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Abstract

Goal of this thesis is the identification of the external force field in the frequency domain
at low and high frequency range.
At low frequency the solution of the investigated problem is carried out by modal anal-
ysis. Input-Output relationship between force and velocity is defined by using the Fre-
quency Response Function (FRF) calculated both by modal expansion and measure-
ments. The identification procedure is performed for deterministic and random loads.
By considering deterministic loads, the solution of this problem is obtained by the in-
version of the FRF, that implies to deal with an ill-conditioning problem.
Since it can be shown that the ill-conditioning of FRF matrix is strictly related to the
selection of the DoF considered on the structure, a procedure to investigate the best
experimental setup that allows to identify the deterministic load is proposed, by using
classical regularization techniques based on the Singular Values Decomposition (SVD).
Then, with the same purpose the relationship between the modes contribute and the
ill-conditioning of the problem is investigated.
Different input-output relationships from that used in the case of deterministic loads
are adopted when random loads are considered. In fact, they are deduced by a prob-
abilistic approach also for the solution of the direct problem. The results obtained by
numerical simulation suggest that the identification of not deterministic loads requires
a different methodology. So, a procedure based on the reduction of ill-conditioning it is
not considered the conclusive approach; hence the issue has been tackled by a different
modal formulation. In a first step the analysis of the coherence function allows to select
the number of applied forces, once the position and the amplitude are identified. The
validation of this proposed technique is tested in different experimental cases: Single
Input Multi Output (SIMO) and Multi Input-Multi Output (MIMO). The numerical
identification of deterministic and random loads is conducted also in the instance in
which the measurement set of points do not overlap the excitation points.
Whilst the first part of the thesis is focused on the identification of deterministic and
random loads at low frequencies, the second part is focused on the identification of
random loads at high frequencies. Let us remind that a high frequency problem is
one in which the wavelength of the waves propagating in the studied media is shorter
than the characteristic dimension of the media itself. Therefore the solution of a high
frequency problem by a classical technique implies the study of a very large number of
degrees of freedom of the model. The consequence is a high computational cost and
large uncertainty on the simulation results. Therefore the problem is tackled by using
the Statistical Energy Analysis (SEA). The identification is performed in two steps. The
first step considers the identification of a ”energy based” model of the structure by using
the Power Injection Method (this technique allows to carry out the SEA parameters of
the structure by experimental tests). The second step is the identification of the power
injected by using the identified model and solving an ”inverse problem” of SEA.
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INTRODUCTION

In several engineering applications the study of the vibration induced by external loads
is fundamental. In fact, the knowledge of the force acting on a structure is basic, for
example, to predict the response of the structure by numerical models (FEM,BEM) and
to design control systems for the reduction of the vibrations either acting directly to
reduce the external force, or as input of the control systems of the structure vibrations.
Frequently the external forces can not be directly measured, so they must be identified
by measurements of the structure response.
Since the identification procedure involves the inversion of the physical-mathematical
model of the structure and the measurements of vibrations, corrupted by noise, the
input of this procedure, the ill-conditioning of the model, is the main obstacle to the
problem solution. Aim of this dissertation is to study how the position and the amplitude
of external forces acting on a structure can be identified bypassing the ill-conditioning of
the problem and its effects on the unpredictability of the load field. With this purpose,
the investigation is focused on a solution of this kind of problem from an operative point
of view.
In the first chapter, after a brief overview on the topic of this thesis, is presented the clas-
sical problem of load identification in frequency domain. The concept of ill-conditioning
is introduced and some different regularization techniques, based on SVD, are proposed.
The second chapter is focused on the study of the relationship between the ill-condition-
ing of the FRF matrix and the degrees of freedom taken into account for a low frequency
problem when the solution of the investigated problem is performed by modal analysis.
This relationship is firstly investigated through a numerical procedure, based on the
singular values decomposition techniques, aimed to identify the optimal experimental
setup to load identification. The results obtained from the numerical FRF are compared
with the results obtained from the experimental one. In the second part of the chapter,
the effect of the reduction of the degrees of freedom of the problem on the identification
of multiple point force is investigated in two different condition: when the response of the
structure is known in correspondence of the excitation points and when it is unknown.
The numerical force identification is carried out for both deterministic and random loads.
The results obtained for not deterministic loads suggest that the reduction of ill- condi-
tioning can not be considered the conclusive approach.
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CONTENTS

Therefore in the third chapter a new operative procedure that allows to identify random
loads is investigated. The procedure is performed in three steps: first the number of
sources is established by an index based on the velocity coherence, then the position
of the applied loads is identified and finally their amplitude. The identification of the
position and the amplitude of the applied loads is carried out by an index named Cvf ,
computed as a virtual coherence between a dummy load, applied numerically on the
structure, and the actual velocity.
The reciprocal of the frequency response function at the identified drive point is com-
puted, so as to withdraw the ill-conditioning effect in correspondence of the identified
position the amplitude of the load.
The identification procedure is conducted by using experimental measurement both for
a single input multi output and for multi input multi output model. The obtained
results confirm that this approach is a valid alternative, when the reduction of the ill-
conditioning of the problem is not enough to obtain meaningful results.
The fourth chapter is focused on the identification at high frequencies. Let us remind that
a high frequency problem happens when the wavelength of the waves propagating into the
studied media is shorter than the characteristic dimension of the media itself. Therefore
the solution of a high frequency problem by a classical technique implies the study of
a very large number of DoFs of the model. The consequence is a high computational
costs and large uncertainty on the simulation results. Therefore, the problem is tackled
using an Energy Based model inspired by Statistical Energy Analysis balance equation.
The procedure is entirely performed in operative conditions and consists of two steps.
The first one is the identification of the energy based model performed by using Power
Injected Method. The second step is the identification of the injected power by using the
power balance equations. The last step is the identification of the power spectral density
of the load by the knowledge of the injected power. In the second part of this chapter
the experimental validation of the identified model and of the identification procedure
are discussed. The results obtained from numerical and experimental tests suggest that
an energetic approach is an interesting tool in the solution of the identification problems
also at low frequency.
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CHAPTER

ONE

FORCE IDENTIFICATION AND CONNECTED ISSUES

In the field of vibroacoustics, two different identification problems can be considered:
the identification of applied loads on the structure by the knowledge of the responses
and of the model, and the identification of the model of the structure by the knowledge
of the applied loads and responses. Both these inverse problems, that sometimes present
the same complexity, are open issues in structural dynamics [1].
By assuming the definition given by Hadamard [2], the inverse problems are ill-posed,
the stability criterion is not satisfied and the solution is not unique. The introduction
of the concept of generalized solution allowed to solve this problem that still remains
ill-conditioned. The nature of ill-conditioning has been investigated by many authors.
Hillary and Ewins investigated the relationship between the resonance frequencies and
ill-conditioning [3], Fabumni established the relation between the force estimation error
and the number of modes that contribute to the FRF at a certain frequency [4].
In the last decades, the external load identification issue was tackled widely, with the
purpose to identify the actual position and the amplitude of external loads. Several
approaches are proposed, some in frequency domain and some in time domain. Guyader
and Pezerat developed the Force Analysis Technique (FAT) [5] based on the use of a
finite difference scheme starting from the analytical equations of the structure; an early
work focused on the identification of forces acting on a simple structure as a beam or
a plate [6, 7]; successively the method was applied to more complex structures. The
most evident advantage of this technique is that it does not require the knowledge of the
dynamic behaviour of the whole structure. Indeed, the analysis depends on the studied
area. In many applications, the filtering of the identified force is performed by a low-pass
wavenumber filter. The most recent developed application by the same authors it is the
CFAT that allows to obtain good results with a coarse measurement scheme and is also
used in order to the material characterization [8].
Another interesting approach is the force identification in the wavenumber domain [9,
10]; as above, this technique is based on the knowledge of the analytical model in the
frequency domain of the structure. The force is obtained starting from the measured
response through the transformation from space to wavenumber domain made by Fourier
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1.1 The ill-conditioning in the force identification problem

sine transform, then the force in space domain is computed by using the inverse Fourier
transform or the Ibrahim Time Domain(ITD) method [11].

1.1 The ill-conditioning in the force identification problem

Let us consider a generic system excited by a force as in figure 1.1. The relationship
input-output can be written in frequency domain as follow:

x(ω) = H(ω)f(ω) (1.1)

where in general f(ω) is a (n × 1) vector of unknown forces, x(ω) is a (m × 1) vector
of measured responses and H(ω) is the (m × n) Frequency Response Function (FRF)
matrix.
The FRF matrix is the transfer function depending on the system properties; if an
input (i.e. force, pressure,...) is known, equation (1.1) gives the system output (i.e.
displacement, velocity, acceleration)
The force identification is correlated to the inverse problem. Starting from equation
(1.1) it can be defined by the following relation:

f(ω) = H+(ω)x(ω). (1.2)

where the matrix H+ is the pseudo inverse of the matrix H, defined as follow:

H+ = [HHH]−1HH . (1.3)

 

f(ω) 
H (ω) 

x(ω) 

Figure 1.1: Input-Output model

The ill-conditioning of the problem, is the main reason for which the identification of
actual loads can not be efficiently performed by the inversion of H. A problem is ill-
conditioned when a small error in the data generates large perturbations in the solution.
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1.1 The ill-conditioning in the force identification problem

Considering the problem of equation (1.2), where the vector of the data x̄ is affected by
the error ε, the solution of the inverse problem in absence of ill-conditioning is:

H+(ω)x̄(ω) = f(ω) + ε̃ where ε̃ ≈ ε (1.4)

If the FRF is ill-conditioned the solution becomes:

H+(ω)x̄(ω) = f(ω) + ˜̃ε where ˜̃ε� ε (1.5)

For this reason it is necessary to reduce the ill-conditioning of the FRF matrix in order
to obtain an acceptable result.

1.1.1 Regularization techniques

In this section, some classical regularisation techniques, which allow to improve the
system conditioning, are presented. These techniques work directly on the solution
written by the Singular Values Decomposition (SVD). The singular values of the matrix
are deleted or filtered out in order to decreases its ill-conditioning. This mathematical
procedure reduces the information included in the original matrix, but it does not allow
to understand which physical information are excluded.
In this section three of these techniques are presented. In the next chapter they are
employed for some tests and the obtained results are compared to verify the ability of
each technique to improve results of the identification process.
Let us understand how the regularisation techniques are effective to reduce the conse-
quences of the ill-conditioning in force identification problems.
The regularisation techniques used in this thesis are based on the decomposition of the
matrix H by SVD [12]. A generic matrix H of dimension (m × n) can be decomposed
on the product of three matrices, as follows [13]:

H = UΣVH =
n∑
i=1

uiσiv
H
i (1.6)

where U and V are matrices of orthonormal vectors ui and vi, U is a (m × m) matrix
in which the column are the left eigenvectors of HHH , V is a (n × n) matrix of right
eigenvectors of HHH for each row. Σ is the diagonal matrix of singular values such
that [14]:

σ1 ≥ σ2 ≥ ... ≥ σr ≥ ... ≥ σn ≥ 0 (1.7)

where σr is the smaller non-zero singular value; when r 6= n it happens that σr+1, ...,σn =
0, then the matrix H is singular. The non-zero singular values are the square root of
non-zero eigenvalues of both HHH and HHH. Using SVD, the equation (1.2) is written:

f =
n∑
i=1

uHi xvi
σi

(1.8)
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1.1 The ill-conditioning in the force identification problem

The measure of the ill-conditioning is given by the condition number (CN) that is defined
as follows:

CN = ||H||||H+|| (1.9)

In terms of SVD the values assumed by the 2-norm are the largest eigenvalues of
HHH [13]; then, by using SVD the terms of the previous equation assume the values:

||H|| = σ1 (1.10)

||H+|| = 1

σr
(1.11)

The largest terms of ||H+|| is the reciprocal of 1\σn, where σn corresponds to the mini-
mum non zero singular values of the rectangular matrix H. Hence the condition number
can be expressed as follows:

CN =
σ1

σr
. (1.12)

The force identification is obtained by using the following three regularisation technique:

• Damped Singular Values Decomposition (DSVD)

• Truncated Singular Values Decomposition (TSVD)

• Tikhonov regularisation

Considering equation (1.8), it is clear that the presence of small singular values perturbs
highly the solution of the problem; in order to limit this problem the use of regularisation
filters is required. All these techniques, starting from equation (1.8), introduce a filter
factor ξ that depends on a regularisation parameter λ. Equation (1.8) can be rewritten:

f =
n∑
i=1

ξi(λ)
uHi xvi
σi

(1.13)

There are a lot of different criteria aimed to select the correct value of the regularisation
parameter λ. Among these methods three are selected to perform the numerical force
identification:

• L-curve

• Quasi Optimality

• Generalized Cross Validation

Damped Singular Values Decomposition

The DSVD was introduced by Ekstrom [15], and the filter factor is defined as [14]:

ξi =
σi

σi + λ
. (1.14)

The regularised solution becomes:

f =
n∑
i=1

σi
σi + λ

uHi xvi
σi

. (1.15)
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1.1 The ill-conditioning in the force identification problem

Tikhonov

In Tikhonov regularisation [16] the reduction of ill-conditioning is obtained through the
minimisation of the following functional:

Rλ = ‖Hf − x‖22 + λ2‖I f‖22. (1.16)

The first term is the residual and the second term is the value of the solution. In this
case the filter ξi has the following expression:

ξi =
σ2
i

σ2
i + λ2

i

(1.17)

and the regularised solution becomes:

f =
n∑
i=1

σ2
i

σ2
i + λ2

uHi xvi
σi

. (1.18)

It is clear that, the DSVD filter is smoother than the Tikhonov filter.

Truncated Singular Values Decomposition

TSVD [17] reduces the ill-conditioning of the matrix H by substituting the not full rank
matrix H with a new full rank matrix [18] obtained by truncating the sum of equation
(1.8) to a value p < n. Therefore, the sum in equation (1.8) becomes:

f =

p∑
i=1

uHi xvi
σi

(1.19)

where p < n is the truncation parameter. If the matrix H is singular, p can be equal
to r, the minimum non-zero singular value. If H is ill-conditioned, p can be calculated
in order to reduce the condition number of the matrix. In this case the filter factors
assume only values 0 or 1.
In figure 1.2 the trend of the three regularisation parameters for a σi are shown.

L-curve

The choice of the optimal value of the filter is the critical point of the regularisation
techniques. It is necessary to find the best compromise between the removal of compo-
nents that amplify the errors of the data in the solution and the lost of information of
the solution. The filter has to act without deleting those components that are necessary
to have a meaningful solution: it is a critical point.
The L-curve allows to choose a parameter with a good compromise between the reg-
ularised solution and the residual norm. This point is shown in a log-log scale graph
(figure 1.3) [14].
In the left of the graph the filtering is smaller and the solution is dominated by per-
turbation errors. In the right part the filtering increases and the solution is affected by
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1.1 The ill-conditioning in the force identification problem

Figure 1.2: Comparison between the filters factor of different regularisation techniques

filtering errors. So in the vertical part of the curve the solution is sensitive to the change
of regularisation parameter and in the horizontal one the residual is very sensitive to
the regularisation parameter. The compromise between these two errors is the point
in correspondence of the L-curve corner that corresponds to the values of the optimal
regularisation parameter.

Quasi Optimality

The regularisation parameter can be found by the definition of the quasi optimality
principle through the solution of following minimum problem [19]:

argmin |freg − factual| (1.20)

The values of actual f , factual, are unknown, therefore the parameter is chosen as the
minimum value of the first term of the Taylor expansion of equation (1.20)

µ(λopt) = inf ||λdfλ
dλ
||2 (1.21)

Generalized Cross Validation

The Generalized Cross Validation starts from the measured data to choose the regular-
isation parameter [20, 21]. The solution f iλ is computed by eliminating each time one
experimental observation, and the choice of the regularisation parameter should be in-
dependent respect an orthogonal transformation of f iλ [14]. Therefore λ is the value that
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1.1 The ill-conditioning in the force identification problem

Figure 1.3: L-curve.

minimizes the sum of the errors:

C(λ) =
1

m

m∑
i=1,i 6=λ

wi(H(λ)f iλ − xi)2 (1.22)

where m is the number of measurement points. From equation (1.22) the functional
G(λ) is derived:

G(λ) =
1
m ||(I −B(λ))x||22
[ 1
mTr(I−B(λ))]2

(1.23)

where B(λ) is equal to:
B(λ) = Ht(H

H
t Ht + λI)−1HH

t .
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CHAPTER

TWO

IDENTIFICATION OF DETERMINISTIC FORCES AT
LOW-MEDIUM FREQUENCIES

This chapter is focused on the study of the relationship between the ill-conditioning
of the FRF matrix and the degrees of freedom taken into account for a low frequency
problem when the solution of the investigated problem is performed by modal analysis.
In operative condition, one of the main issue is the selection of the optimal measure-
ment points configuration that allows to perform load identification. The relationship
between this choice and the goodness of the results obtained from the identification, is
investigated through a numerical procedure. This procedure, in which a numerical force
identification is carried out by using different regularisation techniques based on Singular
Values Decomposition (SVD), is aimed to identify the optimal experimental setup [22]
to perform the identification of external forces. This is done by using both numerical
FRF, calculated by the modal parameters obtained by a FEM of the structure, and an
experimental FRF. Results are compared and discussed.
In the second part of the chapter the effect of a convenient reduction of the degrees of
freedom, on the solution of this problem, is investigated.

2.1 Identification of the best experimental setup

The considered structure is made of three steel plates, 1.5 mm thick, coupled as shown in
figure 2.1 with free boundary conditions. The dimensions of the structure are reported
in table 2.1.
A number of points Nt = 24, located as shown in figure 2.1, are considered on the
structure. The coordinates of the selected points are displayed in table 2.2.
Eigenvalues and eigenvectors of the structure are calculated by a Finite Element Model
in the frequency range 1-2000 Hz. The numerical FRF is computed using the following

10



2.1 Identification of the best experimental setup

 

x z

y

Figure 2.1: Test structure

Table 2.1: Structure dimensions

a[mm] b[mm] c[mm] d[mm] e[mm] f[mm]

500 700 300 250 400 250

Table 2.2: Coordinates of the selected points

Node X [mm] Y [mm] Z [mm] Node X [mm] Y [mm] Z [mm]

1 500 100 175 13 250 300 0
2 500 300 175 14 250 75 0
3 500 300 125 15 200 400 0
4 500 100 125 16 75 625 0
5 500 300 75 17 75 350 0
6 500 100 75 18 75 75 0
7 425 625 0 19 0 625 -75
8 425 350 0 20 0 550 -75
9 425 75 0 21 0 475 -75
10 300 400 0 22 0 625 -175
11 250 625 0 23 0 550 -175
12 250 350 0 24 0 475 -175
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2.1 Identification of the best experimental setup

equation:

Yi,j(ω) = jω
n∑
q=1

φq(xi)φq(xj)

Mq(ω2
q − ω2 + jω(α+ βω2

q )
. (2.1)

where φq(xi) and ωq are respectively eigenvectors and eigenvalues previously obtained
and α and β are, respectively, the mass-proportional and the stiffness-proportional damp-
ing coefficients.
The first step of this procedure is the computation of the numerical response of the
structure as shown in figure 2.2. The velocity of each point is calculated by:

v(ω) = Y(ω)f(ω) + ε(ω) (2.2)

where f is the force applied to the structure, ε(ω) is a noise proportional to the rms
velocity and v(ω) indicates the velocity affected by noise and Y(ω) is the mobility
matrix.

 

FORCE 

FRF 

NUMERICAL 

DYNAMIC 

RESPONSE 

NUMERICAL 

NOISE 

NUMERICAL 

IDENTIFICATION 

𝒗(𝝎) = 𝒀(𝝎) ⋅ 𝒇(𝝎) + 𝜺(𝝎) 

𝒀(𝝎)𝒊,𝒋 =  𝒋𝝎
𝝓𝒒(𝒙𝒊)𝝓𝒒(𝒙𝒋) 

𝑴𝒒(𝝎𝒒
𝟐 −𝝎𝟐 + 𝒋𝝎(𝜶 + 𝜷𝝎𝒒

𝟐))

𝑵

𝒒=𝟏

 

𝛆(𝛚) = 𝐫𝐚𝐧𝐝𝐨𝐦 ∝ 𝐫𝐦𝐬𝐯 

Figure 2.2: Diagram of the numerical identification procedure

The second step is the choice of the points number of the experimental setup: this is usu-
ally bound by the operative condition. In this application, the number of measurement
points on the structure is set to Np = 12. Therefore a large number of configurations
are picked among the possible combinations of equation (2.3):

CNt,Np =

(
Nt

Np

)
(2.3)
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2.1 Identification of the best experimental setup

A deterministic load is applied to each point of the considered configurations. The
reconstruction of the force field is performed using the three regularisation techniques
presented in section 1.1. This analysis is carried out between 1 and 2000 Hz by averaging
the results on constant bandwidths of 100 Hz.
As expected, the procedure generates a large number of results. To compare these results
two indices are used that take into account the positioning error [23].
The first index INORM is the percentage error given by the norm of the difference between
the magnitude of the actual force and the identified one, normalized on the first one:

INORM =

[
1−
‖|factual| − |fidentified|‖

‖factual‖

]
· 100 (2.4)

The second index IAV G is the percentage mean error computed by the relative difference
between the amplitude of the identified force in the correct position and the mean of the
spurious components of the forces on the whole set of points.

IAV G =

∣∣∣∣∣∣∣∣∣
|fidentified| − |

n∑
i=1,i 6=dp

fidentifiedi
n−1 |

|factual|

∣∣∣∣∣∣∣∣∣ · 100 (2.5)

2.1.1 Numerical results

The numerical identification is performed by exciting each point of the considered config-
uration, by computing the response and by identifying the applied load taking advantage
of the regularisation techniques. The considered configurations are shown in table 2.3.
The values of the indices for all the considered configurations and for each frequency
band, by considering each point of each configuration as drive point, are calculated.
The data interpretation is carried out by the indices averaged in frequency and in the
drive points set, figure 2.3. For each configuration the values obtained by the three
regularisation techniques and the different λ criteria are shown.
In table 2.4 the values of IAV G are shown. Since the criterion to select the best configura-
tion is to choose the highest IAV G index values, configuration 50 is the best configuration
(see table 2.4).
Note that, using the DSVD regularisation technique all the three criteria have the same
IAV G value, whilst Tikhonov with GCV and L-curve gives higher values of IAV G than
Tikhonov with Quasi Optimality. Using TSVD only GCV criterion gives high value of
IAV G, while the Quasi Optimality criterion in TSVD does not give good result.
Figure 2.4 shows the IAV G values versus frequency of configuration 50. They change
much for each frequency band and only averaging these values (figure 2.5) clear results
can be obtained.
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2.1 Identification of the best experimental setup

Table 2.3: Configuration of the points selected for the numerical test

Conf 1 1 2 4 8 10 13 15 16 18 20 21 22
Conf 2 1 2 6 8 10 12 14 15 18 20 21 22
Conf 3 1 2 6 7 8 12 14 15 18 19 20 24
Conf 4 1 2 6 7 8 12 14 15 18 19 22 24
Conf 5 1 2 5 7 8 9 11 13 14 19 20 24
Conf 6 1 2 5 7 8 9 10 14 15 19 20 24
Conf 7 1 2 6 8 10 12 14 15 18 19 22 24
Conf 8 1 2 6 8 10 11 12 15 18 20 21 22
Conf 9 1 2 6 7 8 12 14 15 18 19 22 23
Conf 10 1 2 3 7 11 14 15 17 18 21 23 24
Conf 11 1 2 6 7 8 10 12 15 18 20 21 22
Conf 12 1 2 5 7 10 12 13 15 16 20 21 22
Conf 13 1 2 6 7 8 12 14 15 18 20 21 22
Conf 14 1 2 6 8 11 12 14 15 18 20 21 22
Conf 15 1 2 4 7 9 10 11 12 15 20 21 22
Conf 16 1 2 6 9 11 12 14 15 17 19 20 23
Conf 17 1 2 6 8 10 12 14 15 18 19 21 22
Conf 18 1 2 3 7 11 12 15 17 18 21 22 24
Conf 19 1 2 4 8 11 12 14 15 18 20 21 22
Conf 20 1 2 4 7 8 11 12 14 18 19 22 24
Conf 21 2 5 6 8 11 14 15 17 18 21 22 23
Conf 22 2 4 5 7 10 12 13 14 17 21 22 23
Conf 23 2 5 6 8 9 11 12 16 17 19 21 23
Conf 24 1 3 5 7 9 11 12 15 16 20 21 22
Conf 25 3 4 5 8 10 12 15 16 18 21 22 24
Conf 26 2 3 4 8 9 11 13 15 17 20 21 22
Conf 27 1 2 4 7 8 12 13 14 15 19 20 23
Conf 28 3 4 5 9 12 13 15 17 18 19 20 24
Conf 29 1 5 6 8 9 14 16 17 18 19 21 22
Conf 30 1 2 6 8 13 14 15 16 17 20 22 24
Conf 31 1 4 6 8 9 10 11 12 14 22 23 24
Conf 32 4 5 6 7 9 10 13 16 18 21 22 23
Conf 33 1 4 6 7 9 14 15 16 17 21 22 23
Conf 34 4 5 6 7 10 11 13 16 18 21 22 23
Conf 35 1 3 6 7 9 13 15 16 17 21 22 23
Conf 36 4 5 6 8 12 13 15 16 17 21 22 23
Conf 37 3 4 6 9 13 14 15 16 18 21 22 23
Conf 38 1 4 5 7 8 9 15 16 17 21 22 23
Conf 39 3 4 6 7 8 9 15 16 17 21 22 23
Conf 40 4 5 6 7 8 10 16 17 18 21 22 23
Conf 41 4 5 6 7 14 15 16 17 18 21 22 23
Conf 42 1 4 6 7 14 15 16 17 18 21 22 23
Conf 43 3 4 6 7 8 13 15 16 17 21 22 23
Conf 44 3 5 6 7 9 13 15 16 17 21 22 23
Conf 45 1 4 6 9 12 14 16 17 18 22 23 24
Conf 46 3 4 6 7 14 15 16 17 18 21 22 23
Conf 47 4 5 6 7 10 13 14 16 18 21 22 23
Conf 48 4 5 6 7 8 13 15 16 17 21 22 23
Conf 49 3 4 6 7 9 13 14 16 18 21 22 23
Conf 50 4 5 6 7 9 13 14 16 18 21 22 23
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2.1 Identification of the best experimental setup

(a) Comparison between IAV G: frequency and drive points average.

(b) Comparison between INORM : frequency and drive points average.

Figure 2.3: Comparison between indices obtained by numerical simulation with
different configurations, indices averaged over frequency and drive points.
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2.1 Identification of the best experimental setup

Table 2.4: IAV G obtained by numerical simulation with different configurations, indices
averaged over frequency and drive points

DSVD Tikhonov TSVD

Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV

Conf 1 72 72 73 52 74 81 32 70
Conf 2 71 71 73 52 74 80 35 68
Conf 3 73 73 75 56 75 81 35 70
Conf 4 73 73 75 54 76 81 31 70
Conf 5 73 73 74 57 75 81 34 71
Conf 6 74 74 75 57 76 81 37 69
Conf 7 72 72 74 51 75 80 34 70
Conf 8 72 72 74 55 74 81 30 70
Conf 9 72 72 74 52 74 81 28 68
Conf 10 74 74 75 54 76 82 30 68
Conf 11 71 71 73 53 74 80 34 69
Conf 12 73 73 74 56 76 82 40 69
Conf 13 73 73 74 55 76 81 32 70
Conf 14 72 72 74 54 75 80 29 71
Conf 15 73 73 74 55 77 82 34 73
Conf 16 73 73 75 53 76 82 34 69
Conf 17 71 71 73 50 75 81 38 68
Conf 18 72 72 73 51 74 80 36 68
Conf 19 73 73 74 56 77 82 32 71
Conf 20 72 72 73 51 76 80 32 71
Conf 21 73 73 74 50 76 82 36 69
Conf 22 73 73 74 50 76 81 32 69
Conf 23 74 74 76 58 78 83 36 70
Conf 24 72 72 74 53 75 81 34 70
Conf 25 73 73 74 55 76 80 33 72
Conf 26 75 75 76 58 77 82 36 70
Conf 27 73 73 74 49 75 80 34 68
Conf 28 73 73 75 58 75 82 36 71
Conf 29 73 73 75 54 77 82 34 71
Conf 30 74 74 75 56 76 81 35 69
Conf 31 73 73 75 51 76 80 32 70
Conf 32 73 73 75 54 77 81 33 73
Conf 33 74 74 75 58 75 82 34 69
Conf 34 74 74 75 52 77 81 35 72
Conf 35 73 73 75 56 75 81 30 69
Conf 36 73 73 75 51 74 80 35 71
Conf 37 74 74 75 54 77 82 31 71
Conf 38 73 73 75 55 76 82 36 70
Conf 39 74 74 75 58 76 81 33 73
Conf 40 72 72 74 51 74 81 34 70
Conf 41 75 75 76 53 76 82 33 70
Conf 42 75 75 76 58 76 81 34 72
Conf 43 73 73 75 55 75 80 36 70
Conf 44 73 73 75 53 76 80 32 69
Conf 45 75 75 76 50 76 79 31 71
Conf 46 75 75 76 56 76 82 32 72
Conf 47 75 75 75 55 76 81 33 71
Conf 48 73 73 75 53 76 81 36 70
Conf 49 75 75 76 56 76 81 32 74
Conf 50 75 75 76 56 77 82 36 73
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2.1 Identification of the best experimental setup

Table 2.5: INORM obtained by numerical simulation with different configurations,
indices averaged over frequency and drive points

DSVD Tikhonov TSVD

Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV

Conf 1 71 71 72 51 71 77 29 67
Conf 2 70 70 72 50 71 77 30 64
Conf 3 71 71 73 53 72 77 30 64
Conf 4 71 71 73 52 72 78 27 65
Conf 5 71 71 73 55 72 78 28 65
Conf 6 71 71 73 55 72 77 31 64
Conf 7 71 71 72 50 72 77 29 63
Conf 8 71 71 73 52 72 78 27 65
Conf 9 71 71 73 50 71 78 24 65
Conf 10 73 73 74 52 72 78 27 65
Conf 11 69 69 72 51 71 77 30 65
Conf 12 71 71 73 53 72 77 36 67
Conf 13 71 71 73 52 72 77 27 64
Conf 14 71 71 73 52 72 77 25 65
Conf 15 72 72 73 53 73 78 29 65
Conf 16 71 71 73 51 72 77 30 64
Conf 17 70 70 71 47 71 76 34 62
Conf 18 71 71 72 49 71 77 29 62
Conf 19 72 72 73 53 73 78 28 65
Conf 20 71 71 72 49 71 76 29 64
Conf 21 72 72 73 49 73 79 33 66
Conf 22 71 71 72 48 72 77 29 64
Conf 23 73 73 75 55 74 79 32 69
Conf 24 71 71 72 51 71 77 30 64
Conf 25 71 71 72 53 72 76 28 67
Conf 26 72 72 73 55 72 77 32 67
Conf 27 71 71 72 47 72 76 30 64
Conf 28 72 72 73 56 72 77 32 67
Conf 29 72 72 73 51 72 78 29 65
Conf 30 72 72 74 54 73 77 30 65
Conf 31 70 70 72 49 72 76 27 67
Conf 32 71 71 73 51 72 77 30 68
Conf 33 71 71 72 55 70 76 30 66
Conf 34 72 72 73 49 72 76 31 67
Conf 35 71 71 73 53 71 76 26 65
Conf 36 72 72 73 50 71 77 30 66
Conf 37 72 72 74 52 73 77 28 66
Conf 38 71 71 73 53 72 78 31 65
Conf 39 72 72 73 55 72 77 30 68
Conf 40 71 71 73 49 70 77 32 65
Conf 41 73 73 74 50 72 77 28 65
Conf 42 71 71 72 54 72 76 30 66
Conf 43 70 70 72 52 71 76 33 66
Conf 44 71 71 73 51 71 76 28 66
Conf 45 71 71 72 48 72 74 27 67
Conf 46 73 73 74 53 71 77 28 66
Conf 47 73 73 73 52 72 77 28 65
Conf 48 71 71 73 51 71 77 32 66
Conf 49 73 73 74 54 72 77 28 67
Conf 50 73 73 74 52 73 77 32 67
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2.1 Identification of the best experimental setup

Figure 2.4: Comparison between IAV G obtained by numerical simulation for the
configuration 50, indices averaged over frequency and drive points

Figure 2.5: Comparison between IAV G(red) and INORM (blue) obtained by numerical
simulation for the configuration 50, indices averaged over frequency and drive points

2.1.2 Results by experimental FRF

In order to validate the proposed procedure, the indices are computed using experimental
FRF. The test bed corresponds obviously to the numerical model. To simulate the free
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2.1 Identification of the best experimental setup

boundary conditions, the structure lays on a soft support as shown in figure 2.6. The
experimental FRFs are computed by Single Input Multi Output(SIMO) technique in
correspondence of 13 points, chosen among the 24 points of the numerical test (see table
2.6). The system is excited with a white random noise obtained by a hammer multi
impulse in correspondence of each measurement point. The acceleration is acquired
using a set of accelerometers connected with a 16 channel acquisition system for 20
seconds at 5000 Hz sample frequency. The measurement chain is drawn in figure 2.7.

Figure 2.6: Experimental setup

 

16 CHANNEL DATA 

ACQUISITION SYSTEM COMPUTER 
HAMMER 

ACCELEROMETERS 

Figure 2.7: Measurement chain

The experimental FRFs are computed up to 2000 Hz. Figure 2.8 shows the comparison
between the numerical and the experimental FRFs for one of the chosen points. The
correspondence is good up to 1000 Hz: consider that the model is not updated.
In the experimental validation the number Nt of points is 13 (table 2.6) and the number
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2.1 Identification of the best experimental setup

Figure 2.8: Comparison between numerical frequency response function(blue) and
experimental one (red).

of points for each configuration is Nc = 8. Also in this case, as in the previous section,
the input is a numerical signal and the output is calculated by experimental FRF. The
computed velocities are polluted by an error proportional to the rms velocity of 10 %.
Figure 2.9 shows the comparison between the values of the two indices (averaged over the
frequency and the drive points) for all considered configurations. The best configuration
is the configuration with the highest indices values. As shown in table 2.8 and 2.9 the
configuration 32 gives the highest indices values, so it can be chosen as experimental
setup in order to perform loads identification.

Table 2.6: Selected points in experimental setup

1 X 7 X 13 X 19 X
2 X 8 14 20
3 9 15 X 21 X
4 10 X 16 X 22 X
5 X 11 17 23
6 X 12 18 X 24

Figure 2.10 shows the comparison between the average over all frequencies and over all
drive points, Np, of the numerical and experimental indices. The amplitude of the indices
obtained from numerical FRF are lower than those obtained from the experimental one,
but the trend is strictly consistent for all considered methods. This result is due to
the effect of the damping on the experimental FRF, indeed in the numerical model a
proportional damping that takes into account only the material dissipation is used; this
imply that the experimental FRF is smoother than the numerical one (see figure 2.8).
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2.1 Identification of the best experimental setup

(a) Comparison between IAV G: frequency and drive points average.

(b) Comparison between INORM : frequency and drive points average.

Figure 2.9: Comparison between indices obtained by experimental FRF with different
configurations, indices averaged over frequency and drive points.
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2.1 Identification of the best experimental setup

(a) Comparison between IAV G regularised: frequency and drive points average .

(b) Comparison between INORM regularised: frequency and drive points average .

Figure 2.10: Comparison between indices obtained for the best configuration (Conf.
32) by numerical FRF (blue) and experimental FRF (red)
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2.1 Identification of the best experimental setup

The good matching between the results of the numerical and the experimental tests
validates the proposed procedure to evaluate the best experimental setup to perform
external load identification. The results show also that the procedure works even if the
numerical model is not updated.

Table 2.7: Configuration of the points selected for the experimental test

Conf 1 2 6 7 10 13 15 21 22 Conf 36 1 6 7 15 16 18 21 22
Conf 2 2 6 10 13 15 16 21 22 Conf 37 1 6 7 10 16 18 21 22
Conf 3 1 2 13 15 16 18 21 22 Conf 38 2 6 13 15 16 18 19 22
Conf 4 2 6 10 13 16 18 21 22 Conf 39 1 2 7 13 15 16 21 22
Conf 5 2 6 7 10 13 16 21 22 Conf 40 1 2 10 15 16 18 19 22
Conf 6 2 6 10 15 16 18 21 22 Conf 41 1 2 10 13 15 16 19 22
Conf 7 1 6 7 10 13 16 21 22 Conf 42 2 5 7 13 15 18 21 22
Conf 8 2 6 13 15 16 18 21 22 Conf 43 1 6 7 13 15 16 19 21
Conf 9 1 6 10 13 16 18 21 22 Conf 44 1 2 7 13 15 18 19 22
Conf 10 2 6 10 13 15 18 21 22 Conf 45 1 5 7 15 16 18 19 22
Conf 11 2 6 7 10 13 15 19 22 Conf 46 2 6 7 10 13 18 21 22
Conf 12 2 6 7 13 15 16 21 22 Conf 47 2 6 7 13 16 18 19 22
Conf 13 1 6 10 13 15 16 21 22 Conf 48 1 5 7 13 15 16 19 22
Conf 14 1 2 7 10 13 15 21 22 Conf 49 1 6 7 10 15 16 19 22
Conf 15 2 6 7 10 13 16 19 22 Conf 50 5 6 10 13 15 18 21 22
Conf 16 1 6 10 15 16 18 21 22 Conf 51 2 5 7 10 16 18 19 21
Conf 17 1 2 10 13 16 18 21 22 Conf 52 5 6 7 13 16 18 19 22
Conf 18 1 2 10 15 16 18 21 22 Conf 53 5 6 7 13 16 18 21 22
Conf 19 1 6 7 13 15 16 21 22 Conf 54 1 2 7 15 16 18 21 22
Conf 20 1 2 7 10 13 16 21 22 Conf 55 5 6 10 15 16 18 19 21
Conf 21 1 2 13 15 16 18 19 22 Conf 56 1 5 7 10 16 18 19 22
Conf 22 2 6 7 15 16 18 21 22 Conf 57 5 6 7 15 16 18 19 21
Conf 23 2 6 7 10 15 16 21 22 Conf 58 5 6 7 10 16 18 19 22
Conf 24 2 6 7 13 15 18 21 22 Conf 59 1 2 7 10 13 18 19 22
Conf 25 1 6 13 15 16 18 21 22 Conf 60 1 5 7 10 16 18 21 22
Conf 26 1 2 7 10 13 15 19 22 Conf 61 1 2 7 13 15 18 19 21
Conf 27 2 6 10 13 15 16 19 22 Conf 62 5 6 7 10 15 18 19 21
Conf 28 1 6 10 13 15 18 21 22 Conf 63 5 6 10 15 16 18 19 22
Conf 29 1 6 7 13 15 18 21 22 Conf 64 1 5 7 13 15 18 19 21
Conf 30 2 6 10 13 16 18 19 22 Conf 65 5 6 7 10 13 18 21 22
Conf 31 1 2 10 13 16 18 19 22 Conf 66 1 5 7 10 16 18 19 21
Conf 32 2 5 7 10 13 16 21 22 Conf 67 5 6 7 10 16 18 19 21
Conf 33 1 2 10 13 15 18 21 22 Conf 68 1 5 7 13 16 18 19 21
Conf 34 2 5 7 10 13 15 21 22 Conf 69 2 5 7 13 16 18 19 21
Conf 35 2 6 7 13 15 16 19 22 Conf 70 5 6 7 13 16 18 19 21

However, some limits must be highlighted, the computational cost of the procedure is
burdensome and the results obtained from different applications [22, 23] show that the
results obtained from different regularisation techniques depend strictly on the FRF
matrix of the structure. In particular the use of regularisation techniques implies that
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2.1 Identification of the best experimental setup

Table 2.8: INORM obtained by experimental FRF with different configurations, indices
averaged over frequency and drive points

DSVD Tikhonov TSVD DSVD Tikhonov TSVD
Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV

Conf 1 68 68 72 58 71 79 42 66 Conf 36 69 69 73 59 71 80 36 66
Conf 2 69 69 73 59 72 79 42 67 Conf 37 68 68 72 56 70 79 41 65
Conf 3 66 66 71 55 68 78 40 63 Conf 38 65 65 69 49 67 76 34 62
Conf 4 69 69 73 60 73 80 36 65 Conf 39 69 69 73 60 72 80 38 65
Conf 5 68 68 72 60 72 80 41 64 Conf 40 65 65 70 50 66 76 34 61
Conf 6 69 69 72 59 72 80 39 64 Conf 41 67 67 70 50 68 76 35 62
Conf 7 68 68 72 58 71 79 40 64 Conf 42 67 67 73 61 72 80 43 68
Conf 8 68 68 72 57 72 79 37 66 Conf 43 71 71 74 53 72 79 37 66
Conf 9 68 68 72 58 70 80 40 64 Conf 44 66 66 70 52 68 76 39 64
Conf 10 69 69 72 58 72 80 43 68 Conf 45 66 66 72 52 68 77 37 64
Conf 11 64 64 70 52 66 76 37 64 Conf 46 69 69 73 61 74 80 37 67
Conf 12 70 70 73 59 72 80 35 65 Conf 47 68 68 71 50 69 76 29 63
Conf 13 69 69 72 57 70 79 44 67 Conf 48 67 67 73 53 69 76 37 65
Conf 14 67 67 72 58 69 79 40 64 Conf 49 66 66 71 52 69 76 34 62
Conf 15 66 66 70 51 68 77 34 63 Conf 50 69 69 74 62 72 80 43 69
Conf 16 68 68 72 57 70 79 44 66 Conf 51 68 68 74 57 71 79 43 66
Conf 17 67 67 72 60 70 80 36 64 Conf 52 66 66 72 49 68 77 38 63
Conf 18 67 67 72 59 70 79 40 63 Conf 53 68 68 74 57 72 79 38 66
Conf 19 70 70 73 57 71 80 36 66 Conf 54 70 70 73 60 72 80 39 64
Conf 20 67 67 72 60 69 80 42 63 Conf 55 69 69 74 55 71 79 38 68
Conf 21 65 65 69 49 66 75 37 62 Conf 56 64 64 72 50 66 77 40 66
Conf 22 69 69 72 60 72 79 39 62 Conf 57 68 68 73 53 70 78 35 66
Conf 23 68 68 72 60 71 79 38 62 Conf 58 65 65 71 49 67 77 35 63
Conf 24 69 69 72 59 72 80 41 67 Conf 59 65 65 69 50 67 76 32 61
Conf 25 67 67 71 54 69 78 39 66 Conf 60 68 68 74 62 73 81 41 70
Conf 26 65 65 70 52 67 76 37 63 Conf 61 68 68 73 54 70 79 39 67
Conf 27 65 65 70 50 67 76 35 63 Conf 62 68 68 73 55 71 78 35 64
Conf 28 68 68 72 57 70 79 44 66 Conf 63 65 65 72 53 68 78 35 66
Conf 29 69 69 72 57 71 79 38 66 Conf 64 69 69 74 58 71 79 43 68
Conf 30 67 67 71 53 69 77 32 63 Conf 65 68 68 73 57 72 80 41 68
Conf 31 65 65 70 51 67 76 36 61 Conf 66 68 68 74 56 71 79 39 67
Conf 32 69 69 74 63 73 81 42 71 Conf 67 68 68 73 53 70 78 37 66
Conf 33 67 67 72 59 70 79 42 65 Conf 68 69 69 75 56 71 79 37 67
Conf 34 68 68 74 61 72 81 42 69 Conf 69 69 69 75 57 71 79 41 67
Conf 35 67 67 71 50 69 76 32 62 Conf 70 69 69 74 54 71 79 35 65

Table 2.9: IAV G obtained by experimental FRF with different configurations, indices
averaged over frequency and drive points

DSVD Tikhonov TSVD DSVD Tikhonov TSVD
Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV Q. Opt GCV L-Curve Q. Opt GCV L-Curve Q. Opt GCV

Conf 1 67 67 71 59 72 81 47 72 Conf 36 68 68 72 60 72 81 40 73
Conf 2 68 68 72 60 74 81 47 74 Conf 37 67 67 71 57 71 80 45 73
Conf 3 65 65 70 55 69 79 44 70 Conf 38 65 65 69 49 68 77 38 69
Conf 4 69 69 72 60 74 82 40 73 Conf 39 68 68 72 60 73 81 42 72
Conf 5 67 67 71 61 73 81 46 71 Conf 40 64 64 69 50 68 77 38 69
Conf 6 68 68 71 60 73 81 43 70 Conf 41 66 66 70 51 69 78 40 70
Conf 7 67 67 71 58 71 81 44 71 Conf 42 67 67 73 62 74 82 47 74
Conf 8 67 67 71 57 73 80 41 73 Conf 43 71 71 73 54 74 81 41 74
Conf 9 67 67 71 58 71 81 44 71 Conf 44 65 65 69 53 69 77 44 71
Conf 10 68 68 72 59 73 81 47 75 Conf 45 66 66 72 53 70 79 41 72
Conf 11 63 63 69 52 67 77 41 71 Conf 46 68 68 72 62 75 82 41 74
Conf 12 69 69 72 60 74 81 39 72 Conf 47 67 67 71 51 70 78 33 71
Conf 13 68 68 72 58 71 81 49 74 Conf 48 67 67 73 55 72 79 41 73
Conf 14 66 66 71 59 70 80 44 71 Conf 49 66 66 70 53 71 78 38 70
Conf 15 65 65 70 51 69 78 38 71 Conf 50 68 68 74 62 73 82 47 76
Conf 16 67 67 71 58 71 80 48 72 Conf 51 68 68 74 58 73 82 47 73
Conf 17 66 66 71 60 71 81 40 71 Conf 52 66 66 72 50 70 79 42 71
Conf 18 66 66 71 59 70 81 44 70 Conf 53 68 68 73 58 73 81 41 73
Conf 19 69 69 73 58 73 81 40 74 Conf 54 69 69 72 60 73 81 43 71
Conf 20 66 66 71 61 70 81 47 71 Conf 55 68 68 73 56 73 81 41 77
Conf 21 64 64 69 49 68 77 42 69 Conf 56 64 64 72 51 68 79 44 73
Conf 22 68 68 71 61 73 81 43 69 Conf 57 68 68 73 54 72 80 39 74
Conf 23 67 67 71 61 72 80 43 69 Conf 58 64 64 71 50 68 78 38 71
Conf 24 68 68 71 60 73 81 45 73 Conf 59 65 65 69 50 69 77 36 69
Conf 25 66 66 70 54 70 79 43 73 Conf 60 68 68 74 63 74 83 44 77
Conf 26 64 64 69 52 69 78 42 71 Conf 61 68 68 72 55 72 81 43 75
Conf 27 65 65 70 51 69 77 39 70 Conf 62 68 68 73 56 73 81 39 72
Conf 28 67 67 71 58 71 80 48 73 Conf 63 65 65 71 54 69 79 39 74
Conf 29 68 68 71 58 72 80 43 73 Conf 64 69 69 75 60 74 82 47 75
Conf 30 66 66 70 54 70 78 36 71 Conf 65 67 67 73 57 73 81 45 74
Conf 31 65 65 69 51 69 78 40 69 Conf 66 69 69 75 58 74 82 43 75
Conf 32 68 68 73 64 74 82 46 77 Conf 67 68 68 73 54 72 80 42 74
Conf 33 66 66 71 60 71 80 46 72 Conf 68 70 70 75 58 74 82 41 76
Conf 34 67 67 74 62 73 82 46 75 Conf 69 70 70 75 59 74 82 46 75
Conf 35 67 67 71 51 71 78 36 70 Conf 70 69 69 74 56 74 81 40 72
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2.2 Reduction of ill-conditioning by a physical approach

some information are deleted without knowing exactly the influence of this suppression
on the final result. The physical meaning of erasing information by working directly on
the singular values is absolutely not evident.

2.2 Reduction of ill-conditioning by a physical approach

The regularisation techniques decrease the wealth of information of the FRF matrix. In
fact, as shown in section 1.1.1, these techniques cut the meaningless information that
increase the ill-conditioning. The question is: how many information is possible to cut
to obtain meaningful results?
An answer can be obtained by investigating the value assumed by the condition number
when the degrees of freedom of the FRF are conveniently reduced [24].
First of all it must be considered the distribution of the FRF values in correspondence
of each frequency. Consider the FRF of the structure computed, taking into account 24
points and 3 DoF for each point. For a better understanding the values assumed by the
mobility in correspondence of two selected frequencies, 99Hz and 661Hz (resonance),
are shown in figure 2.11. The distribution of the values in the matrix is not uniform and

Figure 2.11: Comparison between FRF matrices at 99Hz and 661Hz (resonance)

the gap between the values assumed by the mobility at each DoF at the resonance is
10 times higher than the one assumed at the other frequency (99Hz). The FRF values
distribution at the resonance has a counterpart in the values assumed by the condition
number of the FRF matrix. As known, to reduce the ill-conditioning of the matrix
some information must be deleted to avoid an increase of error due to the information
loss. This suggests that the ill-conditioning of the FRF matrix, computed by taking into
account only the prevailing DoF (one for each point) decreases.
In figure 2.12 it is shown the comparison between the condition number of numerical
FRF computed taking into account 3 Degree of Freedom for each point (72 DoF) and
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2.2 Reduction of ill-conditioning by a physical approach

Figure 2.12: Comparison between condition numbers:
72 DoF FRF(blue), and 24 DoF FRF(red).

Frquency Hz Condition number of 72 DoF Condition number of 24 DoF

99 3,29E+11 1,64E+02
661 1,16E+14 6,72E+03

Table 2.10: Condition number of FRF at the two considered frequencies

only the principal DoF for each point (24 DoF). As expected the values of the second
one is significantly lower.
Figure 2.13 shows the FRF values distribution for both cases (24 DoF and 72 DoF)
at the two considered frequencies, 99Hz and 661Hz (resonance). The corresponding
condition number is reported in table 2.10.
To understand the relationship between these results and the use of regularisation tech-
niques, the singular values of FRF matrix at 661 Hz for the two considered cases are
drawn in figure 2.14: the smallest singular values belong to the 72 DoF FRF. These
simple results show that the reduction of information due to the deletion of not sig-
nificant degrees of freedom implies a significant reduction of the ill-conditioning of the
problem. This kind of approach allows to reduce the ill-conditioning, knowing exactly
what information we are neglecting.
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2.2 Reduction of ill-conditioning by a physical approach
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Figure 2.13: Comparison between FRF matrices, 72 DoF and 24 DoF, at 99Hz and at
661Hz (resonance)
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2.3 Force identification: numerical results

Figure 2.14: Comparison between singular values at 661 Hz. 72 DoF FRF matrix
(blue), and 24 DoF FRF matrix (red).

2.3 Force identification: numerical results

In this section, the procedure presented to reduce the ill-conditioning of the FRF matrix
is applied to identify different kinds of load (point force, distributed force, deterministic
force or random force).
The numerical FRF matrix is calculated using numerical eigenvalues and eigenvectors
obtained by FEM. For deterministic loads the velocity of each point is computed by the
following equation:

v(ω) = Y(ω)f(ω) + εv(ω) (2.6)

where f(ω) is the external force, Y is the mobility matrix and v is the calculated velocity
that is considered equivalent to the measured velocity. The velocity is polluted by a
random noise proportional to the velocity rms, εv. The force is identified by inverting
the Y matrix.
The most general case takes into account the lack of knowledge of force position and
intensity. In this section, the force identification is performed for deterministic and not
deterministic loads and for a set of measurement points overlapping and not entirely
overlapping the applied force positions.
Consider the structure shown in figure 2.1. Its FRF matrix is reduced by considering
only one DoF for each measurement point: the flexural velocity. This choice reduces the
ill-conditioning of the full FRF matrix, as shown in section 2.2.
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2.3 Force identification: numerical results

2.3.1 Deterministic load

The identification of an impulsive force (constant spectrum on the frequency range) is
investigated. This kind of load is useful in the analysis of results, indeed it makes possible
to evaluate the results averaged on frequency. The identification is carried out for two
different cases:

a. m = n: the measurement points m overlap the set of all n points;
the set of m points where the dynamic response is computed corresponds to the
whole set of considered n points on the structure

fid(ω) = Y(ω)−1v(ω)

(n× 1) = (n× n) (n× 1)
(2.7)

b. m < n: the measurement m points do not overlap the whole set of n points;
the set of m points where the dynamic response is computed is a subset of the
whole set of considered n points on the structure

fid(ω) = Y(ω)+v(ω)

(n× 1) = (n×m) (m× 1)
(2.8)

In this second case the problem is under-determined, therefore, computing the minimum
norm solution the amplitude of the identified force could be overestimated in correspon-
dence of the measured points m where the response is calculated. Hence the identified
vector is multiply by an appropriate factor. This factor modify the amplitude of the
components proportionally to the number of degree of freedom eliminated from the so-
lution.

Point loads The configurations of measurement points are shown in table 2.11,

Table 2.11: point load identification

Point load

m = n

n [1 ... 24]
m [1 ... 24]
p [2 ; 9 ; 16 ; 23 ]

m < n

n [1 ... 24]
m [1; 5; 10; 11; 14; 18; 19; 22]
p [2 ; 9 ; 16 ; 23 ]

where n is the number of the whole set of considered points on the structure, m is the
number of measurement points and p are the excitation points. When m < n any point
of the selected set of points is a measurement point.
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2.3 Force identification: numerical results

In order to select the best configuration of points m, the condition number is evaluated for
all the possible combinations of points. The combination that gives the lowest condition
number value is selected. Figure 2.15 shows the comparison between the condition
number of the FRF matrix for m = n and m < n. Note that the values assumed for the
reduced set of points are lower at all frequencies.

Figure 2.15: Condition number of FRF matrix:
n=m=24 (green) and n=24, m=8 (blue)

The identification is carried out using the procedure explained in the previous section
between 1 Hz and 2000 Hz. The velocity is polluted with a random noise: 5% of its rms.
The results shown in figure 2.16 are averaged over the studied frequency range. They are
satisfied for both considered configurations. The identification of the position is correct
in both cases, the amplitude is correct for m = n and, as expected, is underestimated
in the case m < n. The mean relative error computed in correspondence of the excited
points, in the case m = n is less than 5% and it increases to 15,3% for m < n. In
the instance m = n, the reduction of ill-conditioning, performed taking into account
one degree of freedom for each considered point, avoid the error amplification in the
data. The results obtained in the instance m < n show that the low ill-conditioning
compensates only in part the lack of information due to the reduced set of measurement
points.

Distributed load In this application, distributed load means that an impulsive load
is applied simultaneously at all points of the second plate as shown in table 2.12. Here,
several excitation points coincide with measurement points.
Figure 2.17 shows the result obtained in the two cases, m = n and m < n. As in the
previous test, the position is estimated correctly in both cases, the spurious components
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2.3 Force identification: numerical results

Figure 2.16: Deterministic point loads: comparison between the actual force (−×−),
the force identified in the case n=m=24 (green) and in the case n=24, m=8 (blue)

Table 2.12: Distributed load identification

Distributed

m = n

n [1 ... 24]
m [1 ... 24]
p [7 ... 19]

m < n

n [1 ... 24]
m [1; 5; 10; 11; 14; 18; 19; 22]
p [7 ... 19]

of the identified force on the plate 1 and 3 being significantly lower than the actual one.
The amplitude is close to the actual one in the case m = n, the mean relative error is
less than 7%, but it grows up to 15% when n = 24 and m = 8.

2.3.2 Not deterministic load

For random loads, the power spectral densities of force and velocity are taken into
account. These are their definitions [25,26]:

Svv(ω) =

∫ +∞

−∞
Rvv(τ)e−jωτdτ = lim

T→∞

1

T
E
[
v(ω)∗vT (ω)

]
(2.9)
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2.3 Force identification: numerical results

Figure 2.17: Deterministic distributed loads: comparison between the actual
force(−×−), the identified in the case n=m=24 (green) and in the case n=24, m=8

(blue)

Sff (ω) =

∫ +∞

−∞
Rff (τ)e−jωτdτ = lim

T→∞

1

T
E
[
f(ω)∗f

T
(ω)
]

(2.10)

The input-output relationship becomes:

Svv(ω) = Y(ω)∗SffY(ω)T + εSvv (2.11)

where Svv is the calculated velocity power spectral density matrix, ∗ indicates the com-
plex conjugate and εSvv is the error proportional to the rms velocity. Matrix Sff is
identified by inverting equation (2.11) and considering the reduced Y matrix as follows:

Sff (ω) = Y(ω)∗
+
Svv(ω)Y(ω)T

+
(2.12)

In figure 2.18 the diagram summarizing the procedure is shown.

The identification of a white random noise is investigated. Also this kind of load is a
broadband load, therefore it makes possible to evaluate the results averaged on frequency.
The identification is performed as shown in figure 2.18: the numerical power spectral
density of the velocity is computed by equation (2.11) in correspondence of all the
considered points n applying a white random noise in correspondence of p points. The
velocity is polluted by a random noise proportional to 2% of rms value.

a. m = n. The dimension of the force vector is the same of the measured response,
the mobility matrix is squared and the equation has the following dimensions:
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Figure 2.18: Diagram of the numerical identification procedure
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2.3 Force identification: numerical results

Sffid(ω) = Y(ω)∗
−1

Svv(ω)Y(ω)T
−1

(n× n) = (n× n) (n× n) (n× n)
(2.13)

b. m < n . The dimension of the force vector is larger than the dimension of the
measured response, the mobility matrix is rectangular and the problem has the
following dimensions:

Sffid(ω) = Y (ω)∗
+
Svv(ω)Y(ω)T

+

(n× n) = (n×m) (m×m) (m× n).
(2.14)

As shown by Nelson and Yoon [13] the PSD is more sensitive to the errors in the data.
Indeed, considering the errors εSvv and εSff

:

εSff
= Y(ω)∗

+
εSvvY(ω)T

+
(2.15)

by using the property of the norm on the above equation and on the equation (2.13):

||εSff
|| ≤ ||Y∗+ || ||εSvv || ||YT+ ||

||Sff || ≤ ||Y∗
+ || ||Svv|| ||YT+ ||

(2.16)

it is possible to write the follow equation:

||εSff
|| ||Svv|| ≤ ||Y(ω)∗|| ||Y(ω)∗

+ || ||Y(ω)T || ||Y(ω)T
+ || ||εSvv || ||Sff || (2.17)

Then:

||εSff
||

||Sff ||
≤ CN(Y∗)CN(YT )

||εSvv ||
||Svv||

(2.18)

Since the CN(Y∗) is equal to CN(YT ) the above equation becomes:

||εSff
||

||Sff ||
≤ CN(Y)2 ||εSvv ||

||Svv||
(2.19)

The last equation shows that the ratio between the auto spectral densities of velocity
and force is more sensitive to errors in the data than the ratio between the respective
Fourier transform.

||Svv||
||Sff ||

≤ CN(Y)2 ||εSvv ||
||εSff

||
(2.20)
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2.3 Force identification: numerical results

while:

||v||
||f ||

≤ CN(Y)
||εv||
||εf ||

(2.21)

Therefore, in order to identify random loads, the presented reduction techniques of the
ill-conditioning could not be enough to get the load identification.

Point loads The structure is excited simultaneously on the p points of table 2.11 by
white random noise and the power spectral density of the force is identified in the two
cases m = n and m < n. The simulation is performed in a frequency range from 1 to
2000 Hz. In the case m = n the identification of the force position fails as shown in
figure 2.19.

Figure 2.19: Random point loads. Comparison between the actual force (−×−), the
identified force in the case n=m=24 (green) and in the case n=24, m=8 (blue)

Figure 2.20 shows the comparison between the actual PSD of the force and the identified
one in the case m < n; the identification of the position is correct, but the amplitude is
underestimated.
From the comparison of the results in figure 2.19 and figure 2.20 it is possible to notice
that the reduced set of points gives better results than the full set of points, despite the
lack of information. The reason of this result could be find in the increased gap between
the condition numbers of the two cases, indeed it is at the power 2 in equation (2.20).
Although the identified Sff does not match the actual value, it is interesting to study
the behaviour of the power injected into the structure. The cross power spectral density
force-velocity, Sfv, is calculated by the following equation:
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2.3 Force identification: numerical results

Figure 2.20: Random point loads. Comparison between the actual force (−×−) and
the identified force in the case n=24, m=8 (blue)

Sfv(ω) = Sffid(ω)Y(ω)T (2.22)

The power injected is obtained by the following relationship:

Pin =

∫ ω2

ω1

Re[ Sfv(ω)]dω (2.23)

As shown in figure 2.21, the identified injected power, gives good results regarding to
the identification of the position, both for m = n = 24 and m < n. The amplitude
identification gives better results than those obtained for Sff , but the values are not
satisfactory. As it is clear from equation (2.22), in the identification of the injected power
the influence of the condition number return to be linear; this influence is reflected in
the results shown in figures 2.21, indeed it is possible to perform the identification of
the actual position of the load.

Distributed loads The structure is excited simultaneously by white random noise on
all the points of the second plate (see table 2.12) and the results are shown in figure
2.22.
As in the case of point loads, the identification of the power spectral density of the force
does not give good results in the case m = n. Figure 2.23 shows the results obtained in
the case m < n: also in this case it is possible to identify the position of the force while
the amplitude of the PSD is underestimated.
Figure 2.24 shows the identified injected power.
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2.3 Force identification: numerical results

Figure 2.21: Random point loads. Comparison between the actual injected power
(−×−), the identified power in the case n=m=24 (red) and in the case n=24, m=8

(blue)

Figure 2.22: Random distributed load. Comparison between the actual force (−×−),
the identified force in the case n=m=24 (green) and in the case n=24, m=8 (blue)
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2.3 Force identification: numerical results

Figure 2.23: Random distributed load. Comparison between the actual force (−×−)
and the identified force in the case and n=24, m=8 (blue)

Figure 2.24: Random distributed loads. Comparison between the actual injected power
(−×−), the identified power in the case n=m=24 (red) and in the case n=24, m=8

(blue)
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2.3 Force identification: numerical results

The identification of the injected power gives good results only for the force location in
the case m < n.

Conclusions The results presented in this chapter show that the reduction of ill-
conditioning by cutting not essential degrees of freedom could be a way to proceed in
the solution of the identification of deterministic loads. In fact, it gives good results also
by considering a little subset of measuring points on the structure. It is important to
emphasize that for the studied structure this concept could seams trivial, but it becomes
decisive and not trivial when the geometry of the structure is complex and it is not simple
to select the relevant information.
On the contrary, this methodology fails when random forces must be identified. However
the result obtained by using the injected power suggests that a possible approach to
identify a non deterministic load could be based on an energetic method.
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CHAPTER

THREE

IDENTIFICATION BY COHERENCE BASED APPROACH

Until now the thesis is focused on the numerical reduction of the ill conditioning problem
by conventional techniques.
The results show that the investigated techniques, although computationally heavy, are
suitable in the case of deterministic loads, but are unsatisfactory for the identification
of not deterministic forces.
In this case, a different approach is required and this is the topic discussed in this chapter
and in the next one.
Since the loads here considered are random, the input-output relationships to develop
this new approach follows the linear operator spectral theory of random signals. Con-
sequently physical quantities are expressed in terms of PSD. As it is seen the direct
inversion of the FRF fails to identify the applied forces. The idea of this approach is to
separate the localization problem from the amplitude identification, treating these two
problems by different techniques and to avoid the ill-conditioning problem.
Therefore three steps can be recognized. The first one attends to the identification of
the number of the applied forces by the velocity coherence analysis of the measured
response. In the second step a factor named Cvf , defined as coherence between dummy
force and measured responses, allows the identification of the force position. At last, the
PSD of the force is identified by the input/output autospectrum relation of single input
single output(SISO) models.
The validation of this proposed technique is analyzed in different experimental cases:
Single Input Multi Output (SIMO) and Multi Input Multi Output (MIMO).

3.1 Theoretical background

Consider a SIMO model as in figure 3.1 where: f(ω) is the input force, xi(ω) is the
output velocity without noise and vi(ω) is the output velocity affected by noise.
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Figure 3.1: Single Input/ Multi Output system

Assuming that the noise signals are not coherent with the input signal and with each
other noise, then [27]:

Sfn1 = Sfn2 = Sfn3 = Sx1n1 = Sx2n2 = Sx3n3 = Sn1n2 = Sn1n3 = Sn2n3 = 0

The PSD of the velocity v1 is:

Sv1v1 = Sx1x1 + Sn1n1 (3.1)

and it is put in relation with the PSD force by:

Svivi = |Yi|2Sff (3.2)

Therefore, by considering equation (3.2), equation (3.1) becomes:

Sv1v1 = |Y1|2Sff + Sn1n1 . (3.3)

Similarly for the cross power spectral density (CPSD) between f(ω) and v1(ω) the fol-
lowing equations are valid:

Sfv1 = Sfx1 + Sfn1

Sfv1 = Sfx1 = Y1Sff
(3.4)

and for the cross power spectral density between v1(ω) and v2(ω) are valid:
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3.1 Theoretical background

Sv1v2 = Sx1x2 + Sn1n2

Sv1v2 = Sx1x2 = Y ∗1 Y2Sff .
(3.5)

Finally the coherence between the two output signals is defined as:

γ2
v1v2 =

|Sv1v2 |2

Sv1v1Sv2v2
(3.6)

The numerator of the previous equation can be written by equation (3.5) as :

|Sx1x2 |2 = |Y ∗1 Y2Sff |2 (3.7)

and, by mathematical manipulation, it becomes:

|Sx1x2 |2 = (|Y1|2Sff )(|Y2|2Sff ) = Sx1x1Sx2x2 (3.8)

Considering that:

γ2
f1v1 =

|Sfv1 |2

SffSv1v1
=
|Y1Sff |2

SffSv1v1
=
Sx1x1
Sv1v1

(3.9)

equation (3.6) becomes:

γ2
v1v2 = γ2

fv1γ
2
fv2 . (3.10)

Consider a multi input/multi output system as in figure 3.2, where the n virtual pro-
cesses f1, ...fn are uncorrelated [25].
It is possible to write:

Svv(ω) = Y(ω)∗SffY(ω)T (3.11)

and the terms out of diagonal of matrix Sff are equal to zero.
Therefore, for each diagonal element of Svv we can write:

Svivi(ω) =
n∑
j=1

|Yij(ω)|2Sfjfj (ω) (3.12)

As Shin and Hammond [25] noticed, in the estimation of the FRF function of a structure
excited by two uncorrelated sources, the coherence of the output is strictly related with
the values assumed by the coherence of the input-output. In a general case it is possible
to write the following equation:

Syy = γ2
fy1Syy1 (3.13)

where y is the output, due to a set of sources acting simultaneously, and y1 is the output
due to one source only of the set.
The knowledge of the number of sources can be deduced from the values assumed by
γ2
vivj : it gives the indication on how many points are simultaneously excited. Indeed,
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Figure 3.2: Multi Input/ Multi Output system

by considering its physical meaning, the coherence between two signals quantifies how
these two signals are coherent with each other.
In a SIMO model, it is expected that the coherence between the velocities is close to
one: in fact, all the velocities depend on the single applied load. For a MIMO model,
when the loads are not correlated, the coherence between the velocities is less than the
correspondent coherence of a SIMO model.
In fact, the responses depend on two or more different sources. Therefore, increasing the
uncorrelated loads the values of the velocity coherence decreases proportionally to the
number of the excited points.
The velocity coherence is computed by the following equation:

γ2
vivj =

|Svivj |2

SviviSvjvj
(3.14)

In order to evaluate how many forces are acting on the structure, first the coherence
matrix is averaged on the whole frequencies range, γ̄2

vv. Each column of γ̄2
vv is normalized

to 1 by its mean value and Γij is obtained. Then for each column of Γij the standard
deviation is computed and then the mean value of the result is calculated:

Γij = γ̄2
vivj/Ei[γ̄

2
vivj ]

Nsources = Ei

[√
Ej [(Γij − Γ̄ij)2]

]
(3.15)
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The index Nsources of equation (3.15) represents the percentage of how many forces are
loading the structure. In fact, as shown later in the result section, the value assumed by
Nsources is close to 0.1 for one force and it is close to 0.2 for two forces.
Once the acting force number is identified, we proceed to identify their position. This
procedure is inspired by the work of Fontul and Lage [28, 29], where the concept of
transmissibility is used to identify the acting forces, and the work of Zhou [30], where
the coherence function is applied to perform damage identification.
Consider a dummy forces distribution applied to all the considered measurement points.
Each force is uncorrelated with the other forces and is constant on the chosen frequency
range. The power spectral density of these forces distribution, Sf̃ f̃ , is a diagonal matrix
with a constant value at each diagonal element. The cross spectral density between force
and velocity is calculated [30] by the equation:

Svf̃ (ω) = Y∗Sf̃ f̃ (3.16)

Then, the following ratio is calculated:

cvjfi =
|Svj f̃i |

2

Sf̃if̃iSvjvj
(3.17)

where Svj f̃i and Sf̃ f̃ depend on the dummy forces distribution and Svv is the PSD of

the measured velocities.
Equation (3.17) is averaged on the whole frequency range as follows:

Cvjfi =
1

∆ω

∫ ω2

ω1

|Svj f̃i |
2

Sf̃if̃iSvjvj
dω (3.18)

The values of Cvf represent a coherence between the dummy forces and the measured
responses due to the actual force. Since the dummy forces are applied to all the mea-
surement points, the values assumed by the ratio of equation (3.18) is minimum in corre-
spondence to the point excited by the actual force. This procedure allows to determine
the force position.
After the identification of the force position, the amplitude of the PSD force is calculated
by:

(Sfifi)id =
Svivi
|Yii|2

(3.19)

This procedure allows to reduce the error due to the solution of an inverse problem,
because it avoids the intrinsic failing of the inversion of an ill-conditioning matrix. In
the diagram of figure 3.3 the whole procedure is shown.
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Figure 3.3: Diagram of the identification procedure
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3.2 Single input/ multi output model

In this section, the procedure proposed in the previous section is applied to different
models to verify the theoretical definitions and the related comments stated in the pre-
vious section. Single input/multi output (SIMO) models are discussed.
The structure used for the previous applications is considered (figure 3.4). It is excited

Figure 3.4: Test bed

by a non deterministic load (multi impulse excitation performed by hammer) 13 times,
every time in correspondence of one of the chosen 13 points shown in figure 3.4. The
acquisition is performed between 1 and 2500 Hz by a 16 channels acquisition system.
By this measurement campaign the experimental FRF is calculated for the whole set of
13 points. The following applications, without loss of generality, are based on the same
measurements used for the FRF calculation.
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3.2 Single input/ multi output model

3.2.1 SIMO identification: whole measurement points set

For this first application the structure response is measured at each of the chosen 13
points by 13 accelerometers.
First the number of exciting forces is identified by equation (3.15). In table 3.1 the
results obtained for Nsources and the correspondent number of acting forces k are shown.

Table 3.1: SIMO identification: whole measurement points set. Number of excited
points k

Nsources k Nsources k

Test 1 0,1 1 Test 8 0,1 1
Test 2 0,1 1 Test 9 0,1 1
Test 3 0,1 1 Test 10 0,1 1
Test 4 0,1 1 Test 11 0,1 1
Test 5 0,1 1 Test 12 0,1 1
Test 6 0,1 1 Test 13 0,1 1
Test 7 0,1 1

Then the force position is identified by the Cvf factor. Figure 3.5 shows the 1/Cvf
trends averaged on the whole frequency range. The reciprocal of Cvf is displayed, the
maximum values of 1/Cvf it is more evident then the minimum values of Cvf . Each
graph of the figure corresponds to the single test in which the excited point is indicated
in the title of the graph.
Finally the PSD force is identified by equation (3.19). The results are shown in figure
3.6.
Both the results in figure 3.5 and in figure 3.6 show the ability of this procedure to
correctly identify the external forces.
Consider the test case 4, where the point 4 is excited. Figure 3.7 shows the comparison
between the actual Sff and the Sff of all the 13 points identified directly by equation
(2.12). It is clear that this direct procedure does not allow to identify the location of the
applied force, because the amplitude of the identified Sff of each point when the point
4 is excited are quite similar. Furthermore the identified Sff amplitude is very different
with respect to the actual one.
This last comment is further confirmed by the comparison of the actual Sff , the identified
Sff obtained by the procedure here proposed and the identified Sff achieved by equation
(2.12)(see figure 3.8).
Once established that the procedure proposed in this section gives better result then
the procedure performed in the previous chapter, a further validation is performed by
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3.2 Single input/ multi output model

Figure 3.5: Single input/ multi output identification: whole measurement points set.
1/Cvf averaged on the whole frequency band
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Figure 3.6: Single input/ multi output identification: whole measurement points set.
Comparison between Sff : actual PSD force (− ∗ −), PSD force identified by equation

(3.19)(−o−) and PSD force identified by equation by equation (2.12)(−−)
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Figure 3.7: Single input/ multi output identification: whole measurement points set.
Comparison between the actual PSD force Sff (− ∗ −), the PSD force identified by
equation (2.12) at the correct point(−o−) and the PSD force identified at the other

points (–)for test 4.

Figure 3.8: Single input/ multi output identification: whole measurement points set.
Comparison between the actual PSD force Sff (− ∗ −), the PSD force identified by

equation (3.19)(−o−) and the PSD force identified by equation (2.12)(−−) at point 4
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calculating the Svv by equation (2.11) using the identified Sff . Figure 3.9 shows that
the measured Svv and calculated Svv match very well.

Figure 3.9: Single input/multi output identification: whole measurement points set.
Comparison between the actual PSD velocity Svv (− ∗ −), the PSD velocity computed

by PSD force identified by equation (3.19) (−o−)
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3.2.2 SIMO identification: reduced measurement points set

This test is the same of the previous section, but, in this case, the acquired points are a
selection of 8 points chosen among the 13 points. The selected points are shown in table
3.2.

Table 3.2: Selected measurement points

measurement points

2 4 5 6 8 10 11 12

The FRF of the structure is known at 13 points, while the velocities, when the unknown
force acts, are measured only on a reduced set of points. This test allows to verify the
ability of the proposed procedure when the measurement points do not coincide with
excited points. The experimental FRF matrix is always known in correspondence of the
exciting points.
First the number of excitations is identified by equation (3.15). The results are shown
in table 3.3

Table 3.3: SIMO identification: reduced measurement points set. Number of excited
points k

Nsources k Nsources k

Test 1 0,1 1 Test 8 0,1 1
Test 2 0,1 1 Test 9 0,1 1
Test 3 0,1 1 Test 10 0,1 1
Test 4 0,1 1 Test 11 0,1 1
Test 5 0,1 1 Test 12 0,1 1
Test 6 0,1 1 Test 13 0,1 1
Test 7 0,1 1

Then the Cvf factor is calculated to identify the force position, but, in this case, the
obtained results are approximated, because the point where Cvf is minimum can or can
not coincide with the excited point. So Cvf is calculated by equation (3.18) over the 8
points and the point corresponding to the Cvf minimum value is selected. Now we must
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decide if this point is actually excited.
In any case the amplitude of PSD force is calculated at the chosen point by equation
(3.19). This force is imposed one by one at each of the 13 points and the PSD velocity
is calculated for the 13 tests at each point by equation (2.11).
For each test the relative error between the PSD of the measured response and the
numerical one is computed and it is averaged over the whole frequency range:

Ei =
1

∆ω

∫ ω2

ω1

Svv(ω)− Svvidi (ω)

Svv
dω (3.20)

The minimum value of Ei identifies the excited point. One more time the amplitude
of the PSD force is calculated by equation (2.12) at this new point. Figure 3.10 shows
the comparison between the actual force PSD, the PSD force here identified and the
PSD force identified by equation (2.12). This new approach gives better results than the
direct inversion of equation (2.11).
The results obtained from the minimization of the error of equation 3.20 provide the
position and the amplitude of the resultant pseudo forces that give the dynamic responses
nearest to the measured ones. To improve the confidence of these results it should be
necessary the knowledge of the measured response in the neighbourhood of the position
identified by the minimization.
Figure 3.11 shows the comparison of the force PSD, the actual, the identified by the
proposed procedure and identified by the inversion of equation (2.11), computed over
constant bandwidth of 100 Hz. The identified force matches the measured force for each
drive point, and obviously the matching is better in correspondence of the measured
points.
By using the force already identified the PSD velocity is calculated and compared in
figure 3.12 with the PSD of the measured velocity. The results are not good as those
of the previous section, but, considering the increase of uncertainty in the identification
procedure, they can be considered acceptable anyway.
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Figure 3.10: Single input/ multi output identification: reduced measurement points
set. Comparison between the actual PSD force Sff (− ∗ −), the PSD force identified

by equation (3.19)(−o−), the PSD force identified by equation (2.12)(-)
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Figure 3.11: Single input/ multi output identification: reduced measurement points
set. Comparison between the actual PSD force (− ∗ −), the PSD force identified by

equation (3.19) (−o−)and the PSD force identified by equation (2.12)(-)
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Figure 3.12: Single input/ multi output identification: reduced measurement points
set. Comparison between the actual PSD velocity Svv (− ∗ −) and the PSD velocity

computed by the PSD force identified by equation (3.19) (−o−)
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3.3 Multi input/ multi output model

In this section Multi Input/ Multi Output models are considered. The procedure pre-
sented in this chapter is adopted for this kind of input-output model and it is verified if
the method is as effective as for the SIMO model.

3.3.1 MIMO identification: whole measurement points set

The structure is excited by two uncorrelated forces generated by two different hammer
multi impulse in correspondence of two points of the structure. The response is acquired
in correspondence of the whole set of 13 points. As in the SIMO test, the first step of
the identification is the evaluation of the number k of applied loads by equation (3.15).
The results obtained for the two tests are shown in table 3.4.

Table 3.4: MIMO identification: whole measurement points set. Number of excited
points k

Nsources k

Test 1 0.2 2

Test 2 0.2 2

Then the values of Cvf is computed as shown in section 3.2.1.
In this instance, the k minimum values are selected from the organised vector of Cvf . As
shown in figure 3.13, they correspond to the couple (1,4) in the first test and to the couple
(1,2) in the second one. The amplitude of the force is computed, in correspondence of

Figure 3.13: Multi input/ multi output identification: whole measurement points set.
1/Cvf averaged on the whole frequency band
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the excited k points by equation (3.19).
Then for a further validation of the obtained results, the forces now calculated are applied
at all the combinations Cntot,k of points.
Cntot,k is the combination of the excited k points on the whole set of n measurement
points. The PSD of the velocity is calculated by equation (2.11) for each combination
of excitations.
In figures 3.14 and 3.15 the results obtained by two different combinations of drive points
are shown. In the first experiment, the excited points are the couple (1,4) and in the
second experiment the couple (1,2).
Figure 3.14 shows the comparison between the applied load and the identified ones. Also
in this case there is a good correspondence in both considered test.

Figure 3.14: Multi input/ multi output identification: whole measurement points set.
Comparison between the actual forces PSD Sff1 (blue), Sff2 (black) and the forces

PSD identified Sffid1 (red) and Sffid2 (green)

Figure 3.15 shows the comparison between the measured PSD velocity and the PSD
velocity computed by equation (2.11) using identified forces; also in this case there is a
good agreement between measured and identified PSDs.
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3.3 Multi input/ multi output model

Figure 3.15: Multi input/ multi output identification: whole measurement points set.
Comparison between the actual PSD velocity Svv (−o−)and the PSD velocity

identified by equation (3.19)(−×−)

3.3.2 MIMO identification: reduced measurement points set

As tested for the SIMO model, the identification of two or more uncorrelated forces is
performed also considering a reduced set of measurement points. The number of selected
points is the same of section 3.2.2, shown in table 3.2. In this case in the rounding
of the value computed through equation (3.15) is assumed at -10% tolerance due to the
increasing of the mean value of the coherence resulting from the use of the reduced sets.
The results obtained for the two tests are reported in table 3.5.

Table 3.5: MIMO identification: reduced measurement points set. Number of excited
points k

Nsources k

Test 1 0.2 2

Test 2 0.2 2

The reduced number of measurement points together with a multi input excitation make
less efficient the use of Cvf . Indeed, in this case, the use of the reference forces computed
in correspondence of the points given by the minimum values of Cvf , does not provide the
expected results. Therefore, the reference forces are computed from equation (2.14) and
they are applied to all the combination of Cntot,k points. Then, for each combination,
the error of equation (3.20) is computed; the minimum values of the error gives the
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3.3 Multi input/ multi output model

combination of the excited points. Figure 3.16 shows the values of the errors for the two
considered cases in which the couple (1, 4) and (1, 2) are excited. The minimum value
of the first test is in correspondence of the third combination that actually matches the
couple (1, 4); for the second test it is in correspondence of the first combination that
matches the couple (1, 2).

Figure 3.16: Multi input/ multi output identification: reduced measurement points set.
Error computed for each configuration of points in the first test (blue) and in the

second test (red)

It must be noticed that, as in section 3.2.2, the minimum values of the Cvf identify,
among the points of the reduced set, those closest to the excited points.
Figures 3.17 and 3.18 show the good agreement of the identified forces with the ac-
tual ones, and the comparison between the PSD velocity for the two considered tests
respectively.
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3.3 Multi input/ multi output model

Figure 3.17: Multi input/ multi output identification: reduced measurement points set.
Comparison between the actual PSD velocity Sff1 (blue), Sff2 (black) and the forces

PSD identified Sffid1 (red) and Sffid2 (green)

Figure 3.18: Multi input/ multi output test. Comparison between actual PSD velocity
Svv (−o−)and the PSD velocity computed by the PSD force identified by equation

(3.19) (−×−)
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Conclusions In this chapter an alternative approach is proposed, to identify random
loads acting on a structure. The procedure is carried out in three steps: first the number
of acting forces is established, then the position and the amplitude are identified.
Finally the goodness of the identified load is evaluated by the computation of the PSD
velocity relative error.
The number of sources is established by an index based on the velocity coherence.
The identification of the position of the applied loads is performed by the Cvf index, it
is computed as a virtual coherence between a dummy load, applied numerically to the
structure, and the actual velocity. The results show that the proposed index allows to
identify the correct position of the applied loads for both single input and multi input
tests. Once the position is identified, the amplitude of the load is computed by equation
(3.19); the use of this formulation reduces the effect of the ill-conditioning of the problem,
indeed the inversion of the FRF matrix is not required.
For both the considered cases (SIMO and MIMO), the identification is also obtained
with a reduced measurement points set, in order to evaluate the limit of the proposed
procedure: the measurement points could either be or not be drive points.
The Cvf index can be computed only in correspondence of the measurement points.
Indeed, the knowledge of the PSD velocity is required. In the single input/ multi output
model the index gives good results, the amplitude of the reference force is calculated
in correspondence of the point selected by the index. This allows to excite numerically
the structure to calculate the relative error between the actual PSD velocity and that
computed by the identified forces. The minimum value of the error corresponds to the
position of the identified force.
In the case of multi input/multi output model the use of the index does not give good
results. The knowledge of the number of applied loads allows to consider all the exciting
points combination, then a load of amplitude computed by the inversion of classical
random loads is numerically applied to the structure and the correct position is given by
the minimization of the relative error computed for each combination. This procedure
is obviously expansive in terms of computational costs.
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CHAPTER

FOUR

IDENTIFICATION BY USING ENERGY BASED MODEL

The solution of high frequency problems can be performed by Energy Based (EB) models,
that allow to bypass the ill-conditioning of the FRF matrix.
One of the most prominent technique that allows to predict the energy stored into
mechanical systems by a power exchanged model is the Statistical Energy Analysis
(SEA) [31–37]. The difference between a generic EB model and SEA is the basic hy-
pothesis of SEA. In fact SEA and EB models are both based on a power balance which
relates, by linear algebraic equations, the power injected into a mechanical system and
the energy stored into the same system. Whereas the coefficient matrix of SEA model
must follow some hypothesis, on the contrary this condition must not be respected by a
generic EB model.
The results shown in the third chapter and in the second part of the second chapter sug-
gest that the energetic approach could be a good way to solve the identification problem
in the instance of not deterministic loads. Hence, in this chapter a procedure, based on
energetic method, to identify first the injected power and then the load spectrum of the
applied loads, in operative condition is proposed.
The procedure is performed in two steps [37]: the first step is focused on the identification
of the coefficients of an EB model of the structure by using the Power Injection Method
(PIM). This technique allows to obtain the EB model parameters of the structure by
experimental tests. The second step is the identification of the power injected by using
the identified model and solving the ”inverse problem” of the EB model. It is useful
precise that the identified model is not properly a SEA model, indeed, some particular
hypotheses of Statistical Energy Analysis are not satisfied.

4.1 Theoretical background of Statistical Energy Analysis

A high frequency problem is defined when a characteristic dimension of the studied
structure is much larger than the propagating wavelength. Classical techniques, as FEM
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4.1 Theoretical background of Statistical Energy Analysis

and BEM allowing to solve low-medium frequency problems, are not appropriate to
approach this kind of problem for several reasons. First, the use of classical techniques
imply that when increasing the modal density, the numbers of required DoFs grow
up: this entails high computational costs. Moreover, also when the solution can be
find, it is necessary to consider that at high frequency the higher order eigenvalues are
more sensitive to uncertainties of the geometry, the boundary condition and the material
properties. This implies that an increase of the modal density prevents to find the correct
solution. These reasons lead to suggest that an energetic method based on exchanged
power balance between mechanical subsystems could be more efficient then the classical
methods based on the force balance. The power balance is true at all frequencies anyway.
The challenge is to find a model that allows to obtain the relation between the power
exchanged and the energy stored in each subsystem, to obtain finally a linear system
that links the injected power to the energy stored trough a coefficient matrix. Therefore
in the solution of high frequency problem the Statistical Energy Analysis, when some
particular hypothesis are satisfied, allows to obtain an energetic model based on linear
equation that gives the high frequency problem solution.
The greatest advantage of the use of this techniques is the reduction of the number of
DoF. SEA in fact uses spatial and frequency averages on suitable subsystems that allow
to reduce the dimension of the problem and the difficulties related to the increase of the
ill-conditioning in correspondence of the resonances.
Consider the 2 DoF system in figure 4.1.

     

  k1            m1             m2   k2 

  

     

          c1           c2 

f1 f2 

 

Figure 4.1: Two Degrees of Freedom system

The equations of the force balance are:{
m1ẍ1 + c1ẋ1 + (k1 + kc)x1 = f1 + kcx2

m2ẍ2 + c2ẋ2 + (k2 + kc)x2 = f2 + kcx1
(4.1)

By multiplying the first equation by ẋ1 and by integrating on the period T , the equation
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of the power balance on m1 is achieved [38]:

1

T

∫ T

0
ẍ1ẋ1dt+

1

T

∫ T

0

c1

m1
ẋ1ẋ1 dt+

1

T

∫ T

0

k1 + kc
m1

x1ẋ1 dt =

=
1

T

∫ T

0

kc
m1
x2ẋ1 dt+

1

T

∫ T

0
f1ẋ1dt (4.2)

Notice that in the steady state the first and the third integral of equation (4.2) are null,
so that the equation becomes:

1

T

∫ T

0
f1(t)ẋ1(t) dt =

1

T

∫ T

0

c1

m1
ẋ1ẋ1 dt−

1

T

∫ T

0

kc
m1

x2ẋ1 dt (4.3)

Nevertheless an equation equivalent to equation (4.3) can be written for the power
balance on m2 by multiplying the second equation of (4.1) for ẋ2. The physical meaning
of each term of equation (4.3) is:

1

T

∫ T

0
f1(t)ẋ1(t) dt the power injected

1

T

∫ T

0

c1

m1
ẋ1ẋ1 dt the power losses

1

T

∫ T

0

kc
m1

x2ẋ1 dt the power exchanged

Therefore, for this two DoF system, it can be written:

Pinjected1 = Plost1 + Pexchanged1,2

Pinjected2 = Plost2 + Pexchanged2,1
(4.4)

Note that the power lost is proportional to the total energy of each mass and the power
exchanged is proportional to the difference between the total energies of the two masses.
By considering each DoF as a subsystem, the system of figure 4.1 can be displayed by
the diagram of figure 4.2.
For a M DoF system it is possible to consider a group of DoFs as a subsystem. In this
case the energy balance becomes:

Pi,inj = Pi,lost +

N∑
j 6=i

Pi,j −
N∑
j 6=i

Pj,i (4.5)

where i and j are the subsystems indices and N is the number of subsystems.
In Statistical Energy Analysis it is posed that, under some particular hypotheses [39],
the energy flow between two subsystems is proportional to the difference of the energy
stored in each subsystem. This assumption is close to truth when:

• all the modes of the subsystem are similar;
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4.1 Theoretical background of Statistical Energy Analysis

Figure 4.2: Two subsystems SEA model

• the subsystems couplings are conservative;

• the eigenfrequencies are uniformly probable in a frequency band;

• the force exciting the subsystems are random and uncorrelated;

• the interactions between the subsystem are weak.

Therefore, the power exchanged between subsystem i and subsystem j is:

Pi,j = ωηi,j

(
Ei
ni
− Ej
nj

)
(4.6)

where ni and nj are the modal density of subsystems (the number of modes over the
bandwidth), ηij is the Coupling Loss Factor (CLF) of the junction between subsystems
i and j, ω is the central frequency of the considered band and E is the energy stored in
each subsystem. The power lost is:

Pi,lost = ωηiEi (4.7)

where ηi are the Internal Loss Factors (ILF).
Therefore the energy balance equations for N coupled subsystems are [26,33,34]:

Pi,inj = ω ηiEi + ω

N∑
j=1,j 6=i

(ηij Ei − ηjiEj) i = 1, . . . ,N (4.8)
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4.2 Power Injection Method

Equation (4.8) can be written as follow:


P1

...

...
Pm

=ω




η11 0 ... 0
0 ... ... ...
... ... ... ...
0 ... ... ηmm

+



N∑
j=1,j 6=1

η1j −η21 ... −ηm1

−η12 ... ... ...
... ... ... ...

−η1m ... ...
N∑

j=1,j 6=1

ηmj






E1

...

...
Em

 (4.9)

or, synthetically:
P = ω (A + C) E (4.10)

The sum of A and C can be expressed by the matrix η:

P = ω ηE. (4.11)

Focusing on equation (4.8), it is interesting to notice that, to obtain the energy from
the knowledge of the injected power in the classical SEA problem, it is necessary to
invert the matrix η. On the contrary, in this case the scope of the analysis is to evaluate
the injected power starting from the knowledge of the energy stored in each subsystem.
Therefore the force identification problem is a direct problem, where no matrix inversion
is required and the ill-conditioning is avoided.

4.2 Power Injection Method

The presented procedure is an identification of external load based on an EB model.
Therefore the model parameters of the structure, CLFs and ILFs, must be known. The
values of CLFs and ILFs can be obtained by numerical computation through theoretical
relationships or experimental techniques as the Power Injection Method [31–33,40]. Since
the scope of the proposed methodology is the load identification, the procedure is already
an operative procedure. Therefore rather than to calculate the theoretical parameters
and then to update the model, it is better to identify directly the CLFs and ILFs by
PIM. This benefit must be weighed against the cost due to the inversion of the energy
matrix that proposes again the ill-conditioning problem.
The identification of SEA parameters by PIM implies that some independent experiments
must be performed on the structure. In each experiment one of the subsystems is
excited by an external known load and the response of the structure in correspondence
of all subsystems is measured. Then, by the knowledge of the applied forces and of
the responses, the total energy stored in each subsystem and the power injected are
computed. Therefore, the described procedures need one independent experiment for
each subsystem. Considering each experiment and equation (4.11), for N subsystems

67



4.2 Power Injection Method

the following equation are written:
P1

0
...
0

 = ωη


E11

...

...
En1

 ;


0
P2

...
0

 = ωη


E12

...

...
En2

 ; ...;


0
...
0
Pn

 = ωη


E1n

...

...
Enn

 (4.12)

where Enj indicates the energy of subsystem n when the subsystem j is excited. Equation
(4.12) can be collected together in order to write the following equation:


P1 ... 0
... ... ...
... ... ...
0 ... Pm

=ω



η11+
N∑

j=1,j 6=1

η1j −η21 ... −ηm1

−η12 ... ... ...
... ... ... ...

−η1m ... ... ηmm+

N∑
j=1,j 6=1

ηmj




E11 ... E1m

... ... ...

... ... ...
Em1 ... Emm



(4.13)
The CLFs and the ILFs can be identified by the inversion of the energy matrix:



η11+

N∑
j=1,j 6=1

η1j −η21 ... −ηm1

−η12 ... ... ...
... ... ... ...

−η1m ... ... ηmm+
N∑

j=1,j 6=1

ηmj


=

1

ω


E11 ... E1m

... ... ...

... ... ...
Em1 ... Emm


−1

P1 ... 0
... ... ...
... ... ...
0 ... Pm



(4.14)
By mathematical manipulation equation (4.14) can be rewritten so that CLFs and ILFs
are collected in a vector. The following equation shows the algorithm for three coupled
subsystems:

η1

η12

η13

η21

η2

η23

η31

η32

η3


=



E11 E11 E11 −E21 0 0 −E31 0 0
0 −E11 0 E21 E21 E21 0 −E31 0
0 0 −E11 0 0 −E21 E31 E31 E31

E12 E12 E12 −E22 0 0 −E32 0 0
0 −E12 0 E22 E22 E22 0 −E32 0
0 0 −E12 0 0 −E22 E32 E32 E32

E13 E13 E13 −E23 0 0 −E33 0 0
0 −E13 0 E23 E23 E23 0 −E33 0
0 0 −E13 0 0 −E23 E33 E33 E33



−1 

P1

0
0
0
P2

0
0
0
P3


(4.15)
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Since the estimation of the energy in equations (4.14) and (4.15) and of the power injected
is performed by experimental measurements, that are necessarily affected by noise, and
since both proposed procedures imply the inversion of the energy matrix it is necessary to
tackle the ill-conditioning of the energy matrix. Whit regard to this problem it must be
considered that the EB approach involves the use of energy and injected power averaged
on each subsystem. Therefore, whatever the number of subsystems that are assembled
in the model, their number is lower than the typical number of DoFs of a FRF matrix.
The classical approach to the reduction of ill-conditioning, as the regularisation tech-
niques, is based on the suppression of the information that amplify the error of the data in
the solution (see chapter 2). In this case a complete information are needed to carry out
the model parameters, thus the ill-conditioning reduction approach is not recommended.
Hence, instead of a direct approach to the ill-conditioning, a method less sensitive to
the noise in the data has been sought; with this purpose the two techniques proposed in
equations (4.14) and (4.15) are tested. In fact, even if these equations are theoretically
equivalent, the inverse problems can differ due to the different ill-conditioning of the
energy matrices.
The energy of subsystem i can be carried out by the the following equation:

Ei,k =
ρh

Nsub

Nsub∑
j=1

∆Sj

∫ ω2

ω1

Svjvji,kdω (4.16)

where Nsub is the number of the measurement points for each subsystem i, mj is the mass
assigned to each measurement point and Svij,kvij,k [25] is the velocity of the measurement
point j of the subsystem i when the subsystem k is excited. The power injected into
subsystem i is computed by the knowledge of the cross spectral density between the
applied force and the velocity measured at the drive point j by the following relationship:

Pinj,i =
1

Nsub

Nsub∑
j=1

Re

{∫ ω2

ω1

Sfjvji,kdω

}
(4.17)

4.3 Identification of the injected power

Once CLFs and ILFs are identified by PIM, the model is completely fixed. Then it is
possible to proceed to identify the injected power. In operative condition, when the force
that must be identified acts, the response of the structure on each subsystem is acquired.
The energy at each subsystem can be calculated by the equation:

Ei =
1

Nsub

Nsub∑
j=1

mj

∫ ω2

ω1

Svj,ivj,idω (4.18)

and the vector E of equation (4.11) is known. The injected power is calculated by
solving the direct problem stated by the following equation:
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4.4 Force model

P̂ = ω ηE. (4.19)

P̂ is the vector of the identified injected powers.

4.4 Force model

The previous section present a procedure allowing to identify the power injected into a
structure represented by an Energy Based model. Let us remember that the purpose of
this thesis is the identification of the position and of the amplitude of external forces
acting on a structure. So the approach presented in this chapter allows to identify the
excited subsystems (this is the counterpart of the position identification for a classical
model), but it needs a law relating the injected power to the acting force in order to
identify the amplitude of the exciting load.
The injected power averaged on a frequency band is defined by equation (4.17) and it
can be alternatively written as:

Pi,inj =

∫
∆ω

SffRe
{
Ȳ (ω)

}
dω (4.20)

where Ȳ is the mobility averaged on the subsystem. By considering Sff constant in
band and Re{Ȳ (ω)}, the real part of the mobility averaged on the band, the equation
can be written as follows:

Pi,inj(ω̂) = Sff (ω̂)Re
{
Ȳ (ω̂)

}
(4.21)

where ω̂ is the center band frequency.
So the power spectral density of the force averaged over the subsystem and over the
frequency band is:

Sff (ω̂) =
Pi,inj(ω̂)

Re
{
Ȳ (ω̂)

} (4.22)

The information obtained by equation (4.22) could be not complete for some particular
kind of loads as turbulent boundary layer or pressure wave propagating over the structure
surface, but it is exhaustive if a ”rain on the roof” load is supposed. In fact this kind of
load is a random excitation with delta-correlation spatial resolution and its amplitude
is proportional to the local mass density. This hypothesis implies that the force power
spectral density of the force depends only on frequency and not on space [31]. Therefore,
the mean square force over a frequency band is given by:

〈F 〉2ω = Sff (ω)ρ∆ω (4.23)
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4.5 Model parameters identification

The test bed chosen to verify the efficiency of the investigated technique is the same
structure used for the previous applications. Three coupled steel plates, 1.5 mm thick,
laying on a soft support, are connected as shown in figure 4.3 and in table 4.1 are
reported the dimensions of the structure.

Figure 4.3: Experimental setup

Fourteen measurement points are considered on the structure: 4 on the first plate, 7 on
the second plate and 3 on the third one. The distribution of the points is not uniform in
space; indeed, as said also for the application showed in the previous chapter, in operative
condition the uniform distribution of the acquiring points is not applicable [41].

Table 4.1: Structure dimensions

a[mm] b[mm] c[mm] d[mm] e[mm] f[mm]

500 700 300 250 400 250

For the SEA parameters identification, fourteen independent experiments are performed.
In each experiment one point, among the all set of points, is excited by random noise
obtained by hammer multi impulse and the acceleration is acquired with a 5000 Hz
sampling frequency for 20 seconds. This first test enables to perform PIM by the two
procedures described in section 4.2. Then the quality of the identified model is verified
by two tests and a last experiment is performed applying a quasi “rain-on-the-roof” load
on the first plate. The meaning of quasi is: the load is imposed on different points of
the first plate by two hammers, but the structure is not excited simultaneously at all
points.
Each point of each subsystem is excited by a multi impulse force, and its amplitude
is measured by the force transducer of the hammer. The acceleration is measured at
each of the 14 points. The stored energy and the power injected are calculated for each
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4.5 Model parameters identification

experiment and the parameters of the EB model are calculated by equation (4.14) and
(4.15).

Figure 4.4: Comparison between absolute values of ILFs and CLFs computed for each
measurement( −−) and their average (−−)

Therefore, by considering all the combinations the PIM is carried out 84 times (4 first
plate points for 7 second plate points for 3 third plate points) and 84 parameters sets
are identified. These 84 results are averaged to obtain the CLFs and ILFs used in the
model. Figure 4.4 shows the results of each experiment and their average. The effect of
the ill-conditioning of the energy matrix is evaluated comparing the results obtained by
the two procedures presented in section 4.2.
Figure 4.4 shows the comparison between CLFs and ILFs computed by equation (4.14)
and (4.15). As shown, the parameters identified by the two methods are equal.
Another consideration must be stated for the CLF η13 and η31. A proper SEA model
expects that the CLFs of not connected subsystems is null. Since in our test bed,
subsystem 1 and 3 are not linked, η13 and η31 should be null but the results show a
behaviour not coherent with SEA [35]. However, let us remember that the coefficients
obtained by PIM are coefficients of a EB model which is not obliged to follow SEA
restrictions. In this application, the Energy Based model is a tool to identify the applied
load, and a more complex formulation would frustrate the use of this technique.
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Figure 4.5: Comparison between terms of the η matrix computed by equation (4.14)
(−o−) and equation (4.15)(−×−)

4.6 Model validation and power identification

In this section the results of three different tests are proposed. The first test is an
experimental validation of the identified parameters.
The injected power (the hammer multi impulse at each point) is identified and compared
with the actual power. For a further validation of the identified model and of the
possibility to use the SEA energy balance equation, a numerical test is performed. The
injected power due to the application of 4 contemporary random numerical loads acting
at all the 4 points of the first plate is identified.
The last test carries out the identification of the injected power, and the applied force
when a rain on the roof load loads the first plate.

4.6.1 Single input/ multi output: experimental test

With the purpose to validate the results obtained from PIM, the identification of the
injected power is carried out for the 14 experiments performed to identify the model
parameters. In each experiment one of the 14 points of the structure is excited by a
random noise obtained by hammer multi impulse, and the response is acquired at all
points. Through equation (4.18) the energy of each subsystem is computed and the
position and the amplitude of the injected power is identified. Figures 4.6 - 4.7 show
the comparison between the sum, over the considered frequency range (100-2500 Hz), of
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the identified power of the 3 subsystems.

Figure 4.6: Identification of the position in SIMO experimental test: actual power
(black), identified power (red)

The results show that the correct position of the power is identified for each test. The
differences between the sum of the amplitudes can be assessed from the graphs shown
in figures 4.8 - 4.11. Here the comparison between the actual injected power and
the identified powers in correspondence of the correct subsystem is shown. It is clear
that at the lower frequency bands there are large differences between the actual and the
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Figure 4.7: Identification of the position in SIMO experimental test: actual power
(black), identified power (red)
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identified powers.

Figure 4.8: Comparison between injected power in SIMO test: actual power (−−),
identified power (−×−)
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Figure 4.9: Comparison between injected power in SIMO test: actual power (−−),
identified power (−×−)
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Figure 4.10: Comparison between injected power in SIMO test: actual power (−−),
identified power (−×−)
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Figure 4.11: Comparison between injected power in SIMO test: actual power (−−),
identified power (−×−)
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4.6.2 Multi input/ multi output: numerical test

For a further validation of the identified model parameters a numerical test is carried
out. The structure is excited simultaneously at all the 4 points of the subsystem 1 by 4
different random loads numerically generated and the numerical response at all the points
of the structure is computed by the experimental FRF. The energy of each subsystem
is calculated by equation (4.18) and the injected power is identified by equation (4.19).
The sum of injected power over all the considered frequency bands is shown in figure
4.13. The actual injected power is only on subsystem 1, so the identification of the
excited subsystem is successful.
Figure 4.12 displays the comparison between the actual and the identified amplitude of
the injected power. Also these results validate the model obtained by PIM

Figure 4.12: Comparison between injected power in MIMO numerical test: actual
power (black), identified power (red)

From the knowledge of the identified injected power the load identification is performed
by equation (4.22). The identified power spectral density of the force and the actual one
are compared and shown in figure 4.14.
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4.6 Model validation and power identification

Figure 4.13: Comparison between injected power in MIMO numerical test: actual
power (−−), identified power (−×−)

Figure 4.14: Comparison between force power spectral density in MIMO numerical
test: actual Sff (−−), identified Sff (−×−)
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4.7 “Rain-on-the-roof”: experimental test

4.7 “Rain-on-the-roof”: experimental test

The last test presented is an experimental test in which the structure is excited by a
quasi ”rain on the roof” load. Subsystem 1 is excited simultaneously by two uncor-
related hammer multi impulse loads. The position of the impacts changes during the
measurement. The response is measured in correspondence of the whole set of points
and, as in the previous test, through the knowledge of the energy of each subsystem, the
injected power is identified.
The comparison of the sum over the all considered frequency range of the actual injected
power versus the sum of the identified one is shown in figure 4.16. The identification of
the position of the force is correct.

Figure 4.15: Comparison between injected power in MIMO experimental test: actual
power (black), identified power (red)

Figure 4.16 shows the comparison between the amplitude of the actual and of the
identified injected power at each frequency. By inverting equation (4.22), the power
spectral density of the correspondent force is calculated and drawn in figure 4.17
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4.7 “Rain-on-the-roof”: experimental test

Figure 4.16: Comparison between injected power in MIMO experimental test: actual
power (−−), identified power (−×−)

As expected the identification of the power spectral density of the force is good almost
at all the considered frequency bands.

Figure 4.17: Comparison between force power spectral density in MIMO experimental
test: actual Sff (−−), identified Sff (−×−)
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4.7 “Rain-on-the-roof”: experimental test

Consideration on the validity of the model

In order to establish the frequency range of SEA validity the modal overlap factor (MOF)
is computed. The asymptotic modal density is computed for each subsystem by the
following equation [38]:

n(f) =
A

2

√
12ρ(1− ν)

Eh2
(4.24)

The modal overlap factors are calculated by equation (4.25), using the modal densities
of table 4.2 and the identified ILFs.

MOFi = f ηi ni(f) (4.25)

Table 4.2: Asymptotic modal densities

Subsystem 1 Subsystem 2 Subsystem 3

0,0212 0,0743 0,0159

Figure 4.18 shows the comparison between the modal overlap factor, of the whole sub-
systems, computed by the identified ILFs and their values averaged over all considered
frequency range. As shown the modal overlap factors computed through the identified
ILFs are strictly dependent on the ILFs fluctuations over the frequency; the MOFs com-
puted by averaged ILFs is greater than one: up to 700 Hz for the subsystem 3, 800 Hz
for subsystem 1 and 1100 Hz for subsystem 2.
The variance is calculated by the variance prediction method of Langley and Cotoni [42].
The energy variance is computed by the following equation:

V ar(Ej) = Σk(D
−1
0,jk)

2V ar(Pran,k)+

+ΣkΣs 6=k[(D
−1
0,jk − (D−1

0,js)Es]
2V ar(Dran,ks)

(4.26)

The variance of the input power and of the energy matrix is evaluated by the following
equations:

V ar(Pran,k) = P0,k r
2(αk,m

1
k,B

1
k) (4.27)

V ar(Dran,ks) = D0,ks r
2(αks,m

1
k,B

1
k) (4.28)

where the terms r2 is a function of the parameters αks and αk describing the nature of
the coupling between subsystems and of applied loads. It can be calculated through the
following relationship:

r2(α,m,B) =
1

mπ
{α− 1 +

1

2mπ
[1− e−2πm]+

+E1(πm)[cosh(πm)− 1

mπ
sinh(πm)]}

(4.29)
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4.7 “Rain-on-the-roof”: experimental test

Figure 4.18: Comparison between modal overlap factors computed by identified ILF
(red) and its value averaged over the frequency range (blue)
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4.7 “Rain-on-the-roof”: experimental test

Figure 4.19: CLF matrix standard deviations bounds
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4.7 “Rain-on-the-roof”: experimental test

Figure 4.20: Power standard deviations bounds
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4.7 “Rain-on-the-roof”: experimental test

Figure 4.21: Power standard deviations bounds of test 1
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4.7 “Rain-on-the-roof”: experimental test

The results of figure 4.19 show that most of the identified CLFs and of ILFs are in the
bounds of the computed variance. Figures 4.20 shows the energy variance bounds for all
the tests performed in order to use the PIM, and figure 4.21 shows the energy, together
with the variance bounds, computed for the first test. These results are computed by
the theoretical variance proposed for the solution of the direct SEA problem. Thus the
validity of these relationship must be verify.

Conclusions In this chapter, an operative identification procedure based on Statistical
Energy Analysis is presented. The procedure is carried out in two steps: the first step
is focused on the identification of the coefficients of an EB model of the structure by
using the Power Injection Method (PIM). The second step is the identification of the
power injected by using the identified model and solving the ”inverse problem” of the EB
model. The results of three different tests are proposed. The first test is an experimental
validation of the identified parameters. The second test is numerical, and gives a further
validation of the identified model confirming the possibility of using SEA energy balance
equation in this model. The results show that it is possible to identify the model by a
reduced set of measurement points. The last test presented is an experimental test in
which the structure is excited by a quasi ”rain on the roof” load.
Since the proposed EB model is not dependent on the SEA hypotheses, it can be used
also at low-medium frequencies, where the modal density is not appropriate for a SEA
solution. The results show that it is possible to identify both the injected power and
the PSD force on the whole frequency range, even if the best results are obtained in
correspondence of higher frequency bands.
The major advantage of this technique is the possibility to have an operative load
identification on very complex structures by simple models that allow to avoid the ill-
conditioning of the FRF matrix and to reduce the computational costs. For example,
for a very large and complex structure, where it is not possible to perform suitable ex-
perimental measurements, this technique allows to identify the subsystem excited and
the amplitude of this excitation, by a lower number of information.
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CHAPTER

FIVE

GENERAL CONCLUSION

In this thesis the problem of load identification in frequency domain is approached by
an operative point of view. The identification of broadband deterministic and random
loads is investigated and different tests are performed on both SIMO and MIMO models.
The first part of the thesis is focused on the study of a low frequency problem. First the
relationship between the degrees of freedom taken into account and the ill-conditioning
of the FRF matrix are investigated through a numerical procedure, based on SVD reg-
ularization technique. This methodology is focused on the identification of the best
experimental setup to perform load identification. It is carried out by numerical and
experimental FRF, and the results show that, even if the computational cost is high,
it gives an indication about the best distributions of measurement points that allow to
perform load identification.
While in the first part of chapter two the analysis is based on the results obtained from
the numerical identification, in the second part of the chapter the relationship between
the selected degrees of freedom and the ill-conditioning of the problem is directly investi-
gated. The results show that, when a broadband load must be identified, the reduction
of the ill-conditioning by cutting not essential degrees of freedom could be a way to
proceed; in fact, it gives good results also by considering a little subset of measuring
points coincident or not with the drive points. On the contrary this methodology fails
when random forces must be identified. The results obtained from the identification of
the injected power suggest that, for non deterministic loads, an energetic approach could
be more efficient.
In the third chapter a coherence based approach is proposed, to identify random loads.
The procedure is performed in three steps and both SIMO and MIMO applications are
presented. First the number of acting forces is identified; this number is computed
through the analysis of the measured velocity coherence of the responses. As shown
from the results of the experimental tests, the Nsources index gives the number of acting
loads. In this thesis only the cases of one and two forces are studied, but we are confident
that similar results can be obtained for a higher number of forces, because the velocity
coherence must decrease when the number of input increases. The second step, of the
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proposed procedure, is the identification of the position obtained by Cvf index; it is
computed by applying dummy uncorrelated forces at all the points of the structure and
by the virtual coherence between these dummy forces and the measured velocities. The
results obtained by the tests carried out on the whole set of points show that, since
the number of acting forces is correctly established, the Cvf index allows to identify the
position of the actual forces.
Once the number and the position of acting forces is identified it is possible to calculate
their amplitudes as the ratio between the measured PSD velocity and the square of the
absolute value of the mobility in correspondence of the selected points. The use of SISO
formulation allows to bypass the ill-conditioning of the FRF matrix, in that its inversion
is not required.
For both the considered cases (SIMO and MIMO), the identification is also executed
with a reduced measurement points set, in order to evaluate the limit of the proposed
procedure: the measurement points could either be or not drive points. Also in this
case the analysis of the velocity coherence, obtained through the Nsources index, gives
a good indication about the number of acting load. It must be noticed that Cvf index,
by definition, can be computed only in correspondence of the measurement points, and
indeed the knowledge of the PSD velocity is required.
In the single input/ multi output model the procedure has been slightly changed. The
reference force is calculated in correspondence of the point selected by the index. This
allows to excite numerically the structure to calculate the relative error between the
actual PSD velocity and that computed by the identified forces. The minimum value
of the error corresponds to the position of the identified force that gives the dynamic
responses nearest to the measured ones.
In the multi input/ multi output model the use of the index does not give good results.
The knowledge of the number of applied loads allows to consider all the exciting points
combination. Then a load (its amplitude is computed by the inversion of classical formu-
lation for random loads) is numerically applied on the structure and the correct position
is given by the minimization of the relative error computed for each combination. This
procedure is obviously expensive in terms of computational costs.
The forth chapter is focused on the identification at high frequencies. An operative
identification procedure based on Energy Based/Statistical Energy Analysis model is
presented. The procedure is performed in two steps: the first step is focused on the
identification of the coefficients of the EB model of the structure by using the Power
Injection Method. The second step is the identification of the power injected by using
the identified model and solving the ”inverse problem” of the EB model. The model
parameters are identified by experimental measurements; then, to validate the identified
model, the results of two different tests are presented. First, the injected power is identi-
fied using the measured PSD velocity used in the identification of the model parameters.
The second test is a numerical test: four different random loads are numerically gen-
erated and applied simultaneously on the four points of the first subsystem, then the
numerical PSD velocity is computed through the experimental FRF. The injected power
and the PSD force are identified and are compared to the actual ones. The result of this
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test gives a further validation of the identified model and confirms the possibility to use
the SEA energy balance equation. The last presented test is an experimental test: the
first subsystem is excited by a quasi ”rain on the roof” load generated by two hammer
multi impulse. The comparison between the actual injected power and the identified one
shows a good agreement.
The comparison between the results obtained from the second and the last test shows
that in the numerical test, where the PSD force grows with the frequency, the best results
are obtained in correspondence of the highest frequency bands; while in the experimental
test, where the PSD force decreases with the frequency, it does not happen.
The major advantage of this technique is the possibility to have operative load identifica-
tion on very complex structures by simple models that allow to avoid the ill-conditioning
of the FRF matrix and to reduce the computational cost. For example, for a very large
and complex structure, where it is not possible to perform suitable experimental mea-
surements, this technique allows to identify the subsystem excited and the amplitude of
this excitation, by a lower information.
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