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A catalase-based (NAF/MWCNTs) nanocomposite filmmodified glassy carbon electrode for hydrogen peroxide (H2O2) detection
was developed.The developed biosensor was characterized in terms of its bioelectrochemical properties. Cyclic voltammetry (CV)
technique was employed to study the redox features of the enzyme in the absence and in the presence of nanomaterials dispersed
in Nafion� polymeric solution. The electron transfer coefficient, 𝛼, and the electron transfer rate constant, 𝑘𝑠, were found to be
0.42 and 1.71 s−1, at pH 7.0, respectively. Subsequently, the same modification steps were applied to mesoporous graphite screen-
printed electrodes. Also, these electrodes were characterized in terms of their main electrochemical and kinetic parameters. The
biosensor performances improved considerably after modification with nanomaterials. Moreover, the association of Nafion with
carbon nanotubes retained the biological activity of the redox protein. The enzyme electrode response was linear in the range 2.5–
1150𝜇mol L−1, with LODof 0.83 𝜇mol L−1. From the experimental data, we can assess the possibility of using themodified biosensor
as a useful tool for H2O2 determination in packaged beverages.

1. Introduction

In recent years, many researchers focused their activity on
developing new tools to detect H2O2, not only as an oxidases
reaction byproduct but also as a conservative compound
in food and drugs [1, 2]. Indeed, hydrogen peroxide finds
significant employment in industrial processes as an oxidant
[3]: in particular, hydrogen peroxide is released into the
environment in either small or large amounts, since it is
used as oxidant, whitening, or sterilant tool in packaging
materials owing to its sporicidal and bactericidal features
[4–6]. Nevertheless, high H2O2 concentrations would be
dangerous for human beings [7–10].

Several analytic methods as chemiluminescence [11–17],
photometry [18], fluorimetry [19–21], titrimetry [22, 23],
spectrophotometry [23–26], high-performance liquid chro-
matography (HPLC) [27], and especially electrochemistry [3,
28–37] are reported in the literature for detection of hydrogen
peroxide.

The electrochemical techniques provide some interesting
advantages in comparison to the other onesmentioned above
like fast, specific, and cheapmonitoring of hydrogen peroxide
[37–43]. The direct reduction of H2O2at a bare sensor is
not suitable for analytical measures due to its slow kinetics
and high potentials required for redox reactions [44]. To
overcome these problems, several modified electrochemical
sensorswere developed. Electrochemical biosensors based on
the biocatalytic activity of immobilized enzymes towards the
substrate H2O2are helpful because of their high sensitivity,
selectivity, and ease of use [45, 46]. Some authors, in the
recent years, have applied different modified biosensors,
based on various redox proteins, to realize interesting tools
for the monitoring of H2O2 [45, 47–55].

Catalase (CAT) belongs to oxidoreductase family class
and has a heme prosthetic group at its active site with ferric
ion (Fe(III)) [48, 50, 56–59]. The catalytic ability of CAT
to reduce hydrogen peroxide was used in the developing of
biosensors [50, 56, 60]. To investigate CAT catalytic activity,
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it is important to study its capacity to perform direct electron
transfer (DET) to the electrode surface. It is usually difficult
to observe the DET because the heme groups are buried
deeply inside in the large structure of the protein [61, 62].
Also, denaturation of the redox protein could occur on
the sensor surface due to the immobilization method and
to the matrix composition. To overcome these problems
and promote the DET carbon nanotubes (CNTs), modified
electrodes are widely employed as support for the physical
immobilization of biological molecules to promote the DET
thanks to their high surface/volume ratio and conductivity
and also to enhance sensors and biosensors performances
[63–67]. A drawback on the use of CNTs to modify electrode
surface is their insolubility [68, 69]. However, some authors
have obtained good results in the CNTs modification of the
electrode surface by using polymers as dispersing support
[70, 71]. Nafion is a perfluorinated polymer resistant to
chemical attack and the CNTs dispersion in its film has been
investigated [72–74].

In the present study, we report the development of a
biosensor for H2O2monitoring based on the immobilization
of catalase in a Nafion film containing dispersed function-
alized MWCNTs-COOH. The Nafion film ensures efficient
immobilization of the protein in its native configuration.
The DET of catalase was investigated either on modified
or on bare electrode to identify the optimal conditions for
H2O2 detection. In view of the possible practical application,
the same modification steps were performed on screen-
printed electrodes (SPEs) with a working electrode based
on mesoporous graphite (MG-SPE). Finally, the obtained
biosensor was applied for the determination of hydrogen
peroxide in beverages samples.

2. Experimental

2.1. Materials and Reagents. Catalase from bovine liver (CAT,
EC 1.11.1.6, activity ≥ 10,000Umg−1 protein) was sup-
plied by Sigma-Aldrich (Switzerland) and stored at −20∘C.
All chemicals used were of analytical grade. In particu-
lar, Na2HPO4, NaH2PO4, HOC(COOH)(CH2COOH)2, KCl,
(K3[Fe(CN)6]), Nafion 117 solution (NAF, purum, ∼5% solu-
tion in a mixture of lower aliphatic alcohols and water),
CH3CH2OH (∼96% v/v), and H2O2 (30wt.% in H2O) were
purchased from Sigma-Aldrich (Switzerland). High purity
deionized water (resistance: 18.2MΩ × cm at 25∘C; TOC:
<10 𝜇g L−1) obtained from aMillipore Direct-Q 3 UV system
(France) was used throughout the experiments. The working
solutions were prepared by diluting the stock solution with
0.1mol L−1 phosphate buffer solution and 0.1mol L−1 KCl, pH
7.0 (PBS buffer solution), and then deoxygenated by bubbling
N2for about 20min. Multiwalled carbon nanotubes modified
with carboxylic groups (MWCNTs-COOH) were obtained
from DropSens (Spain).

2.2. ElectrochemicalMeasurements. All electrochemicalmea-
surements were performed with 𝜇-Autolab type III poten-
tiostat (EcoChemie, Netherlands) controlled using the GPES

Manager program (EcoChemie, Netherlands) at room tem-
perature in N2 atmosphere. Batch electrochemical experi-
ments were performed in a 5mL thermostated glass cell
(model 6.1415.150, Metrohm, Switzerland) containing PBS
buffer solution, with a conventional three-electrode system.
Different working electrodes were used, in particular glassy
carbon electrode (GCE, cat. 6.1204.300, Metrohm, Switzer-
land, 𝜙 = 3mm) and a mesoporous graphite screen-printed
electrode (MG-SPE, model DRP-110MC, 𝜙 = 4mm, Drop-
Sens, Spain). A saturated calomel electrode (SCE, cat.
303/SCG/12, Amel Instruments, Italy) as the reference elec-
trode and a carbon rod (cat. 6.1248.040, Metrohm, Switzer-
land) as the counter one were employed. For SPEs, the
counter electrodewas carbon and the reference onewas silver,
respectively. All the reported potentials are referred to as
saturated calomel electrode (𝐸 = 0.241V versus NHE). All
pH measures were performed using a digital pH meter (827
pH lab, Metrohm, Italy). The morphology of the samples
was observed using high-resolution field emission scanning
electron microscopy (HR FESEM, Zeiss Auriga Microscopy)
equipped withMicroanalysis EDS ≤ 123 Mn-K𝛼 eV (Bruker).

2.3. Procedures. The GCE surface was polished with 0.3 and
0.05 𝜇m alumina slurry on polishing silk cloth (SIEM, Italy)
and rinsed with deionized water. Then, the electrode was
sonicated in deionizedwater to remove trace of alumina from
the surface (Sonicator AU-32, ArgoLab, Italy).

The physical immobilization of the enzyme was realized
by dropping onto the working electrode surface 2 𝜇L of 0.5
wt.% Nafion solution containing 1mgmL−1 of redox protein
either in the presence or in the absence of 1mgmL−1 of
MWCNTs-COOH.The electrode surfacewas finally air-dried
for about 20min at room temperature. The biosensors were
stored in PBS buffer solution at 4∘C before use.

The analysis protocol of real beverages is described as
follows: 2.5mL of different beverages sample was diluted to
10mL with PBS buffer solution. Then, a certain amount of
H2O2 (15 𝜇mol L−1) was added and the solutions were deoxy-
genated. Then, the samples were analyzed directly by cyclic
voltammetry (CV) method and finally the recoveries were
evaluated. For the study of pH dependance, the McIlvaine
buffer was used at different pH values.

3. Results and Discussion

3.1. Electrochemical Characterization of Glassy Carbon Elec-
trode after Steps of Modification. The effect on the improve-
ment of electrochemical performances by using nanomateri-
als as MWCNTs-COOH was evaluated with cyclic voltam-
metry measurements of the electroactive area (𝐴𝑒) and of
the heterogeneous standard rate constant (𝑘0) of the different
electrodes. The cyclic voltammograms (not shown) were
recorded in a solution of 1. 1mmol L−1 potassium ferricyanide
in PBS buffer solution.𝐴𝑒 was determined from the Randles-
Sevčik equation: 𝐼𝑝 = 2.686 × 10

5𝑛3/2𝐴𝑒𝐷
1/2𝐶V1/2 [95],

where 𝐼𝑝 is current in amps (A), 𝑛 is number of electrons
transferred of K3[Fe(CN)6] by cyclic voltammetry (CV) in
the redox event (usually 1),𝐴𝑒 is electroactive area (cm

2),𝐷 is
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Figure 1: CVs for NAF-GCE-CAT (a) and NAF-MWCNTs-COOH-GCE-CAT (b) at different scan rates (10–500mV s−1) in deoxygenated
PBS buffer solution.

Table 1: Electroactive area and heterogeneous standard rate con-
stant of bare sensor and after modification steps.

Sensor 𝐴 𝑒/mm2 𝑘0 × 10−4/cm s−1

Bare-GCE 4.89 9.3
NAF-GCE 2.16 6.5
NAF-MWCNTs-COOH-GCE 16.42 13.5

diffusion coefficient (7.6 × 10−6 cm2 s−1), 𝐶 is concentration
(mol cm−1), and V is scan rate (Vs−1). 𝑘0 was calculated by
an extended method [96], a combination of Nicholson [97]
and Klingler and Kochi treatments [98], by CV data using
the same solution described above, in the scan rate range 5–
100mV s−1.

By comparing the results (see Table 1) arising from the
several modification steps of the sensor, two aspects can
be pointed out: (i) the parameters obtained for the Nafion
modified sensor (NAF-GCE) are lower than both the bare
sensor (bare-GCE) and the nanomaterial modified sensor
(NAF-MWCNTs-COOH-GCE): presumably, this is due to
the Nafion film that hinders the charge transfer and slows
down the substrate rate towards the sensor surface; (ii) the
use of carbon nanotubes enhances hugely the electrochemical
signal increasing 𝐴𝑒 (about 4 and 8 times compared to the
bare-GCE and NAF-GCE, resp.) and improves 𝑘0 of the
ferricyanide ion towards the sensor surface despite the ion
exchange polymer presence (about 1.5 and 2 times compared
to the bare-GCE andNAF-GCE, resp.): this could be ascribed
to their excellent properties of increasing area/volume ratio
and high electron conductivity and of facilitating the electron
transfer [99–104]. The association of these nanomaterials
with Nafion (as solubilizing agent) does not impair the
electrocatalytic features of carbon nanotubes. This aspect
was also observed in our previous work where the use of
NAF/MWCNTs composite film has greatly increased the
transfer charge rate [105].

3.2. Biosensor Voltammetric Behavior before and after Nano-
material Modification. The comparison of electrocatalytic

performances was evaluated by using catalase as model
redox protein and comparing the voltammetric behavior
(Figures 1(a) and 1(b)) measuring several electrochemical
parameters (see Section 3.4). The catalase was immobilized
by a Nafion film onto the GCE surface, in the absence and
in the presence of MWCNTs-COOH; the electrochemical
behavior of the modified electrodes has been investigated
in N2 saturated PBS buffer solution, using CV. The cyclic
voltammograms were recorded at NAF-GCE-CAT and NAF-
MWCNTs-COOH-GCE-CAT modified GCEs in the poten-
tial range from 0.6V to −0.6V. In the absence of MWCNTs-
COOH, catalase immobilized in a Nafion film onto GCE
surface showed a quasi-reversible signal (see Figure 1(a)) with
a midpoint potential of 𝐸0 = −128mV; the separation of
cathodic and anodic peak potential Δ𝐸𝑝 = 80mV (at scan
rates lower than 100mV s−1) indicated a fast electron transfer
reaction according to the literature [106]. For the other
modified electrode, when the redox protein is in the presence
of carbon nanotubes, CV experiments yielded evidence of
a prominent increase (about 20 times) of faradic current
(Figure 1(b)) and also an enhancement of electron transfer
kinetic was observed at a constant amount of immobilized
protein. In particular, 𝐸0 shifted to a more negative potential
value (−140mV) and Δ𝐸𝑝 was 70mV, assuming that carbon
nanotubes play an important role in the rising of the system
reversibility.

3.3. Study of pH Dependence on the Modified Electrode.
The effect of pH solution on the modified NAF-MWCNTs-
COOH-GCE-CAT electrode was also tested. In Figure 2(a),
the peak currents at different pH values are shown. The
maximum of anodic current occurred at pH 7.0. This value
was consistentwith that reported for catalase enzyme [60, 76–
78]. Based on these results, pH 7.0 for PBS buffer solution
was used as the optimal pH for further experiments. Also,
the influence of pH solution on the oxidation peak potentials
was investigated. The oxidation peak potential was reported
versus solution pH values in the range 3.5–8.0 (Figure 2(b)).
The obtained slope (0.044V) suggests that the reaction at
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Figure 2: The effect of pH on the redox peak currents of NAF-MWCNTs-COOH-GCE-CAT in various buffer solutions with pH values 3.5,
5.5, 6.0, 7.0, 7.5, and 8.0 (a); 𝐸𝑝𝑎 versus pH plot (b).

the electrode surface is accompanied by proton transfer.
The slope value is slightly smaller than Nernst’s value of
0.059V pH−1 for the reaction of one electron coupled to
one proton [76]. This is probably ascribable to the influence
of protonation states of trans ligands of the heme iron and
amino acids around the heme, or the protonation of H2O
molecule coordinated to the coordinated iron [107, 108].

3.4. Cyclic Voltammetric Studies of Direct Electron Transfer of
Catalase before and after Nanomaterial Modification of the
Biosensor. Figure 3(a) shows typical cyclic voltammograms
of NAF-MWCNTs-COOH-GCE-CAT biosensor at different
scan rates (10–1400mV s−1).Thedependence of peak currents
and peak potentials on the scan rate is also observed in
Figures 3(b) and 3(c), respectively. As is obvious from
Figure 3(b), the peak currents change linearly with scan
rate over a range of 10 to 1400mV s−1 (with correlation
coefficients of 0.9924 and 0.9914), as expected for thin
layer electrochemistry [35, 109] and according to a surface-
controlled process. The slope of corresponding log 𝐼𝑝 versus
log V linear plot, with a correlation coefficient of 0.9949, was
found to be 1.115, very close to the theoretical slope 1 for thin
layer voltammetry [109].

The surface concentration of electroactive redox protein
(Γ) can be estimated using Faraday law (see (1)) and calculated
from the slope of peak current/scan rate plot [76, 109]:

Γ =
4𝐼𝑝𝑅𝑇

𝑛2𝐹2𝐴V
, (1)

where V is the scan rate, 𝐴 is the electrode surface area
(0.07 cm2),𝑇 is the temperature, 𝑛 is the number of electrons,
and 𝑅 and 𝐹 are gas and Faraday constants, respectively.
Thus, the average surface concentration Γ of catalase was
found to be 4.76 × 10−10mol cm−2, which indicates that
the immobilized enzyme is in the form of an approximate
monolayer on the surface of the modified electrode [63, 75].

Table 2: Electrochemical parameters for immobilized catalase
either in the absence or in the presence of nanomaterials.

Biosensor 𝐸0/mV 𝛼 𝑘𝑠/s
−1 Γ/mol cm−2

NAF-GCE-CAT −128 0.89 1.03 2.30 × 10−10

NAF-MWCNTs-GCE-
CAT −138 0.38 1.65 3.50 × 10−10

NAF-MWCNTs-
COOH-GCE-CAT −140 0.42 1.71 4.76 × 10−10

Moreover, the peak-to-peak separation at a scan rate
of 10mV s−1 was approximatively 70mV, indicating a quasi-
reversible electron transfer process. Based on the Laviron
theory [109], the transfer coefficient (𝛼) and the electron
transfer rate constant (𝑘𝑠) for immobilized catalase either
in the absence or in the presence of nanomaterials can
be estimated by measuring the variation of peak potential
separation with scan rate (at higher scan rates, as shown in
Figure 3(c)) and reported in Table 2.

Besides, by comparing our proposed biosensor to other
similar ones in the literature [60, 77–83], all based on CAT
modified GCEs by using MWCNTs, it is evident that the
amount of our electroactive catalase is higher, probably due
to the simple NAF/MWCNTs matrix that could increase the
exposure extent of the heme group in the catalase enzyme (see
Table 3). The formal potential 𝐸0 of our biosensor is much
less negative than those proposed by other authors [63, 76–
83, 108, 110]. The formal potential value is dependent on the
protein structure [111, 112], so a change of the heme protein
in the NAF/MWCNTs composite film results in a shift of 𝐸0
to positive potential values. Moreover, partial denaturation
of the enzyme could cause heme leakage and then a negative
shift of the redox peaks (change in the coordination sphere)
[113].



Journal of Analytical Methods in Chemistry 5

1400 mV s−1

10 mV s−1

−200

−150

−100

−50

0

50

100

150

I
(𝜇

A
)

−0.6 −0.4 0.6−0.8 0.2 0.4−0.2 0.0

E (V versus SCE)

(a)

R2 = 0.9924

R2 = 0.9914

200 400 600 800 1000 1200 1400 16000
� (mV s−1)

I p
(𝜇

A
)

−40

−20

0

20

40

60

(b)

R2 = 0.992

R2 = 0.992

y = 0.1199x − 0.0181
E

E y = −0.1467x − 0.2735

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

E
p
(V

 v
er

su
s S

CE
)

−0.3 −0.2 −0.1 0.0 0.1 0.2−0.4
log � (V s−1)

pc

pa

(c)

Figure 3: CVs for NAF-MWCNTs-COOH-GCE-CAT in deoxygenated PBS buffer solution at various scan rates (a). Relationship between
the anodic and cathodic peak currents and scan rates (b). Relationship between peak potential separation and logarithm of scan rates (c).

3.5. Catalytic Activity of Catalase. The voltammetric charac-
terization of the hydrogen peroxide reduction by means of
the developed NAF-MWCNTs-COOH-GCE-CAT biosensor
was performed in PBS buffer solution, at a scan rate of
50mV s−1 (Figure 4(a)).

An increase in the cathodic peak with the hydrogen
peroxide concentration and a decrease in the anodic peak
during the scan reversal have been observed. Conversely, in
the absence of catalase, no current change has been detected
by the NAF-MWCNTs-COOH-GCE electrode. From our
experiments, we confirm the EC mechanism previously
reported in the literature [77, 95]:

Cat-Fe (III) + e− +H+  Cat-Fe (II)H+

at the electrode surface

H2O2 + Cat-Fe (II)H
+ → Cat-Fe (III) +H+ +H2O

in solution

(2)

Figure 4(b) reports the catalytic efficiency (𝐼𝑐/𝐼𝑑) changes
versus H2O2 concentration; 𝐼𝑐 and 𝐼𝑑 are the cathodic peak
currents in the presence and in the absence of hydrogen
peroxide, respectively.

As can be observed, the catalytic efficiency increases with
the H2O2concentration up to 298𝜇M, and then a plateau
is reached. This is probably due to the denaturing effect of
hydrogen peroxide at high concentration values.

Based on these results obtained using a classical GCE
electrode and employing a very simple and easy immobi-
lization procedure, the same modification system has been
developed on screen-printed electrodes in view of a possible
application for determination of hydrogen peroxide in real
samples.

3.6. Morphological Characterization of Screen-Printed Elec-
trodes and Electroanalytical and Kinetic Characterization.
The surface morphology of the modified screen-printed
electrodes (SPEs) was obtained by scanning electronic
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Figure 5: SEM images of electrodes surfaces: MG-SPE bare (a) and NAF-MWCNTs-COOH-MG-SPE modified electrode (b).

Table 3: Comparison of electrochemical parameters of the catalase
modified glassy carbon electrodes by using MWCNTs recently
developed for H2O2 determination.

Catalase modified GCE 𝐸0/mV 𝑘𝑠/s
−1 Γ/mol cm−2 Ref.

[bmim][PF6]-MWCNTs ∼−100a,d 1.95 3.31 × 10−10 [75]
Ionic-liquid-MWCNTs-
NH2

−460a,d 2.23 2.88 × 10−10 [76]

MWCNTs-NF-DTAB −279a,d 10.71 2.6 × 10−11 [77]
CA-MWCNTs −559a,d 1.22 1.49 × 10−10 [78]
PEI-MWCNTs-NF −450a,e 1.05 2.10 × 10−10 [79]
MWCNTs-NF-DDAB −380a,c 11.0 73 × 10−12 [80]
PLL-f-MWCNTs −471a,c 5.48 4.072×10−10 [81]
NAF-MWCNTs-
COOH-CYS-AuNPs −441a,d 8.72 2 × 10−9 [82]

NAF-MWCNTs-
COOH-GCE −140b,d 1.71 4.76 × 10−10 This

work
aVersus Ag/AgCl; bversus SCE; cpH 6.5; dpH 7.0; epH 7.5.

microscopy (SEM). In Figure 5(a), mesoporous graphite SPE
(MG-SPE bare) surface, without modification, is shown.

Figure 5(b) reveals the presence of a cross-linked structure
of multiwalled carbon nanotubes modified with carboxylic
groups dispersed in a Nafion film (NAF-MWCNTs-COOH-
MG-SPE surface). Moreover, the diameter of the carbon nan-
otubes (∼14 nm) is indicated. In the presence of the enzyme,
the highly porous architecture that is formed between the
MWCNTs-COOH and the Nafion film is suitable for immo-
bilization of catalase that is confirmed in the following
electrochemical measures.

Also, electrochemical characterization of these SPEs was
carried out and the results are reported in Table 4. Also,
for these electrodes, the feature of nanomaterials to increase
the sensor performances considerably is confirmed, so the
following studies were performed using the NAF-MWCNTs-
COOH-MG-SPE sensor.

Successively, the main electrochemical parameters of our
proposed biosensor NAF-MWCNTs-COOH-MG-SPE-CAT
were evaluated (see Table 5).

The electrochemical response of the obtained biosen-
sor for different concentrations of H2O2was studied. The
current-concentration dependence of hydrogen peroxide was
modeled by using Michaelis-Menten nonlinear fitting thus
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Table 4: Electroactive area and heterogeneous standard rate constant of bare screen-printed sensor and after the modification step.

Sensor-SPE 𝐴 𝑒/mm2 𝑘0 × 10−4/cm s−1

MG-SPE bare 7.93 16.5
NAF-MWCNTs-COOH-MG-SPE 11.65 30.2

Table 5: Electrochemical parameters for immobilized catalase in the presence of nanomaterials on mesoporous graphite SPE.

Biosensor 𝐸0/mV 𝛼 𝑘𝑠/s
−1 Γ/mol cm−2

NAF-MWCNTs-
COOH-MG-SPE-CAT −254 0.37 0.60 2.87 × 10−10

Table 6: Comparison of analytical and kinetic parameters for H2O2 detection for different redox protein modified electrodes using H2O2 as
substrate.

𝐾𝑀
app, mmol L−1 Slope, 𝜇A𝜇mol−1 L Linear range, 𝜇mol L−1 LOD, 𝜇mol L−1 𝑅 Ref.

0.26 0.0112 0.21–3000 0.08 0.999 [34]
0.21 287.98 10–3200 3.33 0.995 [78]
0.224 0.392 1–3600 0.008 0.998 [81]
— — 200–5000 1.0 0.997 [83]
2.61 — 5–5130 1.7 0.999 [84]
— — 10–1130 0.65 [85]
0.51 369.2 6–1010 0.39 0.996 [86]
51.7 — 0.0067–8000 0.0022 0.998 [87]
— — 9.8–6000 4.9 0.999 [88]
— 0.9103 0.1–100 0.05 0.997 [89]
— 0.61 0.3–1000 0.1 0.999 [88]
0.21 0.0281 1–140 0.93 0.998 [90]
0.29 0.315 50–1800 4.0 0.997 [91]
0.010 1–600 7.3 [92]
0.089 50–135 1.67 [93]
2.81 0.3–600 0.05 [94]
1.5 0.38 2.5–1150 0.83 0.999 This work

allowing the calculation of the main kinetic parameters; data
obtained are reported in Table 6. It is clear that the biosensor
has a good LOD of 0.83 𝜇mol L−1 and a good sensitivity
to determine H2O2concentrations. Moreover, a comparison
of analytical and kinetic parameters for H2O2detection for
different redox protein modified electrodes is summarized in
Table 6 [34, 81, 83, 85–94, 110, 114].

Also, the reproducibility of the developed biosensor was
calculated as RSD = 5.0% by using 500 𝜇mol L−1 H2O2 in a
series of six experiments. By the data achieved, the following
can be assessed: (i) the immobilized enzyme retained good
biocatalytic activity; (ii) the carbon nanotubes dispersed in
the Nafion film provided an optimal microenvironment;
(iii) the nanocomposite was a good matrix for catalase
immobilization and biosensing preparation; (iv) the redox
protein maintained active site accessibility and exchanged
electrons with the sensor surface. This platform was applied
for H2O2 sensing in real samples.

3.7. Determination of H2O2 in Beverages. Based on the results
declared in the previous sections and in order to test the

reliability of the proposed biosensor for practical application,
different commercial beverages were chosen (tea, juice, and
milk). Every sample was pretreated as reported in Section 2.3.
The concentration of 15𝜇mol L−1 was chosen because an
FDA regulation currently limits residual H2O2 to 0.05 ppm
(corresponding to 15 𝜇mol L−1), leached into distilled water,
in finished food packages [115]. The results show good
recoveries, in the range 100.3–105.7%, for our modified NAF-
MWCNTs-COOH-MG-SPE-CAT biosensor (Table 7).

3.8. Stability of NAF-MWCNTs-COOH-MG-SPE-CAT Bio-
sensor. The shelf lifetime of our modified biosensor was
tested by measuring its current response obtained for
500𝜇mol L−1 H2O2 concentration during a period of 21 days.
The biosensor was stored in PBS buffer solution at 4∘C before
and after use. During the first week, a 4% decrease was
observed, reaching a 15% decrease after three weeks. This
result can be ascribable to the presence of the nanomaterials,
which avoid the fouling phenomena of the surface which
could affect the biosensor performances, and also the use
of NAF/MWCNTs composite film provides a strong and
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Table 7: Determination of H2O2 in several commercial beverages,
spiked with H2O2 15 𝜇mol L−1, using NAF-MWCNTs-COOH-MG-
SPE-CAT as biosensor.

Beverages samples Found/𝜇mol L−1 Recovery %
Peach tea 15.9 105.7
Lemon tea 15.3 102.3
Green tea 14.8 101.0
Apple juice 14.9 100.3
Blood orange juice 15.7 104.8
Pineapple juice 14.7 102.0
Lactose-free milk 15.6 103.8

biocompatible microenvironment for stabilizing the catalase
activity.

4. Conclusion

In this study, an electrochemical biosensor was developed
for the determination of hydrogen peroxide concentration
in packaged beverages. To this aim, direct electrochemical
properties of catalase, confined in aNafion filmon the surface
of a glassy carbon electrode, were studied. The electron
transfer coefficient, 𝛼, the electron transfer rate constant,
𝑘𝑠, and the surface concentration of electroactive redox
protein, Γ, were evaluated by cyclic voltammetry studies. The
modification of the electrode surface by using nanostructured
materials dispersed in Nafion polymeric solution resulted in
an enhancement of the overall bioelectrochemical properties
of the developed biosensor. The biocatalytic activity towards
catalase substrate hydrogen peroxide confirmed that the
immobilization procedure allowed a goodmicroenvironment
for catalase and facilitated the electron exchange to the
electrode surface. Hence, based on these interesting results
obtained, the same modification procedure was applied to
screen-printed electrodes. Also, this platform of themodified
biosensor was entirely characterized and was applied to
detect H2O2 in spiked real samples of different commercial
beverages obtaining good recoveries.
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