spectrum associated to ferroelectric domains.
The added spectrum in (d) is continuous, with no fixed periodicity, typical of a globally
disordered state.(From [218]).

glass state [224, 228]. Moreover, in proximity of the Curie temperature, in the
nominally paraelectric (cubic) phase, PNRs greatly affects optical birifringence
[305, 229] and electro-optical response leading to giant electro-optical coefficients
[56, 57] and depolarization effects [128]. We have experimentally found that these
optical properties are manifestations of a more general anomalous electro-optic effect
strictly related to freezing of dipolar fluctuations. Part of our results has been
also confirmed by dynamical (time-resolved) electro-optical studies on analogues
KTN-based crystals [271].

2.2 Electro-optic experiments
In our electro-optic setup the KNTN crystal [237, 269, 137], K0.89Na0.11Ta0.63Nb0.37O3,
is grown through the top-seeded solution method by extracting a zero-cut 1.17(x) x
1.90(y) x 2.43(z) mm optical quality specimen. In order to identify the relaxor-type
behavior, i.e., the temperature range where permanent dynamic PNRs affect the
response, we perform dielectric spectroscopy using a standard LCR meter setup for
different frequencies and a thermal chamber. Dielectric results are reported in section
2.3 to allow comparison with optical findings. The dielectric peak signaling a dy-
namic phase transition appear at the temperature Tm = 285.5K and measurements
are performed for T & Tm, where the PNRs allow an optimal optical transmission
but where glassy physics effects are still observed. The cross-polarizer set-up is
schematically illustrated in Fig. 2.1(a). A visible laser beam from a diode-pumped
doubled Nd-Yagg laser (wavelength λ = 532nm, 5mW continuous wave beam before
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Figure 2.2. Anomalous electro-optic effect. Ligth transmission through crossed polarizers
as a function of electric field E for different temperatures: (a) for T = 301K, (b) 298K, (c)
295K, (d) 293K, and (e) 290K. In the latter case the natural birefringence of the KNTN
sample has been compensated with a λ/4 waveplate. (f) Summary and comparison of ∆n
versus E for the different temperatures signaling the spike-like distortion (highlighted in
the inset for 290K and 293K, lines are fits with −∆n ∝ |E| ) of the expected parabolic
dependence as Tm is approached.(From [218]).

the sample) S is expanded to an approximate plane-wave of 10mm radius by the two
confocal lenses F1 and F2. The beam passes through the first polarizer PL1 that
transmits light linearly polarized at 45°with respect to the plane of the experiment,
then through the sample, and finally through the second polarizer PL2 orthogonal to
the first. The sample is zero-cut along its principal m3m axes and is oriented parallel
to the plane of the experiment with the input facet approximately orthogonal to the
propagation direction z. It is biased by a static electric field E delivered through two
plane electrodes sputtered onto the x-facets of the sample. The sample is housed
in a thermal conductive holder whose temperature is controlled by a Peltier cell.
Transmitted light is collected by the exit lens F3 and the power is detected through
power meter D or imaged through a CCD camera. We implement a plane-wave
intensity of approximately 1.5µW/cm2, and no photorefractive effects associated
with Cu impurities (∼ 0.001 atoms per mole) for the duration of our experiments are
detected. In Fig. 2.1(b-d) we report the cross-polarizer transmission images cooling
the sample from T ∗ = 305K to Tm at a cooling rate of α ' 0.1K/s. A homogeneous
and disordered weak transmission of light is observed in the whole temperature
range for zero-field-cooling. For values of T in proximity of Tm (T − Tm < 4K),
an external field causes organized ferroelectric structures to form [288, 121]. For
example, at T ' Tm, a field E ' 1kV/cm causes the formation of large ferroelectric
domains with geometrically fixed boundaries at 45◦ with respect to the principal
axes of the crystal (2.1(d)).

We proceed to quantify polarization transmission properties 5− 15 K above Tm.
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Light is transmitted because the sample changes the relative phase of the x- and
y-polarized components of the optical field (respectively parallel and orthogonal
to the external field E) through the relative electro-optic modulation of the index
of refraction ∆n. The output transmitted intensity I and the input intensity I0
are connected to this field-induced relative phase-shift ∆φ through the relationship
I/I0 = sin2 (∆φ/2), where ∆φ = ∆n(2π/λ)L, and L is the length of the crystal
along the propagation direction. Analyzing the dependence of ∆φ on E allows us
to detect the macroscopic dependence of ∆n on E and hence obtain the crystal
P versus E response. The intensity transmission data at different temperatures
T as a function of applied bias field E are reported in Fig. 2.2. The crystal is
cooled to the operating temperature with a cooling rate of α ' 0.1K/s, and, in
distinction to analogues experiments, during this cooling no external bias field is
applied [56, 57]. We note that cooling rate have a profound impact on the response
properties of the KNTN crystal [216, 207]. Data are taken for the decreasing field
amplitude loop (the field amplitude is decreased during our experiments), and no
residual polarization is detected at zero field. As testified by the rapid decrease in
fringe period, the electro-optic response is seen to increase anomalously as Tm is
approached. Moreover, fringe visibility is found to decrease for high fields and for
lower temperatures, the signature that PNRs are dominating response [128, 269].
The sinusoidal fringe pattern is therefore modified by a field-dependent pre-factor
Md that depends on the PNR size via the operating temperature, cooling rate and
applied field [128]. In Fig. 2.2(e) we report the fringe pattern measured with the λ/4
waveplate that compensates the non-zero value of transmission at E = 0. We are
thus able to measure the natural birefringence to be ∆φ0 ' −0.36 radians. In Fig.
2.2(f) we summarize the ∆n versus E data for the different temperatures. We note
that the index of refraction modulation gradually switches from the typical quadratic
field dependence distinctive of a paraelectric phase (section 1.2.2) at T = 301K to a
low-field strongly nonlinear (spike-like) dependence at T = 290K, even though no
macroscopic changes in the crystal symmetry occurred. However, the linear behavior
typical of polar states signals that symmetry breaking are occurring at microscopic
scales, a phenomenon recently observed also in liquid crystals [145].

2.3 Anomalous dipolar response
To investigate the physical underpinnings of this anomalous electro-optic behavior
we proceed to reconstruct the P versus E relationship from the ∆n versus E data,
at the different values of T . We consider the relation (1.20) of section 1.2.2 with
n = 2.31 and geff ≡ (g11 − g12) = 0.14 C−2m4. The polarization curve we obtain
represent an optical measuraments of the response to bias fields usually obtained
through capacitance measuraments [270].

2.3.1 Super-polarization

The optically measured P versus E curves are reported in Fig. 2.3(a), in the range
between T = 301K and T = 290K. We first note that, as expected for a system
that has global inversion symmetry, no residual polarization or standard ferroelectric
hysteresis behavior emerges (Fig. 2.3(c)). However, in distinction to a standard
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(c)

Figure 2.3. Super-polarization in KNTN. (a) The P versus E relationship as a function
of T from the measured values of ∆n(E) (P = ±(−2∆n/n3

0(g11 − g12))1/2, the sign
depending on the sign of E) indicates a temperature dependent distortion of linearity
towards an S-shaped behavior. Full lines represent the fit with the super-polarization
model of Eq. (2.1). (b) Linear temperature scaling of the inverse fit parameter c (see
text) that gives the shift temperature T0 = (283 ± 2)K. (c) An example of slim-loop
hysteresis and absence of residual polarization in agreement with the paradigm of weakly
interacting dipoles as opposed to dipoles undergoing a standard, second-order, phase
transition. (From [218]).

system with inversion symmetry, where the polarization should be predominantly
linear in the electric field [302], here the polarization manifests a gradually increasing
nonlinearity at low bias fields. Indeed, decreasing the temperature towards Tm,
the polarization response passes from a linear function of the field to the peculiar
S-shaped curve observed in non-optical freezing relaxors [286, 152]. Negligible
hysteresis and zero-field residual polarization indicate that dipoles associated to the
PNRs spontaneously flip during measurements, so that our starting model is that of
Langevin reorientation. Considering the predominant role of PNRs, an ensemble of
uniform noninteracting clusters having uniaxial symmetry has an average polarization
[286] p = ρp0 tanh [p0|E|/kT ] u, where ρ is the density of clusters with dipole moment
p0, kT the thermal energy and u the field unit vector. This behavior is, however,
evidently incompatible with the observed data, since the large variations occur for
an apparently negligible relative change in temperature ∆T/T ∼ 0.03. In turn, the
curves are compatible with a shifted-temperature Langevin reorientation pPNR =
ρp0 tanh [p0|E|/kB(T − T0)]u, where T0 is a phenomenological parameter hereafter
assuming the meaning of a freezing temperature. The macroscopic polarization P is
now composed of a dipolar contribution and a standard linear susceptibility χp due
to the paraelectric host. Specifically,

P = pPNR + pχp = ρp0 tanh
[

p0|E|
kB(T − T0)

]
u + ε0χpE , (2.1)

where the first term dominates the low-field response and the second prevails at
high fields where the PNR response is saturated. The full lines in Fig. 2.3(a) are a
fit of measured P to Eq. (2.1) for low values of E. Best fits provide values of the
parameter c = p0/kB(T −T0) that, as reported in Fig. 2.3(b), give T0 = (283±2)K.
The resulting electro-optic response in the cross-polarizer configuration is hence
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associated with

∆n =− (1/2)n3geffε
2
0(εr − 1)2E2 − n3geffρp0 tanh

[
p0|E|

k(T − T0)

]
ε0(εr − 1)|E|

− (1/2)n3geffρ
2p2

0 tanh2
[

p0|E|
k(T − T0)

]
.

(2.2)

For values of T − T0 such that p0|E|/k(T − T0) � 1, the second term describes
the observed anomalous contribution ∆n ∝ |E|. This term is indeed dominant
over the first, which is the standard quadratic term arising from the paraelectric
host, whereas the third term can be neglected in a first approximation. We un-
derline that the freezing response is intrinsically different from the standard linear
∆n ∝ E and quadratic ∆n ∝ E2 effects associated, respectively, to systems that
are noncentrosymmetric and centrosymmetric. In a system with global inversion
symmetry, spatial inversion causes E → −E but ∆n→ ∆n, and the leading response
is congruently quadratic in the amplitude of E. In our freezing-PNR-dominated
system, which has no globally-defined symmetry [122], spatial inversion causes
E → −E, ∆n→ ∆n, but the leading response is still linear in the amplitude of E.
It can be referred as a symmetry-preserving electro-optic effect that emerge when
different symmetric states are present on different physical scales. This anomalous
electro-optic behavior has been confirmed by H.Tian et al. [271] probing in time at
kHz −MHz frequencies the dynamics of PNRs embedded in a KTN crystal. They
report an analogues spike-like distortion of the elcetro-optic response in proximity
of the dielectric peak temperature when a low-frequency AC field is used. The
behavior observed in Ref. [271] is associated to asymmetric distribution of PNRs
along the bias field direction and presents reduced temperatures fluctuations, as we
have directly measured. The phenomenological model they propose further confirms
our evidence of dipolar freezing ruled by the blocking temperature T0. It means
that the giant polarization response in disordered ferroelectrics in proximity of the
phase transition can be understood through the classical picture of zero-temperature
dipolar dynamics as illustrated in Fig. 2.4. As freezing is approached, all states
but the minimum energy state become unpopulated, a form of classical condensa-
tion; an arbitrarily small external field will shift the ground state and with it, in
unison, the entire system, without involving microscopic interaction, diffusion, or
dissipation. The system manifests a natural tendency of allowing binary encoding:
the macroscopic response is simply a combination of the two microscopic states. In
general, this is superimposed to a standard susceptibility, and the signature will take
the form of a characteristic twist in the overall input-output curve, as the one we
observe (Fig. 2.3). Moreover, in the next section we report independent dielectric
spectroscopy results showing how dipolar freezing emerge with the same freezing
temperature also in dielectric fluctuations. In fact, dipole reorientation involves a
well-defined external potential −p ·E, whereas relaxation is of microscopic origin
with a built-in phenomenological potential barrier ∆U . To validate the picture we
have to compare the freezing T0 measured from the P versus E curves with the one
eventually emerging from dielectric relaxation.
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Figure 2.4. Effective ultracold classical dipolar response. (a-b) Representation of thermally
agitated dipoles pi at a given T compared to the ultra-low-temperature case. For finite
T , the macroscopic response P is caused by the average alignment to the external
bias field E, compared to the T ' 0 case, where all single dipoles align, even when
they are non-interacting. (c) Leading macroscopic response P at finite values of T
(blue curve-standard linear response) compared to the leading macroscopic response
in proximity of freezing (red curve-binary response). (d) Leading scalar response at a
finite T (blue curve-parabolic response) compared to the case of spike-like response (red
curves). (e) Signature of near-zero response superimposed to a standard linear response
∝ E, that is according with Eq (2.1) and results in Fig. 2.3.

2.3.2 Freezing dielectric relaxation

We have discussed how disordered ferroelectrics cooled below a material-dependent
temperature Td (Burns temperature [49]) manifest a response that can best be
described as dominated by randomly distributed PNRs. One flag to the onset
of PNR-dominated response emerges in the dielectric response: for temperatures
Tm < T ∗ < Td, below the so-called intermediate temperature T ∗ and above Tm, the
temperature for which the relaxor dielectric constant has its maximum, the Curie-
Weiss law (mean-field theory) breaks down [287]. The breaking of mean-field behavior
implies a local breaking of symmetry (on the nanometer scale), which can eventually
expand into a true ferroelectric state with long-range order (micrometer scale) below
Tm. Freezing occurs when the Arrenhius law governing dielectric thermal flutuations
is violated and superseded by a Vogel-Fulcher-Tammann (VFT) relaxation law
τ = τ0 exp (∆U/kB(T − T0)), where T0 is the so-called dipolar freezing temperature.
Mesoscopically it can be associated to PNR percolation, where T0 is the PNR
percolation threshold [224]. To investigate these dielectric properties in our KNTN
sample we use dielectric spectroscopy. Measurements are carried out using a precision
LCR meter (Agilent 4284A) in a standard configuration. Temperature is controlled
using a programmable thermal chamber and monitored through a calibrated silicon
diode sensor (0.01K in precision), while the sample in kept in vacuum. Dielectric
data versus temperature are in a quasi-static regime, with a cooling/heating rate of
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Figure 2.5. Dielectric freezing fluctuations in critical KNTN crystal. (a) Measurements
of the real part of the dielectric constant εr (at 1KHz) normalized to the peak value
εmaxr versus T , indicating the measured intermediate T ∗ and Curie TC temperature.
Inset showing polarization microphotographs of the resulting optical transmission in
analogy with Fig. 2.1. (b) Dispersion in εr in proximity of Tm and (c) shift of Tm
as a function of ν. (d) Large increase of low-frequency (below resonance) conductiv-
ity on decreasing T towards T0 = (285 ± 4)K (fitting data with a phenomenological
σ = σ0 exp (∆U ′′/kB(T − T0))). (e) Measured conductivity σ versus ν for T = 290K,
revealing an almost flat response at low-frequencies and a series of polarization-strain
resonances in agreement with other known disordered systems [211].

1mK/s and single data acquisition time of 5ms. The quasi-static measurement (for
fields oscillating at 1 KHz) of dielectric constant versus temperature εr(T ) is shown
in Fig. 2.5(a). The thermal dielectric hysteresis pinpoints the region of considerable
macroscopic non-ergodic behavior where glassy physics is expected. The diffuse peak
of the εr is observed at Tm = 285 K (decreasing temperature loop) and Tm = 288
K (increasing temperature loop). The Curie temperature TC = 275 K is evaluated
fitting εr(T ) with the Curie-Weiss law εr = C/(T − TC) (for T > Tm). Anomalous
dielectric behavior, typical of relaxors, is reported in Fig. 2.5(b-e). The sample is
cooled below T ∗ ' 305K, temperature below which we detect a deviation from the
mean-field Curie-Weiss law. In Fig. 2.5(b) we compare the measured values of εr for
different electrical frequencies ν. The dotted line joins the corresponding values of Tm
plotted in Fig. 2.5(c). Dispersion typical of relaxor response is such that the scaling
of Tm versus 1/ν follows a VFT relaxation law (1/ν) ≡ τ = τ ′0 exp (∆U ′/kB(T − T0))
with T0 = (282± 3)K. A giant increase in conductivity σ is also found as a function
of T (Fig. 2.5(d)). However, in the diverging behavior of σ we cannot discriminate
the contribution due to T0 approaching respect to that given by the Curie peak at
TC . We also observe a flat spectral response below the polarization-strain-resonance,
as shown in Fig.2.5(e) for T = 290K. To evaluate T0 from relaxation data, we
note that although the shift in Tm versus ν already indicates a VFT law, it is
widely accepted that VFT relaxation requires the measurement of the temperature
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dependence of actual resonances [211]. In our experiments, we make use of strong
polarization-strain resonances, such as the one at ν = 640 KHz at 290K reported
in Fig. 2.5(d), tagged as principal polarization-strain resonance. Detecting this
resonance frequency for different values of T allows the direct quantification of T0 in
the VFT law. We found T0 = (282± 2)K; this value of the freezing temperature is
compatible with the optical one, implying that dipolar fluctuations are governed by
an effective cold temperature, as observed through the anomalous electro-optic effect.
However, the whole picture we have presented does not apply to any disordered
ferroelectric crystal, since compounds with small variations in concentrations can
manifest completely different behaviors [50]. In the next Chapter 3 we study a
ferroelectric KLTN sample in which relaxor behavior play a minor role, especially
because it is superseded by a completely new phenomenon having in macroscopic
coherence its signature.

2.4 Future developments
To conclude, we point out some development points. A first perspective relies in
the investigation of the electro-optics of disordered ferroelectric crystals presenting
directional disorder [209]. This implies a polarization response strongly dependent
on the direction of the applied field and propagation axis. Dipolar reorientation
may be constrained on specific crystalline planes and optical experiments may give
a mesoscopic insight in the directional-dependent macroscopic response. This is
especially true if experiments are extended deep into the ferroelectric phase (T < Tm),
where, in specific configurations, we have preliminary evidence of new electro-optical
functional states with relevant applicative implications in the field of phase-change
materials [298, 293, 307]. The main breakthrough would be the demonstration
of the giant electro-optic effect in optically-integrated settings such as disordered
ferroelectric waveguides [127, 141]. In fact, on-chip electro-optical modulators are of
central importance in nonlinear optics, laser technology, quantum optics and optical
communications and represent a challenge since high driving voltage are usually
required [210, 306]. Although the response directly associable to PNRs is expected
to decrease with the external field frequency [271], the giant electro-optic effect in
KTN-based integrated structures may lead to efficient light modulation at GHz
frequencies with low applied voltage.
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Chapter 3

Super-crystals in composite
ferroelectrics

In this Chapter we report the discovery of spontaneous polarization super-crystals in
microstructured disordered ferroelectric samples [219]. Generally, textbook models of
global symmetry breaking include a low-symmetry low-temperature state with a fixed
infinitely extended coherence. In contrast, the spontaneous polarization observed
as spatial inversion symmetry is broken during a paraelectric-ferroelectric phase-
transition generally leads to a disordered mosaic of polar domains that permeate
the finite samples [230]. Coherent and ordered ferroelectric states with remarkable
properties of both fundamental and technological interest [62, 162, 114] can emerge
when ferroelectricity is influenced by external factors, such as system dimensionality
[77], pressure and strain gradients [52, 53, 32], electrostatic coupling [43, 51] and
magnetic interaction [25]. We report the spontaneous formation of an extended
coherent three-dimensional (3D) superlattice in the nominal ferroelectric phase of
specifically grown potassium-lithium-tantalate-niobate (KLTN) crystals [6, 231].
Visible light propagation reveals a polarization “super-crystal” with a micrometric
lattice constant, a counterintuitive mesoscopic phase that naturally mimics standard
solid-state structures but on scales that are thousands of times larger. To grasp the
phenomenon we consider disordered ferroelectrics presented in Chapter 2 but from a
more general point of view. At one given temperature, these have the interesting
property of a manifesting a single perovskite phase whose dielectric properties depend
on the specific composition [295, 239]. For example, a compositional gradient along
the pull axis leads to a position-dependent Curie point TC(r), so that for a given value
of crystal temperature T a phase separation occurs, with the regions where T > TC
being paraelectric and those with T < TC developing a spontaneous polarization
[273]. Specifically tailored growth schemes are even able to achieve an oscillating TC
along a given direction, say the x-axis [7, 198]. In these conditions, we can expect
that at a given T in proximity of the average (macroscopic) TC , the sample will be in
a hybrid state with alternating regions with and without spontaneous polarization.
Crossing the Curie point, in conditions in which tetragonal polar-domains pervade
the volume forming 90 °configurations to minimize the free-energy associated to
polarization density charge [230], this oscillation can stabilize in the whole volume
and form a full three-dimensional periodic structure.
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3.1 Observation of a super-crystal ferroelectric phase

3.1.1 Experimental methods

We consider a compositionally disordered ferroelectric of K1−αLiαTa1−βNbβO3
with α = 0.04 and β = 0.38, grown through the top-seeded solution method by
extracting a zero-cut 2.4(x)x2.0(y)x1.7(z)mm optical quality specimen. It shows,
through low-frequency dielectric spectroscopy measurements, the spatial-averaged
Curie point, which signals the transition from the symmetric paraelectric phase to the
low-temperature ferroelectric phase, at the room-temperature TC = 294K. A one-
dimensional seed microstructure is embedded into the sample as it is grown through
the off-center growth technique with periodically oscillating niobium compositions so
as manifest a sinusoidal variation in the low-frequency dielectric constant, and thus
in the critical temperature TC , along the growth-axis (x-direction) [198, 8]. We note
that the composition amplitude of the periodic microstructure can be estimated
from ∆β/∆T , where ∆β is the amplitude variation in niobium composition and
∆T is the change in the growth temperature incurred by the off-center rotation.
At the growth temperature of approximately 1470K, the ratio ∆β/∆T ≈ 0.35
‰·mol/K has been extracted from the phase diagram of KTN. The temperature
variation incurred by the off-center rotation was measured to be 3K, from which we
obtain ∆β ≈ 1.05 ‰·mol. This dielectric volume microstructure causes an index of
refraction oscillation of period Λ = 5.5µm, that is able to diffract light linearly and
electro-optically as shown in section 1.3.2. In the present experiment the macroscopic
linear and electro-optic diffractive properties of the crystal have been investigated
launching low-power (mW ) plane waves at λ = 532nm that propagate normal and
parallel to the grating vector Γ (Γ = 2π/Λ), that is along the x-direction (Fig.
3.3(a)). Light diffracted by the medium is detected using a broad-area CCD camera
placed at d = 0.2m from the crystal output facet or collected into Si power-meters.
In real-space measurements (Fig. 3.2(d-h)) the output crystal facet is imaged on the
CCD camera and a cross-polarizers setup (section 2.2) has been used to highlight
contrast due to polarization inhomogeneities. The time needed to obtain a fully-
correlated state corresponding to the 3D super-crystal depends on the cooling rate
τ and on the details of the thermal environment, as well as on the specific crystal
investigated. For instance, in another KNTN sample, despite the microstructure
is characterized by a broader spatial spectrum, we have found this time greatly
reduced. Considering, for instance, as a thermal protocol a cooling rate τ = 0.05K/s
and an environment at T = TC + 1K (weak thermal gradients), we have found that
the metastable 1D lattice state at T = TC − 2K (Fig. 3.2(b)), in which correlations
involve mainly the direction including the Γ vector, lasts approximately 1hr. In
this stage, although no macroscopic order occurs in the other directions [154], we
observe optimal optical transmission of the sample; output light is not affected by
scattering related to the existence of random domains and this further underlines
the presence of a mesoscopic ordering process in which the typical domain size is set.
As regards the inspected temperature range, we have found that the super-crystal
forms for temperatures till to T = 288K, although correlations are weaker at the
lower temperatures. This is consistent with the fact that at these temperatures also
the regions with a lower local TC are well below the transition point.
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Figure 3.1. Super-crystal in the ferroelectric phase. (a) Sketch of visible-light diffraction
from micrometric structures through a transparent crystal and (b-d) 3D superlattice
probed at T = TC−2K along the principal symmetry direction of the crystal, respectively
with the incident wavevector k parallel to (b) z-direction, (c) y-direction and (d) x-
direction. Crystallographic analysis reveals the elementary cubic structure of lattice
constant Λ shown in (e). Scale bar corresponds to 1.2cm. (From [219]).

3.1.2 Linear diffractive behavior

According with the experimental methods detailed herebefore, when the crystal
is allowed to relax at T = TC − 2K, i.e., in proximity of the spatially averaged
room-temperature Curie point TC = 294K, laser light propagating through the
sample suffers relevant scattering with strongly anisotropic features. Typical results
are reported in Fig. 3.1(b-d), and appear as an optical analogue of x-ray diffraction
in low-temperature solids. This "optical diffractometry" provides basic evidence of
a 3D superlattice at micrometric scales. Probing the principal crystal directions
reveals several diffraction orders that map the entire reciprocal space. The large-scale
super-crystal, that permeates the whole sample, overlaps - along the x-direction -
with the built-in compositional oscillating seed. The superlattice extends in full three-
dimensions, with the same periodicity Λ = 5.5µm of the x-oriented compositional
oscillation, also along the orthogonal y and z-directions. In particular, Fig. 3.1(d)
indicates that in the plane perpendicular to the built-in dielectric microstructure
Γ vector, i.e., where spatial symmetry should be unaffected by the microstructure
in composition, the ferroelectric phase-transition leads to a spontaneous pattern
of transverse scale Λ. The corresponding elementary structure on micrometric
spatial scales is reported in Fig. 3.1(e); it can be represented as an fcc-cubic
structure in which the occupation of one of the three faces (z − y face) is missing
[232]. The structure, which is, to our knowledge, not observed at atomic scales,
can be reduced to a simple cubic structure with a three-fold basis and lattice
parameter a = Λ. As the KLTN crystal is brought below the average Curie point,
it manifests a metastable (supercooled) and a stable (cold) phase, as analyzed in
Fig. 3.2 both in the reciprocal (Fourier) and direct (real) space. In the nominal
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Figure 3.2. Light diffraction in microstructured KLTN above and below the Curie point:
observations in Fourier (top) and real (bottom) space. (a) Reciprocal space probed at
T = TC + 2K, showing the first diffraction orders due to the one-dimensional sinusoidal
compositional modulation. Cooling below the critical point results at T = TC − 2K
in (b) a supercooled 1D superlattice with the same diffraction orders that relaxes at
steady-state into (c) the super-crystals. Both in (b) and (c) the direction of incident
light is orthogonal to Γ, as in (a). (d-h) Corresponding transmission microscopy images
revealing (d) unscattered optical propagation, (e-f) scattering at the phase transition, (g)
unscattered optical propagation in the metastable superlattice and (h) periodic intensity
distribution underlining the 3D superlattice. Metastable and stable (equilibrium) phases
are inspected respectively at times t ≈ 1min and t ≈ 1hr after the structural transition
at T = TC . Bottom profiles in (a-c) are extracted along the red dotted line. Scale bars
correspond to (a-c) 1.2cm, (d-f) 200µm and (g-h) 10µm. (From [219]).

paraelectric phase, at T = TC + 2K (Fig. 3.2(a)), we observe the first Bragg
diffraction orders (±1) consistent with the presence of the seed microstructure, a
one-dimensional transverse sinusoidal modulation acting as a diffraction grating
[242, 292]; the distance from the central 0-order fulfills the Bragg condition, that
is, scattered light forms an angle θB = λ/2nΛ ' 7◦ with the incident wavevector
k. Crossing the ferroelectric phase-transition temperature TC (see section 3.1.1) we
detect a supercooled metastable state that has an apparently analogous diffraction
effect (Fig. 3.2(b)) that is dynamically superseded by the stable and coherent cold
superlattice phase (Fig. 3.2(c)), in which spatial correlations are extended to the
whole crystal volume. In real space, transmission microscopy shows unscattered
optical propagation through the paraelectric sample at T = TC + 2K (Fig. 3.2(d)),
that turns into critical opalescence and scattering from obliques random domains
at the structural phase transition (Fig. 3.2(e-f)), and in unscattered transmission



3.1 Observation of a super-crystal ferroelectric phase 33

-4 -2 0 2 4 6 8

0.05

0.10

0.15

0.20

0.25

T - T
C
 (K)

 

 



  (V)

  (H+V)

  (H)

(b)(a)

z

y
x

θB
k

PB

P0

Γ

(c)

x
y Γ

Ps(x)

standard material

super-crystal

x

(d)

Figure 3.3. Diffractive behavior of the 1D supercooled superlattice. (a) Sketch of the
experimental geometry and (b) detected diffraction efficiency (dots) as a function of
temperature in proximity of ferroelectric transition for different wave polarizations.
An anomaly appears crossing TC for H-polarized light signaling the emergence of
the super-crystal. Lines are interpolations serving as guidelines. (c) Scheme of the
periodically-ordered ferroelectric state along the x-direction underlying the super-crystal
for T < TC and giving the spontaneous polarization PS(x) sketched in the bottom inset.
(From [219]).

in the metastable ferroelectric phase at T = TC − 2K (Fig. 3.2(g)). After dipolar
relaxation has taken place, the cold super-crystal appears in this case as a periodic
intensity distribution on micrometric scales, as shown in Fig. 3.2(h).

To further analyze these supercooled and cold phases, we inspect the supercooled
one-dimensional phase (Fig. 3.2(b)) that is accessible through linear (unbiased)
and electro-optic (biased) polarization-resolved Bragg diffraction measurements. In
particular, referring to the setup illustrated in Fig. 3.3(a), we measure the diffraction
efficiency η = PB/(PB + P0), where PB and P0 are respectively the diffracted and
non-diffracted power, in the first Bragg resonance condition, i.e., with the incident
wavevector k forming the angle θB respect to the z-axis. The diffraction efficiency
η is reported in Fig. 3.3(b) for different input light polarization and temperature
across the average Curie point. Diffraction strongly depends both on the nominal
crystal phase and on the polarization of the incident wave: a large increase in η is
found for light polarized in the x-z plane (H-polarized). For T > TC the dependence
on light-polarization is consistent with what expected in standard periodically index-
modulated media (wave-coupled theory), that is, a weak temperature dependence and
a maximum η for light polarized normal to the grating vector (V-polarized). In this
case, the difference in ηH and ηV can be related to the different Fresnel coefficient
governing interlayer reflections and is congruently ηV > ηH by an amount that
decreases for larger θB [294, 153]. Consistently, the (H+V)-polarized curve, that is
when the input linear polarization is at 45 °with respect to the H and V polarizations,
falls between these two curves. Standard behavior is violated for T < TC , where a
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large enhancement in ηH rapidly leads to an anomalous regime with ηV < ηH . The
physical underpinnings of this behavior can be grasped considering the simple model
illustrated in Fig. 3.3(c). Here we consider the metastable 1D superlattice (Fig.
3.2(b)) before tensorial effects cause the full 3D superlattice relaxation (Fig. 3.2(c)).
Specifically, for a given T , regions with a local value of TC such that T < TC (dark
shading) will manifest a finite spontaneous polarization PS 6= 0, whereas region with
T > TC (light shading) will have a PS ' 0. Optical measurements are sensitive only
to the square of the crystal polarization 〈P ·P〉 ' P 2

S through the resulting index
pattern modulated via the quadratic electro-optic response δn(P ) = −(1/2)n3gP 2

(section 2.2), where n is the unperturbed refraction index and g is the proper
perovskite electro-optic coefficient [35]. Enhanced Bragg-scattering of light polarized
parallel to the seed direction Γ (H in Fig. 3.3(b)) indicates that PS(x) is parallel to
the seed direction (x-axis), where the electro-optic coefficient g have its maximum
value g = 0.16m4/C2. The resonant response at θB and the absence of higher
harmonics indicates that this PS(x)2 distribution is sinusoidal with wavevector
Γ. Hence, although in general it may be that macroscopically 〈P〉 ' 0, it turns
out that 〈P2〉 ' P 2

S 6= 〈P〉2 6= 0 on the micrometric scales, in analogy with the
optical response emerging in crystals affected by polar-nanoregions that we have
discussed in Chapter 2. Optical diffraction efficiency reported in Fig. 3.3(b) thus
occurs considering η = sin2

(
πd(δn)
λ cos θB

)
, with resonant enhanced diffraction for T < TC

caused by δn = δn0 + δn(P ), where δn0 ∼ 10−4 is the polarization independent
index change due to the periodic composition variation (Sellmeier’s index change).

3.1.3 Electro-optical diffraction analysis

To validate this picture we perform electro-optic diffractometry experiments, in which
a macroscopic polarization activating the nonlinear periodic response is induced
via an external static field E applied along x. Results are reported in Fig. 3.4; in
particular, in Fig. 3.4(a) the polarization and field dependence of η is shown at
T = TC + 2K. We observe a nearly field-independent behavior for V-polarized light,
that arises from its low electro-optic coupling (bias field and light polarization are
orthogonal, g = −0.02m4/C2); differently, ηH increases with the field showing a
“discontinuity” at the critical field EC =(1.4± 0.1) kV/cm. The strong similarity
between this enhancement and those observed in unbiased conditions at TC (Fig.
3.3(b)) indicates that EC coincides with the coercive field and the discontinuity
corresponds to the field-induced phase-transition [311, 288]. In fact, in Fig. 3.4(b)
we repeat this experiment enhancing the experimental field-sensitivity and acquiring
data also for decreasing field amplitudes. The result is a partial-hysteretic loop
for the diffraction efficiency that demonstrates the field-induced transition and
underlines that, both in the linear and nonlinear (electro-optic) case, the effect of
the seeded ferroelectric ordering is to provide a periodic spontaneous polarization
along x. We also note a slight asymmetry with respect to positive/negative fields;
this is associated to a residual fixed space-charge field that may play an important
role in the spontaneous polarization alignment process and hence in leading to a
residual 〈P〉 6= 0. The existence of a periodic spontaneous polarization distribution
in the superlattice (Fig. 3.3(c)) is confirmed in Fig. 3.4(c), where electro-optic Bragg
diffraction below TC is reported. An oscillating full-hysteretic behavior is observed
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as a function of the external field, consistently with the prediction

η(E) = sin2
(
πd(δn(E))
λ cos θB

)
, (3.1)

δn(E) = δn0 + (1/2)n3g(P 2
S + 2ε0χ〈PS〉E + ε2

0χ
2E2). (3.2)

The increase in η due to the superlattice polarization allows us to explore its full
sinusoidal behavior, that usually requires extremely large fields in the paraelectric
phase and reduces to a parabolic behavior [292], as shown in Fig. 3.4(d). From this
parabolic behavior detected at T = TC+5K we estimate that the resulting amplitude
in the point-dependent Curie temperature due to the compositional modulation
is ∆TC ' 2K, a value consistent with that estimated from the growth process
(section 3.1.1). Agreement with the periodic polarization model is further stressed
by deviations emerging in η(E) especially for low and negative increasing fields,
where the dependence on 〈PS〉 make observations weakly dependent on the specific
experimental realization.
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Figure 3.4. Electro-optic Bragg diffraction in the critical region. (a) Diffraction efficiency
as a function of the external applied field for different light polarization at T = TC + 2K;
(b) hysteresis loop at the same temperature and (c) at T = TC − 2K for H-polarization.
(d) Expected [7] weak-hysteretic paraelectric (parabolic) behavior at T = TC + 5K.
In (b-d) black dots and red dots indicates data obtained respectively increasing and
decreasing the bias fields. Lines are interpolations serving as guidelines. (From [219]).
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Figure 3.5. Polar-domain configuration underlying the 3D superlattice. (a) Typical
180°and 90°domain configurations in perovskites ferroelectrics. (b) Planar domain ar-
rangement scheme in the stable super-crystal phase obtained with elementary blocks of
90°configurations (green cell). In this periodically-ordered ferroelectric state the compo-
sitional modulation (as for Fig. 3.3(c)), other domain walls ruling optical diffractometry
(black lines), and periods along x,y and xy-axis (white bars) are highlighted. Vertical
polarizations have a lighter color to stress their weak optical response in our KLTN
sample. (c) Extension of the single “unit-cell” (green cell in (b)) in three dimensions.
(From [219]).

3.2 Ordered polar-domain configuration
An interesting point arising from the experimental results and analysis is how the
periodically-ordered polarization state along the x-direction leads to the super-
crystal. Since we pass spontaneously from a metastable to a stable mesoscopic
phase, polar-domain dynamics in presence of the fixed spatial scale Λ play a key
role. In fact, we note that the 1D superlattice sketched in Fig. 3.3(c) involves the
appearance of charge-density and associated strains between polar planes, so that
the ferroelectric crystal naturally tends to relax into a more stable configuration.
In standard perovskites, equilibrium configurations are mainly those involving a
180°and 90°orientation between adjacent polar domains, as schematically shown in
Fig. 3.5(a). To explain the 3D polar-state and its periodical features underlying the
super-crystal, we consider the 90°configuration, which is characterized by 45°domain
walls that we observe in a disordered configuration during the ferroelectric phase
transition at TC (Fig. 3.2(f)). Due to the periodic constraint along the x-axis, this
arrangement has the unique property of reproducing our observations, minimizing
energy associated to internal charge-density, and transferring the built-in 1D order
to the whole volume with the same spatial scale Λ. We illustrate the domain pattern
in Fig. 3.5(b) for the x − y plane, whereas in Fig. 3.5(c) the elementary cell is
shown in the three-dimensional case, where it maintains its stability features in
terms of charge-density energy. In particular, in Fig. 3.5(b), domain walls resulting
in the diffraction orders of Fig. 3.1(b) are marked, as well as the 45°correlation
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period, that agree with optical observations of the reciprocal space. We further
stress that vertical domains (light blue in Fig. 3.5(b)) are optically analogous to
paraelectric regions; moreover, 180°rotations in the polarization direction in each
polar region has no effect on the optical response. In view of the symmetry of this
arrangement, the observed diffraction anisotropy is then associated to the absence
of grating-planes in the y − z face. Further insight on the 3D domain structure
requires numerical simulations based on Monte Carlo methods [166] and phase-field
models [58, 167, 65, 168]; they may confirm our picture and reveal new aspects
for ferroelectricity, such as polar dynamics, spontaneous long-range ordering and
the role of polar strains in composite ferroelectrics with built-in compositional
microstructures. In fact, the effect of the composition profile is here crucial in
triggering the spontaneous formation of the macroscopic coherent structure, as it
sets the typical domain size along the x-direction and so rules the whole dynamic
towards the equilibrium state. We expect that a different amplitude and period of
the modulation may affect the formation, stability, time- and temperature-dynamics
of the super-crystal; indeed, these parameters of the compositional gradient may be
important in determining the interaction between polar-regions. Advanced growth
techniques [7] can open future perspectives in this direction, as well as towards
composite ferroelectrics with different compositional shapes of fundamental and
applicative interest. However, we have evidence that quasi-periodic microstructure
in KNTN samples can also lead to analogues super-crystal phases ruled by their
main spatial frequency. This suggest that a similar type of ordering is a general
property of ferroelectric domains in potentials having a built-in periodicity. In this
regards, we note that similarly ordered new ferroelectric phases has been recently
observed through atomic scale imaging in layered oxide thin films [265]. Our results
show how ferroelectricity can be arranged into new phases on macroscopic scales,
a finding that sheds light on fundamental issues in strongly-correlated condensed
matter systems and also suggests methods to predict and engineer new states of
matter. They open new avenues in the optical exploration of critical properties
and large-scale structures in disordered systems. In particular, we are developing
two main activities in this direction. The first concerns direct investigation of
domains structure through polarization-resolved transmission measurements, i.e.,
resolving local ferroelectric order and PNRs arrangement from the polarization
state of light obtained through Stokes analysis. The other involves the nonlinear
(inelastic) response of ferroelectric super-crystal phases, which can be probed via
second harmonic generation (SHG) [30, 278, 283, 235, 106, 24]. In this case, the
interplay between random quasi-phase matching and large-scale ferroelectric period
can results into new interesting phenomena.





39

PART II

Nonlinear wave dynamics in
photorefractive ferroelectrics
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Chapter 4

Rogue waves in photorefractive
ferroelectrics

Using the critical response of disordered ferroelectrics we investigate nonlinear op-
tical propagation in unstable and stochastic regimes. This allows us to report the
first observation of rogue waves in nonlinear wave propagation in photorefractive
crystals [220], which is the subject of this Chapter. The basis for spatial rogue
waves understanding are placed through numerical and theoretical considerations.
Predictability of the observed extreme events is analyzed in comparison with hy-
drodynamics data using statistical mechanics methods and reveals an analogous
correlated stete characterized by highly-complex dynamics.

4.1 Rogue waves in different physical contexts

Processes that lead to long-tail statistics are of great interest in physics because they
allow the observation of events with giant amplitudes that would otherwise be truly
rare and unobservable in systems that follow standard distributions. This typically
occurs in phenomena that manifest complex dynamics, such as in the appearance of
earthquakes in plate motion or in large-scale breakdowns in networks [69]. Extreme
events profoundly affect properties and response of complex systems, such as in
financial market [310], data stream [282], biological reactions [274] and human
vision [187]. Long-tail statistics are also observed in waves, in which case the giant
perturbations with extreme amplitudes are known as “Rogue Waves”. Originally
studied in ocean dynamics where their origin and properties are largely unknown
[150], they have now been observed in a variety of different wave-supporting systems
and have been shown to present common features also when different physical
mechanisms specific for each system are involved in their generation [199]. Universal
statistical traits and general model equations based on the generalized NLSE have
fuelled particular research efforts in optics [258, 95, 13], where abnormal pulses can
be exploited for applications [163] and various systems promise to be used as test
benches to study the origin and properties of their not well understood oceanic
counterpart [4, 102]. In particular, long-tail statistics have been observed in various
optical systems, from nonlinear pulse propagation in optical fibers [259, 112, 194, 66]
to beam filamentation [177, ?, 33] and dissipative resonators [161, 70, 202, 173].
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Several physical ingredients underlying the occurrence of long-tail statistics have
been identified, such as interacting coherent structures emerging form stochastic
instabilities [200, 201, 252, 12, 20, 275], interference for inhomogeneous random
wave fields [19, 140, 170, 186], wave-turbulence in incoherent nonlinear propagation
[115, 133, 233, 290, 234, 71, 263, 267] and spatiotemporal chaos in cavity dynamics
[39, 226, 203, 184, 250]. In spatially extended systems, instabilities have been shown
as key in leading to rogue events in the transverse plane of the optical light beam.
Here, the presence of blocked or induced disorder or, generally speaking, of an
interplay between a non-equilibrium state and a nonlinear mechanism, appears a
crucial ingredient to extreme event generation, providing interaction and coupling of
different spatial regions [191]. The central role of disorder seems to rule out rogue
waves in systems that form the technological basis of photonics, that is, optical
crystals with χ2, χ3, and photorefractive response, since a stochastic component is
in principle absent [44]. To date, no rogue waves have ever been detected in any of
these crystals. Considering photorefractives, without feedback mechanisms [185],
disorder is known to play a minor role in light propagation in standard crystal phases
[262]. However, we have seen how a disordered ferroelectric cooled to its Curie
point, possess long-range fluctuations leading to transient out-of-equilibrium states
characterized by reorienting polar-nanoregions that affect light through a strongly
enhanced electro-optic response. In these conditions, characterized by disorder and
nonlocality in light self-interaction, the complexity of multi-soliton spatial dynamics
has also been predicted [73]. This combination of disorder and giant nonlinearity
allows us to observe spatial rogue waves in photorefractive crystals of potassium-
lithium-tantalate-niobate (KLTN). The localized and anomalously intense light spots
form when the crystal is biased at the ferroelectric phase-transition, where optical
Kerr-saturated nonlinear propagation is affected by huge stochastic response.

4.2 Spatial rogue waves in photorefractive ferroelectrics
We discuss the observation of rogue waves as light propagates in the extreme nonlinear
regime that occurs when a photorefractive ferroelectric crystal is in proximity of
its structural phase-transition. The transmitted spatial light distribution contains
bright localized spots of anomalously large intensity that follow a signature long-
tail statistics that disappears as the nonlinearity is weakened. The isolated wave
events form as out-of-equilibrium response and disorder enhance the Kerr-saturated
nonlinearity at the critical point. Numerical simulations of the generalized nonlinear
Schrödinger equation suggest that dynamics of soliton fusions can microscopically
play an important role in the observed rogue intensities and statistics, whereas a
study of the self-similarity associable to the individual observed filaments revealas
that the expected scale-invariance condition does not hold for these solitons.

4.2.1 Observation of optical extreme events

Light propagation at the phase-transition is investigated focusing cylindrical (1D)
gaussian beams (λ = 532nm, P= 0.1mW , FWHM= 8µm) on a photorefractive
disordered crystal of KLTN, K1−αLiαTa1−βNbβO3, with α = 0.04 and β = 0.38,
illuminated through uniform background intensity Ib. The zero-cut optical quality
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Figure 4.1. Nonlinear beam propagation in photorefractive KLTN biased in proximity
of the ferroelectric phase-transition. (left) Sketch of the experimental geometry and
(right) different local nonlinear propagation regimes selected by the thermal gradient.
Transmission microscopy images revealing (a) quasi-periodic pattern (modulation in-
stability), (b) speckle-like propagation and (c) critical opalescence. (d) Corresponding
temperature-dependent dielectric response of the sample (temperature hysteresis is
omitted). (From [220]).

specimen is 2.4(x)x2.0(y)x1.7(z)mm sized and presents the paraelectric to ferroelectric
phase-transition at the room-temperature Curie point TC = 294K, measured and
characterized using low-frequency dielectric spectroscopy (Fig. 4.1(d)). In our
experiment, we keep the KLTN crystal at T = TC + 1K through a Peltier junction;
then, an external static electric field is applied along the x-direction, parallel to the
polarization of the propagating beam (Fig. 4.1(left)), via an applied voltage V=500V .
In proximity of TC an electric field larger than the coercive field is able to induce
ferroelectric ordering (field-induced transition). The crystal manifests a temperature
gradient in the vertical y-direction caused by the setup geometry (as in Fig. 4.1(left)
the Peltier junction is placed on the bottom facet and the thermal capacity is large
in proximity of TC). Launching a z-directed beam with a spatial extension in the
y-direction hence allows the inspection of light propagation for different temperature
regimes in a single experiment. The nonlinearity is thus controlled through the local
temperature and nonlinear beam propagation is explored detecting the transmitted
beam intensity distribution through an imaging system and a CCD camera. Results
indicate a strong dependence on the local temperature. In fact, the spatial scale of
the thermal gradient (≈ 300µm) is such that three qualitatively different regimes
of light propagation can be identified, as shown in Fig. 4.1(right). When the
crystal is warmer the bias field is too weak to induce the ferroelectric transition
and the local phase remains paraelectric; here modulation instability associated to
the strong photorefractive response governs nonlinear dynamics, breaking, along
the initially symmetric y-direction, the beam into a periodic pattern of (2+1)D
beams and inhibiting (1+1)D soliton formation (Fig. 4.1(a)). The properties of this
stage are investigated in Chapter 5 with a setup that allows finest control of the
nonlinearity. When the crystal is slightly colder, ferroelectric ordering occurs and
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Figure 4.2. Light intensity distribution transmitted through the biased photorefractive
crystal exactly at the critical point. (a) Disordered pattern in the weakly nonlinear
regime with the inset showing spatial intensity fluctuations along the red dashed y-line.
(b-c) Speckle-like pattern in the highly nonlinear regime, where the effect of large intensity
fluctuations strongly affects the nonlinear dynamics. In (c) is reported an observation
involving a bright spot with extreme intensity (approximately twenty times the averaged
intensity), specified as rogue event. (From [220]).

light transmission is inhibited by critical opalescence (Fig. 4.1(c)). Between these two
conditions we find propagation associated to the coexistence point, corresponding to
an effective local temperature that is exactly TC . In this case, a disordered index of
refraction pattern forms over spatial scales comparable with λ, introducing scattering
and fragmentation in the nonlinear propagation, with the formation of narrower
interacting filaments. What emerges is a disordered output intensity distribution
I(x, y) with micrometric spots of various intensity that is “speckle-like” [119]. In
order to study the statistical properties of the speckle-like intensity pattern, we
first quantify the intensity fluctuations amplitude in the spatial light distribution
introducing the deviation (I(x, y)− 〈I〉)/〈I〉 from the spatial mean value 〈I〉. Large
deviations are observed in the disordered output of this highly nonlinear regime with
the appearance of bright micrometric spots of extreme intensity. In Fig. 4.2(b-c)
we report, as an example, two measured speckle-like outputs with the associated
fluctuations along a y-direction in the insets; in Fig. 4.2(c) we show an instance
of an extreme event, spatially localized, with a peak intensity of approximately
twenty times larger than the averaged intensity. The measured transverse dimension
(FWHM) of this exceedingly bright micro-beam is 3µm, according with the enhanced
self-focusing picture in critical conditions [68]. Further analysis reported hereafter
indicates this event as a rogue wave. The disordered pattern with rogue fluctuations
is observed at steady state after an initial transient stage that lasts t ≈ 10s for the
µW beam power used. During the transient, the beam diffracts in an inhomogeneous
setting, associated to linear sample disorder, as it reaches the crystal output facet.
The typical spatial distribution in this “weakly” nonlinear regime is shown in Fig.
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4.2(a), with the inset showing the smaller intensity fluctuations in this condition.
This regime is superseded at subsequent times by the appearance of modulation
instability and break-up, where disorder appears to have a dynamic and strongly
amplified effect on light, which then leads to the final steady-state highly nonlinear
regime, at t ≈ 100s, where rogue waves are detected. This transient nature is related
to the physics of the photorefractive nonlinearity, which involves a build-up of a
photogenerated space-charge field, so that the beam-induced index of refraction
modulation accumulates in time. In Chapter 5 we exploit this property to study
in details the whole process as a function of the nonlinearity. However, once the
steady condition has been reached, the beam continues to experience stationary
continuous spatiotemporal fluctuations associated to the non-equilibrium features
and long-range correlations in the refractive index at the Curie point. So we observe
the speckle-like pattern to vary dynamically under the action of different disorder
configurations.

We have acquired a large set of uncorrelated images (approximately 103) in
the same experimental conditions but with different intrinsic disorder landscapes.
Histograms of the intensity values in a transverse region of the image for linear
and nonlinear propagation then allow us to measure the corresponding probability
distribution functions P (I). Results are shown in Fig. 4.3, where the intensity
statistics observed for the highly nonlinear speckle-like pattern is compared to that
observed for the weakly nonlinear regime. In both cases the so called incoherent
part, which is related to random correlations between independent measurements
[119], is of the order of the background intensity Ib and is not shown. Long-tail
statistics characterize the steady-state highly nonlinear condition, as reported in Fig.
4.3(a). The experimental behavior strongly deviates from a gaussian distribution,
that implies a decay according to P (I) = exp(−I/〈I〉)/〈I〉 that we have evaluated
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Figure 4.3. Intensity distribution statistics. (a) Long-tail statistics in the highly nonlinear
regime: experimentally revealed (black circles), fitting function (blue line) and consistent
gaussian distribution for comparison (orange line). The inset shows the spatial x-position
of several observed rogue events (bottom) with the corresponding counts histogram
(top). (b) gaussian statistics in the weakly nonlinear regime: experimentally revealed
(blue circles), fitting function (magenta line) and consistent gaussian distribution for
comparison (red line). The vertical green dotted lines indicate the rogue waves (RW)
thresholds. (From [220]).
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with the measured 〈I〉 value (orange line) [19]. In particular, the observed intensity
distribution is well fitted by a stretched exponential decay (blue line) in the form
of P (I) = exp

(
−cIb − a

)
. The stretching parameter b quantifies the deviation

from gaussianity and long-tailed behavior is indicated by b < 1 [69]. We obtain
b = 0.65± 0.02 demonstrating that extreme intensity occurs with heavy-probability.
To further analyze the “rare” events, we calculate the significant wave height,
defined as the mean amplitude of the highest one-third of detected waves. Events of
amplitude exceeding at least by a factor of two this value are commonly referred
to as rogue waves (hydrodynamic threshold) [95]. Setting the threshold in Fig. 4.3
(green dotted line) we identify a large number of events as spatial rogue waves,
among which the one reported in Fig. 4.2(c). The extension of such oceanographic
criterion, which is associated to the wave amplitude [199], to our optical system,
where we observe the envelope intensity pattern, is here validated by the fact
that the threshold approximately coincides with the end of the normal statistics.
Taking several recorded extreme events, we then consider the spatial point at which
they appear to achieve information on the role of anisotropic field effects in their
generation. Counts as a function of the peak transverse x-position are reported in
the inset of Fig. 4.3(a); the distribution is qualitatively centered near the beam
averaged midpoint (blue reference line) without a shifted prevailing component.
This means that in our system the effect of self-bending, associated to diffusive and
displacement fields, plays a negligible role in the emergence of rogue waves. This is
an intriguing finding since these effects are, in the spatial domain, the counterpart of
Raman-shift in optical fiber propagation [87] and rogue temporal events are usually
associated to the most red-shifted soliton in supercontinuum generation [96, 20].
Here, the spatial lateral shift (along x) is observed for the whole beam profile and
it amount approximately to 20µm at the crystal output. Results in the weakly
nonlinear regime are reported in Fig. 4.3(b). The statistical distribution loses its
long tail in this case, showing only a small deviation from the gaussian behavior,
evaluated as previously (red line). For comparison with the highly nonlinear case,
we fit the detected data with P (I) = exp

(
−cIb − a

)
(magenta line). The stretching

exponent is now close to one, b = 0.99± 0.07, confirming the normal scenario. This
fact is quite interesting since it implies that, through the strength of the nonlinear
interaction, long-tail statistics can be deterministically generated and controlled. It
also associates a fundamental role to the nonlinear response in the appearance of
rogue waves.

4.2.2 Numerical and theoretical modelling

To grasp the origin of each single rogue event and how the amount of nonlinearity can
affect microscopically its formation, we perform a numerical (2+1)D split-step Fourier
method analysis of the generalized nonlinear Schrödinger equation describing the
paraxial spatial evolution of the optical field envelope A(x, y, z) in centrosymmetric
photorefractive media (section 1.2.3). We consider the two leading terms in the model
of Eq. (1.17), that is a nonlinearity containing a Kerr-saturated component and a
saturated Raman-like component due to the charge diffusive field. The generalized
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Figure 4.4. Numerical simulations of the beam intensity evolving along the propagation.
Typical wave dynamics in the y-z section in (a) nonlinear conditions (χ = 5× 104) and
(b) highly nonlinear conditions (χ = 105), where soliton collisions and mergers take
place leading to giant peak intensities (detail in the inset). (c) Comparison between
output deviations in (a) and (b) along y. (d) Numerical long-tail statistical distribution
in the highly nonlinear regime (purple line) compared with the experimental data. (e)
Existence conditions for Kerr-saturated photorefractive solitons. Observed extreme
events (purple points), linear asymptotic behavior predicted by wave harmonic theory
(dashed blue line) and exact (numeric) existence conditions (see section 1.3) (red line).
(From [220]).

NLSE in this case reads as

i∂zA = − 1
2k∇

2
⊥A+ k

n
∆n(Ī)A,

∆n(Ī) = 1
2n

3gε2
0χ

2
[

E2
0

(1 + Ī)2 − a
(∇Ī)2

(1 + Ī)2

]
.

(4.1)

Here Ī is the intensity normalized to the background (Ī = |A|2/Ib), a the diffusive
nonlinear parameter, E0 =V/lx the bias field and χ the dielectric susceptibility,
coupled to the electric field via the electro-optic coefficient g. Following previous
studies in the temporal domain [20], the regime of intense filament formation was
found from Eq. (4.1) adding a spectrally random seed noise to the input gaussian
beam. Scattering during propagation was found numerically to not alter the single
rogue wave kinematics and only weakly affect the high-intensity statistical properties
of the field, and was rendered negligible. This means that, although in experiments
time-dynamics and turbulence associated to the out-of equilibrium state of the
medium is a key ingredient to trigger extreme events, in numerics, where such
turbulence-mediated disorder is absent, input disorder amplification is sufficient to
generate rogue waves. The values of the parameters are selected so as to match those
for the KLTN sample and optical setup, except for χ, that is the parameter through
which we fix the strength of the nonlinearity. In details, we have Ī = 30, n = 2.4,
g = 0.16m2/C4, E0 = 2 × 105V/m and a weakly intensity-dependent absorption
is used, with average value α = 2cm−1; moreover, the susceptibility χ is known
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assuming local giant values, of the order of 105, during the phase-transition in similar
photorefractive ferroelectric crystals [142, 88]. Results are in good agreement with
the experimental kinematics of intense light filaments and show how, due to the
strong nonlinear response, instabilities grow up during propagation eventually leading
to the breaking of the beam waveform. We are able to identify two distinct regimes
increasing the nonlinearity: the first condition precedes the onset of modulation
instability, while the second is characterized by randomic solitons fusion. In Fig.
4.4 are reported a simulated beam propagation in both cases, respectively with
χ = 5× 104 and χ = 105. We find multi-soliton formation in the highly nonlinear
conditions (Fig. 4.4(b)); here, collisions and mergers dynamically lead to an intensity
distribution with larger spatial fluctuations (Fig. 4.4(c)) and localized structures
with giant amplitudes emerge. As shown in Fig. 4.4(d), the output probability
distribution function reveals a characteristic long-tailed behavior in good agreement
with the experimental statistics and confirms the rogue waves scenario. Moreover,
consistently with the experiments, such scenario of nonlinear origin results weakly
affected by the Raman-like component in Eq. (4.1). In particular, the simultaneous
occurrence of interaction processes and extreme intensity fluctuations in numerics
suggest that filament mergers may be the microscopic mechanism at the basis of
extreme intensity waves. Recent studies in multi-filamentation [33] and in optical
fiber [20, 194] have also pointed out similar conclusion, and this places our results
in a general context that may relate rogue waves to soliton collisions in nonlinear
Schrödinger model.

To further investigate the role of soliton mergers in rogue waves appearance,
we analyzed the experimental extreme intensity spots in terms of soliton physics,
casting the normalized-width/amplitude of the filaments in the soliton parameter
plane. Considering the reduced (1+1)D model as in section 1.3, solutions of the
type A(x, z) = u(x)eiΓz

√
Ib must satisfy specific existence conditions expressed in

terms of the normalized input peak amplitude u0 =
√
max{Ī} and soliton FWHM

∆ξ = ∆x
[
kn
√
gε0
]
χE0 (soliton existence curve). The observed (u0,∆ξ) values for a

set of rogue waves are reported in Fig. 4.4(e) and compared to the theoretical soliton
existence conditions. The experimental points are analyzed assuming a constant
χ = 105, coherently with the numerical simulations. Two facts are evident. First,
the filaments do in fact fall in proximity of the existence conditions, even though, a
single averaged value of effective χ is used. Second, the filaments appear to populate
the highly saturated region of the soliton existence curve. The first fact confirms
the role played by instabilities in giving rise to general complex spatial structures of
solitons [73]. The second, may suggest a role played by scale-invariance. In fact, in
highly-saturated conditions (u0 � 1), photorefractive solitons are known to manifest
self-similarity in the form of a scale-invariance relationship A(x, z)→ q−1A(qx, q2z)
[82]. Remarkably, scale-invariance is one of the fundamental ingredients thought
to play a key role in the emergence of extreme events with heavy-probabilities, as
occurs for disordered fields through the integration over multiple spatial scales and
in the long-correlated random model [204]. However, data appear as homogeneously
distributed around the self-similar trait of the existence plain, implying that the
scale-invariance relationship is not well verified for rogue waves. Specifically, the
strict relation between width and amplitude that is the distinctive feature of any
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nonlinear wave seems to be missing. This fact weakens the understanding based on
soliton mergers pointed out by numerical results, since localized waves emerging from
the interaction of less intense structures should still satisfy the steady-state soliton
conditions. A possible reason for unreliability of the numerical suggestions lies in its
time-independent character that is a fundamental aspect in conditions dominated by
spatio-temporal fluctuations. The fundamental controversy is resolved in Chapter
6, where the role of scales is specifically investigated through partially-incoherent
beams and waveforms of extreme events are resolved with high-resolution.

4.3 Predictability of rogue events
The main point in the study of extreme phenomena is their predictability, especially
for those we would like to avoid such as ocean rogue waves [17, 14]. Optical rogue
events can be useful for this purpose if common and universal traits exist in their
underlying dynamics. Unfortunately, up to now the analogy between hydrodynamic
and optical rogue waves does not involve properties residing in their statistical
mechanics and remains based only on the anomalous statistics and model equations
with just qualitative agreement on the resulting waveforms. In fact, Birkholz et al.
[34] have recently shown through nonlinear time series analysis how the dynamical
features of various optical extreme events, such as the chaotic nature and the
predictability of the process, are generally different. The inspected optical systems are
shown to support rogue waves through a time process that appear either completely
stochastic or completely deterministic, whereas the ocean dynamics presents small-
scale predictable traits and large-scale unpredictability [34]. In particular, stochastic
dynamics is associated to systems largely affected by noise such as optical fibers
[258], whereas determinism characterizes both conservative [33] and dissipative
systems that do not admit a wave-type description [308, 123]. In this section we
examine, through nonlinear series analysis and standard methods used for dynamical
systems, correlations and predictability of optical rogue wave data that occur in
photorefractive beam propagation in comparison with ocean and hydrodynamic
extreme events. We found an analogous behavior in terms of correlations and
statistical mechanics properties, which consists in an high-dimensional correlation
dynamics whose complexity hampers long-range prediction.

4.3.1 Nonlinear series analysis

In our analysis we consider a data series containing a total number of samples
N ' 2.5× 104, part of which is shown in Fig. 4.5(a). This series represents detected
intensities as a function of the free spatial coordinate (here renamed as x) and
exhibits a marked long-tail statistics (Fig. 4.5(d)). In Fig. 4.5(b) we report a
sub-segment of the experimental spatial series obtained as described in section 4.2.1
and sampled along the white-dotted line, which includes a rogue wave with its
extreme intensity spot. The averaged autocorrelation function obtained considering
the whole series of N points is shown in Fig. 4.5(c). The autocorrelation length of
the series represents the typical spatial scale of the disordered intensity distribution
and is ` ' 9.5µm, more than one order of magnitude greater than the experimental
resolution. The presence of chaotic and predictable features in the series is explored
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Figure 4.5. Spatial series of intensities detected in a photorefractive ferroelectric with
rogue events. (a) Data series with the shaded region underlining the observation shown
in (b) and containing a rogue event as an anomalously-bright localized spot. (c) Spatial
autocorrelation functions of the full N -points data series; dotted line is a decay fit giving
the correlation length (1/e width) `. (d) Long-tail statistics of the series (blue line)
compared with a normal probability distribution with the same spatial-averaged intensity
(red line). (From [221]).

in analogy with previous studies [34] using the Grassberger-Procaccia embedding
method [124, 1, 54]; specifically, from the N -point series x = {x1, x2, ..., xN} we
consider all the subseries xim = {xi, xi+1, ..., xi+m} of dimension m (embedding
dimension). The statistical distance

rijm =

√√√√i+m∑
k=i
|xk − xk+j−i|2, (4.2)

that quantifies the difference between values assumed in two generic subseries, is
evaluated for all i and j > i to compute the correlation histogram cm(r) as:

cm(r) = 2|rijm : (r + δr) < rijm ≤ r|
(N −m)(N −m− 1) . (4.3)

The behavior of cm(r) at small r reflects the possible appearance of specific subseries
with high (non-random) frequency, i.e., it is sensitive to possible “deja-vu” phenomena
when the series are sampled with a given scale m. To extract the predictable or
stochastic features in our series, we improve the embedding analysis with the method
of surrogates, which allows the comparison of the detected dynamics with the
corresponding dynamics that would emerge from a pure random process. Starting
from physical random data [130], we compile surrogate data sets identical to the
original series as regards for the linear statistical properties. These surrogates
have the same probability distribution function (long-tail statistics), autocorrelation
functions and Fourier spectrum of our original series, and appear as reordered
copies of the observed spatial sequence x [268, 243, 244]. Evaluating cm(r) with
surrogate data sets and comparing it with results for the original series we expect
small differences if our data comes from a stochastic process. In contrast, as shown
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Figure 4.6. Predictability of rogue waves. (a) cm(r) at m = 12 for photorefractive extreme
events, showing a large deviation of the rogue waves data (blue line) from the average
of surrogates (green line), whose spread is indicated by the standard deviation over
fifty independent realizations of surrogates (green-dotted lines). (b) Significance of
deviations from surrogates as a function of m for optical data (blue line) and for the
temporal dynamics of Draupner ocean data (red and red-dotted lines stays respectively
for Draupner2 and Draupner1 data, as in Ref. [34]). The horizontal black line indicates
the minimum confidences of 3σs separating predictable and unpredictable dynamics; `
and τ are respectively the autocorrelation length and time for the optical and ocean
series. (From [221]).

in Fig. 4.6(a) for m = 12, large deviations are observed at low r, with the rogue
series that leads to enhanced recurrence frequencies compared to the average ones
in the surrogates. The observed intensities with extreme events are more correlated
than a random process, meaning that the optical field in a point of space is directly
related to that existing at least at distances smaller than m. We quantify this kind
of predictability giving the significance of the discrepancy between cm(r) for original
and surrogate data; this is reported in Fig. 4.6(b) (blue line) in units of surrogate
standard deviations σs and has been evaluated as an average difference at low r.
Deterministic traits characterizes the series on small and intermediate scales m, then
they disappear as the autocorrelation length ` is reached, in proximity of m = 42
(corresponding to 10µm). In other words, on larger scales the spatial dynamics of
photorefractive rogue waves lose traces of determinism and appear indistinguishable
from a re-ordered random series in which the same values of intensity appears. This
scale-dependent behavior is at odds with other reported optical data in the temporal
domain [34], but, as shown in Fig. 4.6(b), it remarkably mimics the features of the
temporal dynamics of Draupner data sets [134, 135], the prototype of ocean rogue
waves. As observed in our spatial series, these ocean data have a behavior that for
long time-scales turns indistinguishable from their surrogates. This feature may be
due to an intrinsic property, that is, data are actually stochastic on these scales and
correlations rules only locally the spatial dynamics. On the other hand, it may be
a “practical” unpredictability related to the use of the embedding method for such
dynamics.

4.3.2 Analogues correlations in optical and hydrodynamic data

To further understand this statistical behavior and to eventually set it as universal
property of rogue states we carry forward the Grassberger-Procaccia analysis and
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we extend it to hydrodynamic series with a large number (N ' 5× 104) of samples.
These data are measurements of the water wave height and are carried out in a
wave tank for different environmental and nonlinear conditions [201]. Part of the
time series of the wave envelope are shown in Fig. 4.7 with their autocorrelation
function and long-tail statistics. They are labeled as g1-g6 and rogue waves populate
especially the g6 series. For both optical and hydrodynamic data, dynamical analysis
is performed evaluating the correlation integral

Cm(r) = 1
N2

∑
j>i

Θ(r − rijm), (4.4)

where Θ(r) is the Heaviside step function. The correlation integral for small distances
r is predicted to increase monotonically according to Cm(r) ∝ rν , with an exponent
ν that, for large embedding dimensions m, characterizes the fractal correlation
dimension of the attractor D(2) describing the possible chaotic dynamics [124, 54].
As reported in Fig. 4.8(a-d), both optical and hydrodynamic data in log-scale show
a linear behavior of Cm(r) at low r with a slope that increases with the embedding
dimensions m. The extracted exponents ν as a function of m are reported in Fig.
4.8(b-e). The behavior is characterized by a well-defined linear growth at low m,
as typically occurs in dynamical processes both of chaotic and stochastic origin
[54], since, basically, similarities in subseries are much less likely increasing the
subseries size. In general, chaos is highlighted by a saturation of ν at large m and the
approached value corresponds to the fractal correlation dimension of the attractor
D(2). We observe that starting from m = 20 and m = 16, respectively for the optical
and hydrodynamic case, the linear behavior is damped and seems to saturate to a
constant value in proximity of ν ≈ 6 and ν ≈ 4 (g1), ν ≈ 5 (g6). However, a careful
analysis is needed in deducing the correlation dimensions. Noise in experimental
data, emerging from the physical realization of the process and from its detection,
affects especially the estimate of ν for long subseries, that consequently present
a larger uncertainty. More importantly, a crucial role is played by the amount
of available data N [257, 236]. Because the number of completely independent
subseries xim used in the embedding method scales as N/m, the information that
can be extracted is limited when considering long scales. For a series of N points,
numerical criteria set the maximum observable value of ν approximately at 2logN
[236] (horizontal line in Fig. 4.8(b)), implying that only values sufficiently below
this threshold are reliable. Dimensions higher than 4− 5 are generally considered
too high for describing deterministically the dynamics [54]. In fact, to resolve the
long-range dynamics up to m, the Grassberger-Procaccia method needs an amount
of data N that grows exponentially with m [257]. Therefore, the reported saturation
of ν does not demonstrate the presence of a low-dimensional attractor but it implies
a high-dimensional attractor that underlies the complexity of the dynamics ruling
both optics and hydrodynamics data [36]. We note that the dynamics seems much
more complex (larger saturation ν value) as more relevant is the presence of extreme
events. We also analyze the scale dependence of the dynamics using the generalized
entropies

hm(r) = ln [Cm(r)/Cm+1(r)] , (4.5)
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Figure 4.7. Time series from hydrodynamic experiments in wave tank [201]. (a) Measured
time dependence of the wave envelope, (b) its intensity autocorrelation function and
(c) probability distribution function for the (1) g1 and (2) g6 setting. Rogue waves
appearance in particularly enhanced in the g6 experiment. Lines in (b) and (c) are decay
fits and exponential functions, respectively.
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Figure 4.8. Chaotic dynamics of optical and hydrodynamic rogue wave data. (a-d)
Correlation integrals Cm(r) and (b-e) Grassberger-Procaccia exponents ν as a function
of the embedding dimension m. (c-f) Generalized entropies hm(r) at different m,
underlining finite-size effects at large m. The red-shaded line in (b) indicates the
maximum observable value of ν following Ref. [236] for the total length N of the optical
series.
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Figure 4.9. Finite-size Liapunov exponents in different rogue regimes. (b) λ(r) computed
for subseries with m = 40 for (a) optical and (b) hydrodynamic data series g1 and g6.
Continuous lines are values averaged over several thousands of realizations, dashed lines
indicates their standard deviations. Inset in (a): detail of the low-r region.

that measure the information produced by the dynamical system and in which
a plateau to a constant value indicates the chaotic origin of the signal [55]. As
shown in Fig. 4.8(c-e), increasing m leads to entropies hm(r) approaching a flat
behavior al low r (deterministic signal). However, considering for instance the optical
case, for m & 42, hm(r) exhibits a noisy and non-monotonic behavior, consistent
with the absence of predictable traits on these scales. Very interesting is that
even the hydrodynamic series give analogous results. Therefore, the large-scale
unpredictability for rogue waves has roots in the extremely complex behavior of
the dynamical process occurring in optical spatial propagation as in water waves
evolution. Another interesting point is that we are here comparing different dynamics
in space and time; results are consistent with the fact that complex chaotic dynamics
in spatially-extended systems generally affect all the degrees of freedom. We expect
that further understanding can be obtained considering simultaneously more than
one dynamical variable. Practical unpredictability holds for the entire state of the
system and it not a property of the single extreme event. This “complexity” [36],
that masks properties of the effective underlying dynamics, may be the reason of
the common statistical mechanics behavior observed in very different optical states
and sea conditions. Moreover, it can also occurs in conditions leading to only small
deviations from gaussian statistics, as pointed out in the g1 hydrodynamic series
and in Ref. [31] for sea states.

Since the generalized entropy hm(r) is the dynamical counterpart of the Lyapunov
exponents characterizing the rate of error growth between initially close trajectories,
we conclude our study with the Lyapunov analysis. In fact, provided an high-
dimensional and in principle predictable chaotic behavior of rogue wave states, their
actual predictability is limited to a distance related to the first Lyapunov exponent.
The finite-size Lyapunov exponent (FSLE) λ(r) quantifies its value for experimental
signals, where finite resolution and non-infinitesimal perturbations are crucial. Using
the metric distance of Eq. (4.2) we compute λ(r) with the error-doubling method,
detailed in Ref. [55, 22], as an averaged quantity over several thousands of subseries
that start from the same detected intensity value. Results for m = 40 are reported
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in Fig. 4.9 and show an almost constant λ(r); the analogy between light and
water waves is straightforward also in this case. Considering the optical data, the
averaged value at the smallest r is λ = 0.58. Moreover, the expected h(r) ≈ λ(r)
[55] is verified by our results. The value λ we have found implies that, given an
initial uncertainty δ, it is possible to predict the wave intensity with a tolerance
∆ only up to an averaged predictability distance xp = 1

λ ln(∆
δ ) [22]. In our case,

for example considering the experimental resolution δ = 0.5 and ∆ = 10, we have
xp ≈ 5 ≈ 2.5µm, that is much less than the distance over which the series appears as
predictable following Fig. 4.6(b). Therefore, the complexity of the dynamics make
useful extreme event prediction based on standard methods just as difficult in the
optical case as in ocean and hydrodynamic rogue waves. However, the existence of
intrinsic correlation in the process, that make it different from a stochastic evolution,
is crucial because it justifies efforts aimed at developing a probabilistic approach to
prediction [131, 132]. From this point of view, our results represent the statistical
mechanics completion of the analogy between ocean, hydrodynamic and optical
extreme events previously based qualitatively on the probability distribution function
and on the NLSE description.
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Chapter 5

Transitions to turbulence in
optical wave propagation

In this Chapter we investigate the optical state underlying the formation of spatial
rogue waves in photorefractive ferroelectrics. Exploiting the cumulative property
of the nonlinearity, we report experiments proving evidence that such state is
triggered by a fully-developed transtion to optical turbulence. The result represents
the first observation of turbulent transitions for propagating optical waves [222].
In particular, the onset of turbulence occurs as the disordered hosting material
passes from being linear to one with extreme nonlinearity, so that increased wave
interaction causes a modulational unstable quasi-homogeneous flow to be superseded
by a chaotic and spatially incoherent one with emergence of concomitant rogue
waves. To introduce the topic, we note as turbulence is a universal phenomenon in
which a system is characterized by many out-of-equilibrium degrees of freedom [159].
Turbulent transitions attract great interest because the onset of spatiotemporal
disorder profoundly changes the physical features of a system, the paradigm being
the transport and drag properties of a fluid in a pipe and channel flow [125, 23, 241].
Manifestations of turbulence can also occur in waves, these including acoustic [115],
spin [45] and optical waves [215]. In fact, when nonlinear interaction involves the
excitation of a large number of waves, phase and amplitude fluctuations may lead to
a stochastic field described statistically using wave turbulence theory [195]. Wave
turbulence usually refers to weakly nonlinear wave systems in which the linear
evolution scale can be separated from the nonlinear one. Generally these systems are
dominantly influenced by some external noise and have negligible intrinsic (internal)
disorder. On the other hand, as linear and nonlinear scales are comparable, strongly
nonlinear coherent structures may also emerge and interplay with the incoherent
wave field (strong wave turbulence). In optics the onset of strong turbulence greatly
alters coherence and statistics of light, as observed for pulse trains in a ring resonator
[190], semiconductor lasers with feedback [192], and, recently, in tailored Raman fiber
lasers [280, 279, 18, 289]. However, experimental studies of wave turbulent behavior
in the spatial domain, where light is not trapped and actually propagates in space,
are especially challenging [254, 253, 42, 160, 266]. In particular, direct evidence of
a fully-developed turbulent transition for propagating waves has remained elusive.
As anticipated, here we report its observation for nonlinear beam propagation in
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photorefractive ferroelectric crystals. We stress that the detected transition involves
the coupling of two stochastic effects: external noise associated to the initial condition
and internal fluctuations of the nonlinear response.

5.1 Exploiting the cumulative nonlinearity

To reveal transitions to turbulence in the spatial domain we make use of experimental
setup e methods extending the ones discussed in section 4.2.1. Specifically, a line
(1D) gaussian beam (λ = 532nm) of waist ω0 = 7µm along the x-direction and quasi-
homogeneous along the y-direction (Fig. 5.1(a)) is launched in a photorefractive
ferroelectric crystal of KLTN, K1−αLiαTa1−βNbβO3, with α = 0.04 and β = 0.38.
The sample is a zero-cut optical quality specimen with size 2.4(x)x2.0(y)x1.7(z)mm
(lx x ly x lz) and with the structural transition occurring at the Curie temperature
TC = 294K. Since large dielectric fluctuations generally persist also above this
point, in the present case nonlinear light dynamics is studied systematically with
high accuracy at T = TC + 2K. The input wave copropagates along the z-axis of
the crystal with an uniform background intensity and nonlinearity sets in when an
external bias field is applied parallel to the polarization of the propagating wave
(maximum electro-optic coupling). The spatial intensity distribution is measured at
the input and then at the output of the crystal along the initially quasi-homogeneous
y-direction in different nonlinear conditions by means of an high-resolution imaging
system composed by an objective lens (NA = 0.5) and a CCD camera at 15Hz.
As a physical parameter to study the transition to turbulence we consider the
physical time ruling light dynamics at the crystal output. In fact, in Chapter 1
we have discussed how the photorefractive nonlinearity has the peculiar property
of being noninstantaneous and accumulates in time, since it involves a build-up of
a photogenerated space-charge field. In this way, observations at different times
correspond to beam propagation for increasing nonlinearity up to saturation [174].
A typical time scale τ for beam dynamics is fixed through its symmetry breaking
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Figure 5.1. Beam symmetry-breaking in unstable photorefractive ferroelectric crystals.
(a) Sketch of the setup geometry adopted. Scale bars for input and output intensity
distributions correspond to 20µm. (b) Characterization of transverse breaking: intensity
dependence of the process, with the minimum required voltage and the average time
scale τ providing the formation of periodic structures. Lines are linear fits. (From [222]).
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Figure 5.2. Observation of the turbulent transition in one-dimensional beam dynamics. (a)
Detected output spatial intensity distributions as a function of the nonlinearity expressed
through the continuous dimensionless control parameter t/τ . (b) Corresponding width
of the spatial Fourier spectrum and mean intensity autocorrelation (see main text)
increasing the nonlinearity. Red line serves as guide at the sharp transition signaling the
onset of optical turbulence. (From [222]).

into periodic coherent structures (Fig. 5.1(a)), a process that inhibits stable spatial
(1+1)D soliton formation also for different type of nonlinearity [149, 178, 113, 91, 110].
In fact, this stage can be accurately identified experimentally and we first characterize
it varying the accessible experimental parameters. In particular, changing the input
power, we measure the threshold voltage to observe transverse break-up and filaments
formation. Results are reported in Fig. 5.1(b) and show how, increasing the input
power, an almost linear scaling is found. Moreover, fixing the bias field to V=500V
and varying the input power, we measure the averaged time τ , that is the effective
nonlinearity at which the periodic break-up is observed. τ is found to decrease also
linearly with the input power, in agreement with the fact that the photorefractive
nonlinearity build up rate is inversely related to the peak intensity. The dimensionless
continuous control parameter of the nonlinearity is thus t/τ , where t is the evolving
time. Hereafter we consider a laser power P = 0.5µW , with τ ≈ 8 s (Fig. 5.1(b)).
We estimate local variations of the refractive index up to 10−3 at t/τ ' 1 and up to
10−2 for t/τ ' 2.

5.2 Evidence of turbulent transitions in beam dynamics
Direct evidence of the onset of turbulence as the nonlinearity increases is reported
in Fig. 5.2. Once that the quasi-homogeneous input line beam has experienced
symmetry-breaking via modulational instability, a sharp transition into a chaotic
state with pseudo-recurrent patterns occurs for t/τ & 1 (Fig. 5.2(a)). Some of
these filaments can have an extremely large intensity, as we discuss hereafter. This
transition corresponds to the loss of spatial coherence that persists only on small
scales. Measuring the width of the spatial Fourier spectrum, we found a sharp
increase of almost one order of magnitude (Fig. 5.2(b)). Correspondingly, the
long-range autocorrelation of the intensity light distribution I(y) abruptly decreases,
as shown in Fig. 5.2(b), where we have averaged over large r distances the absolute
value of the quantity (autocorrelation function) g(r) = 〈[I(y)−〈I〉]× [(I(y+r)−〈I〉]〉
normalized to g(0). We stress that detecting the onset of turbulence as a sharp
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Figure 5.3. Onset of optical turbulence for spatially-modulated input waves. (a) Output
intensity distribution increasing the nonlinearity t/τ . (b) Input power spectrum for
spatially-modulated beams (blue line) in comparison with the quasi-homogeneous case
of Fig. 5.2 (red line). (From [222]).

transition signaling departure from coherence is a method that goes beyond the
stability properties of the input flux. In fact, an analogous transition has been
reported in conditions where the homogeneous state of the dynamics is stable [280]
and unstable [289] with respect to perturbations. We note that a behavior similar to
Fig. 5.2 has been numerically observed studying the nonlinear stage of modulation
instability in the framework of the nonlinear Schrodinger Equation [5]. Here, the
incoherent state generated during wave evolution is referred as integrable turbulence
[5]. However, our results depart from this scenario since the presence of a saturable
nonlinearity makes wave dynamics non-integrable. This means that the observed
turbulent transition weakly depends on the input wave and can occurs also without
the modulational instability process. We demonstrate this repeating the experiments
with an inhomogeneous coherent input wave; using a spatial light modulator (SLM)
the input field is modulated along the y-direction with a periodic component. As
shown in Fig. 5.3(a) a transition to turbulence is observed at t/τ ≈ 1. In this
case, beam breaking is dominated by the input spatial frequency ky = 0.02µm−1

and modulation instability is only weakly involved, as noise experiences small
amplification on this scale. In Fig. 5.3(b) the input power spectrum is shown in
comparison with the quasi-homogeneous case. The picture can be easily extended
to generically modulated input waves.

5.3 From instabilities to optical turbulence

In order to study statistical and stochastic properties of the optical state before and
after the transition to turbulence, we consider the quasi-homogeneous input case and
we collect data for approximately two hundred uncorrelated experiments in the same
conditions used in Fig. 5.2. Each realization naturally presents a different noise
configuration, which is caused by fluctuations of the input wave arising from the
experimental setup (Fig. 5.3(b)) and by local variations of the electro-optic response.
These two stochastic effects are coupled, since local intensity fluctuations are amplified
by the giant response of the material and inhomogeneity in the nonlinearity strongly
affects light dynamics. We underline that fast material fluctuations are crucial in
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Figure 5.4. Spectral and statistical properties of the optical state before and after the
turbulent transition. (a-b) Intensity and spectral sample distributions of single-shot
measurements at moderate nonlinearity (t/τ ≈ 1) showing the excitation of the spatial
frequency k̄y = 0.05µm−1 (blue line), spectrally-broad noise amplification (red line)
and simultaneous development of well-defined low and high frequency modes (magenta
line). (c) Single-shot disordered intensity distributions detected in the turbulent regime
at t/τ ' 2.5. (d) Ensemble spectrum of modulational instability before the transition
(t/τ ≈ 1) with the instability gain function (blue-dashed line). (e) Measured wave-
turbulent power spectrum (red line) fitted on large spatial scales with the scaling
behavior ∝ k−γy , γ = 0.15 ± 0.01 (black line). (f) Peak-intensity PDF of localized
structures emerging from instability at t/τ ≈ 1, experimental counts (blue bars) and
gaussian trend of the distribution tails (red line). (g) Measured long-tail statistics in
optical turbulence at t/τ ≈ 2.5 (blue line) and consistent gaussian exponential scaling
showing spatial rogue wave generation in the turbulent regime. (From [222]).

observing the onset of turbulence; the transition is found to disappear as the crystal
is heated to a few degrees above the operational temperature, further confirming
results of Chapter 4, in which a thermal gradient is used to select different nonlinear
and stochastic regimes of propagation. Moreover, since disorder in the material is
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not fixed on the time-scale of the experiment and it is furthermore modified by the
wave, Anderson localization effects cannot occur in our case [249, 164].

5.3.1 Spectral and statistical properties

An ensemble spectral analysis at moderate nonlinearity preceding the transition
reveals the modulational unstable regime. The well-defined peak in Fig. 5.4(d) shows
that the typical spatial frequency experiencing maximum gain is k̄y = 0.05µm−1.
Since in centrosymmetric photorefractive media the transverse instability problem
can not be resolved easily with linear stability methods [179], we compare this result
directly with numerical simulations. We perform a numerical (2+1)D split-step
Fourier method analysis of the generalized nonlinear Schrödinger model describing the
paraxial spatial evolution of the normalized optical field envelope in centrosymmetric
ferroelectrics. Following the treatment in Chapter 1, with ψ(x, y, z) ≡ A(x, y, z)/

√
Ib,

the model is rewritten as

i∂zψ = − 1
2k∇

2
⊥ψ + k∆n0

n

[
1

(1 + |ψ|2)2 − 2α(∇⊥|ψ|
2

1 + |ψ|2 )2
]
ψ, (5.1)

where the parameters notation is the one already used. The value of the diffusive
nonlinear parameter α < 1 set the weakly-nonlocal regime of the model. We solve
Eq. (5.1) adding a spectrally-random seed noise to the input gaussian beam, whereas
values of the parameters are selected so as to match those for the KLTN sample
and optical setup. Following previous studies [48], the modulation instability gain
function G(ky) is computed evaluating the amplitude of the Fourier spectrum Ψ̂(ky, z)
at the input, z = 0, and output, z = lz, as G(ky) = 1/lz ln

[
Ψ̂(ky, 0)/Ψ̂(ky, lz)

]
. The

numerical spectral gain is shown in Fig. 5.4(b) as an average over several independent
realizations; its maximum well agrees with experimental results. However, the
broadening of G(ky) around the maximum amplified spatial frequency indicates
that, during the single-shot dynamics, higher/lower frequencies can also emerge
easily and compete with the characteristic one. In fact, modulational instabilities
are generally known to possess a strong dependence on the specific noise-realization,
with properties varying from shot-to-shot [260]. In Fig. 5.4(a-b) we show single-shot
measurements, each as an example characterizing a particular type of fluctuation.
We note that as the frequency k̄y is mainly excited, localized structures have a weakly-
varying peak intensity and there is equipartition of power across the generated mode
(see also inset in Fig. 5.1(a)). On the other hand, broad and double-frequency
amplification results into a coherent pattern presenting large intensity fluctuations.
Completely different is the scenario in the turbulent regime. Intensity distributions
vary stochastically from shot-to-shot, as shown in Fig. 5.4(c) for several independent
realizations acquired at t/τ ' 2.5, where we expect the nonlinearity to be fully
saturated. Waves are characterized by random phases in analogy with optical
realizations of wave turbulence theory [42], although from the statistics discussed
hereafter we realize that some correlations between modes actually exist. In Fig.
5.4(e) we report the ensemble power spectrum; it is extremely broad and without
specific resonances, with the peak associated to the amplification of k̄y before the
transition that results fully relaxed towards lower spatial frequencies. The spectrum
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results well-fitted at low frequencies by a power law behavior ∝ k−γy , with the scaling
exponent γ = 0.15± 0.01. Therefore, we observe evidence of an inverse cascade as
the nonlinearity increases, since the majority of the wave action is now located at
low transverse wavenumbers. However, this flux of wave action towards large scales
should be distinguished from the one occurring in wave-turbulence theory. In weak
turbulence, an inverse cascade occurs for random waves at weak nonlinearity under
forcing at intermediate scales [42, 160]; here, it occurs in highly nonlinear conditions
and after the modulational instability stage.

In the disordered regime, part of which is shown in Fig. 5.4(c), we also note
the appearance of several bright localized spots. Statistical analysis shows that
they are rogue waves. We first consider the probability distribution function (PDF)
of peak-intensity values of localized structures emerging from instabilities before
the turbulent transition. We analyze more than 103 events, so as to populate the
histogram reported in Fig. 5.4(f). This PDF contains a high-intensity peak embedded
into a broad distribution. The peak, at I/ < I >' 1.2, is deterministic and closely
related to the peak in the gain spectrum of Fig. 5.4(d), as it arises from structures
belonging to the maximally amplified frequency k̄y. Random fluctuations in this
stage populate the rest of the distribution, with tails compatible with a gaussian
decay, implying that extreme events occur here with low probability. This allows us
to conclude that in our system giant perturbations not arise in coherent structures
generated by stochastic fluctuations in instability. On the contrary, as reported in
Fig. 5.4(g), the PDF measured deep into the turbulent regime at t/τ ' 2.5 presents
the long-tail anomalous behavior defining rogue wave phenomena, as reported in
Chapter 4. In fact, for large intensities it deviates from the gaussian distribution
expected for incoherent fields. We note that in the present case the setup is able to
detect with high-resolution the formation dynamics of each rogue wave. We found
that extreme events suddenly disappear as t/τ further varies, so that no traces are
found after their passing. Moreover, from our data, inelastic interactions between
less intense structures in the wake of extreme events are not so evident. This fact
may involve the presence of a different saturation-dependent microscopic process in
rogue wave appearance, as discussed in Chapter 6. Further developments include the
study of two-dimensional space phenomena, as well as the building of a nonlinear
wave model that, taking into account fluctuations in the nonlinear response of the
medium, can properly describe the observed turbulent regime. The possibility of
varying the modulation of the input field opens new perspective for the study of
optical turbulent regimes.

5.3.2 Shot-to-shot fluctuations and correlations

We also investigate shot-to-shot fluctuations and correlations of the optical state
before and after turbulent transitions. This allows us to understand the presence of
correlations between the spectral properties of different realizations of the stochastic
dynamics, i.e. modes interaction. This fact is particularly important in the turbulent
regime where rogue waves may be related to phase-locking of different spontaneous
modes. We make use of an analogous KLTN crystal but with an embedded slab
waveguides [127, 141], which allows us to repeat the experiments in a strictly 1D
geometry, further increasing capacity and reliability of our analysis. In analogy
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Figure 5.5. Shot-to-shot spectral correlations in turbulent dynamics. (a) Background-free
spectral autocorrelation function in the modulational unstable regime showing bunching
between different spatial frequencies experiencing amplification. (b) R(ky) for optical
turbulence, where no typical interaction between modes is found. Insets are the spectral
maps considered in the analysis.

with a recent study on modulation instability in the temporal domain, where anti-
bunching and preferred spacing between adjacent frequency modes emerging from
noise amplification is found [260], we first compute the background-free spectral
autocorrelation function R(ky). It is sensitive to those correlations that are present
in the individual spectra and removes the background from the overall spectral shape.
We obtain it forming the average of the spectral autocorrelations 〈Si(ky)·Si(ky+dky)〉
of all single-shot experimental spectra Si and subtracting the autocorrelation of the
averaged spectrum 〈Si(ky)〉 · 〈Si(ky + dky)〉. Simply put, we compute the average
autocorrelation minus the autocorrelation of the average. Results are reported in Fig.
5.5(a) for the modulational unstable regime at t/τ ≈ 1 and in Fig. 5.5(b) for the
turbulent regime after the transition (t/τ ' 2.5). The correlation function display a
positive central peak at zero spatial frequency shift arising from the fact that all
individual spectra consist of narrow lines that are absent in the average spectrum,
whereas the features at larger frequency shift originate from the interaction between
different modes. If the separate excitations were uncorrelated, the analysis would
yield only a central peak on a flat background because each feature would only be
correlate with itself. In turn, negative values signify the fact that such peak spacings
are underrepresented in the individual events (anti-correlation). In the modulation
unstable regime, contrarily to the optical fiber case [260], we observe bunching
between modes. Although correlation between adjacent frequency results strongly
suppressed, with R(ky) reaching negative values, the main feature in the correlation
behavior reported in Fig. 5.5(a) is a second peak at dky ' 0.045µm−1 indicating
bunching in the gain process. The origin of this interaction may be related to spatial
beating. Specifically, when two high-frequency modes develop and compete for their
amplification, they generate beating on the quasi-homogeneous beam giving a modes
lying in the maximum gain region. Therefore, at the output only a low-frequency
and an high-frequency line is found. The typical features of modulation instability
are lost during the turbulent transition; R(ky) in the turbulent regime presents the
central peak and only fast and disordered oscillations. This means that in such case
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significant bunching and anti-bunching does not take place for any spectral shift.
However, these oscillations may be the signature of the chaotic interaction between
the large number of modes emerging in turbulence.

The absence of mode-locking in the turbulent regime with rogue waves can be
further investigated considering the overlap between shot-to-shot spectral correlations.
This specific analysis has been recently used to demonstrate experimentally replica
symmetry breaking in random lasers [118, 120]. Each realization of the dynamics
represents a replica whose fluctuations of the power spectrum at a given spatial
frequency reads as ∆i(ky) = Si(ky)−〈Si(ky)〉, with 〈Si(ky)〉 the average over replicas
of each mode power spectrum. The overlap between shot-to-shot spectral fluctuations
is defined as

qij =
∑
ky ∆i(ky)∆j(ky)√∑

ky ∆2
i (ky)

√∑
ky ∆2

j (ky)
. (5.2)

From the measured spectra (insets in Fig. 5.5) we calculate the set of all values q
of qij for each different realization, determining their distribution P (q), which is a
leading quantity for the description of disordered and glassy phases. Results are
reported in Fig. 5.6 and show standard (gaussian) overlap distribution, implying that
no replica symmetry breaking occurs. In fact, the majority of overlaps are centered
around the zero value, meaning that spatial optical modes are independent and do
not interact significantly; consistently, their fluctuation are randomly correlated. We
note that the asymmetry in P (q) (depletion of large negative q values) results from
the fact that large part of the single-shot spectra vanishes, i.e., positive fluctuations
respect to the mean spectrum are favored. The normal overlap distribution occurs
for the modulational unstable regime, where large positive overlap are partially
detected in agreement with the bunching in Fig. 5.5, as well as in the turbulent
state. The first result confirms the prevailing stochastic nature of the modulation
instability phenomenon. The second prove that mode-locking in the mechanism
leading to rogue waves is absent or not detectable in our case [20].
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Figure 5.6. Overlap distribution of shot-to-shot spectral correlations. (a) P (q) for the
modulational unstable regime (t/τ ≈ 1) and (b) in the optical turbulent state at t/τ ' 2.5.
In both cases overlap is normally (stochastically) distributed and no replica symmetry
breaking occurs, although the presence of large positive q values for modulational
instability stresses the presence of an interaction between spectral excitations (bunching
in Fig. 5.5).
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Chapter 6

Control of rogue waves through
spatial incoherence

Active control of extreme events emerging in photorefractive wave dynamics is
demonstrated through spatial incoherence of the optical field [223]. Varying the
correlation length of the input beam, we observe a scale-dependent statistics in
which rogue wave appearance can be suppressed or strongly enhanced. These results
allow us to point out a comprehensive understanding of rogue waves formation in
nonlinear beam propagation. Specifically, using high-resolution measurements of the
rogue waveforms, we prove that their statistical behavior relies on the existence of a
typical spatial scale in rogue waves appearance. Intensity results to be independent
from this preferred size that coincides with the minimum soliton size permitted
by the saturation in the response. The findings suggest that in spatially-extended
saturable systems the emergence, properties, and control of extreme events are
intimately connected to non-stationary solitons typical of a saturable cumulative
nonlinearity. This said, we should note that, in spite of the different mechanism
underlying extreme events in physics, only a small subset of its have allowed the
possibility of controlling rogue waves [261, 96, 46]. Control of rogue waves stands
as the fundamental goal and remains challenging especially for high-dimensional
systems with spatial extension, such as beam propagation, where many degrees of
freedom come into play.

6.1 Incoherent excitations and extreme events control

In our experiments we make use of partially-incoherent beams propagating in
photorefractive ferroelectrics, in the same conditions in which turbulent states with
rogue waves have been observed starting from coherent and quasi-homogeneous
one-dimensional input excitations (Chapter 4 and Chapter 5). Changing the spatial
coherence of the input conditions, we can study the effects of the optical correlation
scale on rogue waves formation. Setup and methods are shown schematically
in Fig. 6.1(a). They are based on the peculiar nonlinear optical properties of
disordered ferroelectric crystals in proximity of their structural phase transition
previously investigated and on the photorefractive propagation of partially-incoherent
beams [189, 61]. Light at a wavelength λ = 532nm from a 150mW continuous-
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Figure 6.1. Partially-incoherent beams in photorefractive ferroelectric crystals. (a) Sketch
of the experimental setup with lenses (f1 = f2 = 50mm), adjustable glass diffuser D
(average particle size of 2µm), long-working-distance objective OBJ (NA = 0.55) and
KLTN sample. (b-c) Input and output intensity distributions with the corresponding
spatial autocorrelation function g(∆r) for two different positions of the scatterer. σ
indicates the output autocorrelation length and S is the corresponding input source size.
Scale bars correspond to 30µm. (From [223]).

wave laser is expanded and focused on a glass diffuser plate, where transmitted
radiation is collected producing a collimated speckle field. A long-working-distance
objective (NA = 0.55) launches this field at the input facet of a KLTN crystal,
K1−αLiαTa1−βNbβO3 (α = 0.04, β = 0.38 ). The partially-incoherent beam, linearly
polarized in the experimental plane, copropagates with a background intensity
along the z-axis of the crystal and is detected at the output facet through a high-
resolution imaging system (NA = 0.50) and a CCD camera. The sample is a zero-cut
optical quality specimen with size 2.4(x)x2.0(y)x1.7(z)mm (lx x ly x lz) and with
the ferroelectric transition occurring at the Curie temperature TC = 294K. As
in Chapter 5, turbulent light dynamics can be studied and controlled with high
reproducibility at T = TC + 2K. The incoherence properties of the input beam are
achieved placing the diffuser inbetween two confocal lenses (f1 and f2) and varied
changing its position along the propagation axis, whereas small tilts and rotations
on it generate different disordered realizations of the optical field. Examples of
partially-incoherent beams at the crystal input and output are reported in Fig.
6.1(b-c) for two positions of the scatterer along the propagation axis. For the output
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Figure 6.2. Controlling extreme events: scale-dependent behavior of the intensity statistics.
(a) PDF measured in linear conditions (E = 0, P = 400µW ) for beams with different co-
herent length expressed through the input parameter S. (b) Corresponding distributions
for nonlinear propagation (E = 2kV/cm, P = 400µW ), showing a long-tail behavior
depending on the specific correlation length, with a large enhancement in rogue waves
appearance for S = 220µm. Suppression of the tail occur for highly-incoherent fields
(S = 500µm). (From [223]).

intensity distribution we consider the spatial autocorrelation function

g(∆r) = 〈
∫
d2rI(r)I(r + ∆r)〉∫

d2r〈I(r)〉〈I(r + ∆r)〉 , (6.1)

whose width defines the spatial correlation length σ, i.e. the average speckle size.
Since σ varies as nonlinear effects are involved in wave dynamics [47], we use the
input source size S as a parameter characterizing the spatial incoherence of the
input beam. We have S ' 2λlz/g(0)σ, which generalizes to nonlinear conditions
optical speckle propagation [47, 90].

Extreme event control is shown in Fig. 6.2, where the detected probability
distribution function (PDF) of the output intensity is reported varying the beam
incoherence both in the linear and nonlinear case. In linear conditions, where no
external field is applied, we observe (Fig. 6.2(a)) no significant deviations from the
gaussian statistics as expected for completely-random interfering waves [119]. The
exponential scaling PDF = exp(−I/〈I〉)/〈I〉 is well verified in particular for beams
presenting spatial coherence only on small scales (S ≈ 500µm,S ≈ 300µm). For
more correlated beams (S ≈ 220µm,S ≈ 150µm), the PDF slightly deviates at large
intensities, consistently with the presence of weak inhomogeneities in the phases of
the elementary interfering waves [19, 170]. Rogue waves occur as the nonlinearity
is activated by means of the external field E = 2kV/cm. In the nonlinear case, in
analogy with coherent and quasi-homogeneous beams, the incoherent field experiences
strong self-interaction and spatiotemporal fluctuations so that we observe the speckle
intensity dynamically varying in a turbulent fashion. The nonlinear regime appear
completely different from that observed in Ref. [47] where single speckles simply
focus, although in this case we cannot establish the threshold corresponding to
the turbulent transition from the loss of coherence. To study the statistics in this
stage, we acquire more than two hundred independent spatial distributions for a
fixed 400µW input power and sample conditions. Results as a function of the
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coherence length are shown in Fig. 6.2(b) and demonstrate how extreme events can
be controlled through this parameter. We found the long-tail statistics defining rogue
waves and a peculiar scale-dependent behavior. Specifically, the spatial correlation
scale of the optical field strongly affects its PDF, with a large enhancement in
extreme event appearance that occurs for incoherent beams of size S ≈ 220µm and
their complete suppression at S ≈ 500µm. We note that the effect is approximately
independent of the input power and of the value of the applied field, provided that
both are above a certain threshold ensuring the highly-nonlinear turbulent dynamics
(section 5.1). Therefore, we observe that small-scale random intensity fluctuations
inhibit rogue wave generation, whereas a peculiar increase in their probability is
triggered by a specific beam coherence scale. We note that a similar inhibition for
highly-incoherent waves has been also reported in the temporal turbulent dynamics
of passive optical fiber ring cavity [71]. On the contrary, enhancement for a specific
excitation scale has never been observed.

6.2 The characteristic scale of rogue waveforms

To investigate the mechanism underlying the correlation between abnormal wave
statistics and incoherence scale, we use our ability with the present setup to resolve
the spatial waveform of each event with 0.3µm resolution (for typical wave features
of 10 µm). We first consider the data set with incoherence corresponding to the
maximum statistical-tail enhancement and, in particular, we analyze the rogue wave
peak intensity IP and its full-width-at-half-maximum ∆X. Examples of spatially-
resolved rogue waveforms emerging from partially-incoherent intensity distributions
are shown in Fig. 6.3(b) as giant pulses. In Fig. 6.3(a) we report an interesting
behavior that is found for the two analyzed parameters: even though the abnormal
waves span different peak intensities, their width is almost constant. Localized events
appear with the same transverse size irrespective of the fact that they populate the
gaussian portion of the PDF or the extreme one of its abnormal tail. This feature
persist also at different bias fields and, as further shown in the following, it amounts
to a general property of rogue waves in the saturable nonlinearity. Therefore, we
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Figure 6.3. Unveiling optical rogue waveforms. (a) Detected transverse width ∆X and peak
intensity IP of extreme events for data at different applied fields. (b) High-resolution
spatial intensity distributions containing localized abnormal waveforms. Red curves are
x-profiles along the dotted lines. (From [223]).
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Figure 6.4. Evidence of a typical scale in rogue waveforms. Measured extreme events
widths at different coherence length σ (dashed lines). The two scales are resonant for
S = 220µm, where a large increase results in the probability of rogue wave appearance
(see main text and Fig. 6.2(b)). The diagram on the right illustrates how results imply
the presence of a typical spatial scale for rogue events. (From [223]).

extend our analysis taking into account the width of the extreme events as a function
of the degree of incoherence of the corresponding optical field. Specifically, we
compare their typical scale ∆X with the correlation scale σ of its entire intensity
distribution, obtained in the nonlinear regime according to Eq. (6.1). This allows us
to inspect whether the rogue wave has a size determined by the mean autocorrelation
length of the speckle beam or an intrinsic properties is involved. The whole picture
is presented in Fig. 6.4. Extreme events are found to emerge on a typical scale that
is significantly lower or higher than the coherence one, respectively, for beams of
size S = 150µm and S = 300µm (see Fig. 6.2(b)). Moreover, matching between
these two scales is evident at S = 220µm, that is exactly the case in which the large
enhancement in the long-tail statistics is detected. The findings prove that the key
feature providing extreme event control is the existence of an intrinsic scale for rogue
waves. We estimate it to approximately ∆X = 4.5µm. In fact, as schematically
illustrated in Fig. 6.4, the coherence length distribution of the input beam acts as
a probe for the probability P (∆X) of finding extreme events with a certain width
∆X. Their overlap, in terms of sizes, sets the amount of emerging extreme events,
so that the enhancement at S = 220µm appears as a resonant interaction.
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Figure 6.5. Mechanism underlying appearance and control of extreme intensity fluctuations.
Existence curve of non-equilibrium solitons in saturable nonlinearities (red line) on which
the waveform w(ξ) is schematically shown. Arrows indicate the magnitude of width
and amplitude fluctuations in the gray region, which is in proximity of the localized,
self-trapped, wave solution. For comparison with Fig. 6.4 and Fig. 6.2, input correlation
lengths used in experiments are also reported. (From [223]).

6.3 Origin of rogue waves in photorefractive dynamics
The existence of a preferential size for extreme waves provides an active method
to set statistically their appearance. In particular, once the nonlinear propagation
conditions are fixed, the spatial correlation of the optical field can be tuned to
arbitrarily modify the intensity distribution tail. The generality of this mechanism
relies on the physical basis that leads to a typical size for rogue events [199]. We
address the fundamental question on its origin starting from the consideration that
the main properties of the photorefractive nonlinearity underlying our turbulent
optical dynamics is its saturable character. Since saturation turns out in the response
of any real system for large excitations, the finding may represent a universal trait
in abnormal wave events, at least in this limit condition. For our system, we here
provide a physical picture that not only explains the presence of a peculiar spatial
scale, but also the observed insensibility to wave intensity. We note that such feature
of the rogue waveform is consistent with observations in our first experiments (section
4.2.2), where it was noted as an anomaly in their self-similarity and has led us to
consider numerical results as controversial. The framework we consider remains
based on spatial solitons, whose structural and interaction properties are candidate to
play a key role for rogue waves. However, motivated by the spatiotemporal dynamics
of the turbulent regime underlying extreme events, we focus our attention on their
non-equilibrium counterpart, i.e., transient self-trapping waves in non-stationary
conditions as treated in section 1.3.1. As detailed in Ref. [84], in the present case,
transverse localization occurs on a size (Eq. (1.35))

∆x ' 3λ
2πn2aeo

E−2, (6.2)

where we rename aeo the parameter quantifying the electro-optical response of
the media. For our experimental realization, we have ∆x = 5 ± 1µm, where the
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uncertainty is related to the uncertainty in aeo in proximity of the ferroelectric
phase transition for biased condition. This value of ∆x is consistent with the typical
scale of rogue waveforms ∆X we have found. Moreover, Eq. (6.2) possess the
fundamental property of being independent on the wave intensity, in agreement
with our observations of extreme events (Fig. 6.3(a)). Dependence on the external
electric field E is predicted as very weak at high values (compare with Fig. 1.4)
and the result in Fig. 6.3(a) with different bias fields verifies also this feature.
Therefore, observations strongly suggest that control of long-tail statistics with
spatial incoherence and their spontaneous emergence in optical turbulence can be
explained with the mechanism illustrated in Fig. 6.5, where the phase-space of the
nonlinear waves in terms of normalized amplitude w0 and width ∆ξ (existence curve)
is recalled. Non-equilibrium self-trapped waves form across the minimum of the
existence curve according to Eq. (6.2) triggered by fast temporal fluctuations of the
beam intensity distribution, which are mediated by fast fluctuations in the nonlinear
response. As chaotic time evolution locally brings the specific nonlinear wave in this
phase-space point, a localized mode is observable. Here, a small variation in ∆ξ can
lead to large fluctuations of the wave amplitude, with peak intensities reaching the
giant values that populate the extreme regions of the total PDF. Extreme events are
enhanced when the input coherence scale falls in this region, whereas their excitations
and suppression implies, respectively, that matching with the input autocorrelation
is partial or does not occur at all. These results open important routes for control
and management of abnormal intensity localization in spatially-extended optical
systems and demonstrate the role of scales in nonlinear turbulent dynamics as a key
point to its understanding.
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Chapter 7

Scale-free optics and
anti-diffraction of light

In this Chapter we report nonlinear optical wave phenomena in which beam self-
action is mediated by the giant diffusive nonlinearity provided by out-of equilibrium
disordered ferroelectrics. In particular, we discuss regimes in which the diffraction of
light can be cancelled using an intensity independent nonlinear response that acts in
the form of an anti-diffraction. Diffraction cancellation, discovered by DelRe et. al.
[88], implies that beams do not spread because diffraction is absent, and not simply
because it is compensated by an index of refraction pattern, such as in a waveguide,
or because of a nonlinear index change, such as in spatial solitons. In both these cases,
diffraction compensation introduces limits on the non-spreading waves, such as the
optical modal structure of the waveguide and the soliton existence conditions, that
require specific solutions to allow effective field transfer. In diffraction cancellation,
these strict laws are absent and the optical propagation occurs without any limit
associated to the optical wavelength [206], a condition termed scale-free optics [88].
This regime is here observed for the first time from wide plane-wave-like beams
that obey geometrical optics down to ultranarrow beams with widths of the order
of a single wavelength, a single unified light behavior that spans across the entire
hierarchy of standard optical spatial scales [92]. Moreover, the unique features of the
system allow us to observe anti-diffraction of light, that is beams shrinking below
their diffraction-limited size [93]. The anti-diffracting behavior can be extended to
sub-micrometrer-sized light beam that can be focused to dimensions smaller than
the diffraction limit [89]. In this regime the propagation of the electromagnetic
fields is no longer governed by the Helmholtz equation but instead is modified
into a Klein-Gordon-type equation, a property with profound implications for wave
dynamics.

7.1 Diffraction cancellation for non-paraxial beams

Light beams confined to widths comparable to their wavelength are no longer
described by ray optics and diffract. Light spreads during propagation with an angle
that is proportional to the ratio between the wavelength λ and the transverse size of
the beam w0, i.e., ∆θ ∼ (w0/λ)−1 [196]. Beyond scale-free optics, diffraction can
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Figure 7.1. Comparing standard optics and scale-free optics. In the k-vector space, the
plane-wave, the paraxial, and non-paraxial regimes can be schematically represented
as regions of respectively increasing surface in the Ewald sphere k · k = (2π/λ)2 (a).
Different plane-wave components emerging from a point-like source have different phase-
velocities along a given direction of propagation uz, since their projection kz is different,
so as to causes diffraction. In the scale-free regime (b), in turn, the allowed k-vectors
are on a plane orthogonal to the propagation direction kz, so that kz does not depend
on the angle of the plane-wave components with respect to the z-axis, and the wavefront
suffers no diffraction. (From [92]).

be cancelled in periodic index of refraction patterns [155, 264] and electromagnetic-
induced transparency [104]. The problem with all these approaches is that they are
limited to paraxial conditions, where ∆θ � 1 and diffraction causes only limited
distortion. Theoretical models indicate that, in principle, scale-free optics supported
by the diffusive nonlinearity [63, 75, 81] should allow diffraction-cancellation also in
the non-paraxial regime [74].

7.1.1 The scale-free optics model

According to the macroscopic Maxwell equations, a linearly polarized optical field
E = x̂E exp (ikzz) propagating inside an inhomogeneous transparent material obeys
the Helmholtz equation

∇2E + (ωn/c)2E = 0, (7.1)

the basic wave equation ∇∧∇∧E = (ωn/c)2 E where coherent vectorial coupling is
neglected (∇∇·E ' 0). Here ω is the optical angular frequency and c is the speed of
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light in vacuum (2π/λ = ω/c). When in photorefractive crystal electronic diffusion
is the main transport mechanism associated to light absorption, the space-charge
field assumes the form in Eq. (1.13). This electric field E give rise to a scalar
change ∆n = −(n3/2)gε20χ2

PNR|E|2, where we indicate low-frequency susceptibility
with χPNR, since in out-of equilibrium conditions in proximity of the ferroelectric
phase transition the local dielectric response can results strongly affected by polar-
nanoregions (Chapter 2). Therefore, the nonlinearity ∆n is given by

∆n = −n
3

2 gε
2
0χ

2
PNR

(
KbT

q

)2 (∂xI)2 + (∂yI)2

I2 . (7.2)

When g > 0 (focusing nonlinearity), the generalized NLSE describing paraxial wave
propagation (Eq. (1.26)) becomes

(2ik ∂
∂z

+∇2
xy −

L2

λ2
(∂xI)2 + (∂yI)2

4I2 )A = 0, (7.3)

where L = 4πn2ε0
√
gχPNR(KbT/q) is the spatial scale used to factor out the

wavelength scale. The nonlinear term is not truly an anti-diffraction operator
∝ ∇2A, since the response will amount to a term ∝ (|∇I|/I)2A. However, both
terms are independent of peak intensity, and both have the same fundamental
scaling in terms of the spatial extent of the beam, i.e., both are ∝ 1/w2

0. These
two facts guarantee a diffraction cancellation for arbitrary waveforms, and an exact
mathematically rigorous cancellation for the solutions that we discuss in what follows.
For all cases, in conditions in which the nonlinear length scale L ' λ, scale-free optics
is observed. In the nonparaxial regime, Eq. (7.1) should be explicitly considered
instead of Eq. (7.3), and for the diffusive nonlinearity it reads [74]

− ∇
2E

E
+
(
L

λ

)2
(
∇|E|2

2|E|2

)2

= k2, (7.4)

where L is the characteristic nonlinear length above introduced. The scale-free
condition holds when L = λ for which Eq. (7.4) retains a trace of λ only through
a constant in the second term. In this case, one has the analytic approximated
solution E = E0 exp

(
−(x2 + y2)/w2

0
)

exp (−ikzz) which is scale free, i.e., it forms
for an arbitrary amplitude A0 and waist w0, with

kz =
√(

ωn

c

)2
− 4
w2

0
. (7.5)

This solution exists, i.e., kz is real, as long as w0 > 2c/ωn = 2λ/πn. Since it holds
directly for the Helmholtz equation, it is valid irrespective of whether the beam
is plane-wave-like (w0/λ� 10), paraxial (w0/λ ∼ 10), or non-paraxial (w0/λ ∼ 1)
(scale-invariance). The comparison between standard optics and scale-free optics is
schematically represented in Fig. 7.1.

7.1.2 Diffraction management through thermal shocks

Here we report the observation of scale-free propagation across the entire range
of possible propagating beam widths, from plane-waves to non-paraxial waves, for
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Figure 7.2. Diffraction cancellation in the paraxial regime. Top, experimental setup
and thermal shock protocol (temperature cycle T (t)). Bottom, paraxial scale-free
propagation. In the highly paraxial regime (w0/λ � 10), the 12µm Gaussian beam
input (a) is compared with the 13µm scale-free output waist (L/λ = 1) (b) and the
27µm diffraction output (L/λ = 0) (c). Analogously, in a weaker paraxial condition
(w0/λ ∼ 10), the input 7.8µm Gaussian beam (d) is compared to the 9µm scale-free
output waist (L/λ = 1) (e) and the 38µm diffraction output (L/λ = 0) (f). (From [92]).

w0/λ = 0.8 − 20. To fulfill the scale-free condition in the non-paraxial regime we
make use of thermal shocks causing a transient L(t) on a photorefractive disordered
ferroelectric KLTN. The experimental setup is illustrated in Fig. 7.2. A 0.8mW
(measured before L3) He-Ne laser operating at λ = 632.8nm is expanded (L1 and L2)
and subsequently focused (L3) down to a spot at the input face of a sample, using
spherical lenses for the paraxial regime or microscope objectives (NA = 0.50, 0.80)
for the non-paraxial regime. The crystal is a zero-cut 2.6 × 3.0 × 6.0 mm sample
with a composition of K1−xLixTa1−yNbyO3 with x = 0.003, y = 0.36. Cu impurities
(∼ 0.001 atoms per mole) support photorefraction in the visible, whereas focusing
and cross-polarizer experiments give n0 = 2.2 and g = 0.14m4C−2. At visible
wavelengths, the crystal absorption coefficient is α ' 2cm−1. The beam is polarized
in the x direction and propagates inside the crystal for a distance of Lz ' 3.0mm.
The crystal is rotated to a desired angle θ in the x, z plane. The output intensity
distribution of the beam is imaged by a CCD camera through an imaging lens
(L4, NA' 0.35). The L = λ condition forms during a transient by operating near
Tm = 287.5K using a specific thermal shock protocol [207] shown in Fig. 7.2. The
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Figure 7.3. Non-paraxial scale-free propagation. A non-paraxial w0 = 1.5µm (w0/λ = 2.4)
input beam (a) is compared with the 1.7µm scale-free output waist (L/λ = 1) (b)
and the > 60µm greatly delocalized output (L/λ = 0) (c). Analougosly, in the highly
non-paraxial condition (w0/λ = 0.8), the input 0.49µm beam (d) is compared with
the 0.66µm scale-free output waist (L/λ = 1) (e) and the > 90µm delocalized output
(L/λ = 0) (f). (g-h) Knife-edge scan for (a) and (d) cases. (i) Knife-edge scheme for
output distributions. (From [92]).

method is based on a general property of glassy phases known as Kovacs, or cross-
over, effect [165, 156, 15, 193] and requires operating the sample in its non-ergodic
phase. The shock leads to transient anomalous response with even more elevated
values of χPNR [216]. However, we stress that the thermal shock we adopt is just
an experimental technique; ferroelectric crystals with a larger equilibrium response
would allow avoiding thermal treatment of the sample. The same statement holds
for the transient nature of the phenomena observed. The crystal was first cleaned
of photorefractive space-charge by illuminating it with a microscope illuminator.
Using a temperature controller that drives the current of a Peltier junction placed
directly below the crystal in the y-direction, we brought the sample to thermalize
at TA = 303K. The sample is then cooled from TA = 303K at the rate of 0.06K/s
to a temperature TD = 287K, where it is kept for 60s. Then the sample is heated
once again at a rate of 0.1K/s to the operating temperature (> TD) TB = 290K,
with ∆T = TB − TD defining the shock amplitude. The crystal is kept in air at
atmospheric pressure and is subjected to a temperature gradient orthogonal to
the beam propagation (z − x plane). The thermal gradient may pins the polar-
nanoregions inducing a polarization selective nonlinearity. Hence, in our sample we
are limited to a scale-free regime for x-polarized beams. Once TB is reached, the
temperature cycle T (t) is complete and we switched on the laser beam, recording front
view images of the captured intensity distribution. The strong transient response
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is observed to have a characteristic response time of 10 − 30s. The time scale of
the transition into the diffraction cancellation regime starting from the diffractive
regime is, in our conditions, approximately peak-intensity-independent. This means
that the time dynamics are associated to the relaxation of the metastable dipolar
state, while the photorefractive build-up is faster and the space-charge field is at all
times approximately at the steady state. We evaluate the value of L by measuring
the output and input waist ratio; when this ratio reaches unity we have L ' λ. An
independent evaluation of L can ideally be obtained through time-resolved dielectric
constant measurements at low frequencies of χ (and hence χPNR). However, these
measurements will only capture an averaged value of the χPNR, which, in proximity
of the peak, leads naturally to a lower value of the enhanced dielectric constant and
a diffused peak.

In Fig. 7.2 we report scale-free propagation for paraxial beams. As shown in Fig.
7.2(a-c) the w0 = 12µm (w0/λ = 19) input beam diffracts to 27µm as it propagates
to the output facet at the initial TA = 303K. After the cooling/heating cycle,
the output beam shrinks to 13µm. Analogously in Fig. 7.2(d-f), the w0 = 7.8µm
(w0/λ = 12) input beam diffracts to 38µm, then shrinking to 9µm. Confirmation
that it is associated to diffraction-free propagation all along the sample is provided
by top view images of scattered light. In Fig. 7.3 we report scale-free propagation
for the non-paraxial beams. In Fig. 7.3(a-c), a w0 = 1.5µm input beam (w0/λ = 2.4)
is launched directly from a zero-working-distance immersion microscope objective
(NA = 0.8, used without oil with θ = 0) placed at the input face of the sample. After
we enacted the thermal cycle, in the scale-free regime we measured a 1.7µm output
waist. In Fig. 7.3(d-f), the narrower input beam with w0 = 0.49µm (w0/λ = 0.8) is
achieved using a fully illuminated long-working-distance dry objective (NA = 0.8,
θ = 11◦ to avoid the effect of growth-related striations). In the nonlinear regime
we measured a 0.66µm output waist. The beam width is measured using a knife-
edge technique in proximity of the input plane, from the transmitted power plot
(Fig. 7.3(g-h)) by fitting the data with what is expected for a two-dimensional
gaussian beam intensity shape of width w0. In detail, we mounted a plate on a
3-axis nanopositioning stage, aligned it to the plane orthogonal to the z-axis and
placed it in proximity of the output plane of the objective, to a precision below
1µm (the confocal parameter of the beam is on the order of tens of micrometers).
The power of the transmitted light as a function of the lateral x-displacement
of the plate edge δx was then detected using a silicon-head power-meter. The
transmitted power Pout normalized to the maximum transmission Pmax follows
P (∆x)out/Pmax = (1/2)(1− erf(

√
2∆x/w0)), so that the displacement d that brings

the normalized fraction from 0.75 to 0.25 quantifies the beam width w0 '
√

2d.
In Fig. 7.4 we combine results and illustrate in its full the breaking of the

conventional optical spatial hierarchy. We note that a similar scale-invariant picture
has been recently found also in nonlinear paraxial propagation of light in gases [138].
These findings can form the basis for super-resolved imaging. In fact, in standard
optical propagation a finite angular spread implies loss of original resolution during
propagation and hence a distortion of images. The diffraction-cancellation regime
allows the preservation of the spatial resolution of light emitted from a plane as
propagates to collecting optics. Hence, in principle, we can interpose a slab of KLTN
inbetween the objective of the microscope and the sample to analyze. The increase
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use of a single common spatial scale illustrates the fundamental difference between the
standard scale-hierarchy (top) and scale-free case (bottom) across the entire span of
optical regimes, i.e., from plane-waves to non-paraxial waves. (From [92]).

in depth-of-focus for a fixed collecting numerical aperture amounts to an increase of
the overall effective resolution [28]. For example, a visible pixel ceases to represent
an independent source of information when it becomes equal to or smaller than a
micrometer, in which case ∆θ ∼ 1 and its emission is mingled to that of other pixels
after just a few micrometers of propagation. No such distortion will occur if the
pixels were to transmit light in a system supporting scale-free optics. Summing
up, although Maxwell’s equations are free of any spatial scale, in all practical
devices this scale-symmetry is broken by the wavelength λ around which a specific
device operates. The wavelength introduces a hierarchy of different propagation
phenomena as measured in terms of the ratio between the light beam width w0 and
λ, as quantified by the angular spread of the beam ∆θ. Starting from the quasi-
monochromatic reduction of the electromagnetic wave equation, we can distinguish
a so-called non-paraxial regime described by the Helmholtz equation for w0/λ ∼ 1, a
paraxial regime described by the parabolic propagation equation for w0/λ ∼ 10, and
a plane-wave geometrical optics regime for w0/λ� 10. In a diffusive nonlinearity
supported by a disordered photorefractive ferroelectric crystal, we are able to observe
beams without diffraction independently of size and intensity across the entire span
of these commonly accepted wave-propagation regimes. In other words, in the
present nonlinear wave propagation, all light beams obey geometrical-optics-like
laws.
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7.2 Anti-diffracting wave propagation
Wave propagation in diffusive nonlinearity can be extended to regimes with L > λ.
In these conditions a more general effect would be involved: the observation of
beams that literally anti-diffract as they propagate in a medium. In such a system,
beams will naturally converge instead of spreading, irrespective of direction of
propagation and for a wide range of beam sizes, even with a considerable angular
spectrum. In distinction to self-focusing, which depends on intensity and generally
becomes stronger up to breaking as beams shrink, anti-diffraction should be intensity-
independent. In this section we theoretically predict anti-diffraction supported by the
diffusive nonlinearity and report its first observation in lithium-enriched potassium-
tantalate-niobate (KLTN) [93].

7.2.1 Collapse length

According with Eq. (7.3), the slowly varying optical amplitude A, self-interacting
through a diffusive nonlinearity, in the paraxial approximation obeys the equation

2ik∂A
∂z

+∇2
⊥A−

L2

λ2

(
∇⊥|A|2

2|A|2

)2

A = 0, (7.6)

with ∇⊥ ≡ (∂x, ∂y). Separating the variables, A(x, y, z) = α(x, z)β(y, z), α evolves
according with

2ik∂α
∂z

+ ∂2α

∂x2 −
L2

λ2

(
∂x|α|2

)2
4|α|4 α = 0, (7.7)

and the same equation holds for β replacing x with y. Eq. (7.7) is satisfied by the
solution

α(x, z) = α0√
wx(z)

e
− x2
w2
x(z)

+i[φ0(z)+ 1
2φ2(z)x2] (7.8)

with
φ0(z) = − 1

kw2
0x

tan−1(
√
az)√

a
(7.9)

and
φ2(z) = az

1 + az2 . (7.10)

Here a ≡ (1−L2/λ2)/k2w4
0x, wox is the initial beam in the x−direction, and α0 is a

constant. For a round launch beam with wox = woy = w0, the evolution of the beam
waist in two transverse dimensions along the propagation direction z is given by

w(z) = w0

√
1 + 4

k2w4
0

[
1−

(
L2

λ2

)]
z2. (7.11)

As L > λ, Eq. (7.11) foresees beams that shrink itself during propagation up to an
ideal point-like focus at a characteristic collapse length

zc = nπw2
0

λ

1√
(L/λ)2 − 1

, (7.12)

which is independent of the beam intensity.
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7.2.2 Observation of light anti-diffraction

To experimentally demonstrate diffusive anti-diffraction described by Eq. (7.12) we
use the setup illustrated in Fig. 7.5, which is analogous to the one described in
the previous section. However, in the present case light scattered in the vertical
y-direction is captured by a second CCD camera placed above the sample in the
y-direction through a high aperture microscope (NA' 0.8) positioned to image
the plane of propagation. We are able to achieve L > λ during a transient by
operating near Tm = 287.5K and enacting a non-monotonic temperature trajectory
T (t). In fact, considering the values of n, g, and kBT/q ' 25 mV, L ∼ λ for χPNR ∼
λ/(4πn2ε0

√
g(kBT/q)) ' 105, i.e., an anomalously large value of susceptibility only

observable through the Kovacs effect in proximity of the dielectric peak (see Fig. 7.2).
In fact, this regime is not otherwise accessible with our apparatus by a standard
rapid cooling (i.e., from TA directly to TB). Once TB is reached, the temperature
cycle T (t) is complete and we switched on the laser beam, recording top-view and
front view images of the captured intensity distribution. All intervals of time t
are indicated such that the laser is turned on at t = 0. In Fig. 7.6 we show a
condition of strong anti-diffraction observed when TD = 283K. The w0 = 7.8µm
input beam diffracts to 38µm as it propagates to the output facet at the initial
TA = 303K. After the cooling/heating cycle, the output beam shrinks to 5µm
(L ' 0.64µm). Snapshots of the top-view scattered light illustrate the transition
from the diffracting Fig. 7.6(d-f) to the shrinking beam condition Fig. 7.6(g), and
ultimately to the once again spreading phase Fig. 7.6(h-i) with strongly reduced
scattering. In this case, the crystal is rotated by θ = 11◦. The beam profiles of
the input and output distributions (at t = 15s) are compared in Fig. 7.6(j). From
Eqs. (7.11)-(7.12) we deduce a value of zc = 3.9mm. To confirm the approximate
intensity-independent and angle-independent nature of the effect, we repeated the
experiment with different levels of beam power and propagation angles. We found
same levels of anti-diffraction repeating experiments with 8, 30, 240, 800µW beams
and for launch angles θ = 5◦− 11◦. For example, at a fixed angle θ = 11◦, increasing
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Figure 7.5. Anti-diffraction setup. A 633nm He-Ne laser is enlarged and focused down to
an 8µm spot at the input facet of the KLTN, rotated by a variable angle θ respect to
the z-axis and brought through a temperature cycle T (t). (Front-view) The input and
output facets are imaged through lens L4 onto a CCD camera. (Top-view) Scattered
light is captured above the sample and imaged through a microscope. (From [93]).
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Figure 7.6. Observation of strong anti-diffraction. The input 800µW , 8µm Gaussian beam
(a) diffracts to 38µm at TA = 303K (b). For TD = 283K it then shrinks after 15s to
a waist of 5µm (c), before relaxing once again into a strongly spreading beam. (d-i)
Top-view images of the stray light emitted by the beam showing the transition, in time,
from a diffracting (d) to an anti-diffracting beam (g), and once again to a diffracting
one (i). Intensity profiles of the input beam compared to the anti-diffracting beam at
t = 15s (j). (From [93]).

the beam power from 30µW to 240µW , alters the minimum waist by less than 12%.
The only relevant systematic effect associated with different beam powers was a
lengthening of the anti-diffraction response time, as expected for the cumulative
nature of the photorefractive response. However, the paraxial theory will break
down if Lz ' zc, where the strong-focusing requires a fully non-paraxial treatment
and further novel effects are expected to emerge.

7.3 Subwavelength anti-diffracting beams
Propagating light beams with widths down to and below the optical wavelength
require bulky large-aperture lenses and remain focused only on micrometric distances
[136, 147]. Anti-diffraction into the subwavelength regime allows the observation
of light beams that violate this localization/depth-of-focus law by shrinking as



7.3 Subwavelength anti-diffracting beams 85

they propagate so that resolution is maintained and increased over macroscopic
propagation lengths [89]. The non-paraxial propagation of a sub-micrometer-sized
beam for over 103 diffraction lengths in disordered ferroelectrics represents the
narrowest visible beam to date reported [89]. The effect is possible as nonlinearity
transforms the leading optical wave equation into a Klein-Gordon-type equation
that describes a massive particle field [182].

7.3.1 Klein-Gordon-type wave behavior

To obtain the wave description for non-paraxial anti-diffracting beams we consider
the full Helmholtz equation with a diffusive nonlinearity

∇2E− (L/λ)2(|∇|E|2|/2|E|2)2E + k2E = 0. (7.13)

To grasp intuitively how this model reproduces the Klein-Gordon (KG) regime
typical of massive particles, we can consider localized Gaussian bubbles of light
with E ∝ exp (−r2/w2

0), where w0 is the spatial extent of the optical excitation and
r2 = x2 + y2 + z2. The evolution equation reduces to

∇2E(1− (L/λ)2) + (k2 − (L/λ)2(6/w2
0))E = 0, (7.14)

so that for 1 < L/λ < (w0k/
√

6) we have a relative change in sign in the terms of
the equation, i.e., the time-independent KG equation (∇2 − n2

mk
2
0)E = 0, with

n2
m(L) = n2(1− (L/λ)2(6/k2w2

0))/((L/λ)2 − 1). (7.15)

For beam propagation along the z axis we can consider gaussian filaments E ∝
exp (−r2

⊥/w
2
0)B(z), where r2

⊥ = x2 + y2. The wave equation now becomes

− ∂2
z′z′ +∇2

⊥E− ((L/λ)2 − 1)−1(k2 − (L/λ)2(4/w2
0))E = 0, (7.16)

where z′ ≡ z
√

(L/λ)2 − 1. For 1 < L/λ < (w0k/2) we have the KG equation

([]− n2
mk

2
0)E = 0, (7.17)

which corresponds to a relativistic particle with mass given by the Einstein relation
mc2 = ~nmk0c, with

n2
m(L) = n2(1− (L/λ)2(4/k2w2

0))/((L/λ)2 − 1), (7.18)

[] ≡ −∂2
z′z′ +∇2

⊥, time being played by z′. This approximate treatment also indicates
that, for a given L/λ > 1, the KG equation will once again be superseded by the
Helmholtz equation for beam widths below w0 = (L/λ)2/k. We stress that anomalous
light behavior is activated without affecting the values of material susceptibility,
without nanostructuring, or absorption, and consistently through the small nonlinear
optical response regime (the maximum local value of index modulation is ∆n� n
(∆n/n ∼ 10−4 for w0 ∼ 10µm). The breaking of the conventional diffraction limits
can be understood in terms of the passage from the Helmholtz to the KG equation.
In standard optics, expanding the optical electric field in its transverse Fourier
components E =

∫
kx,ky

E(kx, ky) exp (ikzz + ikxx+ ikyy), the propagating waves
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are bound to obey the relation that k2
x + k2

y ≤ k2
0, so that λ/2 constitutes the lower

limit to spatial resolution (in air). In turn, this limit is absent in the KG regime,
where the relative sign of the Laplacian term flips. We note that in the simplified
paraxial case, both anti-diffraction of Eq. (7.18) and diffraction of Eq.(7.1) can
be formally unified into a single description considering the effective permittivity
εm = εr/(1−

(
L
λ

)2
), that reduces to the standard definition of the relative dielectric

permittivity at optical frequencies εm = εr = n2 (µ = µ0) for L� λ. When εm < 0
beams do not have an "uncertainty" diffraction relation that fixes the minimum
beam angular spread ∆θ for a given beam size w0 and the gaussian beam naturally
converges. In distinction to linear response theory, εm is not the real part of a
complex response function: it is a product of photorefraction and nonlinear beam
propagation.

7.3.2 Sub-micrometer-sized propagating beams

Anti-diffraction of subwavelength beams is observed with setup and methods in close
analogy with the non-paraxial scale-free and paraxial anti-diffraction experiments
(section 7.1.2 and 7.2.2). Specifically, the peak value of L/λ depends on the thermal
history of dipolar glass and is transient, so that when the appropriate shock is
enacted, the KG regime emerges with its negative effective permittivity εm. The
strong susceptibility and its associated large value of L/λ appears only if the thermal
shocks are larger than a threshold amplitude ∆T . We launch a laser beam exiting a
saturated high-aperture microscope objective, as reported in Fig. 7.7. The knife-edge
super-resolution technique used to detect the non-paraxial beam width is illustrated
in Fig. 7.7(a). After the thermal shock, a non-paraxial propagation emerges with
the ultra-tight input w0 = 1.5µm spot (Fig.7.7(b)) shrinking to 1.3µm after a 3mm
propagation (Fig. 7.7(c)), amounting to 134 diffraction (Rayleigh) lengths. When
no thermal shock is enacted, the beam engulfs the entire sample, illuminating it (Fig.
7.7(d)). In the anti-diffracting case, we observe the narrowest propagating visible
light beam hereto reported. To violate the limits of diffractive optics on spot size
during propagation, we experimented with even narrower input launch beams using
a fully illuminated long-working-distance dry objective (NA = 0.8). As reported in
Fig. 7.8, the subwavelength beam input of 0.49µm shrinks to 0.28µm as it leaves
the sample output facet, below the λ/2 = (0.633/2)µm = 0.32µm limit, but still
above the limit where the KG equation breaks down at w0 ' 0.1µm, for L/λ ' 1.1
(Eq. (7.18)). For the Lz ' 3mm distance, w0 = 0.49 µm, n = 2.2, at λ = 0.633µm,
this corresponds to approximately 1150 Rayleigh lengths of propagation, where
the Rayleigh length LD = nw2

0π/λ ' 2.62µm. These beam obeys to the KG
equation, so that light spots shrink as they propagate, irrespective of their intensity
[89]. In distinction to previously demonstrated subwavelength focusing [205], this
occurs for a propagation up to several millimeters, with a strong violation of the
width/depth-of-focus constraint of diffractive optics. To place our study in context,
we note that the laws of optical propagation are also strongly modified to lead
to anti-diffractive regimes in nano-fabricated metamaterials [213, 101, 251, 227].
In comparison, our solution does not fundamentally involve wavelength-selectivity,
directionality, resonances and absorption.
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Figure 7.7. Micron-sized anti-diffractive light beams. (a) Schematic of experimental
setup and image of transmitted light with the knife-edge in proximity of the output
beam, showing the effect (an illuminated background) of the knife-edge that is placed
directly onto the output crystal facet (at a distance below the diffraction length estimate
' 22µm). (b) (Top) Input intensity distribution as collected by the on axis CCD
camera through the collecting lens (NA'0.35) and (Bottom) high-resolution detection
of the input beam size through the knife-edge technique that provides an input width
of 1.5µm. (c) Output beam characterization after an above-threshold thermal shock at
the operating temperature TB (L/λ > 1): (Top) transverse intensity distribution and
(Bottom) the super-resolved output intensity spot of 1.3µm. Note the difference in the
shape tails of the detected beam, as also testified by the behavior in the knife-edge data,
compared to the input. (d) Output for L/λ� 1: (Top) output intensity distribution
and (Bottom) photograph of the crystal showing how the beam can fill the entire sample
as it diffracts (From [89]).
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Figure 7.8. Reaching below the limits of diffractive optics. (a) Input beam intensity
distribution of width 0.49µm that (b) shrinks to 0.28µm at the output facet and (c)
begins relaxing to once again weakly diffracting spot as time passes. (d) Super-resolved
knife-edge calibration of the input and (e) output beam. Crosshairs serve to identify the
0.75 and 0.25 transmitted power ratios, so that w0 =

√
2d. (f) Top-view image of the

long-working distance objective and KLTN sample. (From [89]).
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Chapter 8

Negative mass dynamics from
nonlinearity

Anti-diffracting beams are investigated in the presence of an optical potential well.
With this study we propose and provide experimental evidence of a mechanism
able to support negative intrinsic effective mass [94]. In fact, exploiting the change
of the sign in the leading propagation equation discussed in Chapter 7, we report
intrinsic negative mass dynamics for light beams in a ferroelectric crystal waveguide,
where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger
Equation. The signature of inverted dynamics is the observation of beams repelled
from strongly the guiding integrated structure irrespective of wavelength, specific
direction or energy, thus suggesting shape-sensitive nonlinearity as a basic mechanism
leading to intrinsic negative mass.

8.1 Negative-mass Schrödinger equation

Negative mass particles should be repelled from attractive potentials and attracted
from repelling ones. With a mass m < 0, the particle subject to a potential U suffers
a force F = −∇U but manifests the inverted acceleration a = ∇U/|m| (Fig. 8.1).
Although all known particles have a positive or zero mass, conditions can be found
in which the interaction of a particle with its environment leads to an effective mass
m∗ 6= m that can, in precise conditions, also be negative. To date, m∗ < 0 has been
demonstrated in periodic systems [171, 238, 303, 29, 105, 255], where the periodicity
in the ε(k) band structure causes there to be a finite region of wave-vectors for
which the Bloch-modes have a constant negative d2ε/dk2 < 0 and with it, a behavior
described by a negative effective mass m∗ = ~2(d2ε/dk2)−1 < 0. Intuitively, internal
components move out-of-phase with respect to the global resonance of the system
and lead to a negative momentum response for a positive-momentum excitation [297].
Negative mass in these periodic systems is not intrinsic to the particle or wave, but
only occurs for precise wavevectors at the edge of the Brillouin zone. It is important
to note that, at present, no mechanism has been proposed and demonstrated able
to support negative mass as a property of a localized wave with inverted dynamics
irrespective of particle energy or wavevector.
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Figure 8.1. Intrinsic inverted dynamics and a negative-mass Schrödinger Equation (SE).
(Left) In contrast to a positive mass particle (lightly-shaded sphere), a negative mass
particle (dark sphere) will be attracted by a repelling potential and repelled by a binding
one. (Right) A propagating light beam described by a positive-mass SE (bright beam)
will be guided by an integrated waveguide whereas a negative-mass light beam (dark
beam) will be repelled by it and scattered into the bulk of the substrate. (From [94]).

Consider the Schrödinger equation (SE)

(i∂t + (~/2m)∇2)ψ = (V/~)ψ, (8.1)

where m > 0. As an axiom, the SE is linear, but assume that there is some
mechanism that violates this linearity so that, in general, the potential has two
components, V + Vnl, with V just a standard potential and Vnl a specific form of
self-action. Indeed, although nonlinearity is absent in quantum mechanics, it is
naturally built into the Einstein equations for which negative mass may have some
important role. If Vnl is a small local perturbation associated to |ψ|2, such as a Kerr
effect with Vnl ∝ |ψ|2, the SE turns into a Nonlinear Schrodinger Equation (NLSE)
for which no negative mass dynamics emerges. Nonlinearity, in turn, can take many
forms and also be nonlocal, involving integrals and derivatives of |ψ|2. If self-action
is approximated by Vnlψ ' (~/2m′)∇2ψ, then this will radically transform Eq. (8.1)
into

(i∂t + (~/2m∗)∇2)ψ = (V/~)ψ, (8.2)

that, whenm′ < m, corresponds to a negative mass SE withm∗ = mm′/(m′−m) < 0.
On the other hand, the paraxial wave equation

(i∂z + (1/2k)∇2
⊥)A = −(k∆n/n)A, (8.3)

maps into the (2+1)D version of the SE of Eq. (8.1) for t ≡ z/c, ψ ≡ A, m∗ ≡ ~k/c
and V ≡ −~c(k∆n/n). Hence, the causal relationship between the index of refraction
pattern and the paraxial propagation of a light beam is equivalent to that of a
particle with finite energy in an appropriate potential. In other words, although
photons have no mass, the description of a light field inside an inhomogeneous
transparent material naturally leads to the introduction of m∗ 6= 0. In the present
case, the index modulation has two distinct components, ∆n = δnnl + δn, where
δnnl is the diffusive nonlinear response caused by the propagating light, and δn(r)
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Figure 8.2. Nonlinear beam dynamics in a slab waveguide: experimental setup, materials
and protocol. (a) A laser beam is launched into the KLTN waveguide and imaged on a
CCD using lenses L1-L4 (L4 has NA' 0.35). (b) Waveguide index profile for 532nm.
(c) Typical graded waveguide output intensity distribution for an expanded plane-wave
input. (d-g) Input and diffraction intensity distribution pattern in the bulk crystal and
in the waveguide (L/λ ' 0). At a constant TA = 303K, the 100µW input beam (waist
w0x ∼ w0y = 8µm) (d) diffracts to 22µm (e) after propagating a distance of Lz ' 2.4mm
through the bulk crystal. In the waveguide, the input beam (f) diffracts to w0x = 9.8
and w0y = 31.7µm (g). (h) Supercooling protocol T (t) to achieve L/λ > 1. (From [94]).

is the index modulation of the fabricated slab waveguide acting as a fixed potential
well. The propagation equation reads(

i∂z + 1
2k∇

2
⊥

)
A = −kδn

n0
A+ 1

2k
L2

4λ2

(∇⊥I
I

)2
A, (8.4)

where L = 4πn2ε0
√
gχPNR(kBT/q), that, for gaussian-like beams, is well approxi-

mated by the linear wave equation

(i∂z + (1/2k)(1− L2/λ2)∇2
⊥)A = −(kδn/n)A. (8.5)

For L > λ Eq. (8.5) maps to the (2+1)D version of the SE of Eq. (8.2) with

m∗ = −~k
c

1
L2

λ2 − 1
< 0. (8.6)

The m∗ < 0 regime is here a product of nonlinearity, is localized around the beam,
and is not limited to specific wavelengths, directions, or resonances of the system.
We note that the passage from the nonlinear Eq. (8.4) to the linear Eq. (8.5) is
rigorously valid only for gaussian beams for which the peak intensity factors out of
the term (∇⊥I/I). Consistently, even though beams may be spreading or becoming
tighter during propagation, they will have only one specific value of m∗ (as per Eq.
(8.6)). Since the passage to Eq. (8.5) is valid for gaussian beam shapes, it follows
that the effective negative mass will arise only if the δn is comparable or larger to
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the gaussian beam itself. Fabricated waveguides considerably smaller than the beam
waist will correspond to a potential well as in Fig. 8.1 that is smaller than the size
of the particle itself and not necessarily lead to inverted dynamics. A flag to this
spatial requirement is that Eq. (8.4) is spatially nonlocal whereas Eq. (8.5) is not.

8.2 Observation of inverted light dynamics

8.2.1 Experiments in a ferroelectric slab waveguide

We carry out experiments with the setup illustrated in Fig. 8.2(a). An x-polarized
TEM00 beam from a He-Ne laser with (λ1 = 633nm) or from a doubled Nd:YAG
laser (λ2 = 532nm) is first expanded and subsequently focused down onto the
input facet of a sample of potassium-lithium-tantalate-niobate doped with copper
(KLTN:Cu) crystal with a layer of He+ ions implanted beneath its surface. Its
composition is determined by electron micro-probe analysis and is found to be
K0.985Li0.015Ta0.63Nb0.37O3. The copper concentration is determined by Inductively
Coupled Plasma (ICP) mass spectrometry and is found to be 68ppm (in weight). A
sample of 3.9(x) × 0.9(y) × 2.4(z) mm3 in size is cut along the [001] crystallographic
axis. The ferroelectric phase transition of the sample is derived from dielectric
measurements, and is found to be at TC = 285K. At the operating temperature
range of 286K−305K the sample maintains high optical quality with refractive index
of n = 2.3, and quadratic electro-optic coefficient g = 0.14m4C−2. The He+ ions
are implanted at 2.3MeV with fluence of 0.8 · 1016ions/cm2 which yields a partially
amorphous layer with refractive index distribution as presented in Fig. 8.2(b) [127].
This forms a slab waveguide between the surface of the sample and the implanted
layer that acts as the cladding [126]. The transverse intensity distribution of the
beam is imaged using a CCD camera through the imaging lens. The diffraction
pattern at the output facet of the crystal L/λ ' 0, in the bulk and in the slab
waveguide respectively, is shown in Fig. 8.2(d-g). In Fig. 8.2(h) we report the
thermal shock protocol T (t) near the peak in the dielectric response at Tm = 287.5K
that allows a transient L/λ > 1. The sample is cooled from TA = 303K at the rate
of 0.06K/s to a temperature TD = 287K and it is then reheated at a rate of 0.1K/s
to the operating temperature (> TD) TB = 290K. Once TB is reached and the
temperature cycle T (t) is complete, we switch on the laser beam, recording front
view images of the intensity distribution.

In Fig. 8.3(a) we report the basic signature of intrinsic negative mass SE
dynamics: a beam expelled from the fabricated waveguide and scattered into the
substrate. The beam is launched into the waveguide at t = 0 after the sample
has undergone supercooling (the T (t) in Fig. 8.2(h)). It is first observed to focus
down, anti-diffract, and then suffer a strong repulsion, when it is scattered into
the metastable bulk. Ultimately, the beam is observed to relax back into a linear
diffraction, diffracting in the x-direction and guided in the y. The sequence of
events is further detailed in Fig. 8.3(b), where the beam peak intensity is plotted
versus time. For comparison, we include the same curve when the same beam is
launched into the bulk of the substrate. In the slab the beam suffers a transient
scattering, whereas in the bulk it suffers anti-diffraction dynamics. The connection
between this transient repulsion from the waveguide and the change in sign of the
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Figure 8.3. Observation of inverted dynamics: a fabricated waveguide repels light as
it acquires an intrinsic negative mass. (a) Time sequence of the output intensity
distributions for λ1 = 633nm. (b) Comparison between the maximum peak intensity of
the beam in the waveguide and in the bulk during the transient. (c) Time dependence
of the L/λ in bulk. (d-e) Transient anti-diffraction in the waveguide: the input beam
(waist w0x = 9.9µm, w0y = 9.3µm) (d) and the output beam (minimum w0x = 6.8µm,
w0y = 7.1µm, L/λ ' 1.05) during the aftershock (e).(From [94]).

beam mass in the equivalent SE is investigated in Fig. 8.3(c). Using the bulk
anti-diffraction and the analytical anti-diffraction theory, L/λ as a function of time
is evaluated. As expected, the instants of time during which the dipolar relaxation
leads to L/λ > 1 coincide with the repulsive regime. In other words, the behavior
of the light beam is drastically different between the guided and bulk conditions,
as shown in Fig. 8.3(b), in one case leading to a strong repulsion and scattering,
in the other to strong spatial localization. The intensity distribution of input and
anti-diffracting light corresponding to the L/λ > 1 stage before light is repelled by
the waveguide is reported in Fig. 8.3(b-e). To validate the negative mass SE model
of Eq. (8.5) we repeated experiments for different intensities. The strong transient
response reported in Figs. 8.3 and 8.4 has a characteristic response time of tens of
seconds. Experiments using beams with different powers (10, 20, 40, 80, 100µW ) lead
to similar results and time scales. This approximate intensity-independent nature of
the phenomenon is compatible with the overall effective linear nature of the effect as
described in Eq. (8.2). Weak dependence of time scales on peak intensity indicates
that even in this case time dynamics are principally associated to the relaxation of
the metastable state of the material, while the photorefractive build-up is relatively
faster and the space-charge field can be considered at all times at steady state. The
value of the L parameter is always estimated by measuring the output and input
waist ratio. To prove the effect is not limited to a specific region of wavevectors, in
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Figure 8.4. Negative mass dynamics for λ2 = 532nm. (a) Time sequence of the output
intensity distribution. (b) Maximum beam peak intensity in the waveguide during
the transient. (c-d) Anti-diffraction in the waveguide: (c) the input beam (waist
w0x = 6.8µm, w0y = 9.9µm) and (d) the output beam during the aftershock (minimum
beam width w0x = 7.1µm, w0y = 5.6µm, L/λ ' 1.04). (e) Maximum beam peak
intensity of the output beam during the transient. (From [94]).

Fig. 8.4 we report beam repulsion for λ = 532nm. The effect is analogous to the
previous one, even though the details of the time evolution vary for each thermal
shock, and only an average relaxation has a precise dynamical meaning. Specifically,
the estimated value of L/λ for the two cases is comparable even though the thermal
shock is the same and the wavelengths are different. Fluctuations are further exalted
during the transition from the diffractive positive mass SE to the anti-diffractive
negative mass SE, as the waveguide goes from being guiding to anti-guiding and
allows light to explore its surroundings. An interesting difference in the dynamics
of Fig. 8.3 and Fig. 8.4 is that the shorter wavelength case manifests a second
focused stage reported in Fig. 8.4(e), displaced outside the original waveguide,
where no second peak is found (Fig. 8.4(b)). Precisely, the second peak is displaced
approximately 4µm in the y-direction, inside the amorphous region (see Fig. 8.4(b)).
This may indicates that the antiguiding amorphous layer becomes guiding in the
negative effective mass regime. Unfortunately, the amorphous layer is only ' 1µm
wide and its effect on the beam cannot be fully described by the passage from Eq.
(8.4) to Eq. (8.5). Congruently, for the longer wavelength cases, no analogous effect
is observed.

8.2.2 Numerical results

Numerical simulations of the stationary full-nonlinear Eq. 8.4 are performed to
validate the effective linear SE behavior and the experimentally observed negative
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inverted dynamics and PBulk/PSlab > 1. (e) Dependence of inverted dynamics on
beam shape: the PBulk/PSlab ratio for ever more distorted and squared-off gaussian
inputs (exp [−(x2 + y2)/w2

0)− a(x4 + y4)/w4
0], w0 is the input beam width), showing

the breakdown of the effective linear Eq. 8.5 for squared field distributions. (From [94]).

mass dynamics. We use a split-step Fourier method with parameters matching our
experimental conditions and the slab-waveguide profile. To avoid discontinuities
of the linear refractive index, the interface air/crystal is slightly softened in the
numerical modelling. Results well agree with our observations and are reported in
Fig. 8.5. They allow us to inspect the details of the propagation during evolution
(Fig. 8.5(a-d)) that cannot be directly detected optically and the resilience of the
effect on distortions in the input gaussian beam shape (Fig. 8.5(e)). In particular,
a continuous transition from positive to negative-mass dynamics is reproduced as
a function of (L/λ), with the expulsion of the beam from the waveguide to the
substrate for (L/λ) > 1 that well fits experimental observation. We note that this
expulsion is fundamentally different respect to the phenomenon of soliton ejection
and tunneling from a potential, where the refractive-index well is modified by
the nonlinear dynamics [169, 26, 212]. In our present phenomenon, no available
nonlinearity could even marginally modify the huge fabricated index modulation
(index modulations up to δn ' 0.15), and expulsion is a consequence of a change
in the sign of the effective-mass of the light beam. A similar negative-mass SE has
been recently predicted in hyperbolic materials as a result of hyperbolic dispersion
[16].
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Conclusions

We have reported several new phenomena in nonlinear optics arising from the
interplay of disordered ferroelectrics and nonlinear wave propagation. In particular,
exploiting the unique photorefractive properties of critical states in proximity of
the ferroelectric phase transition, we have opened important routes to study spatial
dynamics of optical waves in regimes ruled by instabilities and stochastic features.
The appearance of abnormal waves, an open issue common to different noisy nonlinear
systems from hydrodynamics to acoustics, has been experimentally discovered in
spatial wave propagation in optical crystals. A deep investigation of the phenomenon,
aimed at clarifying extreme waveform properties and the role of scales in their
formation, have allowed us to understand the origin of rogue waves in our system
in terms of chaotic spatiotemporal soliton dynamics in saturable nonlinearities.
This dynamics is observed as the unstable optical flow undergoes a transition to
optical turbulence, corresponding to loss of coherence of the propagating field.
In this respect, our results introduces a new and rich experimental setting for
the study of wave turbulence in conditions dominated by large fluctuations and
extreme nonlinearity. Using extreme material responses, we demonstrate how a giant
diffusive photorefractive nonlinearity can lead to the overcoming of the diffractive
limit of waves, with diffraction cancellation and anti-diffraction of light up to
subwavelength propagation regimes. These results, closely connected to effects
typical of metamaterials, profoundly impact imaging and super-resolution techniques
and allow experimental access to fundamental physical problems. In fact, we discover
how nonlinearity can modify the nature of the underlying wave equation leading to
a negative mass dynamics, where the optical wavefunction escapes from a trapping
potential independently of its wavevector and energy. These findings have been
accompanied by electro-optical results shedding new light on the condensed matter
physics of disordered perovskites, such as properties of their ferroelectric phase-
transition, complex dielectric relaxation and dipolar states. We have reported an
anomalous electro-optic effect having its signature in local symmetry-breaking and,
above all, the observation a new ordered ferroelectric phase characterized by polar
domains forming spontaneously a coherent and macroscopic crystalline structure.
Our results further point out how the meeting between nonlinear optical waves and
disordered ferroelectric represent a system that, together with the possibility of
new optical and electronics technological functionalities, includes fundamental and
general physics yet to be explored from optics, nonlinear dynamics and condensed
matter to many other research fields.
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