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Chapter 1

Introduction and Main Results

Basis expansions are an extremely useful tool in applied mathematics. By using them, we can
express a function representing a physical quantity as a linear combination of simpler “modules”
with well-known properties. They are particularly useful for the applications described in this
thesis. Perhaps the best known expansion of this type is the Fourier series of a periodic function,
as decomposition into the infinite sum of simple sinusoidal and cosinusoidal elements, originally
proposed by Fourier to study heat transfer. This dissertation employs some mathematical tools
on problems taken from various areas of Engineering, exploiting their expansion properties:

• non-integer bases, whose study was started by Rényi and Parry in the 1950s, and subse-
quently deepened by a group of Hungarian mathematicians led by Paul Erdös. In [116] and
[117], A.C. Lai, P. Loreti and myself applied non-integer bases to mathematical models in
Robotics;

• orthogonal polynomials whose topic, historically, probably originated from the Legendre
polynomials, firstly employed in the determination of the force of attraction exerted by
solids of revolution. In [186] A. M. Bersani and myself introduced a class of orthogonal
polynomials, which follows the same recursive rule of the well-known Lucas-Lehmer integer
sequence and, in [189], we applied it to the solution of Love’s problem, related to the
electrostatic field generated by two circular co-axial conducting disks;

• orthonormal bases, that are introduced in the earliest college courses, and the Riesz bases.
These latter, named after the Hungarian mathematician Frigyes Riesz (1880-1956), repre-
sent a generalization of the orthonormal bases. In [11], [122] and [188], A. Avantaggiati,
P. Loreti and myself considered exponential {eiλnt}n∈Z and sinc {sinc(t − λn)}n∈Z Riesz
basis (with λn ∈ C).

We can consider expansions of real numbers in non-integer bases, as an “elementary” case of
basis expansion which, however, contains well-known difficult theoretical problems. Problems
related to the expansions of real numbers in non-integer bases have been systematically studied
since the late 1950s, starting with the seminal works by Rényi [159] and Parry [149]. Given a
complex number λ greater than 1 in modulus and a possibly infinite set A ⊂ C we say that
z ∈ C is representable in base λ and with alphabet A if there exists a sequence {zj}j≥1 of digits
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of A such that

z =
∞∑
j=1

zj
λj
.

A digit sequence {zj}j≥1 satisfying the above equality is called expansion of z in base λ and with
alphabet A. It is well-known that coplanar rotations, like the ones performed by each finger of
our hand, can be read as products on the complex plane. Therefore to perform infinite rotations
and scalings corresponds to consider complex-based power series and, consequently, expansions
in non-integer bases. This suggests us the relation between robotics (planar manipulators,
robotic hands etc.) and theory of expansions in non-integer bases, as initially guessed in [45].
We will deal with this topic in Chapter 2.

Chapter 2 relies also on the theory of Iterated Function Systems [109], which turns out to
be one of the most common ways for generating fractals.

Definition 1.0.1. An iterated function system, or IFS, on a metric space X is a finite collection
of mappings wi : X → X, i = 1, 2, . . . , N , which are usually contractive. The contractivity of
the IFS is the number c := maxi ci, where ci is the contractivity of wi.

Let us consider, for instance, the celebrated Cantor set. In the classical construction, we
start with the unit interval I0 = [0, 1]. The first steps consists in deleting the open middle
subinterval (1/3, 2/3) from the interval [0, 1], leaving a subset I1 composed by two line segments:
I1 = [0, 1/3] ∪ [2/3, 1]. Next, the open middle third of each of these remaining segments is
deleted, leaving four line segments: [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1]. This transformation
is iterated ad infinitum, where indicating with a the generic minimum of every subinterval at
the n-th step, the subinterval

[
a, a+ 1

3n

]
is transformed into

Īan+1 ∪ ¯̄Ian+1 =

[
a, a+

1

3n+1

]
∪
[
a+

2

3n+1
, a+

1

3n

]
,

at the (n+1)-th step. Calling In the subset obtained at the n-th step, the Cantor set is defined
as the intersection of all the In, i.e. C :=

⋂∞
n=1 In. One of the most remarkable properties of

C is that it is composed of smaller pieces, each of which is an exactly scaled copy of C. To be
slightly more precise, considering the generic subinterval Ian = [a, b] ⊂ In, such that b− a = 1

3n
,

and defining w0, w1 : R→ R by

w0(x) =
1

3
(x+ 2a) ; w1(x) =

1

3
(x+ 2b) ,

we see that w0 (Ian) = Īan+1, w1 (Ian) = ¯̄Ian+1.

Robotics has profound cultural roots [169]. Over the course of centuries, human beings
have constantly attempted to seek for substitutes that would be able to mimic their behaviour
in the various instances of interaction with the surrounding environment. On the other hand,
one of human beings’ greatest ambitions has been to give life to their artifacts. Just think,
for example, to the legend of the Titan Prometheus, to the giant Talus and to Frankenstein in
modern times. The word robot comes from the Czech robota, which has the meaning of “heavy
work” or “forced labor”. In the 1940s, the image of the robot as a mechanical artifact takes
hold, especially thanks to the imagination of Isaac Asimov, who introduces the term robotics
as the science devoted to the study of robots which was based on three fundamental laws [169]:
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1. A robot can not injure a human being or, through inaction, allow a human being to come
to harm.

2. A robot must obey orders given it by human beings except when such orders would conflict
with the First Law.

3. A robot must protect its own existence as long as such a protection does not conflict with
the First or Second Law.

The full scope of robotics lies at the intersection of mechanics, electronics, signal processing,
control engineering, computing and mathematical modelling.

Mechanics and signal processing are other branches of application of basis expansions in-
vestigated here. For these topics a “keyword” is the term orthogonality.

The topic of orthogonal polynomials has its origin in the XIXth century theories of
continued fractions and the moment problem. A family of polynomials pn(x) for n = 0, 1, 2, . . .
in the interval [a, b], where n indicates the degree of polynomial, is called a “sequence of
orthogonal polynomials” in the interval [a, b] with respect to the weight function w(x) (which
is positive in the interval [a, b]) if:∫ b

a

w(x)pn(x)pm(x) dx = 0 ∀n,m = 0, 1, 2, . . . with n 6= m.

Classical orthogonal polynomials, such as those of Legendre, Laguerre and Hermite, but also
Chebyshev, Krawtchouk and others polynomials, have found widespread use in all areas of
science and engineering. Typically, more complicated functions are expanded with respect to
basis functions like orthogonal polynomials [80].

As we know, that of “basis”, is a more general and abstract concept that is not limited to
functions and polynomials. Every student in mathematics learns about bases in vector spaces,
allowing one to represent each element in a unique way. In fact, for every f ∈ V and V finite
dimensional vector space, if {ek}mk=1 in V is a basis for V , there exist unique scalar coefficients
{ck}mk=1 such that

f =
m∑
k=1

ckek

If space V is equipped with an inner product 〈·, ·〉 and, in addition, {ek}mk=1 is an orthonormal
basis, then one can easily find the expression of scalar coefficients {ck}mk=1. In fact:

〈f, ej〉 = 〈
m∑
k=1

ckek, ej〉 =
m∑
k=1

ck 〈ek, ej〉︸ ︷︷ ︸
6=0⇔j=k

= cj ⇒ f =
m∑
k=1

〈f, ek〉ek

Orthonormal bases are widely used in mathematics as well as in physics, signal processing,
and many other areas where one needs to represent functions in terms of bases. The following
result characterizes all orthonormal bases for a separable infinite-dimensional Hilbert space H,
starting with one orthonormal basis.

Let {ek}∞k=1 be an orthonormal basis for H. Then the orthonormal bases for H are precisely
the sets {Uek}∞k=1, where U : H → H is a unitary operator.
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However, there are some systems that work well even without an important property as the
orthogonality:

1) The definition of a Riesz basis - which is a little more general than orthonormal basis
- appears by weakening the condition of the operator U (see [46], [199]):

Definition 1.0.2. A Riesz basis for H is a family of vectors of the form {Uek}∞k=1, where
{ek}∞k=1 is an orthonormal basis for H and U : H → H is a bounded bijective operator.

2) A frame is a sequence of vectors in a Hilbert space, not necessarily orthogonal to each
other, satisfying certain inequalities. Frames are a generalization of the basis concept and
among the reasons for their widespread use in the last twenty years we can read the following
motivations [46]. The main point is the missing flexibility: the conditions for being a basis are
so strong that even a slight modification of a basis might destroy the basis property. One reason
is that, if {xn} is a basis for a Banach space X, each element x of X is a linear combination
(even infinite) of the basis element,

x =
∑

cnxn (1.0.1)

i.e., the so-called expansion property of {xn}. Now, if y is an arbitrary element of X, then
{xn} ∪ {y} is not a basis, despite the fact that each x ∈ X has representations of the form

x =
∑

cnxn + c̃ y (1.0.2)

This means that the basis property is destroyed when an arbitrary nonempty collection of
vectors is added to {xn}, but the expansion property is preserved. Is this a frame? At first
glance, the above construction might appear artificial: why would one like to add elements to
a basis? One reason is that we gain some freedom: the coefficients in (1.0.1) are unique, but
in (1.0.2) we can choose among several options. The abstract results of frames theory (that
overcomes this limit of the bases) can be applied in signal processing: for example, if x is the
signal, the additional term in the (1.0.2) can be seen as noise term.

Another annoying fact about bases is their lack of stability against applications of operators.
If, for example, {xn} is an orthonormal basis, then only very special operators (the unitary ones)
U will make {Uxn} an orthonormal basis. If {xn} is a basis, then we need U to be a bounded
bijective operator in order for {Uxn} to be a basis. Frames are considerably more stable than
bases: application of just a bounded surjective operator will preserve the frame property, as we
can see in [46], [199] or in the review article [39].

This dissertation is devoted to the generalization and development of studies described
in articles published by the author in collaboration with others, and based on the expansion
property of some systems: non-integer bases, orthogonal polynomials, orthonormal bases, Riesz
bases. Frames - as generalization of Riesz bases and as example of non-orthogonal systems -
are only approached here, and they represent a research topic that the author will follow in the
future.

We now proceed to outline the dissertation and its main results.

The robots proposed in Chapter 2 involve the Fibonacci sequence. We develop a more
general technique which is based on recursively generated sequences and, among them, the
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Fibonacci sequence is a classic example. The approach based on the Fibonacci sequence in
robot models is motivated by the ubiquitous presence of Fibonacci numbers in nature (see [17]
and [194]) and, in particular, in human limbs [148].

We recall that the k-th Fibonacci number, fk, is defined by means of{
f0 = f1 = 1;

fk+2 = fk+1 + fk k ≥ 0.
(1.0.3)

The Fibonacci sequence was first defined in 1202 by the Italian mathematician Leonardo of
Pisa, nicknamed Filius Bonacci or Fibonacci. In Chapter 2 we study two robot models. These
robots belong to the class of so-called macroscopically-serial hyper-redundant manipulators —
the term was first introduced in [43] — which are planar manipulators with rigid links and with
an arbitrarily large number of degrees of freedom.

The first model studied here is the model of a robot finger. A configuration of a finger is
the sequence (xk)

K
k=0 ⊂ R3 of its junctions. The configurations of every finger are ruled by two

phalanx-at-phalanx motions: extension and rotation. In particular, the length of k-th phalanx

of the finger is either 0 or
fk
qk

. Parameter q is a fixed ratio: this choice is ruled by a binary

control we denote by using the symbol uk, so that the length lk of the k-th phalanx is

lk :=‖ xk − xk−1 ‖=
ukfk
qk

.

Doing so we will introduce a robot hand model composed by an arbitrarily large number of
hyper-redundant binary planar manipulators, where the length of each link scales according to
the Fibonacci sequence. Let

R∞ :=

{
∞∑
k=0

ukfk
qk

e−iω
∑k
j=0 vj |(vj), (uj) ∈ {0, 1}∞

}
be the asymptotic reachable workspace and let co(R∞) be the convex hull of R∞; in Chapter
2 we investigate the reachable workspace and its convex hull. An example of convex hull is
depicted in Figure 1.1, for ω = π/3.

The second model described in Chapter 2 is the model of a planar hyper-redundant manipu-
lator that is analogous in morphology to robotic snakes and tentacles, based on a discrete linear
dynamical system involving the Fibonacci sequence [117]. The hyper-redundant manipulator
is controlled by a sequence of couples of discrete actuators on the junctions, ruling both the
length and the orientation of every link.

The first main results for this model are Theorem 2.2.3 and Theorem 2.2.8; they deal with
some asymptotic controllability properties of the manipulator. The investigation begins with
the study of the total length of the manipulator, L(u) :=

∑∞
n=0

unfn
qn

, under the condition q > ϕ

for the convergence of the above described series, where ϕ = (1 +
√

5)/2 is the Golden Ratio.
Theorem 2.2.3 is a first investigation of the behaviour of the set of possible total lengths L∞,q :=
{L(u) | u ∈ {0, 1}∞} as q →∞. It states that we can arbitrarily set the length of manipulator
within the range [0, L(1)] (where we have set 1 := (1, 1, . . . , 1, ...)) if and only if the scaling
ratio q belongs to the range (ϕ, 1 +

√
3]. Theorem 2.2.3 can be employed to prove sufficient

conditions for the local asymptotic controllability of the control system underlying the model (see
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Figure 1.1: Convex hull of R∞ with q = ϕ+ 1, where ϕ is the Golden Mean.

Theorem 2.2.8), that is the possibility of placing the end effector of the manipulator arbitrarily
close to any point belonging to a sufficiently small neighborhood of the origin. Theorem 2.2.8
states that if q belongs to a certain range, then the asymptotic reachable workspace contains a
neighborhood of the origin.

The third main result for the second model described in Chapter 2 concerns the charac-
terization of L∞,q,ω and the set of full-rotation configurations in terms of the attractor of a
suitable Iterated Function System (IFS). This approach gives access to well-established results
in fractal geometry in order to further investigate the topological properties of the reachable
workspace, and to use known efficient algorithms for the generation of self-similar sets (e.g.
Random Iteration Algorithm) to have a numerical approximation of the asymptotic reachable
set.

Chapter 3 is devoted to study the stability of exponential Riesz bases {eiλnt} for λn ∈ C,
and of the cardinal sine sequences {sinc(x − λn)}n∈Z for λn ∈ R. In Section 3.1 we study the
exponential Riesz bases {eiλnt} for λn ∈ C, recalling that, when λn ∈ R, exponential Riesz
bases are stable in the sense that a small perturbation of a Riesz basis produces a Riesz basis;
it is proved by Paley and Wiener ([199] and [147]). The celebrated theorem by M. I. Kadec
shows that 1/4 is the stability bound for {eiλnt} on L2[−π, π], where λn ∈ R:

If {λn}n∈Z is a sequence of real numbers for which

|λn − n| 5 L <
1

4
, n = 0,±1,±2, . . . ,

then the system {eiλnt}n∈Z satisfies the Paley-Wiener criterion and so forms a Riesz basis for
L2[−π, π].

Indeed, Kadec’s 1/4-Theorem applies for sequences of real numbers. Duffin and Eachus [63]
showed that the Paley - Wiener criterion is satisfied whenever the sequences are complex and
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Figure 1.2: Graph of sincx.

log 2
π

is a stability bound. A consequence of Theorem 3.1.3, introduced in Section 3.1, is that,

thanks to a limitation on the imaginary part of λn, the constant log 2
π

can be replaced by 1/4.
Section 3.2 is devoted to prove, in the spirit of Kadec’s 1/4-Theorem, a stability result for a
cardinal sine sequence {sinc(x − λn)}n∈Z for λn ∈ R, where the sinc-function, whose graph is
shown in Figure 1.2, is defined by

sinc(x) =

{
sin(πx)
πx

x 6= 0,

1 x = 0 .
(1.0.4)

We denote L2(−∞,+∞) the Hilbert space of real functions that are square integrable in
Lebesgue’s sense:

L2(R) =

{
f : R→ Rmeasurable function

∣∣∣∫ +∞

−∞
|f(x)|2dx < +∞

}
.

Introducing in [−π, π] the scalar product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x)dx ,

the L2-norm on [−π, π] is defined as

||f || =
√
〈f, f〉 .

Given f ∈ L2(R) we denote by f̂ the Fourier transform of f ,

f̂(ω) = F (f) (ω) =
1

2π

∫ +∞

−∞
f(x)e−iωxdx.

In Section 3.2 we show that Kadec’s bound 1/4 is still the stability bound for the sinc basis
on the Paley-Wiener space PWπ, which is also known as the space of “bandlimited functions”
and is also characterized by an orthonormal basis consisting of functions {sinc(x − n)}n∈Z. A

function f ∈ L2(R) is bandlimited on [−Ω,Ω] if supp(f̂) ⊆ [−Ω,Ω] (that is, f̂(ξ) = 0 for almost
every |ξ| > Ω). A definition of the Paley-Wiener space can be found in [90]:
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Definition 1.0.3 ([90], p. 270). The Paley-Wiener space PWπ is the space of functions in
L2(R) whose Fourier transforms are supported within the interval [−π, π]:

PWπ =
{
f ∈ L2(R) : supp(f̂) ⊆ [−π, π]

}
.

Chapter 4 introduces a new sequence of polynomials, which follow the same recursive rule
of the well-known Lucas-Lehmer integer sequence.

Ln(x) = Ln−1(x)2 − 2 ; L0(x) = x . (1.0.5)

Lucas-Lehmer polynomials are related to the Chebyshev polynomials of the first and second
kind. As we know [161, 18, 79], the Chebyshev polynomials of first and second kind (Tn(x)
and Un(x)) satisfy the recurrence relations

{
Tn(x) = 2xTn−1(x)− Tn−2(x) n ≥ 2

T0(x) = 1, T1(x) = x

and {
Un(x) = 2xUn−1(x)− Un−2(x) n ≥ 2

U0(x) = 1, U1(x) = 2x ,

respectively. We will prove, among other properties, that

Ln(x) = 2 T2n−1

(
x2

2
− 1

)
and

n∏
i=1

Li(x) = U2n−1

(
x2

2
− 1

)
.

In Section 4.2 we reinvestigate the structure of the solution of a well-known Love’s problem,
related to the electrostatic field generated by two circular co-axial conducting disks, in terms
of orthogonal polynomial expansions, enlightening the role of the Lucas-Lehmer polynomials,
introduced in Section 4.1. We also show that the solution can be expanded more conveniently
with respect to a Riesz basis obtained starting from Chebyshev polynomials. In Section 4.3
we discuss some relations between zeros of Lucas-Lehmer polynomials and Gray code. Gray
code is a particular binary code which is widely used in Informatics. Given a binary code, we
say that its order is the number of bits with which the code is built, while its length is the
number of strings that compose it. The Gray code [78, 137] is a binary code of order n and
length 2n.

Let us consider the code for n− 1 bits which is formed by binary strings

gn−1,1

...

gn−1,2n−1−1

gn−1,2n−1 . (1.0.6)
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The Gray code is an ordered code such that two successive code word have Hamming distance
1. In this sense, the following is a particular Gray code that can be generated in this way:

0gn−1,1

...

0gn−1,2n−1−1

0gn−1,2n−1

1gn−1,2n−1

1gn−1,2n−1−1

...

1gn−1,1

(1.0.7)

Just as an example, we have: for n = 1: g1,1 = 0 ; g1,2 = 1; for n = 2: g2,1 = 00 ; g2,2 =
01 ; g2,3 = 11 ; g2,4 = 10; for n = 3: g3,1 = 000 ; g3,2 = 001 ; g3,3 = 011 ; g3,4 = 010 ; g3,5 =
110 ; g3,6 = 111 ; g3,7 = 101 ; g3,8 = 100; and so on. We apply this binary law to the study
of nested square roots of 2 expressed by (4.1.2), associating bits 0 and 1 to ⊕ and 	 signs in
the nested form. This gives the possibility to obtain an ordering for the zeros of Lucas-Lehmer
polynomials, which assume the form of nested square roots of 2 expressed by (4.1.2).

In Section 4.4 we obtain π as the limit of a sequence related to the zeros of the class of
polynomials Ln(x) discussed in previous sections. The results obtained here are based on the
placement of the zeros of the polynomials Ln(x). Since zeros have a structure of nested radicals,
in this way we can build infinite sequences of nested radicals converging to π.

The need of understanding the properties of π and the need of computing its value in a
more and more precise way, since the origins of the mathematical thinking, has challenged
many mathematicians along more than three millennia [19, 69]. As observed by J. M. Borwein
in [34] (p. 543), “One motivation for computations of π was very much in the spirit of modern
experimental mathematics: to see if the decimal expansion of π repeats, which would mean that
π is the ratio of two integers (i.e., rational), or to recognize π as algebraic — the root of a
polynomial with integer coefficients — and later to look at digit distribution.”.

In 1882 von Lindemann showed the transcendence (and a fortiori the irrationality) of π.
In the meantime, many mathematicians continued to discover several sequences and series
converging to π. The recent literature ([13], [32], [33], [151]), after centuries devoted to the
search of elegant formulas and to the study of the irrationality of π, focused mainly on the
search for rapidly converging formulas.

The famous Indian mathematician Ramanujan determined several sequences converging to π
very rapidly. In particular, it is noteworthy to cite 17 different extraordinary series, converging
very rapidly to 1/π, [27] (p. 352-354), [154]. Here we report one of the most intriguing:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)43964k
. (1.0.8)

The “spirit of the modern experimental Mathematics” [32, 33] was built mainly by means of the
birth, growth and development of the computer technologies in the 1950s and of the discovery
of more and more advanced and efficient algorithms apt to perform highly precise arithmetic
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computations. Today we know millions digits of π value. Soon the challenge was shifted to more
and more rapid and efficient algorithms. The advent of computers in the XXth century led to
an increased rate of π calculation records. But major improvements were obtained by means
of new extraordinarily efficient algorithms. For example, in 1965 it was shown that an optimal
algorithm used to compute the so-called Fast Fourier Transform (FFT), could be adapted to
perform arithmetics on huge integer numbers more rapidly than with previous algorithms and
with less computational costs [30] [32].

The last quarter of the XXth century was characterized by the discovery of several algo-
rithms with reduced operational complexity. These algorithms require the complete execution
of multiplications, divisions, extractions of square roots, which need large scale FFT operations,
implying the usage of huge memory and heavy parallel computing ([10] and [34]). The formulas
of BBP type [13] (named after Bailey-Borwein-Plouffe) are more recent. It is however clear
that a reason for the modern computations of π resides in the goal of taking advantage of the
impressive computation power of modern computers.

We are aware that the rate of convergence of our sequences, introduced in Section 4.4, is
slower than (1.0.8) and other more recent series [151]. However, determining the computational
costs and the convergence rates of the sequences converging to π here introduced is beyond the
scopes of this doctoral thesis.
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Chapter 2

Robot’s mathematical models based on
Fibonacci sequence.

Fibonacci numbers attracted the interest of researchers due to their fascinating algebraic prop-
erties (e.g. the relation with Golden Mean) and due of their recurrence in natural phenomena.
Examples of relations with Fibonacci sequence can be found in the branches of trees, in the ar-
rangement of sunflowers seeds and, most interestingly for our model, in some human anatomic
proportions (see [86]). The approach followed here is motivated by the ubiquitous presence of
Fibonacci numbers in nature (see [17] and [194]) and, in particular, in human limbs [148].

The robots proposed in this Chapter are planar manipulators with rigid links and with
an arbitrarily large number of degrees of freedom, i.e., they belong to the class of so-called
macroscopically-serial hyper-redundant manipulators – the term was first introduced in [43],
and they involve the Fibonacci sequence. Hyper-redundant architecture was intensively studied
back to the late 1960s, when the first prototype of hyper-redundant robot arm was built [8].
The interest of researchers in devices with redundant controls is motivated by their ability to
avoid obstacles and to perform new forms of locomotion and grasping – see for instance [14],
[36] and [44].

A large number of papers were devoted in the literature to both continuously and discretely
controlled hyper-redundant manipulators. Our approach, based on discrete actuators, is moti-
vated by their precision with low cost compared to actuators with continuous range-of-motion.
Moreover the resulting discrete space of configurations reduces the cost of position sensors and
feedbacks. In [64] the inverse kinematics of discrete hyper-redundant manipulators is investi-
gated. Throughout the analysis of the reachable workspace (and in particular of the density of
its points) an algorithm solving the inverse kinematics problem in linear time with respect the
number of actuators is introduced. In general the number of points of the reachable workspace
increases exponentially, the computational cost on the optimization of the density distribution
of the workspace is investigated in [120]. Note that the concept of a binary tree describing
all the possible configurations underlies above mentioned approaches, in our method the self-
similar structure of such a tree gives access to well-established results on fractal geometry and
iterated function systems theory. Robotic devices with a similar fractal structure are described
in [133]. Other approaches to the investigation of the reachable workspace include those based
on harmonic analysis [41], and Fast Fourier Transform [191]. We also refer to [42] for a descrip-
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tion of the geometry of the reachable workspace. The control of the rotation at every joint is a
common feature of all above mentioned manipulators. The study of a control ruling the exten-
sion of every link has twofold applications. In one hand it can be physically implemented by
means of telescopic links, that are particularly efficient in constrained workspaces (see [3]). On
the other hand, our models can be considered discrete approximations of continuous snake-like
manipulators - see for instance the approach in [7] to the discretization of a continuous curve
and its applications to snake-like robots.

The aim of Section 2.1 is to give a model of robot hand whose links scale according to
Fibonacci sequence as introduced in [116], and to develop a theoretical background (related
to the theory of iterated function systems) in order to study some geometrical features of a
such a manipulator. Self-similarity of configurations and an arbitrarily large number of fingers
(including the opposable thumb) and phalanxes are the main features. Binary controls rule the
dynamics of the hand, in particular the extension and the rotation of each phalanx. We assume
that each finger moves on a plane; every plane is assumed to be parallel to the others, excepting
the thumb and the index finger, that belong to the same plane. A discrete dynamical system
models the position of the extremal junction of every finger. A configuration is a sequence of
states of the system corresponding to a particular choice for the controls, while the union of
all the possible states of the system is named reachable workspace for the finger. The closure
of the reachable workspace is named asymptotic reachable workspace. Our model includes two
binary control parameters on every phalanx of every finger of the robot hand. The first control
parameter rules the length of the k-th phalanx, that can be either 0 or fkq

−k, where fk is the
k-th Fibonacci number and q is a fixed scaling ratio, while the other control rules the angle
between the current phalanx and the previous one. Such an angle can be either π, namely the
phalanx is consecutive to the previous, or a fixed angle π − ω ∈ (0, π). The structure of the
finger ensures the set of possible configurations to be the projection of a particular self-similar
set. We also establish a connection between our model and the theory of iterated function
systems. This yields several results describing the reachable workspace and some conditions on
the parameters in order to avoid self-intersecting configurations.

The aim of Section 2.2 is to give a model of a planar hyper-redundant manipulator as
introduced in [117], that is analogous in morphology to robotic snakes and tentacles, based
on a discrete linear dynamical system involving the Fibonacci sequence. The hyper-redundant
manipulator is controlled by a sequence of couples of discrete actuators on the junctions, ruling
both the length and orientation of every link. Crucial as it is, the effective control of hyper-
redundant manipulator is difficult for its redundancy; see, for example [121]. For instance,
the number of points of the reachable workspace increases exponentially with the number of
degrees of freedom. In Section 2.2, we employ the self-similarity of the Fibonacci sequence in
order to provide alternative techniques of investigation of the reachable workspace based on
combinatorics and on fractal geometry.

The purpose of the Section is to provide a theoretical background suitable for applications to
inverse kinematic problems in a fashion like [64]. Furthermore, in [111] the design of a manipu-
lator modeling human arm and with link lengths following the Fibonacci sequence, provides a
method for the self-collision avoidance problem. We believe that analogous geometrical prop-
erties can be extended to manipulators which are inspired by other biological forms, through
the self-similarity induced by Fibonacci numbers.

Hyper-redundant manipulators considered here are planar manipulators. This is only a
first step in exploring an approach that, to the best of our knowledge, could add novelty to the
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existing literature in this field; therefore, for future work, its extension to the 3D case represents
a natural progress of this work.

We also mention that the workspaces of planar manipulators in the above cited papers
(e.g. [64]) are quite different from those depicted here. This is mainly due to the fact that
we represent only a subset of the workspace, corresponding to the particular subclass of full-
rotation configurations whose relation with fractal geometry is the most striking. Furthermore,
unlike above mentioned works, our robotic device has a telescopic structure modeled by the
possibility of ruling not only the orientation but also the length of each link: we believe this
additional feature to possibly affect the shape of the workspace.

The theoretical background relies on the theory of Iterated Function Systems – see [70] for
a general introduction on the topic. The approach proposed here is inspired by the relation
between robotics and theory of expansions in non-integer bases, that was first introduced in [45]
and later applied to planar manipulators in [113], [114], [115], [116] and [117]. For an overview
on the expansions in non-integer bases we refer to the Rényi’s seminal paper [159] and to the
papers [149] and [68]. For the geometrical aspects of the expansions in complex base, namely
the arguments that are more related to problem studied here, we refer to the papers [81], [82],
[98] and [105]. The techniques developed here in order to study the full-rotation configuration
generalize previous results in [112].

2.1 A model for robotic hand based on Fibonacci sequence.

In our model the robot hand is composed by H fingers, every finger has an arbitrary number of
phalanxes. We assume junctions and phalanxes of each finger to be thin, so to be respectively
approximated with their middle axes and barycentres and we also assume the junctions of every
finger to be coplanar. Inspired by the human hand, we set the fingers of our robot as follows:
the first two fingers are coplanar and they have in common their first junction (they are our
robotic version of the thumb and the index finger of the human hand) while the remaining
H − 1 fingers belong to parallel planes. By choosing an appropriate coordinate system oxyz
we may assume that the the first two fingers belong to the plane p(1) : z = 0 while, for h ≥ 2,

h-th finger belongs to the plane p(h) : z = z
(h)
0 for some z

(2)
0 , . . . , z

(H)
0 ∈ R.

We now describe in more detail the model of a robot finger. A configuration of a finger is
the sequence (xk)

K
k=0 ⊂ R3 of its junctions. The configurations of every finger are ruled by two

phalanx-at-phalanx motions: extension and rotation. In particular, the length of k-th phalanx

of the finger is either 0 or
fk
qk

, where fk is the k-th fibonacci number, namely

{
f0 = f1 = 1;

fk+2 = fk+1 + fk k ≥ 0.
(2.1.1)

while q is a fixed ratio: this choice is ruled by a binary control we denote by using the symbol
uk, so that the length lk of the k-th phalanx is

lk :=‖ xk − xk−1 ‖=
ukfk
qk

.
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As all phalanxes of a finger belong to the same plane, say p, in order to describe the angle
between two consecutive phalanxes, say the k − 1-th and the k-th phalanx, we just need to
consider a one-dimensional parameter, ωk. Each phalanx can lay on the same line as the former
or it can form with it a fixed planar angle ω ∈ (0, π), whose vertex is the k − 1-th junction.
In other words, two consecutive phalanxes form either the angle π or π − ω. By introducing
the binary control vk we have that the angle between the k − 1-th and k-th phalanx is π − ωk,
where

ωk = vkω.

To describe the kinematics of the finger we adopt the Denavit-Hartenberg (DH) convention.
To this end, first of all recall that our base coordinate frame oxyz is such that oxy is parallel to
p (hence to every plane p(h)) and we consider the finger coordinate frame oIxIyIzI associated
to the 4× 4 homogeneous transform

AI =


cosωI − sinωI 0 xI
sinωI cosωI 0 yI

0 0 1 z0

0 0 0 1


for some ωI ∈ [0, 2π). In particular if x and x0 are respectively coordinates of a point with
respect to oxyz and oIxIyIzI then (

x
1

)
= AI

(
x0

1

)
.

Remark 2.1.1. When only one finger is considered one may assume the base coordinate frame
to coincide with the finger coordinate frame: this reduces AI to the identity and it could be
omitted it in the model. The need of a coordinate frame for the finger rises when more than
one finger, especially in the case of co-planar, opposable fingers, is considered.

Now, the (DH) method consists in attaching to every phalanx, say the k-th phalanx, a
coordinate frame okxkykzk, so that xk coincides with ok and xk−xk−1 is parallel to okxk. Note

that the coordinates of xk+1 with respect to okxkykzk are (uk+1fk+1

qk+1 cosωk+1,
uk+1fk+1

qk+1 sinωk+1, 0).

Since we are considering a planar manipulator, for every k > 1 the geometric relation
between the coordinate systems the k − 1-th and the k-th phalanx is expressed by the matrix

Ak :=


cosωk − sinωk 0 ukfk

qk
cosωk

sinωk cosωk 0 −ukfk
qk

sinωk
0 0 1 0
0 0 0 1



where the rotation matrix

cosωk − sinωk 0
sinωk cosωk 0

0 0 1



represents the rotation of the coordinate frame okxkykzk with respect to ok−1xk−1yk−1zk−1

and the vector
(
ukfk
qk

cosωk,−ukfk
qk

sinωk, 0
)

represent the position of ok with respect to ok−1xk−1yk−1zk−1.
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Set

Tk := AI

k∏
j=0

Aj

By definition Tk is the composition the transforms AI , A0, ..., Ak and, consequently, it represents
the relation between the base coordinate frame oxyz and okxkykzk. In particular

Tk =

(
Rk Pk
0 1

)
where Rk is a 3 × 3 rotation matrix and the entries of the vector Pk are the coordinates of
ok(= xk) in the reference system oxyz. Expliciting Tk one has

Rk =


cos
(
ωI +

∑k
j=0 ωj

)
− sin

(
ωI +

∑k
j=0 ωj

)
0

sin
(
ωI +

∑k
j=0 ωj

)
cos
(
ωI +

∑k
j=0 ωj

)
0

0 0 1


and

Pk = PI +
k∑
j=0

Rj

ujfj
qj

0
0

 =


xI +

∑k
j=0

ujfj
qj

cos
(∑j

n=0 ωn

)
yI −

∑k
j=0

ujfj
qj

sin
(∑j

n=0 ωn

)
zI


Then, for every k ≥ 0, xkyk

zk

 =


xI +

∑k
j=0

ujfj
qj

cos
(∑j

n=1 ωn

)
yI −

∑k
j=0

ujfj
qj

sin
(∑j

n=1 ωn

)
zI

 (2.1.2)

2.1.1 Characterization of the Reachable Workspace via Iterated Function Systems

We fix as initial state (xI , yI , zI) = (0, 0, 0) and assume ωI = 0. By employing the isometry
between R2 and C and by considering that our manipulator is essentially planar, we may rewrite
(2.1.2) as {

xk =
∑k

j=0
ujfj
qj
e−iω

∑j
n=0 vn

xI = 0.
(2.1.3)

We aim to study the asymptotic reachable workspace

R∞ :=

{
∞∑
k=0

ukfk
qk

e−iω
∑k
j=0 vj |(vj), (uj) ∈ {0, 1}∞

}
In order to have a more compact notation, infinite binary (control) sequences (uj) and (vj) are
equivalently denoted by u and v, respectively. We set

x(u,v) :=
∞∑
k=0

ukfk
qk

e−iω
∑k
j=0 vj

and we define the shift operator on R∞

σ : x(u,v) 7→ x(σ(u), σ(v))
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so that if x = x(u,v) then

σ(x) =
∞∑
k=0

uk+1fk
qk

e−iω
∑k
j=0 vj+1 .

Finally we define the auxiliary set

Q∞ = {(x, σ(x)) | x = x(u,v); u, v ∈ {0, 1}∞} .

Note that Q∞ ∈ R∞ × R∞ and π(Q∞) = R∞ where π : C2 → C denotes the projection of a
bidimensional complex vector on its first component.

We characterize Q∞ and, consequently, R∞ via the linear maps F00, F10, F01, F11 : C2 → C2

defined as follows

Fuv(z) = e−iωv
(
Aqz +

(
u
0

))
for u, v ∈ {0, 1}

where z ∈ C2 and

Aq :=

(
1
q

1
q2

1 0

)
.

In order to describe the action of Fuv’s on Q∞, for any u,v ∈ {0, 1}∞ set ū(u) := uu and
v̄(v) := vv. In other words

ūk(u) =

{
u if k = 0

uk−1 otherwise ,
v̄k(v) =

{
v if k = 0

vk−1 otherwise .

Lemma 2.1.2. Let u,v ∈ {0, 1}∞, u, v ∈ {0, 1}. Set x = x(u,v) and x̄ = x(ū(u), v̄(v)). One
has

Fuv(x, σ(x)) = (x̄, σ(x̄)) = (x̄, x). (2.1.4)

Remark 2.1.3. Fuv acts on x(u,v) by prepending to the control sequences u and v the controls
u and v. Lemma 2.1.2 also implies that Fuv(Q∞) ⊂ Q∞ for every u, v ∈ {0, 1}.

Proof of Lemma 2.1.2. By definition of Fuv and of σ, and recalling σ(ū(u)) = u and σ(v̄(v)) =
v, one has

Fuv((x, σ(x)) =

(
e−iωv

(
1

q
x+

1

q2
σ(x) + u

)
, σ(x̄)

)
Then it is left to prove

e−iωv
(

1

q
x+

1

q2
σ(x) + u

)
= x̄.
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Recalling f0 = f1, one has that e−iωv
(

1
q
x+ 1

q2σ(x) + u
)

is equal to

ue−iωv +
∞∑
k=0

ukfk
qk+1

e−iω(
∑k
j=0 vj+v) +

∞∑
k=0

uk+1fk
qk+2

e−iω(
∑k
j=0 vj+v)

= ue−iωv +
u0f0

q
e−iω(v0+v) +

∞∑
k=1

ukfk+1

qk+1
e−iω(

∑k
j=0 vj+v)

= uf0e
−iωv +

u0f1

q
e−iω(v0+v) +

∞∑
k=1

ukfk+1

qk+1
e−iω(

∑k
j=0 vj+v)

=
ū0f0

e

−iωv̄0

+
ū1f1

q
e−iωv̄1 +

∞∑
k=2

ūkfk
qk

e−iω
∑k
j=0 v̄j

=
∞∑
k=0

ūkfk
qk

e−iω
∑k
j=0 v̄j = x̄.

Before stating next result, we assume that the scaling ratio q is greater than the Golden
Mean.

Proposition 2.1.4. Q∞ is the unique compact subset of C2 satisfying⋃
u,v∈{0,1}

Fuv(Q∞) = Q∞. (2.1.5)

Proof. First of all we show (2.1.5) by double inclusion. The inclusion ⊆ directly follows by
Lemma 2.1.2 – see also Remark 2.1.3. Thus it suffices to show that for every x̄ ∈ R∞ there
exist x ∈ R∞ and u, v ∈ {0, 1} such that

Fuv(x, σ(x)) = (x̄, σ(x̄)).

Let ū, v̄ ∈ {0, 1}∞ be a couple of the control sequences satisfying x = x(u,v). Then, again by
Lemma 2.1.2,

Fū1v̄1(σ(x̄)), σ(σ(x̄)))) = (x̄, σ(x̄)).

Since R∞ is closed with respect to σ, then x=̇σ(x̄) ∈ R∞ and this completes the proof of (2.1.5).

Now, let us prove the uniqueness of Q∞. First of all we note that for every u, v ∈ {0, 1}, Fuv
is a linear map and consider its spectral radius R(q). R(q) is hence the greatest modulus of the

eigenvalues of Aq. If q > ϕ, where ϕ is the Golden Mean, then R(q) =
√

5q+q
2q2 < 1. Consequently

the induced norm of Akq

||Akq || := max
z∈C2,z 6=(0,0)−

||Akqz|| → 0 as k →∞.

Then there exists kq such that if k ≥ kq then F k
uv is a contraction. Since the quantity kq is

independent on u and v, one has that any concatenation of length k ≥ kq of Fuv’s, say

Guk,vk=̇Fuk1vk1 ◦ · · · ◦ Fukkvkk ,
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is a contraction. Consequently one may consider the Hutchinson operator

G(·) :=
⋃

uk,vk∈{0,1}k
Guk,vk(·)

and deduce by (2.1.5)
G(Q∞) = Q∞. (2.1.6)

Since G is generated by a finite set of contractive maps, namely by an Iterated Function System,
then

Q∞ is the only compact subset of C2 enjoying (2.1.6) (U)

In order to seek a contradiction, assume now that there exists a compact set X ⊂ C2 differen
than Q∞ satisfying (2.1.5). Then X also satisfies (2.1.6): the uniqueness condition (U) provides
the required contradiction and concludes the proof.

2.1.2 Characterization of the convex hull of the Reachable Workspace

Through this section we employ Proposition 2.1.4 in order to characterize the co(R∞), co
denoting the convex hull of a set. We begin by the following general fact.

Lemma 2.1.5. Let {F1, . . . , FH} be a finite set of linear maps on a metric space X and assume
that there exists and it is unique a compact set Q satisfying

F(Q) :=
H⋃
h=1

Fh(Q) = Q.

If
F(Y ) ⊆ Y (2.1.7)

for some Y ⊂ X then
Q ⊆ Y . (2.1.8)

Proof. By iterating (2.1.7) for one has for every k

Y ⊇ F(Y ) ⊇ F2(Y ) ⊇ · · · ⊇ Fk(Y )

then as k →∞, the set sequence Fk(Y ) converges to a set Ȳ satisfying

F(Ȳ ) = Ȳ ⊆ Y.

By the uniqueness of Q one has Ȳ = Q and this completes the proof.

Theorem 2.1.6. Following the notations of previous Section, let V ⊂ Q∞ be such that

F(V ) :=
⋃

u,v∈{0,1}

Fuv(V ) ⊆ co(V ) . (2.1.9)

Then
co(R∞) = co(π(V )).
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Proof. The linearity of Fuv’s and (2.1.14) imply

F(co(V )) ⊆ co(V ). (2.1.10)

This together with Proposition 2.1.4, implies that we may apply Lemma 2.1.5 to Q∞ and Y =
co(V ) and deduce Q∞ ⊆ co(V ). By assumption we also have V ⊂ Q∞, then co(Q∞) = co(V ).
The claim hence follows by the fact that R∞ = π(Q∞) and that projection is a convex map.

Next result gives a more operative description of co(R∞).

Theorem 2.1.7. Let W be a compact subset of Q∞. If

π(F(W )) ⊆ π(co(W )) (2.1.11)

then
co(R∞) = co(π(W )).

Proof. We show the claim by double inclusion. The inclusion ⊇ is trivial, since we assumed
W ⊆ Q∞ and, consequently π(W ) ⊆ R∞. Now we show by induction that if (2.1.12) holds
then for every k

π(Fk(W )) ⊆ π(co(W )). (2.1.12)

The case k = 1 is given by (2.1.12) itself. We then assume as inductive hypothesis

π(Fk−1(W )) ⊆ π(co(W ))

so that we get for every (ŵ, σ(ŵ)) ∈ W

Fk(ŵ) = F(w, σ(w)) with w ∈ π(co(W ))

In particular, w =
∑

k λkwk for some wk ∈ π(W ) and some convex combinators λk. Since
W ⊆ Q∞, if wk ∈ π(W ) then (wk, σ(wk)) ∈ W . Then, by (2.1.12)

π(Fk(ŵ)) =
∑
k

λkπ(F(wk, σ(wk))) ⊆ co(π(W )). (2.1.13)

Now, note that Fk(W ) is a non-decreasing sequence of compact sets, consequently as k → ∞
it tends to some compact set W̄ satisfying F(W̄ ) = W̄ . By Proposition 2.1.4 we get W̄ = Q∞.
Consequently

R∞ = π(Q∞) = lim
k→∞

π(Fk(W )) ⊆ π(co(W )) (2.1.14)

The claim follows by noting that above inclusion implies co(R∞) ⊆ π(co(W )).

Explicit description of co(R∞) in a particular case

In [116], we have considered the case ω = π/3 and we have shown that co(R∞) is a polygon
whose vertices are

v1 :=
∑∞

k=0
fk
qk

; v2 := e−iω
∑∞

k=0
fk
qk

;

v3 := e−iω + e−i2ω
∑∞

k=1
fk
qk

; v4 := e−i2ω
∑∞

k=1
fk
qk

;

v5 := 1 + e−i2ω
∑∞

k=2
fk
qk
.
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See Figure 1.1 in Chapter 1.

We have applied Theorem 2.1.7, introducing the symbols 0 and 1 to denote infinite sequences
of 0’s and 1’s, respectively, and to note that

v1 = x(1,0); v2 = x(1, 10);
v3 = x(1, 110); v4 = x(01, 110);
v5 = x(101, 0110).

So that, recalling the definition σ(x(u,v)) = x(σ(u), σ(v)) where σ(u) denotes the unit shift
of u, one gets

σ(v1) = v1 σ(v2) = v1;
σ(v3) = σ(v4) = v2; σ(v5) = v4.

Let W = {(vh, σ(vh)) | h = 1, . . . , 5}. By Theorem 2.1.7 one has

co(R∞) = co({vh | h = 1, . . . , 5})

if for every h = 1, . . . , 5 and for every u, v ∈ {0, 1}

π(Fuv(vh, σ(vh))) ∈ π(co(W )). (2.1.15)

In [116], we have shown above inclusion by distinguishing the cases h = 1, . . . , 5, observing that
(0, 0) ∈ co(π(V )). Consequently, we have used the fact that if z ∈ V then for every c ∈ [0, 1],
cz ∈ co(V ). For a more detailed discussion, see [116].

2.2 A Fibonacci control system with application to hyper-redundant
manipulators

A discrete dynamical system models the position of the extremal junction of the manipulator.
The model includes two binary control parameters on every link. The first control parameter,
denoted un, rules the length of the n-th link ln := unfnq

−n, where fn is the n-th Fibonacci
number and q is a constant scaling ratio. The other control, vn, rules the angle between the
current link and its predecessor, denoted ωn := (π − ω)vn, where ω a fixed angle in (0, π).
Therefore when vn = 0, the n-th link is collinear with its predecessor, and when vn = 1, it
forms a fixed angle π − ω ∈ (0, π) with the n− 1-th link. In Section 2.2.1 we show that, under
these assumptions, the position of the n-th junction, xn(u,v) is ruled by the relation

xn(u,v) = xn−1(u,v) + un
fn
qn
e−iω

∑n
h=0 vh (2.2.1)

where u = (uj), v = (vj) ∈ {0, 1}∞. By assuming that the n-th junction is positioned at
time n (namely by reading the index n as a discrete time variable) above equation may be
reinterpreted as a discrete control system, whose trajectories model the configurations of the
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manipulator. This is a stationary problem: indeed, at this stage of the investigation we are
interested on the reachable workspace of the manipulator (namely a static feature of robot)
rather than its kinematics. In this setting, if the number of the links is finite, say it is equal
to N , then the position of the end effector of the manipulator (i.e., the position of its extremal
junction) is represented by xN(u,v). We call reachable workspace the set

WN,q,ω := {xN(u,v) | u,v ∈ {0, 1}N}.

By allowing an infinite number of links, we also may introduce the definition of the asymptotic
reachable workspace

W∞,q,ω := { lim
N→∞

xN(u,v) | u,v ∈ {0, 1}∞}.

The main results, Theorem 2.2.3 and Theorem 2.2.8, deal with some asymptotic controlla-
bility properties of the manipulator.

Indeed, the investigation begins with the study of the quantity

L(u) :=
∞∑
n=0

unfn
qn

called the total length of the manipulator1. First of all we notice that the condition q > ϕ,
where ϕ = (1 +

√
5)/2 is the Golden Ratio, ensures the convergence of above series. Theorem

2.2.3 is a first investigation of the behaviour of the set of possible total lengths

L∞,q := {L(u) | u ∈ {0, 1}∞}

as q → ∞. In particular we show that if q is less than or equal to 1 +
√

3 then L∞,q is an

interval. This estimate is sharp, indeed we shall also prove that when q > 1 +
√

3 then L∞,q is
a disconnected set. In other words, Theorem 2.2.3 states that we can arbitrarily set the length
of manipulator within the range [0, L(1)] (where we have set 1 := (1, 1, . . . , 1, ...)) if and only if
the scaling ratio q belongs to the range (ϕ, 1 +

√
3]. The proof of Theorem 2.2.3 is constructive

and an explicit algorithm is given.

Theorem 2.2.3 turns out to be also a useful tool in order to prove sufficient conditions for
the local asymptotic controllability of the control system underlying the model (see Theorem
2.2.8), that is the possibility of placing the end effector of the manipulator arbitrarily close to
any point belonging to a sufficiently small neighborhood of the origin. More precisely, Theorem
2.2.8 states that, under some technical assumptions (namely we assume that the maximal
rotation angle ω is of the form 2dπ/p for some d, p ∈ N), if q belongs to a certain range, then
the asymptotic reachable workspace contains a neighborhood of the origin2.

The approach in the investigation of L∞,q and R∞,q,ω, the latter defined as

R∞,q,ω :=

{
∞∑
k=0

uk
fk

qkeiωk
| u ∈ {0, 1}∞

}
,

strongly relies on the particular choice of the lengths of the links, ln(un) := unfnq
−n, and in

particular, on the fact that, fixing u = (un) the “backward” sequence L̄n(u) =
∑n

j=0 lj(un−j)

1Notice that L(u) = L(u,v) for all v ∈ {0, 1}∞ where L(u,v) :=
∑∞
n=1 |xn(u,v)− xn−1(u,v)|

2Actually, we prove that such a neighborhood is indeed a polygon which is symmetric with respect to the origin.
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satisfies the recursive, contractive relation

L̄n+1(u) =
un + L̄n(u)

q
+
L̄n−1(u)

q2
. (2.2.2)

A suitable generalization of (2.2.2) is interpreted as a discrete control dynamical system,
the Fibonacci control system, which is investigated by means of combinatorial arguments.

We then use a generalization of above approach in order to study a suitable subset of R∞,q,ω,
the set of full-rotation configurations (namely the configurations corresponding to the choice
v = 1). This approach is motivated by the fact that the full-rotation configurations satisfy a
contractive, recursive relation similar to (2.2.2).

The third main result of the Section concerns the characterization of L∞,q,ω and the set
of full-rotation configurations in terms of the attractor of a suitable Iterated Function System
(IFS). This approach gives access to well-established results in fractal geometry in order to
further investigate the topological properties of the reachable workspace, and to use known
efficient algorithms for the generation of self-similar sets (e.g. Random Iteration Algorithm) to
have a numerical approximation of the asymptotic reachable set.

In what follows we show some numerical simulations approximating the asymptotic reach-
able set associated with full-rotation configurations. However a deeper exploitition of these
potential applications is beyond the purposes of present work.

We finally remark that for all N ≥ 0 we have the inclusion WN,q,ω ⊂ W∞,q,ω and, conse-
quently, the Hausdorff distance between WN,q,ω and W∞,q,ω satisfies

dH(WN,q,ω,W∞,q,ω) = sup
x∞∈W∞,q,ω

inf
xN∈WN,q,ω

|x∞ − xN |

≤
∞∑

k=N+1

fk
qk
≤ q

qN(q2 − q − 1)
.

The above relation establishes a global error estimate for the approximation of W∞,q,ω with
WN,q,ω, hence every above mentioned asymptotic controllability property is inherited by a
practical implementable manipulator with a finite number of links N by paying an explicitly
given, exponential decaying cost in terms of precision.

In Section 2.2.1 we introduce the model and we state the main results on the density of
the reachable workspace. The remaining part of the section is devoted to the analysis of
the dynamical system underlying the model. Section 2.2.2 includes the introduction of such
Fibonacci control system and to its preliminary properties. In Section 2.2.2 and Section 2.2.2
we establish some properties of reachability and local controllability. Finally in Section 2.2.3
we establish a relation with the theory of Iterated Function Systems and we point out some
parallelisms with classical expansions in non-integer bases.
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2.2.1 A model for a snake-like robot.

Throughout this section we introduce a model for a snake-like robot. We assume links and
junctions to be thin, so to be respectively approximated with their middle axes and barycentres.
We also assume axes and barycentres to be coplanar and, by employing the isometry between
R2, we use the symbols x0, x1, ..., xn ∈ C to denote the position of the barycentres of the
junctions, therefore the length ln of the n-th link is

ln = |xn − xn−1|. (2.2.3)

We assume ln to be ruled by a binary control un, and in particular,

ln := un
fn
qn
. (2.2.4)

where (fn) is Fibonacci sequence, namely f0 = f1 := 1 and fn+2 = fn+1 + fn for all n ≥ 0.

Now, consider the quantity

L(u) =
∞∑
n=0

ln(un) with u = (un) ∈ {0, 1}∞

representing the total length of the configuration of the snake-like robot corresponding to the
control u.

Remark 2.2.1. In order to simplify subsequent notations we fix as the base of the manipulator
the point x−1 = 0, so that the 0-th link is well defined and it may be of length either 0 or 1.

We also define the quantity

S(q, h, p) :=
∞∑
k=0

fpk+h

qpk
. (2.2.5)

The most general form of this definition will be used only in Section 2.2.2. At this stage, it
is useful to introduce for brevity the notation

S(q) := S(q, 0, 1) =
∞∑
n=0

fn
qn

=


q2

q2 − q − 1
if q > ϕ;

+∞ if q ∈ (0, ϕ]

(2.2.6)

where ϕ := 1+
√

5
2

denotes the Golden Mean.

Remark 2.2.2. If q > ϕ then for every u ∈ {0, 1}∞, one has L(u) ∈ [L(0), L(1)] = [0, S(q)].

In what follows we show that if the scaling ratio q belongs to a fixed interval and if we allow
the number of links to be infinite, then we may constraint the total length of the snake-like
robot L(u) to be any value in the interval [0, S(q)].
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Theorem 2.2.3 ([117]). If q ∈ (ϕ, 1 +
√

3] then for every L̄ ∈ [0, S(q)] there exists a binary
control sequence u ∈ {0, 1}∞ such that

L(u) = L̄.

Remark 2.2.4. The proof of Theorem 2.2.3 is postponed to Section 2.2.2 below.

We now continue the building of the model. In view of (2.2.3), if x0 = 0 one has for every n

xn(u) =
n∑
k=0

uk
fk

qkeiωk
, (2.2.7)

where −ωk ∈ (−π, π] is the argument of xk − xk−1 for k = 1, . . . , n and, consequently, it
represents the orientation of the k-th link with respect to the global reference system given by
the real and imaginary axes.

Example 2.2.5. If the angle between two consecutive links is constantly equal to π−ω ∈ [0, 2π),
then ωn = nω mod (−π, π].

So far we introduced a control sequence ruling the length of each link. We now endow the
model with another binary control sequence v = (vn), ruling the angle between two consecutive
links. In the model, the angle between two consecutive links is either π or π−ω for some fixed
ω ∈ (0, π). If vn = 0 then the angle between the n − 1-th link and the n-th link is π, while if
vn = 1 then the angle between the n− 1-th link and the n-th link is π − ω so that

vn =

{
1 rotation of the angle ω of the n-th link;

0 no rotation.
(2.2.8)

We notice that, under these assumptions, ωn = ωn(v) in (2.2.7) is indeed a controlled
quantity, while L(u) is yet independent from v.

Proposition 2.2.6. Let n ≥ 0 and uj = 1 and vj ∈ {0, 1} for j = 1, ..., n. Then

ωn =
n∑
j=0

vjω mod (−π, π] (2.2.9)

Proof. We adopt the notation Arg(z) ∈ (−π, π] to represent the principal value of the argument
function arg(z). In view of (2.2.7)

wn+1 = −Arg(xn+1(u)− xn(u)). (2.2.10)

On the other hand, xn is the vertex of the angle between the n-th link and the n + 1-th link,
therefore we have the relations

Arg(xn+1(u)− xn(u))− Arg(xn−1(u)− xn(u)) mod (−π, π] = −vn+1ω (2.2.11)

By a comparison between (2.2.10) and (2.2.11) we get

wn+1 = wn + vn+1ω mod (−π, π]. (2.2.12)

and, consequently, the claim.
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Remark 2.2.7. We notice that if un = 0 then any choice of ωn(v) satisfies 2.2.7. So, if the link
is not extended, the rotation of the angle is meant as a rotation of the reference frame of the
link.

For example, if vn = vn+1 = un−1 = un+1 = 1 and un = 0, one has that xn−1 = xn but the
angle formed by the n− 1-th junction and the n+ 1-th junction is π − 2ω.

In view of Proposition 2.2.6 and of above Remark, we set ωn(v) :=
∑n

j=0 vjω, so that the
complete control system for the joints of manipulator reads:

xn(u,v) =
n∑
k=0

uk
fk
qk
e−iω

∑k
j=0 vj . (2.2.13)

The second main result describes the topology of the asymptotic reachable workspace when
the rotation angle ω is rational with respect to π, namely it satisfies ω = 2π d

p
for some d, p ∈ N.

One has a local controllability result when the scaling ratio q is lower than a threshold depending
on p, that we denote q(p). In particular q(p) is defined as the greatest real solution of the
equation

∞∑
k=0

fpk
qpk

= 2.

In Section 2.2.2 below we give a closed formula for q(p).

Theorem 2.2.8 ([117]). If ω = 2π d
p

for some d, p ∈ N and if q ∈ (ϕ, q(p)] then the asymptotic

reachable workspace

W∞,q,ω :=
{

lim
n→∞

xn(u,v) | u,v ∈ {0, 1}∞
}

contains a neighborhood of the origin.

The proof of Theorem 2.2.8 is postponed to Section 2.2.2 below.

2.2.2 A Fibonacci control system

Throughout this section we introduce an auxiliary control system, that we call Fibonacci control
system and we study its asymptotic reachable set.

We shall see that the reachability properties of the Fibonacci control system are somehow
inherited by manipulator (modeled in previous section as the sequence of junctions xn(u,v))
and that this relation provides an indirect proof of Theorem 2.2.3 and Theorem 2.2.8.

In order to gradually introduce Fibonacci control system, we begin with some remarks on
particular configurations of x(u,v).
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We notice that for every u

x(u,0) =
∞∑
k=0

uk
fk
qk

= L(u)

and

x(u,1) =
∞∑
k=0

uk
fk

qkeiωk
=
∞∑
k=0

uk
fk
zk
, where z = qeiω.

Then both Theorem 2.2.3 and Theorem 2.2.8 are related to the study of the set

R∞(z) :=

{
∞∑
k=0

uk
fk
zk
| uk ∈ {0, 1}

}
.

Indeed
L∞(q) = {L(u) | u ∈ {0, 1}∞} = R∞(q)

and
W∞,q,ω ⊇ {x(u,1) | u ∈ {0, 1}∞} = R∞(qeiω)

In particular, the relation with Theorem 2.2.8 becomes clear by noticing that if we are able to
show that R∞(qeiω) is a neighborhood of the origin then the claim of Theorem 2.2.8 follows.

Remark 2.2.9. Notice that if |z| > ϕ then R(z) is well defined and it is a compact set. Indeed
one has

lim
n→∞

|
∞∑
k=n

uk
fk
zk
| ≤ lim

n→∞

n∑
k=0

|fk
zk
| ≤ lim

n→∞

∞∑
k=n

ϕk−1

|z|k
= 0.

(for the proof of the estimate fk ≤ ϕk−1 see Proposition 2.2.29 below) and, consequently, the
convergence of the series

∑∞
k=0 uk

fk
zk

. Furthermore one has

|
∞∑
k=0

uk
fk
zk
| ≤ ϕ−1

(
1 +

1

1− ϕ/|z|

)
thus R(z) is a bounded set. Finally R(z) is closed by the continuity of the map

u 7→
∞∑
k=0

uk
fk
zk

with respect to the topology on infinite sequences induced by the distance d(u,v) = 2−min{k|uk 6=vk}.

In view of above reasoning, in what follows we shall focus on the study of R∞(z), by
constructing the theoretical background necessary to prove Theorem 2.2.3 and Theorem 2.2.8
and by investigating further properties of R∞(z).

We finally introduce the Fibonacci control system
x̄0(u) = u0

x̄1(u) = u1 +
u0

z

x̄n+2(u) = un+2 +
x̄n+1(u)

z
+
x̄n(u)

z2
for n ≥ 0 ,

(F)

so that x̄n(u) is the (discrete) trajectory corresponding to the control u ∈ {0, 1}∞.

26



Remark 2.2.10. The first terms of x̄n(u) are

u0, u1 +
u0

z
, u2 +

u1

z
+

2u0

z2
, u3 +

u2

z
+

2u1

z2
+

3u0

z3
, . . . .

In general, by an inductive argument it is possible to prove that for each n ∈ N

x̄n(u) =
n∑
k=0

fk
zk
un−k.

We finally point out that the above equality implies that R∞(z) contains {x̄n(u) | u ∈
{0, 1}∞, n ∈ N}, i.e. the reachable set of the system (F).

Asymptotical reachable set in real case

Throughout this section we consider a real number q > ϕ and we show that R∞(q) = [0, S(q)]
if and only if q ≤ 1 +

√
3 (namely we prove Theorem 2.2.33). For brevity, we specialize the

definition of S(q, h, p) given in (2.2.5) as follows:

S(q, h) :=
∞∑
k=0

fh+k

qk
=
q2fh + qfh−1

q2 − q − 1
(2.2.14)

Last equality can be proved by a simple inductive argument. We also shall use the following
recursive relation

S(q, h) = q(S(q, h− 1)− fh−1). (2.2.15)

Finally note that S(q, 0) = S(q).

Lemma 2.2.11. Let q > ϕ. Then

fh ≤
S(q, h+ 1)

q
for every h (2.2.16)

if and only if q ≤ 1 +
√

3.

Proof. To prove the only if part we seek a contradiction by assuming q > 1+
√

3 and by showing
that (2.2.16) fails for some h. In particular it is immediate to check that when h = 0 one has

1 >
q + 1

q2 − q − 1
. (2.2.17)

Now, to show the if part we notice that

q ≤ 1

2

(
fh+1

fh
+ 1

)
+

√
1

4

(
fh+1

fh
+ 1

)2

+ 2 for every h.

Since, for every h
fh+1

fh
≥ 1 =

f1

f0

3Indeed the claim immediately follows by recalling the equality {L(u) | u ∈ {0, 1}∞} = R∞(q)
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it follows that q ≤ 1 +
√

3.

Theorem 2.2.12 ([117]). Let q ≤ 1 +
√

3 and x ∈ [0, S(q, 0)] and consider the sequences (rh)
and (uh) defined by 

r0 = x;

uh =

{
1 if rh ∈ [fh, S(q, h)]

0 otherwise

rh+1 = q(rh − uhfh)

(2.2.18)

Then

x =
∞∑
k=0

fk
qk
uk (2.2.19)

and, consequently, R∞(q) = [0, S(q, 0)]. Moreover if q > 1 +
√

3 then R∞ ( [0, S(q, 0)].

Proof. Fix x ∈ [0, S(q, 0)] and first of all note that

x =
h∑
k=0

fk
qk
uk +

rh+1

qh+1
for all h ≥ 0. (2.2.20)

Indeed above equality can be shown by induction on h. For h = 0 one has r1 = q(x − u0f0)
and consequently x = f0u0 + r1/q. Assume now (2.2.20) as inductive hypothesis. Then

rh+2 = qh+2

(
x−

h∑
k=0

fk
qk
uk

)
− qfh+1uh+1

and, consequently,

x =
h+1∑
k=0

fk
qk
uk +

rh+2

qh+2
.

Now we claim that if q ≤ 1 +
√

3 then

rh ∈ [0, S(q, h)] for every h. (2.2.21)

We show the above inclusion by induction. If h = 0 then the claim follows by the definition of
r0 and by the fact that x ∈ [0, S(q, 0)]. Assume now (2.2.21) as inductive hypothesis. One has
rh ∈ [0, S(q, h)] = [0, fh)∪ [fh, S(q, h)]. If rh ∈ [0, fh) then rh+1 = qrh ∈ [0, qfh] ⊆ [0, S(q, h+1)]
- where the last inclusion follows by Lemma 2.2.11. If otherwise rh ∈ [fh, S(q, h)] then rh+1 =
q(rh − fh) ⊆ [0, q(S(q, h)− fh)] = [0, S(q, h+ 1)] - see (2.2.15).

Recalling fn ∼ ϕn as n→∞, one has

∞∑
k=0

fk
qk
uk = lim

h→∞

h−1∑
k=0

fk
qk
uk

(2.2.20)
= x− lim

h→∞

rh
qh

(2.2.21)

≥ x− lim
h→∞

S(q, h)

qh

(2.2.14)
= x− lim

h→∞

q2fh+1 + qfh
qh(q2 − q − 1)

= x.
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On the other hand
∞∑
k=0

fk
qk
uk = x− lim

h→∞

rh
qh
≤ x

and this proves (2.2.19). It follows by the arbitrariness of x that if q ≤ 1 +
√

3 then R∞ =
[0, S(q, 0)].

Finally assume q > 1 +
√

3. By Lemma 2.2.11 there exists x ∈ (S(q, 1)/q, f1). In order to
find a contradiction, assume x ∈ R∞. Then

x = u0f0 +
1

q

∞∑
k=0

fk+1

qk
uk+1

Note that u0 6= 1 because x < f1 = 1. Then u0 = 0 and

x =
1

q

∞∑
k=0

fk+1

qk
uk+1 ≤

1

q

∞∑
k=0

fk+1

qk
=
S(q, 1)

q

but this contradicts x ∈ (S(1, q)/q, f1). Then x ∈ [0, S(q, 0)] \ R∞ and this concludes the
proof.

Asymptotical reachable set in complex case

Throughtout this section we investigate R∞(z) with z = qeiω and ω = d
p
2π; d, p ∈ N. First of

all we notice that zp = qp and consequently

∞∑
k=0

uk
fk
zk

=

p−1∑
h=0

z−h
∞∑
k=0

upk+h
fpk+h

qpk
. (2.2.22)

Above equality implies that if p ≥ 2 and if

Rh
∞ :=

{
∞∑
k=0

upk+hfpk+h

qpk
| upk+h ∈ {0, 1}

}

is an interval (and not a disconnected set) then

R∞(z) =

{
∞∑
k=0

fk
zk
uk | uk ∈ {0, 1}

}
=

p−1∑
j=0

z−hRh
∞

is a polygon containing the origin in its interior - note that minRh
∞ = 0. In what follows we

show that if q is small enough, then such a local controllability condition is satisfied.

By definition 2.2.5, so that Rh
∞ ⊂ [0, S(q, h, p)] for every h = 0, . . . , p − 1 and from simple

inductive arguments, we have the following recursive relation

S(q, h, p) = fh−1S(q, 1, p) + fh−2S(q, 0, p) (2.2.23)

Moreover one has
S(q, p, p) = qp(S(q, 0, p)− f0) (2.2.24)
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Figure 2.1: By Theorem 2.2.18, R∞(2ei2π/p) with p = 3, 4 is a polygon.

S(q, p+ 1, p) = qp(S(q, 1, p)− f1) (2.2.25)

and, more generally,
S(q, p+ h, p) = qp(S(q, h, p)− fh). (2.2.26)

Example 2.2.13. Let q = 2 and p = 4. In view of (2.2.23),

R0
∞ ⊆ [0, S(2, 0, 4)]

R1
∞ ⊆ [0, S(2, 1, 4)]

R2
∞ ⊆ [0, S(2, 0, 4) + S(2, 1, 4)]

R3
∞ ⊆ [0, S(2, 0, 4) + 2S(2, 1, 4)].

See Section 2.2.2 for the explicit calculation of S(q, h, p). In Theorem 2.2.18 below, we show
that above inclusions are actually equalities, so that

R∞ = R0
∞ −

i

2
R1
∞ −

1

4
R2
∞ +

i

8
R3
∞

is a rectangle in the complex plane - see Figure 2.1.

Lemma 2.2.14. If q ≤ q(p) then for every h ∈ N

S(q, p, p+ h) ≥ qpfh. (2.2.27)

Proof. The case h = 0 follows by the definition of q(p) and by (2.2.24). If h = 1 then

S(q, p, p+ 1) ≥ S(q, p, p) ≥ qpf0 = qpf1.

Fix now h ≥ 2 and now (2.2.27) as inductive hypothesis for every integer lower than h. It
follows by (2.2.23)

S(q, p, p+ h) = fh−1S(q, 1, p) + fh−2S(q, 0, p) ≥ 2(fh−1 + fh−2) = 2fh

therefore, by (2.2.26), we finally get

S(q, p, p+ h) = qp(S(q, h, p)− fh) ≥ qpfh.

Finally let us define q(p) as the greatest solution of the equation

S(q, 0, p) = 2f0 = 2

Note that if q ≤ q(p) then S(q, 0, p) ≥ 2.

30



2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Figure 2.2: q(p) for p = 1, . . . , 10. Note that q(p) tends to ϕ as p → ∞. Indeed it suffices to recall
fp ∼ ϕp to have limp→∞ q(p)/ϕ = 1.

Remark 2.2.15. The value q(p) is explicitly calculated in Section 2.2.2 below. Among other
results, we shall show

q(p) =


(

1
2
(fp−2 + 2fp) + 1

2

√
(fp−2 + 2fp)2 − 8

) 1
p

p even;(
1
2
(fp−2 + 2fp) + 1

2

√
(fp−2 + 2fp)2 + 8

) 1
p

p odd.

(2.2.28)

We notice that above equality implies q(p) ∼ f(p)1/p ∼ ϕ as p→∞.

Example 2.2.16. q(1) = 1+
√

3, q(2) =
√

1
2

(
5 +
√

17
)
, q(3) = 3

√
1
2

(
7 +
√

57
)
, q(4) =

4
√

6 +
√

34.

Lemma 2.2.17. Let p, h ∈ N and let q ≤ q(p). For x ∈ [0, S(q, h, p)] consider the sequences
(rn) and (un) defined by 

r0 = x;

un =

{
1 if rn ∈ [fn, S(q, np+ h)]

0 otherwise

rn+1 = qp(rn − unfnp+h).

(2.2.29)

Then

x =
∞∑
k=0

fpk+h

qpk
uk (2.2.30)

and, consequently, Rh
∞ = [0, S(q, 0, p)]. Moreover if q > q(p) then R∞ ( [0, S(q, 0, p)].

Proof. Fix h ∈ N and x ∈ [0, S(q, 0, p)]. First of all note that

x =
n∑
k=0

fpk+h

qpk
uk +

rn+1

qp(n+1
for all n. (2.2.31)

Indeed for h = 0 one has r1 = qp(x − u0fh) and consequently x = fhu0 + r1/q
p. Assume now

(2.2.31) as inductive hypothesis. Then

rn+2 = qp(rn+1 − un+1fp(n+1)+h)

= qp(n+2)

(
x−

n∑
k=0

fkp+h
qpk

uk

)
− qp(n+2)fp(n+1)+hun+1

and, consequently,

x =
n+1∑
k=0

fkp+h
qkp

uk +
rh+2

qp(n+2)
.
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(a) h = 0 (b) h = 0.4 (c) h = 0.5

Figure 2.3: Approximations of R∞(z) with z = (q(p) + h)eiπ/4 and h = 0, 0.4, 0.5. Note that, by
Theorem 2.2.18, if h = 0 then R∞(z) is indeed an octagon. See Section 2.2.3 and, in particular,
Remark 2.2.27 for a description of the approximation techniques.

Now, we claim that for every n if q ≤ q(p) then

rn ∈ [0, S(q, pn+ h, p)]. (2.2.32)

We show the above inclusion by induction. If h = 0 then the claim follows by the definition
of r0 and by the fact that x ∈ [0, S(q, h, p)]. Assume now (2.2.32) as inductive hypothesis.
One has rn ∈ [0, S(q, pn + h, p)] = [0, fpn+h) ∪ [fpn+h, S(q, pn + h, p)]. If rn ∈ [0, fpn+h) then
rn+1 = qprn ∈ [0, qpfpn+h] ⊆ [0, S(q, (n+1)p+h, p)] - where the last inclusion follows by Lemma
2.2.14. If otherwise rn ∈ [fpn+h, S(q, pn + h, p)] then rn+1 = qp(rn − fnp+h) ⊆ [0, q(S(q, pn +
h, p)− fpn+h)] = [0, S(q, p(n+ 1) + h, p)] - see (2.2.26).

Recalling fn ∼ ϕn as n→∞, one has

∞∑
k=0

fpk+h

qpk
uk = lim

n→∞

n−1∑
k=0

fpk+h

qpk
uk

(2.2.31)
= x− lim

n→∞

rn
qpn

(2.2.32)

≥ x− lim
n→∞

S(q, pn+ h, p)

qpn

(2.2.23)
= x− lim

n→∞

fpn+h−1S(q, 1, p) + fpn+h−2S(q, 0, p)

qph
= x.

On the other hand
∞∑
k=0

fpk+h

qpk
uk = x− lim

n→∞

rn
qpn
≤ x

and this proves (2.2.30). It follows by the arbitrariness of x that if q ≤ q(p) then Rh
∞ =

[0, S(q, 0, p)]. Finally assume q > q(p). By Lemma 2.2.11 there exists x ∈ (S(q, h, p)/qp, fh).
In order to find a contradiction, assume x ∈ Rh

∞. Then

x = u0fh +
1

qp

∞∑
k=0

fp(k+1)+h

qpk
uk+1

Note that u0 6= 1 because x < fh. Then u0 = 0 and

x =
1

qp

∞∑
k=0

fp(k+1)+h

qpk
uk+1 ≤

1

qp

∞∑
k=0

fp(k+1)

qpk
=
S(q, h, p)

qp

but this contradicts x ∈ (S(q, h, p)/qp, fh). Then x ∈ [0, S(q, 0, p)] \Rh
∞ and this concludes the

proof.

Theorem 2.2.18 ([117]). If ϕ < |z| ≤ q(p) then R∞(z) is a polygon on the complex plane
containing the origin.
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Proof. It follows by Lemma 2.2.17 and by

R∞(z) =

{
∞∑
k=0

fk
zk
uk | uk ∈ {0, 1}

}
=

p−1∑
h=0

z−hRh
∞.

Proof of Theorem 2.2.8

Theorem 2.2.8 immediately follows by

R∞(qeiω) = {x(u,1) | u ∈ {0, 1}∞} ⊂ W∞,q,ω

and by Theorem 2.2.18.

An explicit formula for q(p)

By a comparison between (2.2.23),(2.2.24) and (2.2.25), S(q, 0, p) and S(q, 1, p) are solution of
the following system of equations{

qp(S(q, 0, p)− f0) = fp−1S(q, 1, p) + fp−2S(q, 0, p)

qp(S(q, 1, p)− f1) = fpS(q, 1, p) + fp−1S(q, 0, p)
(2.2.33)

{
(qp − fp−2)S(q, 0, p)− fp−1S(q, 1, p) = f0q

p

−fp−1 S(q, 0, p) + (qp − fp)S(q, 1, p) = f1q
p

(2.2.34)

whose solution is

S(q, 0, p) =

∣∣∣∣ f0q
p −fp−1

f1q
p qp − fp

∣∣∣∣∣∣∣∣ qp − fp−2 −fp−1

−fp−1 qp − fp

∣∣∣∣ , (2.2.35)

S(q, 1, p) =

∣∣∣∣ qp − fp−2 f0q
p

−fp−1 f1q
p

∣∣∣∣∣∣∣∣ qp − fp−2 −fp−1

−fp−1 qp − fp

∣∣∣∣ . (2.2.36)

We now show that the solutions in (2.2.35) and (2.2.36) are well defined.

Proposition 2.2.19. Let

∆p(q) :=

∣∣∣∣ qp − fp−2 −fp−1

−fp−1 qp − fp

∣∣∣∣ = (qp − fp−2)(qp − fp)− f 2
p−1

Then
∆p(q) = q2p − (fp−2 + fp)q

p + (−1)p (2.2.37)

and the real roots of ∆p(q) are ±ϕ and ±(ϕ− 1) if p is even and −ϕ and ϕ− 1 if p is odd.
In particular if q > ϕ then ∆p 6= 0.
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Proof. The equality in (2.2.37) follows by Cassini identity for p ≥ 2

fp−2fp − f 2
p−1 = (−1)p.

Now, we notice that ∆p(q) = 0 if and only if{
z = qp

z2 − (fp−2 + fp)z + (−1)p = 0.

We first discuss the case of an even p. When p is even then ∆p(q) has exactly 4 real solutions

qeven1,2 = ± p

√
1

2
(fp−2 + fp)−

1

2

√
(fp−2 + fp)2 + 4,

qeven3,4 = ± p

√
1

2
(fp−2 + fp) +

1

2

√
(fp−2 + fp)2 + 4.

Now, for every p ∈ N one has that the Golden Mean ϕ satisfies

ϕp = fp−1ϕ+ fp−2

and, consequently,

ϕ2p = (fp−1ϕ+ fp−2)2

= f 2
p−1ϕ

2 + 2fp−1fp−2ϕ+ f 2
p−2

= (f 2
p−1 + 2fp−1fp−2)ϕ+ f 2

p−1 + f 2
p−2.

This, together with ∆(q) = ∆(−q) and Cassini identity, implies

∆p(ϕ) = ∆p(−ϕ) = fp−1(fp−1 + fp−2 − fp)ϕ+ f 2
p−1 − fpfp−2 + 1 = 0.

Moreover, since ϕ− 1 = 1/ϕ and ∆(q) = ∆(−q),

∆p(ϕ− 1) = ∆p(1− ϕ) = ∆p(1/ϕ) =
∆p(ϕ)

ϕ2p
= 0.

This concludes the proof for the even case.
Now, if p is odd then ∆p(q) = 0 has exactly 2 real solutions

qodd1,2 =
p

√
1

2
(fp−2 + fp)−

1

2

√
(fp−2 + fp)2 − 4.

Again by Cassini identity

∆p(ϕ) = ϕ2p − (fp−2 + fp)ϕ+ 1

= fp−1(fp−1 + fp−2 − fp)ϕ+ f 2
p−1 − fpfp−2 − (−1)p = 0.

Since 1− ϕ = −1/ϕ we finally obtain

∆p(1− ϕ) = ∆p(−1/ϕ) = −∆p(ϕ)

ϕ2p
= 0.
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Example 2.2.20. For p = 1 we already showed

S(q, 0, 1) = S(q) =
q2

q2 − q − 1
S(q, 1, 1) = S(q) =

q2 + q

q2 − q − 1
.

For p = 2, namely when z = −q,

S(q, 0, 2) =
q2(q2 − 1)

q4 − 3q2 + 1
S(q, 1, 2) =

q4

q4 − 3q2 + 1
.

For p = 3, namely when z is a rescaled cubic root of unity,

S(q, 0, 3) =
q3 (q3 − 1)

q6 − 4q3 − 1
S(q, 1, 3) =

q6 + q3

q6 − 4q3 − 1
.

For p = 4

S(q, 0, 4) =
q4(q4 − 2)

q8 − 7q4 + 1
S(q, 1, 4) =

q8 + q4

q8 − 7q4 + 1
.

We now give a closed formula for q(p).

Proposition 2.2.21. For every p ∈ N

q(p) =


(

1
2
(fp−2 + 2fp) + 1

2

√
(fp−2 + 2fp)2 − 8

) 1
p

p even;(
1
2
(fp−2 + 2fp) + 1

2

√
(fp−2 + 2fp)2 + 8

) 1
p

p odd.

(2.2.38)

Proof. We recall that q(p) is defined as the greatest solution of
∑∞

k=0
fkp
qkp

= 2 namely of

S(q, 0, p) =
q2p − fp−2q

p

q2p − (fp−2 + fp)qp + (−1)p
= 2.

Solving above equation one gets

q2p + (−fp−2 − 2fp)q
p + 2(−1)p = 0

and finally (2.2.38).

2.2.3 A characterization of the reachable set via Iterated Function Systems

Throughtout this section we characterize R∞(q), with q ∈ R, q > ϕ, as a projection on R of the
attractor of a (linear) Iterated Function System defined on R2.

2.2.4 Some basic facts about IFSs

An iterated function system (IFS) is a set of contractive functions Gj : X → X, where (X,d)
is a metric space. We recall that a function if for every x, y ∈ X

d(f(x), f(y)) < c · d(x, y)
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for some c < 1. In [97] Hutchinson showed that every finite IFS, namely every IFS with finitely
many contractions, admits a unique non-empty compact fixed point Q with respect to the
Hutchinson operator

G : S 7→
J⋃
j=1

Gj(S).

Moreover for every non-empty compact set S ⊆ C

lim
k→∞
Gk(S) = Q.

The attractor Q is a self-similar set and it is the only bounded set satisfying F(Q) = Q.

2.2.5 The reachable set is a projection of the attractor of an IFS

Let q > ϕ, v ∈ R2 and consider the linear map from R2 onto itself

Fq,v(x̄) = v + A(q)x̄

where

A(q) =

(
1
q

1
q2

1 0

)
.

We notice that if x̄(u) is a trajectory of the system (F) with z = q, then(
x̄n+2(u)
x̄n+1(u)

)
=

(
un+2

0

)
+

(
1
q

1
q2

1 0

)(
x̄n+1(u)
x̄n(u)

)
namely

(x̄n+2(u), x̄n+1(u))T = Fq,(un+2,0)(x̄n+1(u), x̄n(u))T ). (2.2.39)

We now introduce the concept at the base of the symbolic dynamics, which is a particular
application from u ∈ {0, 1}∞ into itself that iterates in a natural way.

Definition 2.2.22. The application σ : {0, 1}∞ → {0, 1}∞ defined by

σ(u) = σ(u0, u1, u2, ...) = (u1, u2, ...) (2.2.40)

it is said unit shift.

Set x(u) := x(u,0) =
∑∞

k=0
fk
qk
uk (see Definition (2.2.13)) and define

Q∞ := {(x(u), x(σ(u)) | u ∈ {0, 1}∞}

=

{(
∞∑
k=0

fk
qk
uk,

∞∑
k=0

fk
qk
uk+1

)
| u ∈ {0, 1}∞

}
.

Proposition 2.2.23. For every q > ϕ⋃
u∈{0,1}

Fq,(u,0)(Q∞) = Q∞.
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Proof. Let u = (u0, u1, . . . ) ∈ {0, 1}∞. One has

Fq,(u0,0)(x(σ(u)), x(σ2(u))) = (x(u), x(σ(u)))

and this implies Q∞ ⊆
⋃
u∈{0,1} Fq,(u,0)(Q∞). Now let u ∈ {0, 1} and d ∈ {0, 1}∞. Define

u = (u,d) = (u, d0, d1, . . . ) and note that σ(u) = d. One has

Fq,(u,0)(x(d), x(σ(d)) = (x(u), x(d)) = (x(u), x(σ(u)))

and this implies the inclusion
⋃
u∈{0,1} Fq,(u,0)(Q∞) ⊆ Q∞.

Note that in general Fq,v is not a contractive map. However the spectral radius of A(q), say
ρ(q), satisfies

ρ(q) =
ϕ

q
< 1 for every q > ϕ

Then
lim
k→∞

Ak(q) = 0.

In particular there exists k(q) such that for every k ≥ k(q)

||Ak(q)|| := max
x 6=(0,0)

||Ak(q)x||
||x||

< 1.

Example 2.2.24. Let k = 2. One has

||A2(q)||2 =
q4 + 5q2 + 1

q6

- see Section 2.2.6 below for a detailed computation of ||Ak(q)||. Therefore ||A2(q)|| < 1 if and
only if

q6 − q4 − 5q2 − 1 > 0,

namely k(q) = 2 for every q > q̄ ' 1.69299 where q̄ is the unique positive solution of equation
q6 − q4 − 5q2 − 1 = 0.

Now, for every binary sequence of length k, say uk, define the vector

v(uk) :=
k−1∑
h=0

Ah(q)

(
uk+1−h

0

)
.

and for every k, the vector function:

Gq,uk(x) = v(uk) + Ak(q)x =
k−1∑
h=0

Ah(q)

(
uk+1−h

0

)
+ Ak(q)x.

One has that for k = 1
Gq,u1 = Fq,(u2,0) (2.2.41)

and, more generally,
Gq,uk = Fq,(uk+1,0) ◦ Fq,(uk,0) ◦ · · · ◦ Fq,(u2,0). (2.2.42)

Remark 2.2.25. If uk = (un+2, · · · , un+1+k) then

(xn+1+k, xn+k)
T = Gq,uk(xn+1, xn)T .
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Figure 2.4: An approximation of Q∞(q), with q = 2, 3, and of its projection on x-axis R∞(q). It is
obtained by 4 iterations of the IFS Gq,2 with initial datum [0, S(q)]× [0, S(q)].

Theorem 2.2.26 ([117]). For k ≥ k(q) and for every uk ∈ {0, 1}k the map Gq,uk is a contrac-
tion and ⋃

uk∈{0,1}k
Gq,uk(Q∞) = Q∞. (2.2.43)

Moreover Q∞(q) is the attractor of a two-dimensional linear Iterated Function System (IFS)

Gq,k := {Gq,uk | uk ∈ {0, 1}k},

namely for every compact set X ⊂ R2 one has

lim
n→∞

Gnq,k(X) = Q∞(q).

Proof. By the definition of k(q), for each uk ∈ {0, 1}k, Gq,uk is a contractive map. The equality
(2.2.43) follows by Proposition 2.2.23 and by (2.2.42). The second part of the statement follows
by the fact that in general the unique invariant compact set of an IFS is also an attractor, see
for instance [70].

Remark 2.2.27 (Some remarks on the approximation of R∞ in the complex case.). Theorem
2.2.26 gives an operative way to approximate Q∞(q) and, consequently, R∞(q), see Figure 2.4.
Above reasonings apply when considering as a base a complex number z = qeiω, so that
Q∞(z) ⊂ C× C. Note that

Q∞(z) ⊂ H(z) := {(z1, z2) ∈ C× C | max{|<(zh)|, |=(zh)|} ≤ S(|z|), h = 1, 2}

and limn→∞ Gnz,k(H(z)) = Q∞(z). Then one may approximate Q∞(z) by iteratively applying

Gz,k to H(z). To this end, it is possible to employ the isometry between C and R2 in order to
set the problem on R4. Then the real-valued counterpart of H(z) is the hypercube

H̃(z) := {x ∈ R4 | |x|max ≤ S(|z|)}

while we denote by G̃z,k and by G̃z,u the real-valued counterparts of Gz,k and of Gz,u, respectively,
so that

Gnz,k(x) =
⋃

u∈{0,1}nk
Gz,u(x).
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(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 5 (f) n = 6

Figure 2.5: Various iterations of G̃nz,k(H̃(z)) with z = q(8)eiπ/4.

We then may get a bidimensional representation of an approximation of R∞(z) by projecting
G̃n
z,k(H̃(z)) on R2. However this yields some complexity issues in numerical simulations. Indeed

a brute force attack consists in applying G̃nz,k to a four-dimensional grid rastering H̃(z) and then

projecting the result on R2. Thus the generation of an image with5 N ×N pixels involves the
computation of 2knN4 points.

In order to restrain the computational cost, we employed the geometric properties of G̃q,uk .

Indeed for every u, G̃z,u is an affine map, thus it preserves parallelism and convexity. In view

of these properties we considered only the 16 vertices of H̃(z), say xj, with j = 1, . . . , 16.

Our method consists in computing the G̃z,u(xj)’s separately, in projecting the result (namely
2kn points) on R2 and finally on computing their convex hull, employing the fact that this
projection, say π, preserves convexity, too. In other words we employed the identity

π(G̃z,u(H̃(z))) = π(G̃z,u(co({xj}))) = co(π(G̃z,u(xj))),

so that

G̃n
z,k(H̃(z)) =

⋃
u∈{0,1}kn

co(π(G̃z,u(xj))).

With this method we need to compute 2kn · 16 points and we may possibly store the result on
a vectorial format, instead of a raster one. See Figure 2.6 and Figure 2.5 for some examples.

Remark 2.2.28 (Some remarks on the analogies with expansions in non-integer bases). We
notice that the Gq,uk ’s share the same scaling factor, Ak(q), and they differ for the translation
component v(uk). A similar structure also emerges for the one-step recursion case, generating
power series with coefficients in {0, 1}. Indeed

x̃n =
n∑
k=0

un−k
qk

⇔

{
x̃0 = u0

x̃n+1 = un+1 + x̃n
q
.

(2.2.44)
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(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 5 (f) n = 6

Figure 2.6: Various iterations of G̃nz,2(H̃(z)) with z = (q(8) + 0.3)eiπ/4. Notice the similarity with the
twin-dragon curve, generated by expansions in complex base with argument again π/4.

and setting

R̃∞(q) :=

{
∞∑
k=0

uk
qk
| uk ∈ {0, 1}

}
one has that

R̃∞(q) =
⋃

u∈{0,1}

G̃q,c(R̃∞)

where

G̃q,u(x̃) = u+
x̃

q
.

The differences and analogies between the two systems can be summarized as follows

1. both systems are related to power series;

2. R̃∞(q) can be generated by a one-step recursive algorithm and it is the attractor of a
one-dimensional IFS, the radius of convergence is 1. The buffer needed (i.e. the number
of digits the IFS depends on) is constantly equal to 1;

3. R∞(q) can be generated by a two-steps recursive algorithm and it is the attractor of a
two-dimensional IFS, the radius of convergence is ϕ. The buffer needed, k(q), depends on
q and it goes to infinity as q tends to ϕ from above.

2.2.6 A sufficient contractivity condition

In what follows we provide an upper estimate for k(q).
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Proposition 2.2.29 (An upper estimate for the Fibonacci sequence). For every n ∈ N

fn+1 ≤ ϕn.

Proof. By induction on n. First, as base cases, we will consider the cases when n = 1 and n = 2.
Note that 1 < ϕ < 2. By adding 1 to each term in the inequality, we obtain 2 < ϕ + 1 < 3.
The two inequalities together yield

1 < ϕ < 2 < ϕ+ 1 < 3.

Using the relation ϕ+ 1 = ϕ2 and the first few Fibonacci numbers, we can rewrite this as

f2 < ϕ < f3 < ϕ2 < f4

which shows that the statement is true for n = 1 and n = 2. Now, as the induction hypothesis,
suppose that fi+1 < ϕi < fi+2 for all i such that 0 ≤ i ≤ k + 1.

fk+2 < ϕk+1 < fk+3

and
fk+1 < ϕk < fk+2.

Adding each term of the two inequalities, we obtain

fk+2 + fk+1 < ϕk+1 + ϕk < fk+3 + fk+2.

Using the relation ϕk+1 + ϕk = ϕk+2 and the first few Fibonacci numbers, we can rewrite this
inequality as

fk+3 < ϕk+2 < fk+4

which shows that the inequality holds for n = k + 2.

Lemma 2.2.30 (Explicit computation of Ak(q)). For every q > ϕ and for every k ∈ N

Ak(q) =
1

qk+1

(
fk+1q fk
fkq

2 fk−1q

)
. (2.2.45)

Proof. By induction on k. Base step, k = 1, is trivially satisfied. Assume now (2.2.45) as
inductive hypothesis. For k + 1 we have

Ak+1(q) = Ak(q)A(q) =
1

qk+2

(
(fk+1 + fk)q fk+1

(fk + fk−1)q2 fk

)
=

1

qk+2

(
fk+2q fk+1

fk+1q
2 fkq

)
.

and this concludes the proof.

Proposition 2.2.31. For every q > ϕ

k(q) ≤
ln
(

1
ϕ2q2 (q4 + 3q2 + 1)

)
2 (ln q − lnϕ)

. (2.2.46)

Proof. Fix k and set

B(q) :=

(
fk+1q fk
fkq

2 fk−1q

)
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so that, by Lemma 2.2.30, one has

Ak(q) =
1

qk+1
B(q).

Denote by λmax(A) the greatest eigenvalue of A in modulus. One has that the matrix norm
consistent with Euclidean norm satisfies the following identity

||A|| := max
x 6=(0,0)

||Ax|| =
√
λmax(ATA).

Then

||Ak(q)|| = ||B(q)||
qk+1

=
√
λmax(BT (q)B(q)).

The product matrix BT (q)B(q) has the form:

BT (q)B(q) =

(
f 2
k+1q

2 + f 2
k q

4 fkfk+1q + fkfk−1q
3

fkfk+1q + fkfk−1q
3 f 2

k + f 2
k−1q

2

)
.

The characteristic polynomial p(λ) associated to BT (q)B(q) is hence

p(λ) = λ2 − λ
(
f 2
k+1q

2 + f 2
k q

4 + f 2
k + f 2

k−1q
2
)

+
+q4

(
f 2
k−1f

2
k+1 + f 4

k − 2fk+1fk−1f
2
k

)
.

The free term of characteristic polynomial is linked to algebraic identities involving the Fi-
bonacci numbers,

f 2
k−1f

2
k+1 + f 4

k − 2fk+1fk−1f
2
k = 1.

In fact
f 2
k−1f

2
k+1 + f 4

k − 2fk+1fk−1f
2
k =

(
f 2
k − fk−1fk+1

)2

involving Cassini’s identity
fn−1fn+1 − f 2

n = (−1)n+1,

Then, the characteristic polynomial becomes:

p(λ) = λ2 − λ
(
f 2
k+1q

2 + f 2
k q

4 + f 2
k + f 2

k−1q
2
)

+ q4.

Set λ̄max = f 2
k q

4 + (f 2
k+1 + f 2

k−1)q2 + f 2
k and note that

λmax(B
T (q)B(q)) =

1

2

(
λ̄max +

√
λ2
max − 4q2

)
≤ λ̄max.

Furthermore by Proposition 2.2.29 we have

λ̄max ≤ ϕ2k−2q4 + (ϕ2k + ϕ2k−4)q2 + ϕ2k−2 = ϕ2k−2(q4 + 3q2 + 1)

and finally

||Ak(q)|| = λmax
q2k+2

≤ λ̄max
q2k+2

≤ ϕ2k−2

q2k+2
(q4 + 3q2 + 1).

Consequently if
ϕ2k−2

q2k+2
(q4 + 3q2 + 1) < 1

then ||Ak(q)|| < 1. To solve above inequality with respect to k we apply the logarithm, requiring
that the final report is less than 0:

2k ln

(
ϕ

q

)
+ ln

(
1

ϕ2q2
(q4 + 3q2 + 1)

)
< 0.
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We finally obtain that if

k >
ln
(

1
ϕ2q2 (q4 + 3q2 + 1)

)
2 (ln q − lnϕ)

then ||Ak(q)|| < 1 and hence the claim.

It is well-known that fk is the closest integer to ϕk√
5
. Therefore it can be found by rounding

in terms of the nearest integer function: fk =

[
ϕk√

5

]
, k ≥ 0. That gives a very sharp inequality.

In fact, if k is an even number, then fk =

[
ϕk√

5

]
< ϕk√

5
i.e. f2k =

[
ϕ2k
√

5

]
< ϕ2k
√

5
. We notice that

ϕk√
5
< ϕk−1. By the same procedure applied previously, we get

λ̄max ≤
q2

5

(
ϕ2k−2 + ϕ2k+2

)
+
ϕ2k

5
(q4 + 1).

We have
λ̄max
q2k+2 ≤

(
ϕ
q

)2k
1

5q2

(
q2

ϕ2 + q2ϕ2 + q4 + 1
)
≤ 1

⇔ 2k ln
(
ϕ
q

)
+ ln

(
1

5ϕ2 + ϕ2

5
+ q2

5
+ 1

5q2

)
≤ 0

whence

k ≥
ln
(

1
5ϕ2 + ϕ2

5
+ q2

5
+ 1

5q2

)
2 (ln q − lnϕ)

(q > ϕ) (2.2.47)

for k even.

Remark 2.2.32. Now we want to compare the values of k(q), and suppose that k(q) of (2.2.47)
is greater than (2.2.46).

ln
(

1
5ϕ2 + ϕ2

5
+ q2

5
+ 1

5q2

)
2 (ln q − lnϕ)

>
ln
(

1 + 1
ϕ4 + q2

ϕ2 + 1
q2ϕ2

)
2 (ln q − lnϕ)

i.e.
q4(ϕ4 − 5ϕ2) + q2(ϕ2 + ϕ6 − 5ϕ4 − 5)− 5ϕ2 + ϕ4 > 0

which doesn’t admit solution. Then

ln
(

1
5ϕ2 + ϕ2

5
+ q2

5
+ 1

5q2

)
2 (ln q − lnϕ)

<
ln
(

1 + 1
ϕ4 + q2

ϕ2 + 1
q2ϕ2

)
2 (ln q − lnϕ)

.

2.3 Conclusions and perspectives

In Section 2.1 introduced a robot hand model composed by an arbitrarily large number of
hyper-redundant binary planar manipulators. The length of each link scales according to the
Fibonacci sequence. Our assumptions (e.g. binary controls, kinematic redundancy, planar
motion...) have twofold motivations. In one hand they facilitate the development of a theory
relating fractal geometry and automatic control. On the other hand they appear validated by
practical motivations in a wide literature. We described the kinematics of each finger by giving

43



an explicit formula for the position of the end-effectors. We then addressed the investigation of
the reachable workspace, by characterizing it as a projection of the attractor of a suitable IFS
(Section 2.1.1). The relation with iteration function systems also allows to describe the convex
hull of the reachable workspace: this technique is finally applied to the explicit characterization
in a particular case.

In Section 2.2 we studied the workspace of a hyper-redundant manipulator, modeling a
snake-like robot with links decaying as a scaled Fibonacci sequence. We give a formal proof of
the results, highlighted by numerical simulations based on a fractal geometry approach. The
main novelty of the Section consists in the exploitation of self-similar structure (induced by the
dependence on the Fibonacci sequence) for a combinatoric study of the reachable workspace.
We finally notice that, by the arbitrariness of the number of links, the asymptotic properties of
the model (e.g. the possibility of setting an arbitrary global length for the manipulator) extend
by approximation to the case with a finite number of links with arbitrary small tolerance.

Possible developments of the present work include the search for solutions for inverse kine-
matic problems in a fashion like [121], and for obstacle avoidance algorithms similar to those
presented in the Chirikjian and Burdick’s seminal report [43].

The results in the present chapter extend techniques previously developed in [113], [114]
and [115] for the case of links with a constant ratio. The several explicit results obtained also
in this more complicated case suggest that the relation with IFSs is a deep connection and a
powerful theoretical tool for the investigation of automatic control. In this chapter we studied
the purely discrete case in order to give closed formulae and to emphasize the relation with IFSs.
However we plan to investigate the continuous case in a future work. The issues concerning
the practical implementation of our models are beyond the purposes of the present chapter;
but of course it would be interesting to establish the link between the theoretical approach
and its application. Other open problems include a tuning of parameters in order to avoid
self-intersecting configurations, and include grasping algorithms and optimal control strategies.
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Chapter 3

Theorems for Exponential and Sinc
Bases.

It is well known that the system {eint}n∈Z is an orthonormal and a Riesz basis for L2(−π, π).
The question on the stability of the exponential system consists in asking whether expansion
property of the system is still valid if we replace n with a perturbation λn. Kadec’s theorem is
a classical and famous result which gives a criterion for the nodes {λn ∈ R : n ∈ Z} so that
{eiλnt}n∈Z forms a Riesz basis for L2(−π, π). The stability of exponential Riesz bases is related
to sampling theorem as follows. (In this Chapter we prove that the stability of exponential
bases is also related to stability of another, important system: the Sinc basis {sinc(t−n)}n∈Z.)

If f represents the signal, assuming that f ∈ L2(R) (the energy of the signal is finite), then f

is said band-limited to [−π, π] if f̂ vanishes outside the set [−π, π], where f̂ denotes the Fourier
transform. The space of band-limited to [−π, π] functions is the Paley-Wiener space, usually
denoted by PWπ. The space PWπ play a significant role in signal processing applications [93].
As well known, any function f ∈ PWπ, can be expanded in terms of the orthonormal basis
{eint}n∈Z (for f̂) and {sinc(t − n)}n∈Z (for f). This is the Shannon’s sampling theorem [107],
[167]. For the sake of precision, the sampling theorem is associated with Claude Shannon in
the West, and with Vladimir Kotelnikov in Russia.

Today, Shannon’s work is fundamental in engineering and digital signal processing because
it gives a framework for converting analog signals into sequences of numbers [166]. See also
[178] and [136]. The sampling theorem establishes an important result: the continuous signal
can then be perfectly reconstructed from its samples by means of a discrete-time interpolation
operation; the value of the reconstructed signal at the instant t in any continuous is the sum of
all samples, which we denote f(n), each weighted with the sinc normalized function centered on
the n-th sample and multiplied by the sample f(n). Without loss of generality, the sampling
reconstruction formula recovers a function with a frequency bandwidth of [−π, π] given the
function’s values at the integers. But the theorem has drawbacks. Foremost, the recovery
formula does not converge given certain types of error in the sampled data, as Daubechies
and De Vore mention in [60]. They use oversampling to derive an alternative recovery formula
which does not have this defect. Furthermore, as already said, for the theorem, the data nodes
have to be equally spaced, and nonuniform sampling nodes are not allowed but, from many
practical points of view it is necessary to develop sampling theorems for a sequence of samples
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taken with a nonuniform distribution along the real line.

The functions {eiλnt}n∈Z are also called the non-harmonic Fourier functions, where {λn}n∈Z
is a given sequence of complex numbers. The study of these functions was initiated by Paley and
Wiener [147]; they obtained the result that if the λn are real and such that |λn−n| < 1/π2 then
{eiλnt}n∈Z forms a complete sequence in L2(−π, π). Later, an advanced result was presented by
Levinson [119]. The case of complex λn was investigated by Duffin and Eachus [63], obtaining
the stability bound log 2

π
. Their sampling formulae recover a function from nodes {λn}n, where

{eiλnt}n forms a Riesz basis for L2(−π, π). As already mentioned, the maximum perturbation
of the system {eint}n is found by Kadec [103]. The results on the nonharmonic Fourier bases
{eiλnt}n∈Z can be translated into results about nonuniform sampling and reconstruction of band-
limited functions: [22], [94], [164], [200]. This plays a very important role in signal theory; it
suffices to think for example, that the sampling reconstruction formula expresses the fact that
the f̂ can be seen as infinite sum of elementary contributions of exponential type complex.
Modern digital data processing of functions (or signals or images) always uses a discretized
version of the original signal f that is obtained by sampling f on a discrete set. The question
then arises whether and how f can be recovered from its samples. Therefore, the objective of
research on the sampling problem is twofold. The first goal is to quantify the conditions under
which it is possible to recover particular classes of functions from different sets of discrete
samples. The second goal is to use these analytical results to develop explicit reconstruction
schemes for the analysis and processing of digital data.

This Chapter concentrates also on perturbation of regular sampling: λn ∈ C for {eiλnt}n∈Z
and λn ∈ R for {sinc(t − λn)}n∈Z. The interest on the function sinc t dates back to the works
of Borel [29], Whittaker [193]. The Cardinal function [176]

C(f, 1)(t) =
∑
n∈Z

f(n) sinc(t− n), x ∈ R, (3.0.1)

occupies an important place in the theory of analytic functions. Whittaker was the first to find a
connection with analytic functions. C(f, 1)(t) is replete with identities within a Wiener class of
functions, W (π), of all entire functions of order 1 and type π that are also square integrable over
the real line R [176]. Formula (3.0.1) also appears in the statement of sampling theorem. For
this reason sampling theorem is often known as the Whittaker-Kotelnikov-Shannon theorem.
Hardy who was referring to (3.0.1) wrote: “It is odd that, although these functions occur
repeatedly in analysis, especially in the theory of interpolation, it does not seem to have been
remarked explicitly that they form an orthogonal system” [87]. See also: [23], [37], [193].

We now outline the content of the Chapter. Section 3.1 contains a simple and different
viewpoint from the literature, to the best of our knowledge, to generalize well known results
by Kadec (in R) and Duffin and Eachus (in C), concerning Riesz bases, [188]. The main goal
of the section is to overcome, at least partially, the limitations exhibited in the paper of Duffin
and Eachus and in the book of Young for the Riesz bases. A consequence of the main theorem
and its corollary is that the constant log 2

π
can be replaced by 1/4 (for complex λn). In Section

3.2 we prove that if {λn}n∈Z be a sequence of real numbers for which |λn − n| 5 L < 1
4
, for

all z ∈ Z, then the sequence {sinc(λn − z)} satisfies the Paley-Wiener criterion and so forms
a Riesz basis for the Paley-Wiener PWπ. This result is stated in [11] with an incorrect bound
for L. The constant 1/4 is optimal also for the system {sinc(λn − z)}. We have worked to
reobtain the optimal constant 1/4 without going to the exponential basis, i.e., working directly
on cardinal series. The goal has not been fully achieved but we have obtained some results in
this direction.
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3.1 A simple viewpoint for Kadec-1/4 theorem in the complex case.

It is known that exponential Riesz bases {eiλnt} (with λn ∈ R) are stable in the sense that a
small perturbation of a Riesz basis produces a Riesz basis; it is proved by Paley and Wiener
([199] and [147]). The proof of the Paley-Wiener theorem does not provide an explicit stability
bound. The celebrated theorem by M. I. Kadec shows that 1/4 is the stability bound for the
exponential basis on L2[−π, π].

The proof of theorem, as reported in the Young’s textbook[199], applies for sequences of
real numbers. Even earlier, however, Duffin and Eachus [63] shows that the Paley - Wiener
criterion is satisfied whenever the sequences are complex and log 2

π
is a stability bound. For

Young (page 38): “Whether the constant log 2
π

can be replaced by 1/4 (for complex λn) remains
an unsolved problem”. With Theorem C and Theorem D on [63] they consider sets which
are on the borderline of being near a given orthonormal set, while the last part of their paper
gives a simple formula for constructing sets near a given orthonormal set. Afterward, Duffin
and Eachus apply this result (Theorem D) to the sequence of functions {eiλnx}, where {λn},
n = 0,±1,±2, ... is a sequence of complex constants satisfying |λn − n| ≤ L for some constant
L. The Duffin and Eachus’s approach is deeper and more general than one of Young; in fact
their work speaks of orthonormal sets and not of basis. In their paper can be read the following:
“The above results on the non-harmonic Fourier series are an extension of previous knowledge
in two respects. In the first place, Paley and Wiener were forced to assume that {λn} was a
real sequence. Secondly, they obtained the value 1/π2 where we have ln 2/π. The best value
for L is not known; however a theorem of Levinson gives an upper limit of 1/4”.

Theorem 3.1.3 seeks to overcome the limitations exhibited in the paper of Duffin and Eachus
and in the book of Young for the Riesz basis, introducing a limitation on the imaginary part of
λn. A consequence of theorem 3.1.3 and its corollary, is that the constant log 2

π
can be replaced

by 1/4 (for complex λn).

Lastly, an example that shows 1/4 cannot be replaced by a larger constant for complex case,
are given in the appendix. For the latest results on generalizations and extensions of Kadec’s
theorem see: [178], [136], [48].

3.1.1 L = 1/4 as best possible choice.

The two lemmas below follows by Young’s book just adapting to complex case in this chapter.
For the theory of entire function and the proof of lemma 3.1.1, see chapter 2 and pages 103-105
of Young’s book.

Lemma 3.1.1. If λn = n+ ε+ iτ(ε) (n = 1, 2, 3...), where ε > −1, and

H(z) =
∏
n

(
1− z2

λ2
n

)
, then

H ′(λn) = (−1)nΓ2(1 + ε+ iτ(ε))
Γ(n)

Γ(n+ 1 + 2ε+ 2iτ(ε))
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Now, using the thesis of this lemma, is shown the next result.

Lemma 3.1.2. If

λn =


n+ ε+ iτ(ε), n > 0

0, n = 0

n− ε− iτ(ε), n < 0

(3.1.1)

then, for ε ≥ 1/4, the system {eiλnt} is not a Riesz basis for L2[−π, π].

Proof. Suppose it were. Then the system of reproducing functions {Kn(z)}, Kn(z) = sin π(z−
λn)/π(z − λn), would be a Riesz basis for Paley-Wiener space P , since the Fourier transform
is an isometry. Put

Fn(z) =
F (z)

F ′(λn)(z − λn)

where F (z) =
∏

n(1− z2/λ2
n). Then Fn(λk) = δnk, and Fn belongs to P. Accordingly, {Fn(z)}

is biorthogonal to {Kn(z)} in P and so must also be a Riesz basis for P. In particular, the series∑
n

cn
F (z)

F ′(λn)(z − λn)

must converge in the topology of P, and hence pointwise, whenever {cn(z)} ∈ L2. By the
converse to Hölder’s inequality, this can happen only if∑

n6=0

∣∣∣∣ 1

λnF ′(λn)

∣∣∣∣2 <∞.
But by Lemma (3.1.1),

F ′(λn) = (−1)nΓ2(1 + ε+ iτ(ε))
Γ(n)

Γ(n+ 1 + 2ε+ 2iτ(ε))

and Stirling’s formula,
Γ(n)

Γ(n+ a)
∼ e−a lnn

, shows that ∑
n6=0

∣∣∣∣ 1

λnF ′(λn)

∣∣∣∣2 =∞

for ε ≥ 1/4 and the contradiction proves the lemma.

3.1.2 A class of sequences that improves the estimation of Duffin and Eachus

Theorem 3.1.3. If {λ̄n} = {λn + iµn} is a sequence of complex numbers for which

|λn − n| 5 L <
1

4
, n = 0,±1,±2, ... (3.1.2)

and

|µn| 5 τ(L) <
1

π
ln

(
2

2− cosπL+ sin πL

)
, n = 0,±1,±2, ... (3.1.3)

then {eiλ̄nt} satisfies the Paley-Wiener criterion and so forms a Riesz basis for L2[−π, π].
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Proof. It is to be shown that
∣∣∣∣∣∣∑+∞

n cn

(
eint − eiλ̄nt

)∣∣∣∣∣∣ < 1 whenever
∑

n |cn|2 5 1. Write

eint − eiλ̄nt = eint
(
1− eiδnt e−µnt

)
(3.1.4)

= eint
[
1− e−µnt + e−µnt

(
1− eiδnt

)]
where δn = λn−n. This time again, the trick is to expand the function 1−eiδt (−π ≤ t ≤ π) in
a Fourier series relative to the complete orthonormal system {1, cosnt, sin(n− 1

2
)t}∞n=1 and then

exploit the fact that |λn− n| is not too large. Then the expansion of 1− eiδt is the same as the
previous theorem. Let {cn} be an arbitrary finite sequence of scalars such that

∑
|cn|2 ≤ 1. By

interchanging the order of summation, using triangle inequality and the notation introduced in
the Kadec’s theorem on [199], it shows∣∣∣∣∣∣+∞∑

n

cne
int
[
1− e−µnt + e−µnt

(
1− eiδnt

)]∣∣∣∣∣∣ ≤ (3.1.5)

≤ sup
n

∣∣1− e−µnt∣∣ ∣∣∣∣∣∣+∞∑
n

cne
int
∣∣∣∣∣∣+ sup

n

(
e−µnt

)
(A+B + C) (3.1.6)

From the assumptions of the theorem it is easily seen that supn (e−µnt) ≤ eτπ and supn |1− e−µnt| ≤
eτπ − 1 where τ = τ(L). Now, by [103], it has that∣∣∣∣∣∣+∞∑

n

cn

(
eint − eiλ̄nt

)∣∣∣∣∣∣ ≤ e|M | − 1 + e|M | (1− cosπL+ sin πL) =: λ (3.1.7)

It is observed that with arbitrary L < 1/4 and

τ(L) <
1

π
ln

(
2

2− cosπL+ sin πL

)
(3.1.8)

is obtained λ < 1.

The following result shows that, in the hypotheses of the theorem 3.1.3, it has {eiλ̄nt} satisfies
the Paley-Wiener criterion for |λ̄n − n| < 1/4 even when {λ̄n} is a complex sequence.

Corollary 3.1.4. For each L < 1
4
, one has

(i) |µn| ≤
ln 2

π
; (ii) |λ̄n − n| ≤

1

4
(3.1.9)

Proof. The proof of first relation (i) is trivial and is left to the reader. Noting that

|λ̄n − n| ≤ |λn − n|+ |µn| ≤ L+
1

π
ln

(
2

2− cos πL+ sin πL

)
(3.1.10)

relation (ii) is verified if x̄ − ln
(
1 + sin x̄−cos x̄

2

)
≤ π

4
with x̄ = πL. Let us consider the function

f(x̄), defined as follow:

f(x̄) = x̄− ln

(
1 +

sin x̄− cos x̄

2

)
It comes to prove that the function f(x̄) − x̄ := g(x̄) is convex. Rewrite the function g(x̄)

using the relationship (sin x̄ − cos x̄)/2 =
√

2
2

sin
(
x̄− π

4

)
and so g(x) = − ln

(
1 +

√
2

2
sinx

)
for
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x = x̄− π/4. Bearing in mind that a function is convex if and only if it is midpoint convex, it
must be demonstrated that 2g

(
x+y

2

)
≤ g(x) + g(y), and hence

−2 ln

(
1 +

√
2

2
sin

x+ y

2

)
≤ − ln

(
1 +

√
2

2
sinx

)
− ln

(
1 +

√
2

2
sin y

)
where y = ȳ− π/4. From properties of logarithms and by applying Prosthaphaeresis formulas,
Werner formulas, and half-angle formulae, it has

√
2 sin

(
−x+ y

2

)
≤ cos2 x− y

4

Rewriting−x+y
2

= π
4
− x̄−ȳ

2
−ȳ ≤ π

4
−t with t = x̄−ȳ

2
∈ [0, π/4], it becomes

√
2 sin

(
π
4
− t
)
≤ cos2 t

2
,

that is verified over [0, π/4]. Then f(x) is convex. Denoting with P1(0, ln 2), P2(π/4, π/4)
two points belonging to graphic of f(x) and from an obvious properties of convex functions:
f(x) ≤ π−ln 16

π
x+ ln 2 (the straight line for P1, P2), by the right side term that is less than π

4
if

x ≤ π
4
, it is concluded the claim.

3.2 An explicit bound for stability of sinc bases.

Let f be a function which can be expanded as

f(t) =
∑
n∈Z

cn sinc(t− n) (3.2.1)

where

sinc(α) =

{
sin(πα)
πα

α 6= 0,

1 α = 0,
(3.2.2)

is the normalized sinc function. The RHS of (3.2.1) is called “cardinal series” or Whittaker
cardinal series. A major factor affecting current interest in the cardinal series is its importance
for certain applications as, for example, interpolation based on (3.2.1) which is usually called
ideal bandlimited interpolation (or sinc interpolation), because it provides a perfect reconstruc-
tion for all t, if f(t) is bandlimited in [−π, π] and if the sampling frequency is greater that the
so-called Nyquist rate. The system used to implement (3.2.1) is also known in in engineering
applications as ideal DAC (i.e. digital-to-analog converter, see [129]). The presence of the
perturbation could lose the correct reconstruction of the function (signal), so it is important
to study the conditions for which the system is still able to reconstruct the function (signal)
belonging to a given space. Other applications are sampling theory of band-limited signals
in communications engineering [93] or sinc-quadrature method for differential equations [126].
The so-called sinc numerical methods of computation, provide procedures for function approx-
imation over bounded or unbounded regions, encompassing interpolation, approximation of
derivatives, approximate definite and indefinite integration, and so on [176]. These problems
motivated our investigation on sinc systems.

For these reasons, the cardinal series have been widely discussed in the literature; see also
[193] and [192]. They are linked to a classical basis, the exponentials {eint}n∈Z in L2(−π, π),
through the Fourier transform, indeed formally

F
(
eitµχ[−π,π] (t)

)
(ξ) =

∫ π

−π
ei(µ−ξ)tdt = 2π sinc(µ− ξ).
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Figure 3.1: Left: A function f defined on R has been sampled on a uniformly spaced set. Right: The
same function f has been sampled on a non-uniformly spaced set.

Figure 3.2: Sampling grids. Left: uniform cartesian sampling. Right: A typical nonuniform sampling
set as encountered in various signal and image processing applications.

Studies on more general exponential systems {eiλnt}n∈Z find their origin in the celebrated 1934’s
work of Paley and Wiener [147] in L2(0, T ), where T > 0. They proved that if λn ∈ R, n ∈ Z
and

|λn − n| ≤ L < π−2 n ∈ Z

then the system {eiλnt}n∈Z forms a Riesz basis in L2[−π, π]. A well-known theorem by Kadec
[103], [199] shows that 1/4 is a stability bound for the exponential basis on L2(−π, π), in the
sense that for L < 1/4, {eiλnt}n∈Z is still a Riesz basis in L2(−π, π). More than 60 years
after Paley and Wiener initiated the study of nonharmonic Fourier series in L2[−π, π], many
other approaches to exponential Riesz basis problem have emerged in the literature. For other
contributions to exponential Riesz basis problem and Kadec’s theorem see survey papers, as:
[163], [184].

For the system of cardinal sines {sinc(t− n)}n∈Z we tried to follow the same approach. For
simplicity, we refer to {sinc(t− n)}n∈Z with terms of “sinc system” or sinc basis.

51



The results of this paper are the following theorems.

First of all, we recall and prove the classical result (see also [11]). Below, we denote with
PWπ the Paley-Wiener space.

Proposition 3.2.1. Let {λn}n∈Z be a sequence of real numbers for which

|λn − n| 5 L <∞, n = 0,±1,±2, ... (3.2.3)

If L < 1
4
, the sequence {sinc(λn − t)}n∈Z satisfies the Paley-Wiener criterion and so forms a

Riesz basis for PWπ. Moreover, constant 1/4 is optimal.

The subsequent results have been achieved in an attempt to reobtain the optimal constant
1/4 without going to the exponential basis, i.e. working directly on cardinal series. Let us
consider the following two results.

Theorem 3.2.2. Let λn − n = A
|n|α for n = ±1,±2, . . . and λn − n = 0 for n = 0. If α > 1/2

and |A| < 1

2π 4√2
√
ζ(2α)

then the system {sinc(λn − t)}n∈Z satisfies the Paley-Wiener criterion

and so forms a Riesz basis for PWπ.

Numerical evaluation in the case λn − n = A
|n|α is given in Section 3.2.6; in the Ta-

bles are showed that, when α = 2, for increasing value of A until A ' 0.3868, the system
{sinc(λn − t)}n∈Z is a Riesz basis in PWπ. If n = ±1,±2, . . . , we have that λn − n ≤ L where

L is greater (' 0.3868 . . . ) of Kadec’s bound. This is due to the assumption λn−n = A
|n|α , that

is, to have considered a non-uniform stability bound.

In Section 3.2.5 we study the stability of {sinc(λn − t)}n∈Z for λn ∈ C, reobtaining a stability
bound which depends from Lamb-Oseen constant [142]. This constant was also appeared in
previous work [11] although the stability bound was not correct.

In a previous work one of the author studied the extension to complex numbers of Kadec
type estimate for exponential bases [186]. The method used there is inspired to work by Duffin
and Eachus [63]. In [11] we performed a preliminary study by adapting a previous result on
sinc. Here we give a complete result by the following theorem.

Theorem 3.2.3. If {λn} is a sequence of complex numbers for which

|λn − n| 5 L <
1

π

√
3α

8
, n = 0,±1,±2, ... (3.2.4)

then {sinc(λn− t)}n∈Z satisfies the Paley-Wiener criterion and so forms a Riesz basis for PWπ.

Observe that the optimality of the bound for the complex case is not studied in our result.

3.2.1 Preliminaries

In this section we will introduce some useful notations and results about cardinal series, with
reference to applications in sampling and numerical analysis. Some of the results in the final
part of this section are given for the convenience of the reader.
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Figure 3.3: Left: A function f defined on R has been sampled on a uniformly spaced set. Right: The
same function f has been sampled on a non-uniformly spaced set.

Sampling Theorem and Stability

By L2(−∞,+∞) we denote the Hilbert space of real functions that are square integrable in
Lebesgue’s sense:

L2(R) =

{
f :

∫ +∞

−∞
|f(t)|2dt < +∞

}
with respect to the inner product and L2-norm that, on R, are

〈f, g〉 =
1

2π

∫ ∞
−∞

f(t)g(t)dt ||f || =
√
〈f, f〉

Given f ∈ L2(R) we denote by f̂ the Fourier transform of f ,

f̂(ξ) = F (f) (ξ) =

∫ +∞

−∞
f(t)e−iξtdt.

Let en be an orthonormal basis of an Hilbert space H. Then Parseval’s identity asserts that
for every x ∈ H, ∑

n

|〈x, en〉|2 = ‖x‖2.

Plancherel identity is expressed, in its common form:∫ ∞
−∞

f(t) g(t) dt =
1

2π

∫ ∞
−∞

f̂(ξ) ĝ(ξ) dξ.
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Figure 3.4: Sampling grids. Left: uniform cartesian sampling. Right: A typical nonuniform sampling
set as encountered in various signal and image processing applications.

A function f ∈ L2(R) is band-limited if the Fourier transform f̂ has compact support. The
Paley-Wiener space PWπ is the subspace of L2(R) defined by

PWπ :=
{
f ∈ L2(R)

∣∣∣ supp f̂ ⊆ [−π, π]
}
.

We will now recall that the Paley-Wiener space has an orthonormal basis consisting of translates
of sinc-function.

Theorem 3.2.4. (Shannon’s sampling theorem) [47] The functions {sinc(· − n)}n∈Z form an
orthonormal basis for PWπ. If f ∈ PWπ is continuous, then

f(t) =
∑
n∈Z

f(n) sinc(t− n). (3.2.5)

Taking the Fourier transform in equation (3.2.5) we obtain

f̂(ξ) =
∑
n∈Z

〈
f̂ , einξ

〉
L2(−π,π)

einξ, (3.2.6)

where 〈g, h〉L2(−π,π) = 1
2π

∫ π
−π g(ξ)h(ξ)dξ.

Sampling theorem expresses the possibility of recovering a certain kind of signals from
a sequence of regularly spaced samples. However from many practical points of view it is
necessary to develop sampling theorems for a sequence of samples taken with a nonuniform
distribution along the real line. Nonuniform sampling of band-limited functions has its roots
in the work of Paley, Wiener, and Levinson. In fact, the first answer for this direction was
given by Paley and Wiener [147], and later an advanced result was presented by Levinson [119].
Their sampling formulae recover a function from nodes {λn}n, where {eiλnξ}n forms a Riesz
basis for L2[−π, π]. The result is related with the perturbation of orthonormal basis {einξ}n∈Z
for the function space L2[−π, π] in such a way that the perturbed sequence {eiλnξ}n is also a
Riesz basis for the same space. The maximum perturbation of the system {einx}n is found by
Kadec, whose result is the already cited Kadec-1/4 theorem [103]. This is a stability result, in
the sense that we will explain below.
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Usually, it is said that bases in Banach spaces form a stable class in the sense that se-
quences sufficiently close to bases are themselves bases. The fundamental stability criterion,
and historically the first, is due to Paley and Wiener [147], [199].

Theorem 3.2.5. Let {xn} be a basis for a Banach space X, and suppose that {yn} is a sequence
of elements of X such that ∥∥∥∥∥

n∑
i=1

ai(xi − yi)

∥∥∥∥∥ ≤ λ

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
for some constant 0 5 λ < 1, and all choices of the scalars a1, . . . , an (n = 1, 2, 3, . . . ). Then
{yn} is a basis for X equivalent to {xn}.

We reformulate Theorem 3.2.5 to be applied to orthonormal bases.

Theorem 3.2.6. Let {en} be an orthonormal basis for a Hilbert space H, and let {fn} be
“close” to {en} in the sense that∥∥∥∥∥

n∑
i=1

ai(ei − fi)

∥∥∥∥∥ ≤ λ
√∑

|ci|2

for some constant 0 5 λ < 1, and all choices of the scalars a1, . . . , an (n = 1, 2, 3, . . . ). Then
{fn} is a Riesz basis for H.

Let χ(t) be the characteristic function defined as

χ(t) =


0 if |t| > 1

2

1
2

if |t| = 1
2

1 if |t| < 1
2
.

(3.2.7)

Theorem 3.2.7 (Kadec 1
4
-Theorem). Let {λn}n∈Z be a sequence in R satisfying

|λn − n| <
1

4
, n = 0,±1,±2, ...

then the set {eiλnt}n∈Z is a Riesz basis for L2[−π, π].

Lambert function W, Lamb-Oseen constant.

The Lambert function W [53], [88], [177] is defined by the equation

W (x)eW (x) = x (3.2.8)

The function f(ξ) = ξeξ for ξ ∈ R has a strict minimum point in ξ = −1. We draw the picture
of ξeξ = f(ξ) in figure (3.7). In [11] it is proved the following proposition.

Proposition 3.2.8. The function f(ξ) = ξeξ has an increasing inverse in (−1,+∞), and a
decreasing inverse in (−∞,−1).
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Figure 3.5: Diagram of ξeξ = f(ξ).

We consider f(ξ) = ξeξ restricted to the interval (−∞,−1] and we denote by W−1 its inverse.
W−1 is defined in the interval [−1/e, 0). We have two identities arising from the definition of
W−1:

W−1(ξeξ) = ξ,
[
⇔ W−1 [f(ξ)] = W−1

[
ξeξ
]

= ξ
]
∀ξ ∈ (−∞,−1] (3.2.9)

and

W−1(x̄)eW−1(x̄) = x̄ [⇒ f (W−1(x̄)) = x̄]∀x̄ ∈ [−1

e
, 0) (3.2.10)

Also we denote by W0 the restriction to the interval [−1/e, 0) of the increasing inverse of
f(ξ) = ξeξ. The two identities hold true:

W0(ξeξ) = ξ,
[
⇔ W0 [f(ξ)] = W0

[
ξeξ
]

= ξ
]
, ∀ξ ∈ [−1, 0) (3.2.11)

and

W0(x̄)eW0(x̄) = x̄ [⇒ f (W0(x̄)) = x̄] ∀x̄ ∈ [−1

e
, 0) (3.2.12)

Let us assume that x̄ is a solution of our equation.

ex̄ − 2x̄ = 1 (3.2.13)

In order to use the Lambert function W , we observe that from (3.2.13) we get the equivalences

ex̄ − 2x̄ = 1⇔ ee
x̄−2x̄ = e

whence −1
2
ex̄e−

1
2
ex̄ = −1

2
e−

1
2 . Therefore we can identifies −1

2
ex̄ with W

(
−1

2
e−

1
2

)
. Since

−1
e
< −1

2
e−

1
2 < 0, the equation which defines the function W of Lambert, has two branches

which verifies the same equation W (x)eW (x) = −1
2
e−

1
2 and we will have

−1
2
ex̄ = W0

(
−1

2
e−

1
2

)
(3.2.14)

and
−1

2
ex̄ = W−1

(
−1

2
e−

1
2

)
. (3.2.15)

We call x̄1 the x̄ solution of (3.2.14), and x̄2 the solution of (3.2.15).

We state easy that x̄1 = 0. In fact from (3.2.14) we have

−1
2
ex̄1 = −1

2

[
= W0

(
−1

2
e−

1
2

)]
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and from ex̄1 = 1, easily follows x̄1 = 0.

From (3.2.15), and the relation (3.2.10) we get ex̄2 = −2W−1

(
−1

2
e−

1
2

)
, and so x̄2:

ln
(
−2W−1

(
−1

2
e−

1
2

))
= − ln

1

−2W−1

(
−1

2
e−

1
2

)
Now we multiply numerator and denominator by e

1
2

= − ln

 −1
2
e−

1
2

W−1

(
−1

2
e−

1
2

)e 1
2

 = −1

2
− ln

−1
2
e−

1
2

W−1

(
−1

2
e−

1
2

)
By (3.2.10) we have

x̄2 = −1

2
−W−1

(
−1

2
e−

1
2

)
.

The value −1
2
− W−1

(
−1

2
e−

1
2

)
is called the parameter of Oseen, or Lamb-Oseen constant,

denoted by α. Numerical estimates give

α = 1.25643...

We have introduced the Lambert function W in order to give an useful expression to the root
of equation

eα = 2α + 1. (3.2.16)

In [11] we have proved that the real number α is transcendental, through application of the
Lindemann - Weierstrass Theorem [16].

Sinc numerical methods

The sinc function is defined on the whole real line by (3.2.2). For the step size h > 0, the
translated sinc functions with evenly spaced nodes are given as

S(n, h)(t) = sinc

(
t− nh
h

)
, n = 0,±1,±2, . . . . (3.2.17)

If f is defined on the real line, then for h > 0 the series

C(f, h)(t) =
∑
n∈Z

f(hn) sinc

(
t− nh
h

)
(3.2.18)

is called the Whittaker cardinal expansion of f whenever this series converges. The properties
of (3.2.18) have been extensively studied not only in the engineering literature but also in the
field of numerical analysis. In fact, we recall that the term “sinc” was introduced to the world
of communication; see [107], [167] as widely discussed in [100] and [185]. The employment
of sinc function to numerical methods is showed in several textbooks and seminal papers; see
[108], [126], [174] as well as [67], [173], [175] and [176]. Sinc methods are based on the use of
the Cardinal function C(f, h)(t), defined in (3.2.18) and in the literature of sinc computation
is empathized the notation

S(n, h) ◦ (u) := sinc

(
u− nh
h

)
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introduced in [127]. This type of substitution enables use of C(f, h) to approximate functions
over intervals other than the real line R.

In this section we illustrate the process of one-dimensional sinc approximation. For this
purpose, consider the case of a finite interval (a, b). Define ϕ by w = ϕ(z) = log[(z−a)/(b−z)];
this function ϕ provides a conformal transformation of the “eye-shaped” region D = {z ∈ C :
| arg[(z − a)/(b− z)]| < d} onto the strip {z ∈ C : |=z| < d}, d > 0.

There are two important spaces of functions, Lα,β(D) and Mα,β(D) associated with sinc
approximation on the finite interval (a, b) [176]. For the case of Lα,β(D), we assume that α,
β and d are arbitrary fixed positive numbers. The space Lα,β(D) consists of the family of all
functions f that are analytic and uniformly bounded in the domain D defined above, such that,

f(z) =

{
O(|z − a|α), uniformly as z → a from within D,

O(|z − b|β), uniformly as z → b from within D.
(3.2.19)

In order to define the second space, Mα,β(D), it is convenient to assume that α, β and d are
restricted such that α, β ∈ (0, 1], and d ∈ (0, π). Then, Mα,β(D) denotes the family of all
functions g that are analytic and uniformly bounded in D, such that f ∈ Lα,β(D), where f is
defined by

f = g − Lg, (3.2.20)

and where

Lg(z) =
(b− z)g(a) + (z − a)g(b)

b− a
. (3.2.21)

Sinc approximation in Mα,β(D) is defined as follows [176]. Let N denote a positive integer, and
let integers M , and m, a diagonal matrix D(u) and an operator Vm be defined as follows.

M =

[
βN

α

]
, m = M+N+1, D(u) = diag[u(z−M), . . . , u(zN)], Vm(u) = (u(z−M), . . . , u(zN))T ,

(3.2.22)
where [·] denotes the greatest integer function, where u is an arbitrary function defined on Γ,
and where T denotes the transpose. Set [176](

πd

βN

)1/2

; zj = ϕ−1(jh) j ∈ Z; γj = sinc

(
ϕ− jh
h

)
, j = −M, . . . , N ;

ωj = γj, j = −M + 1, . . . , N − 1; ω−M =
1

1 + ρ
−

N∑
j=−M+1

1

1 + ejh
γj;

ωN =
ρ

1 + ρ
−

N−1∑
j=−M

ejh

1 + ejh
γj; εN = N1/2e−(πdβN)1/2

; ωm = (ω−M , . . . , ωN). (3.2.23)

For given vector c = (c−M , . . . , cN)T , set

ωmc =
N∑

j=−M

cj ωj. (3.2.24)

This operation ωmc can thus be interpreted as vector dot product multiplication. We shall also
define a norm by

‖f‖ = supx∈Γ |f(x)|, (3.2.25)

and throughout this section C will denote a generic constant, independent of N .
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A proof of the following result may be found in [176].

Theorem 3.2.9. If f ∈Mα,β(D), then

‖f − ωmVmf‖ ≤ CεN .

The constants in the exponent in the definition of εN are the best constants for approxima-
tion in Mα,β(D) (for details see [176]).

3.2.2 Proof of the main results

In the following we give the results of the paper.

3.2.3 Proof of Proposition 3.2.1

Proof of Proposition 3.2.1. Write

λ :=

∥∥∥∥∥∑
n

cn (sinc(n− ξ)− sinc(λn − ξ))

∥∥∥∥∥
2

L2(R)

.

The Fourier transform of the function t→ eitµχ[−π,π](t) is ξ → 2π sinc(µ− ξ). In fact:

F
(
eitµχ[−π,π](t)

)
(ξ) =

∫ π

−π
ei(µ−ξ)tdt = 2π sinc(µ− ξ).

By Plancherel’s theorem∥∥∥∥∥∑
n

cn (sinc(n− ξ)− sinc(λn − ξ))

∥∥∥∥∥
2

L2(R)

=

∥∥∥∥∥∑
n

cnχ[−π,π](t)
(
eint − eiλnt

)∥∥∥∥∥
2

L2(R)

=

∥∥∥∥∥∑
n

cn
(
eint − eiλnt

)∥∥∥∥∥
2

L2(−π,π)

and so, following the proof of Kadec’s theorem (see e.g. [199]), when L < 1
4

then λ ≤ 1 −
cos(πL)− sin(πL) < 1. Since {sinc(n− ξ)} is a Riesz basis of PWπ, the Paley-Wiener criterion
shows that also {sinc(λn − ξ)} is a Riesz basis of PWπ.

Constant 1/4 is optimal also for {sinc(λn − ξ)}. A counterexample due to Ingham [99] prove
that the set {eiλnt} is not a Riesz basis of L2(−π, π) when

λn =


n+ 1

4
, n > 0

0, n = 0

n− 1
4
, n < 0

(3.2.26)

Since PWπ is isometrically equivalent to L2(−π, π) via Fourier transform, the set {sinc(λn − ξ)}
is not a Riesz basis.
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Corollary 3.2.10. Let {x′n}n∈Z be a system biorthogonal to {sinc(· − λn)}n∈Z. Let {λn}n∈Z be
a sequence of real numbers for which

|λn − n| 5 L <∞, n = 0,±1,±2, ... (3.2.27)

If L < 1
4
, and if f ∈ PWπ is continuous, then

f(t) =
∑
n∈Z

〈f, x′n〉PWπ sinc(t− λn). (3.2.28)

Proof. Let {λn}n∈Z be a sequence of real numbers for which

|λn − n| 5 L <
1

4
, n = 0,±1,±2, ... (3.2.29)

We denote with the sequence {xn}n∈Z the system sinc(t−λn). From Theorem 3.2.1, the sequence
{xn}n∈Z forms a Riesz basis.

Recall that a sequence {xn}n∈Z in an Hilbert space H is a Riesz basis if and only if any
element x ∈ H has a unique expansion x =

∑
n∈Z cnxn with {cn}n∈Z ∈ `2. If {xn}n∈Z is a

Riesz basis, then in the above expansion the Fourier coefficients cn are given by cn = 〈x, x′n〉,
where {x′n}n∈Z is a system biorthogonal to {xn}n∈Z, i.e., a system which satisfies the condition
〈xk, x′n〉 = δk,n for all k, n ∈ Z.

3.2.4 Proof of Theorem 3.2.2

In order to prove Theorem 3.2.2, we prove the following Lemma.

Lemma 3.2.11. Define

I =

∥∥∥∥∥∑
n

cn [sinc(λn − t)− sinc(n− t)]

∥∥∥∥∥
2

L2(R)

.

Then
I ≤ 2

∑
n

[1− sinc(λn − n)] , n = 0,±1,±2, . . . . (3.2.30)

Proof. Write,

I =

∥∥∥∥∥∑
n

cn [sinc(λn − t)− sinc(n− t)]

∥∥∥∥∥
2

L2(R)

. (3.2.31)

First, we develop function sinc(λn − t) respect to basis {sinc(λn − t)}n∈Z. We find:

sinc(λn − t) =
∑
k∈Z

sinc(λn − k) sinc(k − t) (3.2.32)

The convergence in L2(R) is insured by∑
k∈Z

sinc2(λn − k) =

∫
R

sinc2(λn − t)dt = 1 (3.2.33)
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Thanks to equation (3.2.32) we obtain:∑
n

cn [sinc(λn − t)− sinc(n− t)] =
∑
n

cn
∑
k∈Z

[sinc(λn − k)− sinc(n− k)] sinc(k−t). (3.2.34)

This transformation is obvious because

sinc(n− k) =

{
0 for n, k ∈ Z and n 6= k

1 for n = k.

We obtain, substituting in (3.2.31):

I =

∥∥∥∥∥∑
n

cn
∑
k∈Z

[sinc(λn − k)− sinc(n− k)] sinc(k − t)

∥∥∥∥∥
2

L2(R)

=

∥∥∥∥∥∑
k∈Z

{∑
n

cn [sinc(λn − k)− sinc(n− k)]

}
sinc(k − t)

∥∥∥∥∥
2

L2(R)

(3.2.35)

Applying the Parseval equality,

I =
∑
k∈Z

∣∣∣∣∣∑
n

cn [sinc(λn − k)− sinc(n− k)]

∣∣∣∣∣
2

Using Hölder-Schwarz to the sum of products contained in the absolute value, and the condition
on
∑

n |cn|2 ≤ 1 we have:

I ≤
∑
k∈Z

∑
n

[sinc(λn − k)− sinc(n− k)]2 =

=
∑
n

∑
k∈Z\{n}

[
sinc2(λn − k) + (sinc(λn − n)− 1)2] (3.2.36)

From (3.2.33), ∑
k∈Z\{n}

sinc2(λn − k) = 1− sinc2(λn − n) (3.2.37)

Finally, from (3.2.36) and (3.2.37), we obtain

I ≤ 2
∑
n

[1− sinc(λn − n)] . (3.2.38)

Proof of Theorem 3.2.2. Let us consider

I ≤ 2
∑
n

[1− sinc(λn − n)]

for λn − n = A
|n|α :

I ≤ 2
∑
n 6=0

[
1− sinc

(
A

|n|α

)]
=

= 2
∑
n<0

[
1− sinc

(
A

|n|α

)]
+ 2

∑
n>0

[
1− sinc

(
A

|n|α

)]
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= 4
∑
n∈N

[
1− sinc

(
A

|n|α

)]
.

Since, for x ∈ (−π/2, π/2)∣∣∣∣1− sinx

x

∣∣∣∣ =

∣∣∣∣sinxx
∣∣∣∣ ∣∣∣ x

sinx
− 1
∣∣∣ ≤ 1

cosx
− 1 =

sin2 x

cosx(1 + cos x)
≤ sin2 x

cosx
,

we have:

I ≤ 4
∑
n∈N

[
1− sinc

(
A

|n|α

)]
≤ 4

∑
n∈N

sin2
(
πA
|n|α

)
cos
(
πA
|n|α

) .
It is verified if πA

|n|α ∈
(
−π

2
, π

2

)
. Let, for example, πA

|n|α ∈
(
−π

4
, π

4

)
. Hence,

I ≤ 4
∑
n∈N

sin2
(
πA
|n|α

)
cos
(
πA
|n|α

) ≤ 4
√

2(πA)2
∑
n∈N

1

n2α
= 4
√

2(πA)2ζ(2α).

Then
I ≤ 4

√
2(πA)2ζ(2α) < 1

if

|A| < 1

2π 4
√

2
√
ζ(2α)

.

Moreover, ζ(2α) < 1 and, under condition on A and for α > 1/2, it is confirmed that πA
|n|α ∈(

−π
4
, π

4

)
.

3.2.5 Proof of Theorem 3.2.3.

In this Section we study the system {sinc(λn− t)}n∈Z for λn ∈ C and |λn−n| ≤ L <∞. First,
we state the following Lemma whose proof is left to the reader.

Lemma 3.2.12. Let n, k ∈ N. The Fourier transform of the function t → dk

dtk
sinc(t − n) is

ξ → (iξ)kχ[−π,π](t) e
−inξ.

The following is a stability result for {sinc(λn − t)}n∈Z when λn ∈ C. The result involves
the Lamb-Oseen constant, as already announced in [11]. However the stability bound for the

case λn ∈ C is 1
π

√
3α
8

(and not α
π
, as written in [11]).

Proof of Theorem 3.2.3. Let us consider,

I =

∥∥∥∥∥∑
n

cn [sinc(λn − t)− sinc(n− t)]

∥∥∥∥∥
2

L2(R)

. (3.2.39)

whenever
∑

n |cn|2 5 1. We use the Taylor series of sinc(λn − t):

sinc(n− t) +
+∞∑
k=1

(λn − n)k

k!

dk

dxk
sinc(x− t)

∣∣∣
x=n
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Then

I =

∥∥∥∥∥∑
n

cn

+∞∑
k=1

(λn − n)k

k!

dk

dxk
sinc(x− t)

∣∣∣
x=n

∥∥∥∥∥
2

L2(R)

=

∥∥∥∥∥
+∞∑
k=1

1

k!

∑
n

cn (λn − n)k
dk

dxk
sinc(x− t)

∣∣∣
x=n

∥∥∥∥∥
2

L2(R)

≤
+∞∑
k=1

1

k!

∥∥∥∥∥∑
n

cn (λn − n)k
dk

dxk
sinc(x− t)

∣∣∣
x=n

∥∥∥∥∥
2

L2(R)

(3.2.40)

The term ‖ · ‖ is reducible to∥∥∥∥∥∑
n

cn (λn − n)k
dk

dxk
sinc(x− t)

∣∣∣
x=n

∥∥∥∥∥
2

L2(R)

=

=
∑
n,m

anam

〈
dk

dxk
sinc(x− t)

∣∣∣
x=n

,
dk

dxk
sinc(x− t)

∣∣∣
x=m

〉
L2(R)

where an := cn (λn − n)k. Observing that

dk

dxk
sinc(x− t)

∣∣∣
x=n

=

{
− dk

dtk
sinc(t− n), k odd

dk

dtk
sinc(t− n), k even

i.e., dk

dxk
sinc(x− t)

∣∣∣
x=n

= (−1)k d
k

dtk
sinc(t− n). Then〈

dk

dxk
sinc(x− t)

∣∣∣
x=n

,
dk

dxk
sinc(x− t)

∣∣∣
x=m

〉
L2(R)

=

∫
R
(−1)k

dk

dtk
sinc(t− n) (−1)k

dk

dtk
sinc(t−m) dt (3.2.41)

From Plancherel’s equality and Lemma 3.2.12, we have∫
R
(−1)k

dk

dtk
sinc(t− n) (−1)k

dk

dtk
sinc(t−m) dt =

1

2π

∫ π

−π
ξ2k ei(m−n)ξ dξ.

Hence,〈
dk

dxk
sinc(x− t)

∣∣∣
x=n

,
dk

dxk
sinc(x− t)

∣∣∣
x=m

〉
L2(R)

=
1

2π

∫ π

−π
ξ2k ei(m−n)ξ dξ. (3.2.42)

Taking equation (3.2.42) in (3.2.40), we obtain:

I ≤ 1

2π

+∞∑
k=1

1

k!

∑
n,m

anam

∫ π

−π
ξ2k ei(m−n)ξ dξ := ω1 + ω2

where ω1, ω2 are the cases, respectively, when n = m and n 6= m. Thereby,

ω1 =
1

π

+∞∑
k=1

1

k!

∑
n

|an|2
∫ π

0

ξ2k dξ ≤
+∞∑
k=1

(πL)2k

k!(2k + 1)
. (3.2.43)
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and using integration by parts for ω2, we see that

ω2 =
1

2π

+∞∑
k=1

1

k!

∑
n,m
n6=m

an am
i(m− n)

∫ π

−π
ξ2k

[
ei(m−n)ξ

]′
dξ

=
1

2π

+∞∑
k=1

1

k!

∑
n,m
n6=m

an am
i(m− n)

[(
ξ2k ei(m−n)ξ

)π
−π − 2k

∫ π

−π
ξ2k−1 ei(m−n)ξdξ

]

=
i

π

+∞∑
k=1

1

(k − 1)!

∑
n,m
n6=m

an am
m− n

∫ π

−π
ξ2k−1 ei(m−n)ξdξ. (3.2.44)

Putting double series into integral,

ω2 =
i

π

+∞∑
k=1

1

(k − 1)!

∫ π

−π
ξ2k−1

∑
n,m
n6=m

ane
−inξ ame−imξ

m− n
dξ

and denoting bn := ane
−inξ, ω2 is estimable from above as:

|ω2| ≤
1

π

+∞∑
k=1

1

(k − 1)!

∫ π

−π
|ξ|2k−1

∣∣∣∣∣∣∣
∑
n,m
n6=m

bnbm
m− n

∣∣∣∣∣∣∣ dξ.
From Hilbert’s inequality for the double series into the integral, we obtain

|ω2| ≤
+∞∑
k=1

1

(k − 1)!

∫ π

−π
|ξ|2k−1

∑
n

|bn|2 dξ ≤
+∞∑
k=1

(πL)2k

k!
. (3.2.45)

Then,

I ≤ |ω1|+ |ω2| ≤
+∞∑
k=1

(πL)2k

k!(2k + 1)
+

+∞∑
k=1

(πL)2k

k!
=

+∞∑
k=1

(πL)2k

k!

[
1 +

1

2k + 1

]
.

We notice that
(πL)2k

k!

[
1 +

1

2k + 1

]
≤ (πL)2k

(k + 1)!

(
8

3

)k
for all k ∈ N and, in fact,

2
k + 1

2k + 1
≤ 1

k + 1

(
8

3

)k
is verified for all k ∈ N. Only for k = 1 the above inequality becomes an equality. Accordingly,

I ≤
+∞∑
k=1

xk

(k + 1)!
=

1

x
(ex − x− 1) , where x =

8

3
π2L2.

Set λ = 1
x

(ex − x− 1) where x = 8
3
π2L2. In order to get λ < 1, we solve, in a first moment,

the equation λ = 1, that is
ex = 2x+ 1 . (3.2.46)

From the considerations done in Section 3.2.1 for equation (3.2.16) we obtain the thesis.

Numerical estimates give

1

π

√
3α

8
= 0.218492 . . . .
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3.2.6 Tables

From proof of Theorem 3.2.2 one has

I ≤ 4
∑
n

∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!

1

n2lα
= 4

∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
ζ(2αl)

where ζ(2lα) is the Riemann zeta function. We have the estimate

I ≤ 4
∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
+ 4

∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
[ζ(2αl)− 1]

= 4 (1− sincA) + 4
∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
[ζ(2αl)− 1]

In the following we evaluate numerically the expression

λ := 4

(
1− sin πA

πA

)
+ 4

∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
[ζ(2lα)− 1] .

Parameters α and A derive from position λn− n = A
|n|α , for α > 1

2
. From Paley-Wiener λ must

be less than 1. For a better comprehension we fix:

λ1 = 4

(
1− sin πA

πA

)
, λ2 = 4

∞∑
l=1

(−1)l+1 (πA)2l

(2l + 1)!
[ζ(2lα)− 1]

Below we try with A = 0.25 and varying α.

α A λ1 λ2 λ
0.9 0.25 0.398735 0.361336 0.760071
0.85 0.25 0.398735 0.431806 0.830541
0.8 0.25 0.398735 0.526643 0.925377
0.78 0.25 0.398735 0.574332 0.973067
0.77 0.25 0.398735 0.600889 0.999623

Notice that for λn − n = 0.25
|n|α (0.25 is just the Kadec’s bound for exponential bases), when we

have, for example, α = 0.9 (first row of previous table) the parameter λ is still far from 1,
which is the maximum value for λ in the Paley-Wiener criterion. For decreasing value of α,
when α = 0.77, λ is very close to 1. If n = ±1,±2, . . . , λn − n ≤ 0.25.

We now fix α = 2 while A is variable.
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Figure 3.6: Plot of 4
(
1− sinπA

πA

)
+ 4

∑∞
l=1(−1)l+1 (πA)2l

(2l+1)! [ζ(2lα)− 1]. Here A = 0.25, horizontal axis

is referred to α and the graphics is obtained in the range α ∈ [0.7, 1].

α A λ1 λ2 λ
2 0.25 0.398735 0.0338024 0.432537
2 0.3 0.566425 0.0486428 0.615068
2 0.35 0.758672 0.0661557 0.824828
2 0.36 0.799829 0.0699778 0.869807
2 0.38 0.884663 0.077941 0.962604
2 0.3868 0.914244 0.0807451 0.994989

At this point, we have λn − n = A
|n|2 . When A = 0.25 (first row of previous table) the

parameter λ is still far from value 1 of λ in the Paley-Wiener criterion. For increasing value of
A, when A ' 0.3868, λ is very close to 1. If n = ±1,±2, . . . , λn − n ≤ L where L seems to
be approximately 0.3868 . . . , which is greater of Kadec’s bound. We have completed here the
study announced in [11], giving a whole proof for stability of sinc bases.

3.3 An application of Sinc Bases: the Ideal DAC.

Let f(t) be a signal; we refer to the following definition of energy.

Definition 3.3.1. The energy in the signal f(t) is

Ef :=

∫ ∞
−∞
|f(t)|2dt.

The results obtained here concern a generalization of the Parseval’s identity for the sequence
of functions {sinc(t−λn)}n∈Z, where λn ∈ R. In fact, it is well-known that, for a function such
that

f(t) =
∑
n∈Z

an sinc(t− n),
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its energy is:

Ef =
∑
n∈Z

|an|2.

This is a Parseval identity for the sequence of functions {sinc(t−n)}n∈Z, and it is based on the
identity ∫

R
sinc

(
τ − λ

)
sinc

(
τ − ν

)
dτ = sinc(λ− ν). (3.3.1)

occurred for any real numbers λ and ν. But Parseval identity ceases to be true if n is substitutes
with λn ∈ R. This motivates the result of the Section, which is described in the next Theorem
and also reported in [122].

Theorem 3.3.2. Let I = {n |1 ≤ n ≤ R, R ∈ N} be a finite set of integers, and let

f(t) =
∑
n∈I

an sinc(t− λn), (3.3.2)

where the λn are real and satisfy

|λn − λm| ≥ γ >

√
1

3
+
π2

12
, ∀n,m ∈ I.

Then
Ef �

∑
n∈I

|an|2. (3.3.3)

Remark 3.3.3. Write Ef �
∑

n∈I |an|2 means that

c1

∑
n∈I

|an|2 ≤ Ef ≤ c2

∑
n∈I

|an|2

with two constants c1, c2 > 0, independent of the particular form of f(t), except for the as-

sumption |λn − λm| ≥ γ >
√

1
3

+ π2

12
, ∀n,m ∈ I.

This result applies to the so-called ideal bandlimited interpolation

f(t) =
∑
n∈Z

an sinc(t− n). (3.3.4)

It provides a perfect reconstruction for all t, if f(t) is bandlimited in fm and if the sampling
frequency fs is such that fs ≥ 2fm. The system used to implement (3.3.4), which is known as
an ideal DAC (i.e. digital-to-analog converter, see [129]), is depicted in block diagram form in
figure 3.7.

DACs are essential components for measuring instruments (such as arbitrary waveform
signal generators) and communication systems (such as transceivers). Sampling clock jitter is
the deviation of a signal’s timing event from its intended (ideal) occurrence in time, often in
relation to a reference clock source. Thus, time jitter is an important parameter for determining
the performance of digital systems. For a review how time jitter impacts the performance
of digital systems, see [157]. For digital sampling in analog-to-digital and digital-to-analog
converters, it is shown that noise power or multiplicative decorrelation noise generated by
sampling clock jitter is a major limitation on the bit resolution (effective number of bits) of
these devices, [157].
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Ideal DAC

CLOCK

ak f(t)

Figure 3.7: Representation of the ideal digital-to-analog converter (DAC) or ideal bandlimited inter-
polator. According to 3.3.4.

As it has been well argued in previous works ([9], [110]), theory dealing with major aspects
concerning DAC time base jitter, quantization noise, and nonlinearity is still incomplete; un-
expected changes and distortions of waveforms generated via DAC are occasionally supported
by simulations and barely investigated by means of experimental activities, [9] and references
therein. See also: [54], where stochastic analysis is presented in order to predict the average
switching rate; [168], where time jittering is modeled as a random variable uniformly distributed;
[6], [183], where jitter effect is assumed as a random variable normally distributed.

In [110] authors analyze the clock jitter effects on DACs, (Fig. 1 therein), considering a
DAC where a digital input is applied with a sampling clock CLK. Ideally the sampling clock
CLK operates with a sampling period of Ts for every cycle, however in reality its timing can
fluctuate (see Fig. 2 in [110]). Phase and frequency fluctuations have therefore been the subject
of numerous studies; well-known references include: [1], [61], [85], [156]. In [9], authors focus
on zero-order-hold DACs and, in particular, on how the presence of jitter that can affect their
time base modifies the desired features of the analog output waveform. They study more
deterministic jitter and develop an analytical model which is capable of describing the spectral
content of the analog signal at the output of a DAC, the time base of which suffers from
(or is modulated by) sinusoidal jitter. See also: [56], where is introduced a model capable of
describing the functioning of a real DAC affected by horizontal quantization, clock modulation,
vertical quantization and integral nonlinearity.

Theorem 3.3.2 gives one-sided energy inequality for the output signal of an ideal DAC, in
presence of sampling clock jitter. Although the energy inequality can be derived for the Fourier
transform by the system of complex exponentials [99], here we present a direct proof, based on
sinc functions and on the result showed in [132]. We denote jitter as εn, then the n-th sampling
timing of CLK is nTs + εn instead of nTs. Since we have assumed that Ts = 1, in the Section
sampling timing of CLK is n+ εn but the results for Ts 6= 1 one can obtain in an obvious way.
Hence, equation (3.3.4) becomes

f(t) =
∑
n∈Z

an sinc(t− λn) , (3.3.5)

where λn = n+ εn.
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Figure 3.8: Graphic of g(θ) = π2

4 sin2 θ − θ2(1 + cos θ) for θ ∈ [0, π/2].

Figure 3.9: Graphic of sin2 θ − θ2 cos θ for θ ∈ [0, π/2].

3.3.1 Proof of the Result

For the our purposes, we will use a well-known inequality. Hilbert’s inequality states that∣∣∣∣∣∑
n6=m

anām
n−m

∣∣∣∣∣ ≤ π
∑
n

|an|2

for any set of complex an, where the best possible constant π was found by Schur [162]. In
[132] authors obtained a precise bound for the more general bilinear forms:∑

n6=m

anam csc π(xr − xs),
∑
n 6=m

anam
λr − λs

.

In the following, ‖θ‖ denotes the distance from θ to the nearest integer, that is, ‖θ‖ = minn |θ−
n|. Moreover, min+ f will denotes the least positive value when f ranges over a finite set of
non-negative values. We now give an useful Lemma.

Lemma 3.3.4. The inequalities

csc2 πx+ | cotπx csc πx| ≤ 1

4
‖x‖−2 (3.3.6)

and

| cot πx csc πx| ≤ π−2‖x‖−2 (3.3.7)

hold for all real x.
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Proof. Let θ = πx. We notice that, for an integer n, 0 ≤ ‖x‖ = minn |x − n| ≤ 1
2

and so
0 ≤ θ ≤ π/2. For inequality (3.3.6), it is sufficient to show that g(θ) ≥ 0 in [0, π/2], where

g(θ) =
π2

4
sin2 θ − θ2(1 + cos θ).

For inequality (3.3.7) one shows that:

sin2 θ − θ2 cos θ ≥ 0

for θ ∈ [0, π/2]. See Figures 3.8 and 3.9.

Now we readapt and prove a part of Theorem 1, taken from [132].

Lemma 3.3.5. Let x1, x2, ..., xR and y1, y2, ..., yR denote real numbers which are distinct modulo
1, and suppose that

δ = min
n,m

+‖xn − ym‖, xn 6= ym ∀n,m = 1, . . . , R.

Then ∣∣∣∣∣∑
n,m

anam csc π(xn − ym)

∣∣∣∣∣ ≤ δ−1

√
1

3
+
π2

12

R∑
n=1

|an|2. (3.3.8)

where n and m are distinct.

Proof. Our proof is modelled on Montgomery and Vaughan’s proof [132] of Hilbert’s inequality.
In [132] authors proven that the bilinear form∑

n,m

anam csc π(xn − xm),

where n 6= m, is skew-Hermitian. For this proof we consider the bilinear form:∑
n,m

anam csc π(yn − ym)

for n 6= m. Let us consider ∑
n

an csc π(yn − ym) =
∑
n

an cn,m

where cn,m = csc π(yn − ym). The RHS is the product of eigenvector a = (a1, . . . , aR)t for
the mth column of matrix C := (cn,m). Since the bilinear form under consideration is skew-
Hermitian, eigenvalues of matrix C are all purely imaginary or zero, namely there exists a real
number µ such that: atCa = iµ. Hence,∑

n

an csc π(yn − ym) = iµam (3.3.9)

for m 6= n and 1 ≤ n,m ≤ R. Also, we may normalize so that
∑

n |an|2 = 1. By Cauchy’s
inequality, ∣∣∣∣∣∑

n,m

anam csc π(xn − ym)

∣∣∣∣∣
2

≤
∑
n

∣∣∣∣∣∑
m

′ām csc π(xn − ym)

∣∣∣∣∣
2
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where
∑

m
′ means that all indexes are different. Also,

∑
n

∣∣∣∣∣∑
m

′ām csc π(xn − ym)

∣∣∣∣∣
2

=

=
∑
m,p

āmap
∑
n

′ csc π(xn − ym) cscπ(xn − yp)

= S1 + S2, (3.3.10)

where
S1 =

∑
m

|am|2
∑
n

′ csc2 π(xn − ym) (3.3.11)

and
S2 =

∑
m 6=p

āmap
∑
n

′ csc π(xn − ym) cscπ(xn − yp). (3.3.12)

In S2 we may write
csc π(xn − ym) cscπ(xn − yp) =

= cscπ(xm − yp) [cotπ(xn − ym)− cotπ(xn − yp)] .
According to [132] (Proof of Theorem 1, p. 79) we use this to split S2 in the following way:
S2 = S3 − S4 + 2 ReS5, where

S3 =
∑
n,m,p

′āmap csc π(ym − yp) cot π(xn − ym), (3.3.13)

S4 =
∑
n,m,p

′āmap csc π(ym − yp) cot π(xn − yp), (3.3.14)

and
S5 =

∑
n,m

′āman csc π(xn − ym) cot π(xn − ym). (3.3.15)

We show now that S3 = S4. We see from (3.3.9) and (3.3.13) that

S3 =
∑
n,m

′ām cotπ(xn − ym)
∑
p

′ap csc π(ym − yp)

=
∑
n,m

′ām cotπ(xn − ym) (−iµam)

= −iµ
∑
n,m

′|am|2 cot π(xn − ym). (3.3.16)

Similarly, from (3.3.9) and (3.3.14),

S4 =
∑
n,p

′ap cot π(xn − yp)
∑
m

′ām csc π(ym − yp)

=
∑
n,p

′ap cot π(xn − yp) (−iµāp)

= −iµ
∑
n,p

′|ap|2 cot π(xn − yp). (3.3.17)

Therefore, S3 = S4, so that S1 + S2 = S1 + 2 ReS5 ≤ S1 + 2|S5|. We use the inequality
2|anam| ≤ |an|2 + |am|2 in (3.3.15), so that (3.3.11) and (3.3.15) give

S1 + S2 ≤
∑
m,n

′|am|2 csc2 π(xn − ym)+

71



+
∑
n,m

′ (|an|2 + |am|2
)
|csc π(xn − ym) cot π(xn − ym)|

=
∑
m,n

′|am|2
(

csc2 π(xn − ym)+

+ |csc π(xn − ym) cot π(xn − ym)|
)

+

+
∑
m,n

′|an|2 |csc π(xn − ym) cot π(xn − ym)| .

By Lemma 3.3.4 this is

≤ 1

4

∑
m

|am|2
∑
n

′‖xn − ym‖−2+

+
1

π2

∑
n

|an|2
∑
m

′‖xn − ym‖−2.

A remark similar to that conducted in [132], leads to be conclude that the xn and the ym are
spaced from each other by at least δ, so that

∑
m

′‖xn − ym‖−2 ≤ 2
∞∑
k=1

(kδ)−2 =
π2

3
δ−2.

Hence,

S1 + S2 ≤
π2

3
δ−2

(
1

π2
+

1

4

)
where we have considered

∑
n |an|2 = 1.

We now able to prove the result of the Section.

Proof of Theorem 3.3.2. Put, by hypothesis,

γ = min
n,m

+|λn − λm| >
√

1

3
+
π2

12
.

Write
∫∞
−∞ |f(t)|2dt: ∑

m,n

anām

∫ +∞

−∞
sinc(λn − t) sinc(λm − t)dt

which is equal to ∑
n

|an|2 +
∑
m,n

′anām sinc(λn − λm). (3.3.18)

Furthermore,
sin π(λn − λm)

π(λn − λm)
=

1
πλn

sinπ(λn−λm)
− πλm

sinπ(λn−λm)

=
1

xn + xm
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where xn := πλn
sinπ(λn−λm)

. Putting ym = −xm above equality is rewritten as 1
xn−ym , and

∑
m,n

′anām sinc(λn − λm) =
∑
m,n

′ anām
xn − ym

.

To prove the Theorem, we note that if x is any member of a bounded interval, then ‖εx‖ = ε|x|
whenever ε is sufficiently small. Moreover,

1

xn − ym
= lim

ε→0
πε csc πε(xn − ym)

so that we can appeal to Lemma 3.3.5:∣∣∣∣∣∑
m,n

′ anām
xn − ym

∣∣∣∣∣ = πε

∣∣∣∣∣∑
m,n

′anām csc πε(xn − ym)

∣∣∣∣∣
≤ πε δ−1

√
1

3
+
π2

12

∑
n∈I

|an|2,

where, for ε→ 0,

δ = min
n,m

+‖εxn − εym‖ = εmin
n,m

+|xn − ym|,

xn 6= ym ∀n,m = 1, . . . , R.

Since xn := πλn
sinπ(λn−λm)

, ym = −xm,

δ = εmin
n,m

+

∣∣∣∣ πλn − πλm
sin π(λn − λm)

∣∣∣∣
and since |sin π(λn − λm)| ≤ 1, we have

δ ≥ επmin
n,m

+|λn − λm| = επγ

Accordingly, ∣∣∣∣∣∑
m,n

′ anām
xn − ym

∣∣∣∣∣ = πε

∣∣∣∣∣∑
m,n

′anām csc πε(xn − ym)

∣∣∣∣∣
≤ γ−1

√
1

3
+
π2

12

∑
n∈I

|an|2.

Thus, an appeal to (3.3.18) completes the proof of the Theorem:

Ef ≥

(
1− γ−1

√
1

3
+
π2

12

)∑
n∈I

|an|2.

As one reads on [132], it follows from a paper of Hellinger and Toeplitz ([91] and [132]) that
Theorem 3.3.2 and Lemma 3.3.5 hold also for infinite sums, provided that min +f is replaced
by inf +f . It is also possible to consider bilateral series if we put λ−n = −λn for n = 1, 2, . . . .
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An estimate from above is immediate employing same steps involved used in the proof of
theorem 3.3.2. Indeed, from equation (3.3.18) and by triangle inequality:∑

n

|an|2 +
∑
m,n

′anām sinc(λn − λm) ≤

≤

(
1 + γ−1

√
1

3
+
π2

12

)∑
n

|an|2

where γ is defined as in theorem 3.3.2.

3.4 Conclusions and perspectives.

Theorem 3.1.3 and corollary 3.1.4 responding to the outstanding questions of Duffin, Eachus
and Young, essentially because this chapter shows that the constant log 2

π
can be replaced by

1/4, also for the complex case. Moreover, from corollary 3.1.4, it has {eiλ̄nt} satisfies the Paley-
Wiener criterion for |λ̄n−n| < 1/4 even when {λ̄n} is a complex sequence. Two lemmas present
in appendix (an extension to complex case of result present on [199]) prove that Kadec’s 1/4-

theorem is “best possible”: the system {eiλ̄nt} constitutes a basis for L2[−π, π] whenever every
λ̄n is complex and |λn− n| 5 L, |µn| 5 τ(L) but not constitute a basis when L = 1/4. Equally
interesting is the fact that τ(L) is not specified in the proofs of lemmas 3.1.1 and 3.1.2 and,
into this proofs, it is not necessary that it assumes the logarithmic expression (3.1.3).

In Duffin and Eachus [63] one reads: “It is a curious parallelism that log 2/π and 1/4 are
in the same ratio as the limits of Takenaka and Schoenberg in a somewhat similar unsolved
problem”. See: [192], [182]. In [192] is reported a particular case of one of Takenaka’s the-
orems [182]: “If every derivative of an integral function f(z) has a zero inside or on the unit

circle and if lim supr→∞
logM(r)

r
< log 2 then f(z) is a costant”. (M(r) is the maximum modulus

in |z| ≤ r of function). The author write that this condition is probably not “best possible”:
sin π

4
z − cos π

4
z shows that log 2 cannot be replaced by any number larger than π/4, and this

may well be the true value. A possible development of the topics covered in this chapter would
be compare proof of Kadec’s-1/4 theorem (complex case) with question in [192].

Let us consider Section 3.2. As mentioned, Kadec’s theorem states that if {λn} is a sequence
of real numbers for which |λn − n| ≤ L < 1

4
for n ∈ Z, then {eiλnx} forms a Riesz basis for

L2(−π, π). For the multivariate case, many authors have wondered about similar question.
Let n = (n1, ..., nd) ∈ Zd, λn = (λ1, ..., λnd) ∈ Rd. The aim is to find a constant θd such that
{ei〈λn,ω〉 : n ∈ Zd} is a Riesz basis for L2(−π, π)d whenever supn∈Zd ||λn − n||∞ computed as

supn∈Zdsup1≤k≤d|λnk
− nk| < θd

We call θd a stability bound. Many author have approached this problem. Favier and Zalik [71],
C. Chui, and X. Shi [50] presented a multivariate version of Kadec’s theorem. But their result
contains an additional condition Bd(L) < 1 and lead to very small stability bounds. Later
works, as [179] and [180], show that additional conditions may be deleted, giving an optimal
stability bound for the multivariate trigonometric systems.

A possible development of our work could transport these arguments on sinc bases, studying
a multivariate version of Theorem 3.2.1.
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Another area of research may be the one of the frame. Especially Gabor frame. Let {fk}k
a sequence that generates a Hilbert space H. It is known that this sequence is a Riesz basis
for H if and only if there exist positive constants A and B such that for any finite sequence of
numbers c1, ..., cn it has

A

n∑
k=1

|ck|2 ≤ ||
n∑
k=1

ckfk|| ≤ B
n∑
k=1

|ck|2

The notion of frame is a generalization of Riesz basis in a Hilbert space. Let H be a Hilbert
space, and let {fk}k a sequence of H.

We say that this family is a frame for H if there are constants A > 0, B > 0 such that for
each f ∈ H it has

A||f ||2 ≤
n∑
k=1

|〈f, fk〉|2 ≤ B||f ||2

A frame that ceases to be a frame when any one of its elements is removed is said to be an
exact frame. We now recall, from [182], a fundamental theorem involving Riesz bases.

Theorem 3.4.1. Each sequence of vectors belonging to a separable Hilbert space, is a basis of
Riesz if and only if it is a exact frame.

Furthermore, see: [5], for investigate further aspects of the frame; [22], for understand the
crucial role of frames in nonuniform sampling, and [150] for understand the process of signal
reconstruction via frames.

Let us consider a, b ∈ R, we indicate with Ta the time-shift operator and with Mb the
frequency-shift operator, such that

Taf(x) = f(x− a), Mbf(x) = e2πibxf(x)

Given a function g ∈ L2(R) and real parameters α, β > 0, the collection

G(g, α, β) = {Tα,kMβ,ng : k, n ∈ Z}

is called a Gabor system. That is, (g, α, β) generates a Gabor frame for L2(R) if

{Tα,kMβ,ng : k, n ∈ Z}

is a frame for L2(R). This means that there are constants A > 0, B > 0 such that

A||f ||2 ≤
∑
n

∑
k

|〈f, Tα,kMβ,ng〉|2 ≤ B||f ||2

For the related conditions between Kadec’s theorem and the stability of Gabor frames see, for
example, [180]. Accordingly, a possible progress in our work, it might be to look for a link
between theorem 3.2.1 and some properties of Gabor frames, as the stability property.

A family of complex exponentials {einx}n∈Z is called a Fourier frame [141], if it constitutes
a frame for L2(−π, π) or, explicitly, if there exist 0 < A ≤ B <∞ such that ∀f ∈ L2(−π, π):

A

∫ π

−π
|f(x)|2dx ≤

∑
n∈Z

∣∣∣∣∣
∫ π

−π
f(x)e−iλnxdx

∣∣∣∣∣
2
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and ∑
n∈Z

∣∣∣∣∣
∫ π

−π
f(x)e−iλnxdx

∣∣∣∣∣
2

≤ B

∫ π

−π
|f(x)|2dx

[15] and [49] gave the stability bounds of Fourier frames. After defining in a suitable way
the concept of “sinc-frame” - a transposition of the definition of Fourier frame to sinc basis -
another aspect of future work, would be to get the results of Balan and Christensen for these
sinc-frames.
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Chapter 4

The class of Lucas-Lehmer polynomials
and its applications.

In this Chapter we study a particular class of orthogonal polynomials, the class of Lucas-Lehmer
polynomials. The subject of orthogonal polynomials finds its origins in the XVIIIth century,
thanks to the works of Legendre, Laplace and Lagrange. The history of orthogonal polynomials
probably originated from the Legendre polynomials, firstly employed in the determination of
the force of attraction exerted by solids of revolution [104]; their orthogonal properties were
established by A. M. Legendre during last years of XVIIIth century. They can be viewed as
solutions of Legendre’s differential equation,

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0.

These polynomials, usually denoted P0, P1, . . . , may be defined by Rodrigues formula,

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

C. Hermite, in the XIXth century, introduced the class of Hermite polynomials, which an-
swered to the problem of obtaining expansions of unknown functions in order to solve ordinary
differential equations [104]. There are two different kinds of Hermite polynomials:

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 =

(
x− d

dx

)n
· 1,

used more commonly in probability, and

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

=

(
2x− d

dx

)n
· 1,

used more commonly in physics. Each of these two definitions is a rescaling of the other.

Almost in the same period E. Laguerre, working on the relations between polynomials and
continued fraction [21], discovered polynomials known today as Laguerre polynomials. They
are solutions of a second-order linear differential equation, the Laguerre equation:

xy′′ + (1− x)y′ + ny = 0.
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Each Legendre polynomial Ln(x) is an nth-degree polynomial. It may be expressed using
Rodrigues formula:

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
=

1

n!

(
d

dx
− 1

)n
xn.

Starting from 1807 J. Fourier introduced some series of exponentially weighted sine functions
for the purpose of solving the heat equation in a metal plate [73], extending subsequently the
initial idea to represent any arbitrary function as an infinite sum of sine and cosine functions
[74]. He refers to them also with the term of trigonometric polynomials. The Chebyshev
polynomials [18, 79, 161] are related to Fourier cosine series through a change of variables.
The class of Chebyshev polynomials assumes here a fundamental role. In Section 4.1, from
[186], we introduce a new sequence of polynomials, which follows the same recursive rule of the
well-known Lucas-Lehmer integer sequence. We show the most important properties of this
sequence, relating them to the Chebyshev polynomials of the first and second kind.

Section 4.2 is devoted to reinvestigate the structure of the solution of a well-known Love’s
problem, related to the electrostatic field generated by two circular co-axial conducting disks,
in terms of orthogonal polynomial expansions, enlightening the role of the recently introduced
class of the Lucas-Lehmer polynomials [189]. Love’s integral equation is a Fredholm equation
of the second kind. An equation of this kind has the form

f(x) = φ(x) + λ

∫ b

a

K(x, s)f(s) ds.

Given the kernel K(x, s), and the function φ(x), the problem consists typically in finding the
function f(x). We can find a Chebyshev-series solution writing

f(x) =
∞∑
n=0

anTn(x), where Tn(x) are the Chebyshev polynomials.

Moreover we show that the solution can be expanded more conveniently with respect to a Riesz
basis obtained starting from Chebyshev polynomials.

In Section 4.3 we discuss some relations between zeros of Lucas-Lehmer polynomials and
Gray code. Gray codes have a very long history; see, for instance, [89] on the origin of binary
codes and [77] on some entertaining aspects of Gray codes. A Gray code represents each number
in the sequence of integers {0...2N − 1} as a binary string of length N in an order such that
adjacent integers have Gray code representations that differ in only one bit position. Marching
through the integer sequence therefore requires flipping just one bit at a time. For example,
the usual binary coding of {0, . . . , 7} is {000, 001, 010, 011, 100, 101, 110, 111}, while its Gray
coding is {000, 001, 011, 010, 110, 111, 101, 100}.

We apply this binary law to the study of nested square roots of 2 expressed by (4.1.2),
associating bits 0 and 1 to ⊕ and 	 signs in the nested form. This gives the possibility
to obtain an ordering for the zeros of Lucas-Lehmer polynomials, which assume the form of
nested square roots of 2 expressed by (4.1.2). This is the cornerstone of the results shown in
Section 4.4, where we obtain π as the limit of a sequence related to the zeros of the class of
polynomials Ln(x). The results obtained here are based on the placement of the zeros of the
polynomials Ln(x). Since zeros have a structure of nested radicals, in this way we can build
infinite sequences of nested radicals converging to π.
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4.1 The class of Lucas-Lehmer polynomials

In this Section we study a class of polynomials Ln(x) = L2
n−1(x)− 2, which, at the best of our

knowledge, were introduced for the first time in [186], created by means of the same iterative
formula used to build the well-known Lucas-Lehmer sequence, employed in primality tests
[125, 118, 160, 35, 106]. It is clearly crucial to choose the first term of the polynomial sequence.
In this chapter we consider L0 = x.

We show some properties of these polynomials, in particular discussing the link among
the Lucas-Lehmer polynomials and the Chebyshev polynomials of the first and second kind
[18, 79, 161]. The Chebyshev polynomials are well-known and, although they have been known
and studied for a long time, continue to play an important role in recent advances in many
areas of mathematics such as Algebra, Numerical Analysis, Differential Equations and Number
Theory (see, for instance: [12, 20, 28, 40, 59, 84, 131, 181, 198, 24]) and new other properties
of theirs continue to be discovered ([20, 40, 57, 62]).

In particular, in the spirit of some existing results on the Chebyshev polynomials and the
nested square roots (see, for example, [134, 196]), we show that the zeros of the Lucas-Lehmer
polynomials can be written in terms of nested radicals.

There are many classes of polynomials which are related to the Chebyshev polynomials,
such as [28, 58, 95, 96, 195]. In the spirit of some of these works - if Ln(x), Tn(x), Un(x) denote
(respectively) the nth Lucas-Lehmer polynomials, the Chebyshev polynomials of the first and
second kind - we can consider the polynomials Ln as a generalization of the so-called modified
or shifted Chebyshev polynomials, by introducing an appropriate change of variable t = f(x).

We will now outline the content of this chapter. In Sections 4.1.1 and 4.1.2 we introduce the
Lucas-Lehmer polynomials and show their main properties. Furthermore, we give a recursive
formula for the sequence of the first nonnegative zeros of Ln(x), in terms of nested radicals. In
Section 4.1.3 we show some relations among the Lucas - Lehmer polynomials Ln(x) and the
Chebyshev polynomials of the first and second kind, determining several new properties for the
former.

In Section 4.1.4 we show some generalizations of the Lucas-Lehmer map, having the same
properties of Ln.

4.1.1 First iterations of the Lucas-Lehmer map.

Let us consider the iterative map

Ln(x) = Ln−1(x)2 − 2 ; L0(x) = x . (4.1.1)

Assuming L0 = x as the initial value, let us construct the first terms of the sequence. The
function L1(x) = x2 − 2 represents a parabola with two zeros z1,2 = ±

√
2 and one minimum

point in (0,−2); L2(x) = (x2−2)2−2 = 2
(

1− 2x2 + x4

2

)
, shown in Fig. 4.1, contains four zeros:
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Figure 4.1: comparison between L2(x) and 2 cos(2x).

Figure 4.2: comparison between L3(x) and 2 cos(4x).

z1÷4 = ±
√

2±
√

2. From the derivative of L2(x), L′2(x) = 4x ·(x2−2) = 4x ·L1(x) it is possible
to determine the critical points of the function: x1 = 0 (maximum), x2,3 = ±

√
2 (minimum).

Since L2(x) = 2
(

1− 2x2 + x4

2

)
= 2 cos(2x) + o(x3), for x→ 0 we have L2(x) ∼ 2 cos(2x).

The zeros of the function L3(x) = ((x2 − 2)2 − 2)2 − 2 = 2 (1− 8x2 + o(x3)), whose graph

is shown in Fig. 4.2, are eight: z1÷8 = ±
√

2±
√

2±
√

2. The critical points are: x1 = 0,

x2,3 = ±
√

2, x4,5,6,7 = ±
√

2±
√

2. Besides L3(x) ∼ 2 cos(4x) for x → 0. The zeros of
the function L4(x) = (((x2 − 2)2 − 2)2 − 2)2 − 2 (shown in Fig. 4.3) are sixteen: z1÷16 =

Figure 4.3: comparison between L4(x) and 2 cos(8x).
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±

√
2±

√
2±

√
2±
√

2. The critical points follow the same general rule which is possible to

guess observing the previous iterations; moreover it results again L4(x) ∼ 2 cos(8x) for x→ 0.
It must be noted that: L1(±

√
2) = 0, L2(±

√
2) = −2, Ln(±

√
2) = 2 ∀n ≥ 3; L0(0) = 0,

L1(0) = −2, Ln(0) = 2 ∀n ≥ 2; L0(−2) = −2, Ln(−2) = 2 ∀n ≥ 1; Ln(2) = 2 ∀n ≥ 0.

Let us observe that the numerical sequence Ln(
√

6) corresponds to the sequence of Lucas-
Lehmer numbers (OEIS, On-Line Encyclopedia of Integer Sequences, http://oeis.org/A003010)
used, as we said before, in the Lucas-Lehmer primality test [106, 160, 35].

4.1.2 Zeros and critical points.

Taking into account the considerations of the previous section, we can in general state the
following proposition (whose proof is quite simple and is omitted for brevity)

Proposition 4.1.1. At each iteration the zeros of the map Ln(n ≥ 1) have the form

±

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.1.2)

How can we order these zeros? Considering only positive zeros (being every Ln a symmetric
function), the first sign on the left inside the root must be negative. Let us set

√
2±√x2 =:

√
x1

and
√

2±√y2 =:
√
y1 be two generic roots chosen from those expressed in (4.1.2). We wonder

when
√
x1 >

√
y1. Then we have several options.

opt1 If x1 = 2 +
√
x2, y1 = 2 +

√
y2 we have that:

√
x1 >

√
y1 ↔ 2 +

√
x2 > 2 +

√
y2 whence

x2 > y2, that is the examination moves to the next step (and we apply again opt1,2,3,4).

opt2 If x1 = 2−√x2, y1 = 2 +
√
y2 we have that:

√
x1 >

√
y1 ↔ 2−√x2 > 2 +

√
y2, that is

impossible, so we have
√
x1 <

√
y1.

opt3 If x1 = 2 +
√
x2, y1 = 2−√y2 we have that:

√
x1 >

√
y1 ↔ 2 +

√
x2 > 2−√y2, always

satisfied and we have
√
x1 >

√
y1.

opt4 If x1 = 2−√x2, y1 = 2−√y2 we have that:
√
x1 >

√
y1 ↔ 2−√x2 > 2−√y2, whence

x2 < y2 then we have to check the following step (we apply again opt1,2,3,4).

We show now what we argued in the previous steps.

Theorem 4.1.2. For n ≥ 2 we have

Ln(x) = 2 cos(2n−1x) + o(x3) (4.1.3)

Proof. Taking into consideration the McLaurin expansion of the cosine, to prove formula (4.1.3)
is equivalent to show that

Ln(x) = 2− 22n−2x2 + o(x3) = 2− 4n−1x2 + o(x3) . (4.1.4)
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Let us proceed by means of induction principle. For n = 2 we have L2(x) = (x2−2)2−2 =x4−
4x2 + 2 = 2 − 4x2 + o(x3). Consider then the McLaurin polynomial of the second order of
2 cos(2x): it is 4

3
x4− 4x2 + 2, which proves the relation for n = 2. Suppose now as true formula

(4.1.3) for a generic index n and proceed to check the case n+ 1:

Ln+1 = L2
n − 2 = [2− 4n−1x2 + o(x3)]2 − 2 =

= 2− 4nx2 + o(x2) (4.1.5)

It is also known that the McLaurin polynomial of 2 cos(2nx) is 2−22n ·x2+R3. We can therefore
conclude that 2 cos(2n−1x) and Ln(x) have the same coefficients up to the second order, which
concludes the proof.

We are interested in determining the distribution of minima and maxima for each Ln. To
this aim, now we are going to show an important property of the polynomials Ln.

Lemma 4.1.3. For each n ≥ 2 we have

d

dx
Ln(x) = 2n x

n−1∏
i=1

Li(x) (4.1.6)

Proof. Let us proceed by induction. If n = 2

d

dx
L2(x) =

d

dx
[(x2 − 2)2 − 2] = 4x(x2 − 2) = 4x L1(x) (4.1.7)

Now we are going to check it for n+ 1. For the function (4.1.1)

d

dx
Ln+1(x) =

d

dx
[L2

n(x)] = 2Ln(x)
d

dx
Ln(x) (4.1.8)

Replacing it with (4.1.6) we will have at the end:

d

dx
Ln+1(x) = 2Ln(x) ·

[
2n x

n−1∏
i=1

Li(x)

]
= 2n+1 x

n∏
i=1

Li(x) (4.1.9)

Let Mn be the set of the critical points and be Zn the set of the zeros of Ln(x); we obtain
the following results.

Proposition 4.1.4. For each n ≥ 2 we have

Mn = Mn−1 ∪ Zn−1 = M1 ∪
n−1⋃
i=1

Zi (4.1.10)

with card(Zn) = 2n.
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Proof. Let us first find the critical points of Ln(x), imposing d
dx
Ln(x) = 0, from which it results

2Ln−1(x)
d

dx
Ln−1(x) = 0 (4.1.11)

which vanishes either if Ln−1(x) = 0 (finding the points of Zn−1) or if d
dx
Ln−1(x) = 0 (deter-

mining the points of Mn−1). Therefore it is proved that Mn = Mn−1 ∪ Zn−1. To prove the
second equality, it is sufficient to observe that the right hand side of (4.1.6) vanishes either if

x = 0 or if Li(x) = 0 for some i = 1, ..., n− 1; thus we obtain the set
n−1⋃
i=1

Zi, which proves the

statement.

Proposition 4.1.5. For each n ∈ N we have card(Mn) = 2n − 1. Furthermore, let M+
n be the

set of the positive critical points of Ln(x); we have that card(M+
n ) = 2n−1 − 1.

Proof. We must show that card(Mn) = 2n − 1; proceeding by induction: if n = 1, then
L1(x) = x2 − 2 is a parabola having only a minimum, at the point (0,−2). Now we are going
to check it for n + 1, having assumed it true for a generic n ≥ 2. From proposition 4.1.4, we
have, for n > 1:

Mn+1 = Mn ∪ Zn ⇒ card(Mn+1) = card(Mn) + card(Zn) (4.1.12)

(the intersection between Mn and Zn being empty). From proposition 4.1.4, we have that
card(Zn) = 2n; besides, by hypothesis, we know that card(Mn) = 2n − 1. Then card(Mn+1) =
2n − 1 + 2n = 2n+1 − 1. Furthermore, if we don’t consider the maximum in the origin, we will
have 2n − 2 critical points, half of which are positive. Therefore card(M+

n ) = 2n−1 − 1,

Proposition 4.1.3 is very useful because allows us to obtain some interesting properties
for the critical points of Ln(x). We already observed that, for every n ≥ 2, if x = 0, then

((0− 2)2...)
2 − 2 = 2 and the point is a maximum. Moreover, for every natural number j such

that 1 < j < n − 1 we have that the points x0 such that Lj(x0) = 0 are maximum points for

Ln. Indeed

...( Lj︸︷︷︸
=0

−2)2...

2

− 2 = 2. Instead, the points x such that Ln−1(x) = 0, being

Ln(x) = L2
n−1(x)︸ ︷︷ ︸

=0

−2 = −2, are minimum points for Ln. Now, from proposition (4.1.3) there

aren’t other critical points; thus we have shown that the set of maximum points of Ln(x) is:
n−2⋃
i=1

Zi ∪ {x = 0}, while the set of minimum points of Ln(x) is Zn−1.

Remark 4.1.6. Minimum points for Ln(x) become maximum points for Ln+1(x), maximum
points for Ln(x) remain maximum points for Ln+1(x). This implies that all the local maxima
of every Ln are equal to 2.

Corollary 4.1.7. All zeros and critical points of Ln belong to the interval (−2, 2) 1.

1Because of the symmetry of Lucas-Lehmer polynomials, we will study only positive zeros.
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4.1.3 Relationships between Lucas-Lehmer polynomials and Chebyshev polyno-
mials of the first and second kind, and additional properties.

As we know [161, 18, 79], the Chebyshev polynomials of the first kind satisfy the recurrence
relation {

Tn(x) = 2xTn−1(x)− Tn−2(x) n ≥ 2

T0(x) = 1, T1(x) = x

from which it easily follows that for the n-th term:

Tn(x) =

(
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n
2

(4.1.13)

This formula is valid in R for |x| ≥ 1; here we assume instead that Tn, defined in R, can
take complex values, too.

Proposition 4.1.8. For each n ≥ 1 we have

Ln(x) = 2 T2n−1

(
x2

2
− 1

)
(4.1.14)

Proof. We must show that

Ln(x) =

x2

2
− 1−

√(
x2

2
− 1

)2

− 1

2n−1

+

+

x2

2
− 1 +

√(
x2

2
− 1

)2

− 1

2n−1

(4.1.15)

This formula is real for |x| ≥ 2 and complex for |x| < 2 and is true for n = 1:

L1(x) = x2 − 2 =

x2

2
− 1−

√(
x2

2
− 1

)2

− 1

+

x2

2
− 1 +

√(
x2

2
− 1

)2

− 1

 . (4.1.16)

We assume true (4.1.14) for a natural n and write:

Ln+1(t(x)) = L2
n(t(x))− 2 =

=
(
t−
√
t2 − 1

)2n

+
(
t+
√
t2 − 1

)2n

+

+ 2
[(
t−
√
t2 − 1

) (
t+
√
t2 − 1

)]2n−1

− 2 (4.1.17)

where t(x) =
x2

2
− 1. Observing that

(
t−
√
t2 − 1

) (
t+
√
t2 − 1

)
= 1, we lastly obtain

Ln+1(t(x)) =
(
t−
√
t2 − 1

)2n

+
(
t+
√
t2 − 1

)2n

(4.1.18)
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which concludes the proof.

It is observed that the (4.1.18) is true for a generic function t(x). If n = 1, instead, the only

function that satisfies the (4.1.18) is t(x) =
x2

2
− 1.

Proposition 4.1.9. The polynomials Ln(x) are orthogonal with respect to the weight function
1

4
√

4−x2 defined on x ∈ (−2, 2).

Proof. Let us consider Chebyshev polynomials of the first kind; then:∫ 1

−1

(1− x2)−1/2Tn(x)Tm(x)dx = 0

if m 6= n and m,n ∈ N. Using this relationship, we must prove that:

1

4

∫ 2

−2

1√
4− x2

Ln(x)Lm(x)dx = 0 m 6= n (4.1.19)

or, by (4.1.14):

2

∫ 2

−2

1√
4− x2

T2n−1

(
x2

2
− 1

)
T2m−1

(
x2

2
− 1

)
dx (4.1.20)

for m 6= n and m,n ∈ N. From symmetry of the integrand function, putting t = x2

2
− 1 and

solving the integral we obtain the thesis.

Corollary 4.1.10. Let x = 2 cos θ; then the polynomials Ln(x) admit the representation

Ln(2 cos θ) = 2 cos (2nθ) . (4.1.21)

Proof. Note that, in this case, |x| ≤ 2. Therefore we need to work with radicals of negative
numbers. Substituting x = 2 cos θ in (4.1.15) we have:

Ln(2 cos θ) = (cos 2θ − ı sin 2θ)2n−1

+ (cos 2θ + ı sin 2θ)2n−1

which can be rewritten by applying Euler’s identity :(
e−ı2θ

)2n−1

+
(
e+ı2θ

)2n−1

= 2 cos (2nθ)

We resume approximation (4.1.3) of Ln(x) to prove that locally and for |x0| ≤ 2 the function
Ln(x) behaves like a cosine, while globally, in [−2, 2], it oscillates with shorter and shorter
periods in the neighborhoods of the endpoints, by means of the following theorem.

Theorem 4.1.11. Let x0 a generic maximum point of Ln(x). For n ≥ 2 we have

Ln(x) = 2 cos(2n−1k(x− x0)) + o((x− x0)2) (4.1.22)

where k is such that |k| ≥ 1 and is increasing with x0, for fixed n.
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Proof. For n = 2 it is sufficient recall Theorem 4.1.2. In this case k = 1. Let us now suppose
the claim to be true for some natural n and proceed by induction for n+ 1:

Ln+1(x) =L2
n(x)− 2 = [2 cos(2n−1k(x− x0)) + o((x− x0)2)]2 − 2 =

= 4 cos2[2n−1k(x− x0)] + o[(x− x0)4]+

+ 4 cos[2n−1k(x− x0)] o[(x− x0)2]− 2 (4.1.23)

from which, by means of well known trigonometric formulas, we arrive to Ln+1(x) = L2
n − 2 =

2 cos(2nk(x− x0)) + o((x− x0)2) if x→ x0. From Remark (4.1.6), the point x0 is a maximum
point for Ln(x) and Ln+1(x). Now we aim to prove that |k| ≥ 1. The second order Taylor
expansion of the right hand side of (4.1.22), centered in x0, is

2− 22(n−1)k2(x− x0)2 + o((x− x0)2) (4.1.24)

For what concerns the left hand side of (4.1.22), we observe that Ln(x0) = 2, being x0 a
maximum point. Let us observe that equation (4.1.15)

Ln(x) =

(
x2

2
− 1 +

√(x2

2
− 1
)2

− 1

)2n−1

+

+

(
x2

2
− 1−

√(x2

2
− 1
)2

− 1

)2n−1

= L+
n (x) + L−n (x) (4.1.25)

must be understood with values in the complex field, because, due to√
2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n

= 2 cos
( π

2n+1

)
< 2 ,

all the critical points have absolute value less or equal to 2. Then the derivative of Ln(x) is

L′n(x) =
d

dx

(
L+
n (x) + L−n (x)

)
(4.1.26)

with
d

dx
L+
n (x) = 2n−1 x L+

n (x)√(
x2

2
− 1
)2 − 1

and
d

dx
L−n (x) = −2n−1 x L−n (x)√(

x2

2
− 1
)2 − 1

whence

L′n(x) = 2n−1 x√(
x2

2
− 1
)2 − 1

[
L+
n (x)− L−n (x)

]
=

2n√
x2 − 4

[
L+
n (x)− L−n (x)

]
(4.1.27)

which must vanish when calculated in x = x0, maximum point. For the sake of simplicity, let
us consider only x > 0. The second order derivative is

L′′n(x) =
2n
{

(x2 − 4)
[
d
dx
L+
n (x)− d

dx
L−n (x)

]
− x (L+

n (x)− L−n (x))
}

(x2 − 4)
√
x2 − 4

(4.1.28)
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which can be rewritten as

L′′n(x) = 2n

[
d
dx

(L+
n (x)− L−n (x))
√
x2 − 4

− xL′n(x)

2n(x2 − 4)

]
=

= 2n
[

2n (L+
n (x) + L−n (x))

(
√
x2 − 4)2

− xL′n(x)

2n(x2 − 4)

]
. (4.1.29)

We calculate it in x = x0:

L′′n(x0) = 2n
[

2nLn(x0)

x2
0 − 4

− x0L
′
n(x0)

2n(x2
0 − 4)

]
=

22nLn(x0)

x2
0 − 4

=
22n+1

x2
0 − 4

(4.1.30)

since L′n(x0) = 0 and Ln(x0) = 2. Thus we have the Taylor expansion

Ln(x) = 2 +
22n

x2
0 − 4

(x− x0)2 + o((x− x0)2) . (4.1.31)

Equating it to (4.1.24) gives

22n

x2
0 − 4

= −22(n−1)k2 ⇒ 4

4− x2
0

= k2 ⇒ k = ± 1√
1− x2

0/4
(4.1.32)

It is easy to verify that k is such that |k| ≥ 1 and increasing with x0 > 0.

As those of the first kind, the Chebyshev polynomial of the second kind are defined by a
recurrence relation [161, 18, 79]:{

Un(x) = 2xUn−1(x)− Un−2(x) n ≥ 2

U0(x) = 1, U1(x) = 2x

which is satisfied by

Un(x) =
n∑
k=0

(x+
√
x2 − 1)k(x−

√
x2 − 1)n−k ∀x ∈ [−1, 1] . (4.1.33)

This relation is equivalent to

Un(x) =

(
x+
√
x2 − 1

)n+1 −
(
x−
√
x2 − 1

)n+1

2
√
x2 − 1

(4.1.34)

where the radicals assume real values for each x ∈ (−1, 1). From continuity of function (4.1.33),
we observe that (4.1.34) can be extended by continuity in x = ±1, too. It can therefore be put
Un(±1) = (±1)n(n+ 1) in (4.1.34).

Proposition 4.1.12. For each n ≥ 1 we have

n∏
i=1

Li(x) = U2n−1

(
x2

2
− 1

)
(4.1.35)
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Proof. Also in this case, the formulas are defined on complex numbers. By (4.1.34) we must
demonstrate that:

n∏
i=1

Li(x) =

(
x2

2
− 1 +

√(
x2

2
− 1
)2 − 1

)2n

2

√(
x2

2
− 1
)2 − 1

−

+

(
x2

2
− 1−

√(
x2

2
− 1
)2 − 1

)2n

2

√(
x2

2
− 1
)2 − 1

. (4.1.36)

We proceed by induction on n. First of all, let us observe that when n = 1 we have

L1(x) = x2 − 2 = U1

(
x2

2
− 1
)

.

For the inductive step, let n > 1 be an integer, and assume that the proposition holds for
n; by multiplying both sides of (4.1.35) by Ln+1(x) we obtain:

n+1∏
i=1

Li(x) = U2n−1

(
x2

2
− 1

)
Ln+1(x) (4.1.37)

Thus, the proposition holds for n+ 1 if

U2n+1−1

(
x2

2
− 1

)
= U2n−1

(
x2

2
− 1

)
Ln+1(x) (4.1.38)

Let’s focus on the right hand side, setting t =
x2

2
− 1:

=
2n−1∑
k=0

(t+
√
t2 − 1)k+2n(t−

√
t2 − 1)2n−1−k

︸ ︷︷ ︸
B

+

+
2n−1∑
k=0

(t+
√
t2 − 1)k(t−

√
t2 − 1)2n+1−1−k

︸ ︷︷ ︸
A

(4.1.39)

where

A =
2n+1−1∑
k=0

(t+
√
t2 − 1)k(t−

√
t2 − 1)2n+1−1−k+

−
2n+1−1∑
k=2n

(t+
√
t2 − 1)k(t−

√
t2 − 1)2n+1−1−k

B =
2n−1∑
k=0

(t+
√
t2 − 1)k+2n(t−

√
t2 − 1)2n−1−k

=
2n+1−1∑
j=2n

(t+
√
t2 − 1)j(t−

√
t2 − 1)2n+1−1−j (4.1.40)

therefore A+B is just equal to U2n+1−1 (t), and this completes the proof.
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After having calculated Ln(2 cos θ) in (4.1.21), now let us calculate U2n−1(x2/2 − 1) for
x = 2 cos θ by (4.1.36).

n∏
i=1

Li(2 cos θ) =
(cos 2θ + ı sin 2θ)2n − (cos 2θ − ı sin 2θ)2n

2ı sin 2θ

from which and Euler identity, we get

n∏
i=1

Li(2 cos θ) =

(
e+ı2θ

)2n −
(
e−ı2θ

)2n

2ı sin 2θ
=

sin (2n+1θ)

sin 2θ
. (4.1.41)

For |x| ≤ 2 we can show another formula for Ln. Let us come back to (4.1.15):

Ln(x) =

x2

2
− 1−

√(
x2

2
− 1

)2

− 1

2n−1

+

+

x2

2
− 1 +

√(
x2

2
− 1

)2

− 1

2n−1

(4.1.42)

In this case |x| ≤ 2; we change the sign inside the radical, factorizing out the imaginary
unit:

Ln(x) =

x2

2
− 1− ı

√
1−

(
x2

2
− 1

)2
2n−1

+

+

x2

2
− 1 + ı

√
1−

(
x2

2
− 1

)2
2n−1

(4.1.43)

We then calculate the powers of two complex conjugate numbers L+
n and L−n , depending on

the variable x. With the notation introduced in (4.1.25), the absolute value of both complex
numbers is unitary, since

|L+
n | = |L−n | =

√(
x2

2
− 1

)2

+ 1−
(
x2

2
− 1

)2

= 1 . (4.1.44)

Moreover, since L1(±
√

2) = 0 ; L2(±
√

2) = −2 ; Ln(±
√

2) = 2 ∀n ≥ 3 , then the
argument of Ln(±

√
2) is 0 for every n ≥ 3. In the other cases, since, when |x| ≤ 2, we can

write x = 2 cos(ϑ), thus
x2

2
− 1 = cos(2ϑ); thus for |x| 6=

√
2 we can also put

ϑ(x) =
1

2
arctan


√

1−
(
x2

2
− 1
)2

x2

2
− 1

+ bπ (4.1.45)

where b is a binary digit; thus, using (4.1.21), we obtain Ln(x) = 2 cos (2nϑ(x)).
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By setting further

θ(x) =
1

2
arctan


√

1−
(
x2

2
− 1
)2

x2

2
− 1

 (4.1.46)

we can write:
Ln(x) = 2 cos (2nθ(x) + 2nbπ) = 2 cos (2nθ(x)) . (4.1.47)

On the other hand, for very large |x|, considering the iterative structure of the map Ln, we

deduce immediately the asymptotic formula Ln(x) ∼ (x2 − 2)2n−1
.

4.1.4 Ma
n = 2a

(
Ma

n−1

)2 − 1
a

map.

The considerations made in the previous sections on the map Ln can be extended to an entire

class of maps, obtained through the iterated formula Ma
n = 2a

(
Ma

n−1

)2 − 1
a
, a > 0, with

Ma
0 (x) = x. It follows that

Ma
0 (x) = x ; Ma

1 (x) = 2ax2 − 1

a
; Ma

2 (x) = 8a3x4 − 8ax2 +
1

a
... (4.1.48)

Note that the map Ln is a particular case of Ma
n , obtained by setting a = 1/2. We briefly

show that the map Ma
n satisfies similar properties as those proven for Ln.

Proposition 4.1.13. For n ≥ 2 we have

Ma
n(x) =

1

a
· cos(a 2nx) + o(x2) (4.1.49)

Proof. We must show that:

Ma
n(x) =

1

a
− a22n−1x2 + o(x2) (4.1.50)

where we take into account the McLaurin polynomial of cosine. We proceed by induction. For
n = 2:

Ma
2 (x) = 2a

(
2ax2 − 1

a

)2

− 1

a
=

1

a
− 8ax2 + o(x2) (4.1.51)

Let us consider the second order McLaurin polynomial of 1
a
·cos(4ax): it is just 1

a
−8ax2 +o(x2),

thus verifying the relation for n = 2. Let us now assume (4.4.33) is true for a generic n, and
deduce that it is also true for n+ 1:

Ma
n+1 = 2a (Ma

n)2 − 1

a
= 2a

[
1

a
− a22n−1x2 + o(x2)

]2

− 1

a
=

=
1

a
− a22n+1x2 + o(x2) (4.1.52)

which is in fact the McLaurin polynomial of 1
a
· cos(a 2n+1x).
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Proposition 4.1.14. At each iteration the zeros of the map Ma
n(n ≥ 1) have the form

± 1

2a
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.1.53)

Proof. It is obvious that at n = 1 this statement is valid. Now assume that the (4.4.37) is valid
for n. We have to prove that it is valid for n+ 1:

x2 =
1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.1.54)

and placing under the radical sign

x = ±

√√√√√ 1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.1.55)

the thesis is obtained.

Proposition 4.1.15. For each n ≥ 1 we have

Ma
n(x) =

1

a
T2n−1

(
2a2x2 − 1

)
(4.1.56)

Proof. We must show that

Ma
n(x) =

(
2a2x2 − 1−

√
(2a2x2 − 1)2 − 1

)2n−1

2a
+

+

(
2a2x2 − 1 +

√
(2a2x2 − 1)2 − 1

)2n−1

2a
(4.1.57)

This is verified for n = 1:

Ma
1 (t(x)) =

t+
√
t2 − 1 + t−

√
t2 − 1

2a
=

2t

2a
= 2ax2 − 1

a
(4.1.58)

where t = 2a2x2 − 1. By assumption, we suppose (4.1.56) true for n and by Ma
n+1(t(x)) =

2a(Ma
n)2(t(x))− 1

a
; we get finally the thesis for n+ 1:

Ma
n+1(t(x)) =

(
t−
√
t2 − 1

)2n

2a
+

(
t+
√
t2 − 1

)2n

2a
(4.1.59)

Remark 4.1.16. For |x| ≤ 1

a
, substituting x = 1

a
cos θ in (4.1.57) we obtain:

Ma
n

(
1

a
cos θ

)
=

1

a
cos (2nθ) . (4.1.60)
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Proposition 4.1.17. For each n ≥ 1 we have

n∏
i=1

Ma
i (x) =

(
1

2a

)n
U2n−1

(
2a2x2 − 1

)
(4.1.61)

Proof. We must first show that the formula is true for n = 1:

1

2a
U1(t) =

(
t+
√
t2 − 1

)2 −
(
t−
√
t2 − 1

)2

4a
√
t2 − 1

=
t

a
(4.1.62)

which is true because t
a

= 2ax2 − 1
a

= Ma
1 (x). We assume, then, that formula (4.1.61) is true

for n. We must now show that it is also true for n+ 1. To this aim, let us multiply both sides
of (4.1.61) by Mn+1(t), expressed in (4.1.59); the right-hand side becomes(

1

2a

)n+1
(
t+
√
t2 − 1

)2n+1

−
(
t−
√
t2 − 1

)2n+1

2
√
t2 − 1

=

=

(
1

2a

)n+1

U2n+1−1

(
2a2x2 − 1

)
(4.1.63)

Proposition 4.1.18. For each n ≥ 2 we have

d

dx
Ma

n(x) = (4a)n x
n−1∏
i=1

Ma
i (x) (4.1.64)

Proof. We have first to prove it is true for n = 2:

d

dx
Ma

2 (x) =
d

dx

[
2a

(
2ax2 − 1

a

)2

− 1

a

]
= 4axMa

1 (x) (4.1.65)

Assume it is true for n and deduce that (4.1.64) is true for n + 1, too. In fact Ma
n+1 =

2a(Ma
n)2 − 1

a
. Write

d

dx
Ma

n+1(x) = 2a
d

dx
(Ma

n)2 = 4aMa
n

d

dx
Ma

n (4.1.66)

and using (4.1.64) we arrive to:

d

dx
Ma

n+1(x) = 4aMa
n ·

[
(4a)n x

n−1∏
i=1

Ma
i (x)

]
= (4a)n+1 x

n∏
i=1

Ma
i (x) (4.1.67)

Remark 4.1.19. It can be easily shown that, when |x| ≤ 1

a
, replacing x = 1

a
cos θ in the

expression of U2n−1 (2a2x2 − 1) and taking into account that 2a2x2 − 1 = cos(2θ):(
2a2x2 − 1 +

√
(2a2x2 − 1)2 − 1

)2n

−
(

2a2x2 − 1−
√

(2a2x2 − 1)2 − 1
)2n

2
√

(2a2x2 − 1)2 − 1
(4.1.68)

we again get the trigonometric expression (4.1.41).
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Factorizing out the minus sign in (4.1.57) and carrying out the imaginary unit from radical,
we obtain:

Ma
n(x) =

1

2a

[
(Ma,+

n )2n−1

+ (Ma,−
n )2n−1

]
The module of both complex numbers Ma,+

n and Ma,−
n is unitary; in fact:

|Ma,+
n (x)| = |Ma,−

n (x)| =
√

(2a2x2 − 1)2 + 1− (2a2x2 − 1)2 = 1 (4.1.69)

Then

Ma
n(x) =

ei2
nϑ(x) + e−i2

nϑ(x)

2a
=

1

a
cos (2nϑ(x))

ϑ(x) =
1

2
arctan


√

1− (2a2x2 − 1)2

2a2x2 − 1

+ bπ = θ(x) + bπ (4.1.70)

with b a binary digit, and

Ma
n(x) =

1

a
cos (2nθ(x) + 2nbπ) =

1

a
cos (2nθ(x)) (4.1.71)

If x = ±
√

2
2a

: Ma
1 (±

√
2

2a
) = 1

a
cos
(
π
2

)
= 0; Ma

2 (±
√

2
2a

) = 1
a

cos (π) = − 1
a
; Ma

n(±
√

2
2a

) = 1
a

cos (2n−2π) =

1
a

; n ≥ 3. Then the argument of Ma
n

(
±
√

2

2a

)
is 0 for every n ≥ 3. For very large |x|, consid-

ering the iterative structure of the map Ma
n , we deduce immediately the asymptotic formula:

Ma
n ∼ (2a)2n−1−1

(
2ax2 − 1

a

)2n−1

, ∀n ≥ 1.

4.2 Orthogonal polynomials and Riesz bases applied to the solution
of Love’s equation.

In 1949, E. R. Love [123] considered the electrostatic field generated by two identical circular
co-axial conducting disks either at equal, or at equal and opposite, potentials, the potential
at infinity being taken equal to zero. He established a celebrated expression for the potential,
involving the solution of an integral equation of well-known type, much simpler than that
considered by other authors in previous works.

Love’s integral equation is a Fredholm equation of the second kind. It has found many
applications in several applied physics fields such as polymer structures, aerodynamics, fracture
mechanics, hydrodynamics and elasticity engineering. Recently, a polynomial expansion scheme
has been proposed by M. Agida and A. S. Kumar [4], as an analytical method for solving Love’s
integral equation in the case of a rational kernel. Their study is concerned with the calculation
of the normalized field created conjointly by two similar plates of radius R, separated by a
distance kR, where k is a positive real parameter, and at equal or opposite potential, with zero
potential at infinity; the solution of this problem solves a Love’s second kind integral equation
(see also [124], [158]).
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We propose two different approaches to this problem. In section 4.2.1, starting from a
classical technique, based on the expansion of the solution in orthogonal polynomials, we employ
a class of polynomials introduced in [186], in order to solve a modified version of the original
Love’s equation. In section 4.2.2 we recall a work by M. Norgren and B. L. G. Jonsson [138], and
we show that their results are still valid expanding the solution of the Love’s integral equation
with respect to a non-harmonic Fourier cosine series, which is a particular case of Riesz basis
[179].

For literature related to the numerical solutions of singular integral equations of the deter-
ministic type, we refer to the fundamental book by L. Fox and I. B. Parker [75], where different
analytical methods for the solution of random integral equations have been investigated.

4.2.1 Chebyshev polynomials approach to Love’s problem

Two leading cases of the problem are here considered. They are: to specify the field generated
by two identical circular co-axial conducting disks a) at equal, and b) at equal and opposite,
potentials, the potential at infinity being taken as zero. The results established by Love are as
follows, the upper sign referring to the case of equally charged disks and the lower to that of
oppositely charged disks. For theorem 4.2.1 we refer to figs. 1 and 2 in [123].

Theorem 4.2.1. [123] In the two leading cases described above, the potential at any point
(p, ζ, ζ ′), specified by its distance r = ρa from the axis of the disks and its axial distances
z = ζa and z′ = ζ ′a from their planes, is

V0

π

∫ 1

−1

[
1√

ρ2 + (ζ + it)2
± 1√

ρ2 + (ζ ′ + it)2

]
f(t)dt, (4.2.1)

where V0 is potential of the disks, a is the radius of the disks, each square root has positive real
part, and f(t) is the solution of the integral equation

f(x)± 1

π

∫ 1

−1

k

k2 + (x− t)2
f(t)dt = 1, (|x| ≤ 1) (4.2.2)

where k is the spacing parameter.

Theorem 4.2.2. [123] For every positive k, equation (4.2.2) has a continuous solution, and
no other solution: it is real and even, and is specifiable by the Neumann series

f(x) = 1 +
∞∑
n=1

(∓1)n
∫ 1

−1

Kn(x, t)dt, (4.2.3)

where the iterated kernels Kn(x, t) are given by

K1(x, t) =
1

π

k

k2 + (x− t)2
, Kn(x, t) =

∫ 1

−1

Kn−1(x, s)K1(s, t)ds.

for n ∈ N, n > 1.

Theorem 4.2.3. [123] The capacity of each disk in the two cases is

a

π

∫ 1

−1

f(t)dt,

and the components of the field at all points not on the disks are given by the appropriate formal
differentiations of (4.2.1).
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For the solution of the problems we will refer to [75]. When the upper and lower disks are
at potentials V0 and ±V0, the potential V at any point, whose spheroidal coordinates are (µ, η)
with respect to the upper disk and (µ′, η′) with respect to the lower one, is expressed in terms
of Legendre functions. The upper disk, specified in cylindrical polar coordinates (r, θ, z) by
r ≤ a and z = 0, is taken as ”focal disk” η = 0 of spheroidal coordinates (µ, η); in actual study
these are such that −2 ≤ µ ≤ 2, η ≥ 0.

Then equation (4.2.1) can be rewritten in the form

V0

2π

∫ 2

−2

[
1√

ρ2 + (ζ + it/2)2
± 1√

ρ2 + (ζ ′ + it/2)2

]
f(t/2)dt, (4.2.4)

where each square root has positive real part, and f(t) is the solution of the integral equation

f(x)± 1

2π

∫ 2

−2

k

k2 + (x− t/2)2
f(t/2)dt = 1, (|x| ≤ 2) (4.2.5)

By linear transformation t = 2y, both equations can be reduced to Love’s original form. In
(4.2.5) we put k = 1 and consider positive sign, so

f(x) +
1

2π

∫ 2

−2

1

1 +
(
x− t

2

)2f

(
t

2

)
dt = 1, (|x| ≤ 2) (4.2.6)

We replace x 7→ x2

2
− 1 in equation (4.2.6), thus

f

(
x2

2
− 1

)
+

1

2π

∫ 2

−2

1

1 +
(
x2−t

2
− 1
)2f

(
t

2

)
dt = 1

We can find a Chebyshev-series solution if we write

f(x) =
∞∑
r=0

arTr(x)

substitute it in (4.2.6), interchange the order of integration and summation in the first term,
arriving at the equation

∞∑
r=0

arTr

(
x2

2
− 1

)
+

1

2π

∞∑
s=0

as

∫ 2

−2

Ts
(
t
2

)
1 +

(
x2−t

2
− 1
)2dt = 1 (4.2.7)

for |x| ≤ 2. If we can now determine the expansion

1

2

∫ 2

−2

Ts
(
t
2

)
1 +

(
x2−t

2
− 1
)2dt =

∞∑
r=0

bsrTr

(
x2

2
− 1

)
,

we can equate the corresponding coefficients of each Tr(x) on both sides of equation (4.2.6),
which is legitimate since the Chebyshev polynomials form a complete set of independent func-
tions, to produce an infinite set of algebraic equations for the required coefficients ar, given
by

ar +
∞∑
s=0

asbsr = 0, r = 1, 2, . . . (4.2.8)

and, for r = 0:

a0 +
∞∑
s=0

asbs,0 = 1.
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The ar will decrease rapidly for sufficiently large r, so that in a convenient method of solv-
ing (4.2.8) we select the first n + 1 rows and columns, perform Gauss elimination and back-
substitution for the last few coefficients an, an−1, an−2, say, decide by inspection whether
convergence is sufficiently rapid for the required precision with this selected value of n, and if
necessary add some extra rows and columns with only a small additional amount of work.

Let’s go back to equation (4.2.7). Let J ⊂ N be the subset of natural numbers so defined:

J = {1, 2, 4, . . . } = {2r−1|r ∈ N}

and rewrite (4.2.7) in this way:

∞∑
r=0

arTr

(
x2

2
− 1

)
+
∞∑
s=0

as

∞∑
r=0

csrTr

(
x2

2
− 1

)
= 1

where csr = bsr
π

. Then: ∑
r∈J

arTr

(
x2

2
− 1

)
+
∑
r/∈J

arTr

(
x2

2
− 1

)

+
∞∑
s=0

as

[∑
r∈J

csrTr

(
x2

2
− 1

)
+
∑
r/∈J

csrTr

(
x2

2
− 1

)]
= 1

By Proposition 4.1.8 in Section 4.1, we have:

1

2

∞∑
r=1

arLr(x) +
∑
r/∈J

arTr

(
x2

2
− 1

)
+

+
1

2

∞∑
s=0

as

∞∑
r=1

csrLr(x) +
∞∑
s=0

as
∑
r/∈J

csrTr

(
x2

2
− 1

)
= 1

We also note that solving (4.2.8), a subset of first n+ 1 rows and columns selected to perform
Gauss elimination, is due to Lucas-Lehmer polynomials. They not only cannot by themselves
guarantee the convergence to the solution, but also their contributes can be neglected. In fact,
by above reasoning, since

f(x) =
∑
r/∈J

arTr

(
x2

2
− 1

)
+

1

2

∑
r∈J

arLr(x)

hence ∣∣∣∣∣f(x)−
∑
r/∈J

arTr

(
x2

2
− 1

)∣∣∣∣∣ ≤ 1

2

∑
r∈J

|ar| =
1

2

∞∑
r=1

|a2r−1|

Accordingly, when the term in the right-hand side can be considered ”small” with respect to
other contributions, a convenient method of solving (4.2.8) should be to select the first n + 1
rows and columns, perform Gauss elimination and back-substitution for the last few coefficients
an, an−1, an−2, say, and delete terms due to Lucas-Lehmer polynomials.
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Figure 4.4: The circular parallel plate capacitor, viewed as cylindrical volume, where the bases of the
cylinder are the circular armors of the capacitor.

4.2.2 An alternative approach to Love’s problem: Non-harmonic Fourier series

The capacitance of the circular parallel plate capacitor can be calculated by expanding the so-
lution of the Love’s integral equation in terms of a Fourier cosine series. In previous literature,
this kind of expansion has been carried out numerically, leading to accuracy problems at small
plate separations. M. Norgren and B. L. G. Jonsson [138] calculate analytically all expansion
integrals in terms of the Sine and Cosine integrals. Hence, they approximate the kernel, using
considerably large matrices, resulting in improved numerical accuracy for the capacitance. Pre-
viously, G. T. Carlson and B. L. Illman [38], solve the Love’s equation through an expansion
of the kernel into a Fourier-cosine series. To calculate the expansion coefficients of the kernel,
Carlson and Illman use numerical integration. Hence, as noted in [138], their method is limited
by a combination of the accuracy of the integration and the large number of terms needed. The
accumulated errors effectively limit the expansion to about 100 terms, which is insufficient for
the convergence at very small separations. Let us observe that both the methods here recalled
make use of orthogonal expansions.

From Chapter 3 we know that the family of exponentials {eint}n∈Z forms an orthonormal
basis in L2(−π, π), and that {eiλnt}n∈Z is still a Riesz basis under assumption of Kadec’s result
(Theorem 3.2.7). Using this result we now approach the problem described in [138]. The circular
parallel plate capacitor is depicted in Figure 4.4. The distance between the circular plates is
here put equal to their common radius. Accordingly, the normalized separation between the
plates, k constant, is set for the sake of simplicity equal to 1. The model is idealized in the
sense that the plates have zero thickness.

The capacitance of the parallel plate capacitor is [38]

C = 4ε0a

∫ 1

0

f(s)ds, (4.2.9)

where a is the radius of the circular plate and the function f(s) is the solution of the modified
Love’s integral equation

f(s)−
∫ 1

0

K(s, t)f(t)dt = 1, 0 ≤ s ≤ 1, (4.2.10)

with kernel

K(s, t) =
1

π

[
1

1 + (s− t)2
+

1

1 + (s+ t)2

]
. (4.2.11)
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To solve equation (4.2.10) numerically, we follow the approach in [38] and expand the kernel
and the unknown function into the (non-harmonic) Fourier-cosine expansion in terms of the
functions

ψ̃n(s) =
√

2− δn0 cos(λns), n = 0, 1, . . .

which in our study have been orthonormalized to fulfil the orthogonality relation∫ π

0

ψn(s)ψm(s)ds = δmn

and satisfy Kadec’s assumption on L = supn |λn − n| < 1/4. Here δmn denotes the Kronecker
delta function.

This orthonormalization process is shown in the following

Theorem 4.2.4 (Orthonormalization process). Let us consider L2(−π, π) and a sequence of

real numbers {λn}n∈Z which satisfies Kadec’s assumption. Let P = (I − S)−1 =
∞∑
m=0

Sm,

where S(f)(x) =
∞∑

n=−∞

f̂(n)(einx − eiλnx) and {f̂(n)} are the Fourier coefficients of f . Then

P (eiλnx) = einx for each n ∈ Z.

Proof. By Kadec’s theorem, we have that ‖S‖ < 1. Hence, P = (I − S)−1 =
∞∑
m=0

Sm. To show

that P (eiλnx) = einx, we write

eiλnx = (I − S)einx = einx −
∑
k

ck(e
ikx − eiλkx)

where ck = 〈einx, eikx〉, thus

einx − eiλnx =
∑
k

δn,k(e
ikx − eiλkx)

which proves the theorem.

In this way we have orthonormalized the Riesz basis {eiλnx}, in an easy way. Further results
on the orthonormalization of more complex Riesz bases {φ(t− n)}n∈Z, applied for example to
the study of a “digital filter”, can be found in [130]. For our purposes, it is sufficient theorem
4.2.4.

Carrying out the expansions of f(s) and K(s, t) in terms of {ψn}, we obtain

f(s) =
∞∑
m=0

fmψm(s), fm =

∫ π

0

f(s)ψm(s)ds (4.2.12)

K(s, t) =
∞∑
m=0

∞∑
n=0

Kmnψm(s)ψn(t), (4.2.13)
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where

Kmn =

∫ π

0

∫ π

0

K(s, t)ψn(t)ψm(s)dsdt,

These equations yield the following infinite linear system of equations for the coefficients
{fn}∞n=0:

∞∑
n=0

(δmn −Kmn)fn = δm0, m = 0, 1, . . . (4.2.14)

From (4.2.9), (4.2.12), from the orthonormalization process described in theorem 4.2.4 and
guaranteed by Kadec’s assumption, which allows us to expand the kernel and the unknown
function into the (non-harmonic) Fourier-cosine expansion in terms of the functions {cos(λns)},
the capacitance reduces to C = 4ε0af0 where f0 is simply the (0, 0)-element in the inverse of
the matrix with elements δmn −Kmn, as obtained in [138].

Furthermore, Norgren and Jonsson derive the analytical expressions for the expansion of
the kernel K(s, t). Proceeding as in [138], it is easy to prove that, in the general case when
m 6= n and m,n > 0:

Kmn =
2

π
Ĩ3(nπ,mπ) (4.2.15)

where Ĩ3(nπ,mπ) = P I3(λnπ, λmπ), with P as in theorem 4.2.4 and I3 is defined as in [138].
The application of the operator P denotes here the orthonormalization process performed on
the set of functions {cos(λns)}n∈Z.

We have extended the results of [38] and [138] to (non-harmonic) Fourier-cosine expansion
in terms of the set of functions {cos(λns)}n∈Z, employing a simple procedure, due to theorem
4.2.4, to orthonormalize the Riesz basis {eiλnx} under Kadec’s assumption. Therefore, we have
found a further expansion of the solution that it is not in terms of orthogonal polynomials, but
in terms of non-harmonic functions cos(λns), s ∈ R.

4.3 Ordering of nested square roots of 2 according to Gray code

Starting from the seminal papers by Ramanujan ([155], [26] pp. 108-112), there is a vast liter-
ature studying the properties of the so-called continued radicals as, for example: [92, 31, 171,
101, 66, 128]. Other authors investigated the properties of more general continued operations
and their convergence. For a nice review of these results, see for example [102], which focuses
mainly on continued reciprocal roots.

Nested square roots of 2 have been also studied in two works of Servi [165] and Nyblom
[140], while Efthimiou [65] proved that the radicals given by

a0

√
2 + a1

√
2 + a2

√
2 + a3

√
2 + ..., ai ∈ {−1, 1}

are related to the Chebyshev polynomials T2n(x). See also [134, 135], for other relations between
the nested square roots and the Chebyshev polynomials of degree 2n in a complex variable.
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Figure 4.5: Sub-codes for m = 2, m = 3.

In this Section we give an ordering for zeros of Lucas-Lehmer polynomials (which assume
the form of nested square roots of 2 expressed by (4.1.2)) using the Gray code which, at the
best of our knowledge, is used to this aim for the first time in [187]. Lucas-Lehmer polynomials
were introduced in Section 4.1.

Although our results are similar to (4.4.4), this approach is different because we study square
roots of 2 expressed by (4.1.2) applying a “binary code” that associates bits 0 and 1 to ⊕ and
	 signs in the nested form that expresses generic zeros of Ln.

In Section 4.3.1 we recall some important properties of the Gray code [78, 137], useful for
Section 4.3.2, where we show that the zeros of every Ln(x) follow the same ordering rule of this
code, where the signs ⊕ and 	 in the nested radicals are respectively substituted by the digits
0 e 1.

4.3.1 Gray code.

In this section, we will introduce some useful definitions about Gray code, a particular binary
code which is widely used in Informatics. Given a binary code, its order is the number of bits
with which the code is built, while its length is the number of strings that compose it. The
celebrated Gray code [78, 137] is a binary code of order n and length 2n.

We briefly recall below how a Gray Code is generated; if the code for n − 1 bits is formed
by binary strings

gn−1,1

...

gn−1,2n−1−1

gn−1,2n−1 (4.3.1)
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the code for n bits is built from the previous one in the following way:

0gn−1,1

...

0gn−1,2n−1−1

0gn−1,2n−1

1gn−1,2n−1

1gn−1,2n−1−1

...

1gn−1,1

(4.3.2)

Just as an example, we have

g3,1 = 000 g3,2 = 001 g3,3 = 011 g3,4 = 010

g3,5 = 110 g3,6 = 111 g3,7 = 101 g3,8 = 100 , (4.3.3)

and so on.

Definition 4.3.1. Let us consider a Gray code of order n and length 2n. A sub-code is a Gray
code of order m < n and length 2m.

Definition 4.3.2. Let us consider a Gray code of order n and length 2n. An encapsulated sub-
code is a sub-code built starting from the last string of the Gray code of order n that contains
it.

Figure (4.5) contains some examples of encapsulated sub-codes inside a Gray code (with
order 4 and length 16).

4.3.2 Gray code and nested square roots.

It is known (Propositions 4.1.8, 4.1.4 and Corollary 4.1.7) that Ln has 2n zeros, symmetric with
respect to the origin. Let us consider the signs ⊕,	 in the nested form that expresses generic
zeros of Ln, as follows: √√√√√√2±

√√√√
2±

√
2±

√
2± ...±

√
2±
√

2︸ ︷︷ ︸ (4.3.4)

Obviously the underbrace encloses n − 1 signs ⊕ or 	, each one placed before each nested
radical. Starting from the first nested radical we apply a code (i.e., a system of rules) that
associates bits 0 and 1 to ⊕ and 	 signs, respectively.

Let us define with {ω(gn−1, j)}j=1,...,2n−1 the set of all the 2n−1 nested radicals of the form

2±

√√√√
2±

√
2±

√
2± ...±

√
2±
√

2︸ ︷︷ ︸
n−1 signs

= ω(gn−1,1÷2n−1) , (4.3.5)
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where each element of the set differs from the others for the sequence of ⊕ and 	 signs. Then:√√√√√√√2±

√√√√
2±

√
2±

√
2± ...±

√
2±
√

2︸ ︷︷ ︸
n−1 signs

=
√
ω(gn−1,1÷2n−1) (4.3.6)

where the notation n− 1, 1÷ 2n−1 means that it is possible obtain 2n−1 strings formed by n− 1
bit.

Theorem 4.3.3. The strings with which we code the 2n−1 positive zeros of Ln (sorted in de-
creasing order) follow the sorting of Gray code. That is, if

gn−1,1

...

gn−1,2n−1−1

gn−1,2n−1 (4.3.7)

is the Gray Code, then√
ω(gn−1,1) > ... >

√
ω(gn−1,2n−1−1) >

√
ω(gn−1,2n−1) (4.3.8)

Proof. We first prove (4.3.8) for n = 2; here the Gray Code is reduced to bits 0, 1 (with this

order). Indeed we have
√
ω(0) >

√
ω(1) because:√

2 +
√

2 >

√
2−
√

2⇔ 2 +
√

2 > 2−
√

2⇔ 2
√

2 > 0 (4.3.9)

Let us now suppose that (4.3.8) is true for the Gray Code of order n− 1. We know that

z(n) = ±
√

2± z(n−1) (4.3.10)

where z(n) and z(n−1) are the generic zeros of Ln and Ln−1. For the symmetry of the zeros we
can consider only positive zeros. Therefore

z(n) =
√

2± z(n−1) (4.3.11)

But the generic zero of Ln−1, according to the hypothesis, is precisely one among
√
ω(gn−1,1),...

,
√
ω(gn−1,2n−1−1),

√
ω(gn−1,2n−1); then the generic zero can be indicated with

√
ω(gn−1,1÷2n−1),

in a more compact form. Then, from (4.3.11) we can separate the cases ⊕ and 	, obtaining
either

z(n) =

√
2 +

√
ω(gn−1,1÷2n−1)︸ ︷︷ ︸√

ω(0gn−1,1÷2n−1 )

(4.3.12)

because ⊕ corresponds to 0, or

z(n) =

√
2−

√
ω(gn−1,1÷2n−1)︸ ︷︷ ︸√

ω(1gn−1,1÷2n−1 )

(4.3.13)
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Figure 4.6: Disposition of the zeros of Ln and Ln+1 on the real axis.

because 	 corresponds to 1. Thesis follows if we show the following:√
ω(0, gn−1,1) >

√
ω(0, gn−1,2) > ... >

√
ω(0, gn−1,2n−1) >

>
√
ω(1, gn−1,2n−1) > ... >

√
ω(1, gn−1,1) (4.3.14)

or equivalently

ω(0, gn−1,1) > ω(0, gn−1,2) > ... > ω(0, gn−1,2n−1) >

> ω(1, gn−1,2n−1) > ... > ω(1, gn−1,1) (4.3.15)

We start proving inequality

ω(0, gn−1,i) > ω(0, gn−1,i+1) ∀i = 1, 2, ..., 2n−1 − 1 (4.3.16)

or

2 +
√
ω(gn−1,i) > 2 +

√
ω(gn−1,i+1)⇔

⇔ ω(gn−1,i) > ω(gn−1,i+1) (4.3.17)

true by virtue of hypothesis (4.3.8). We prove now the inequality

ω(1, gn−1,i+1) > ω(1, gn−1,i) ∀i = 1, 2, ..., 2n−1 − 1 (4.3.18)

It can be rewritten

2−
√
ω(gn−1,i+1) > 2−

√
ω(gn−1,i)⇔ ω(gn−1,i) > ω(gn−1,i+1) (4.3.19)

true for assumption. Finally, the relation

ω(0, gn−1,2n−1) > ω(1, gn−1,2n−1) (4.3.20)

follows naturally from

2 +
√
ω(gn−1,2n−1) > 2−

√
ω(gn−1,2n−1)⇒

⇒ 2
√
ω(gn−1,2n−1) > 0 (4.3.21)

always true.

In Table 4.1 we give an example of ordering of the zeros of Ln(x) for n = 4.
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g3,j Binary
string

Radicals Approx.

g3,1 000

√
2 +

√
2 +

√
2 +
√

2 1.99 . . .

g3,2 001

√
2 +

√
2 +

√
2−
√

2 1.91 . . .

g3,3 011

√
2 +

√
2−

√
2−
√

2 1.76 . . .

g3,4 010

√
2 +

√
2−

√
2 +
√

2 1.54 . . .

g3,5 110

√
2−

√
2−

√
2 +
√

2 1.26 . . .

g3,6 111

√
2−

√
2−

√
2−
√

2 0.94 . . .

g3,7 101

√
2−

√
2 +

√
2−
√

2 0.58 . . .

g3,8 100

√
2−

√
2 +

√
2 +
√

2 0.19 . . .

Table 4.1: In the Table we consider the 23 positive zeros of L4(x) and their ordering due to Gray code.
It is according to Theorem 4.3.3.

Since, as shown in Proposition 4.1.9, {Ln} is a set of orthogonal polynomials, it follows that
between two zeros of Ln(x) there exists one and only one zero of Ln+1(x) (see [79]).

Theorem 4.3.4. Let us consider the 2n−1 zeros of Ln(x)√
ω(gn−1,2n−1) <

√
ω(gn−1,2n−1−1) < ... <

√
ω(gn−1,1) . (4.3.22)

Then the zeros of Ln+1(x) are arranged on the real axis in this way:

• i) The first zero of Ln+1(x) (i.e.
√
ω(1, gn−1,1)) is on the left of the first zero of Ln(x):√

ω(1, gn−1,1) <
√
ω(gn−1,2n−1).

• ii) The 2n−1 − 1 zeros of Ln+1(x), which can be represented in the form√
ω(1, gn−1,2÷2n−1),

are arranged one by one in the 2n−1 − 1 intervals which have consecutive zeros of Ln(x);

i.e.: (
√
ω(gn−1,k),

√
ω(gn−1,k−1)).

• iii) The remaining zeros, expressed as
√
ω(0, gn−1,1÷2n−1), are on the right of the last zero

of Ln(x):
√
ω(gn−1,1).

The above is schematically shown in Figure (4.6).

Proof. For the proof we first need to dispose on the real axis the 2n−1 zeros of Ln; in the interval
J = (a, b), where a and b are the first and the last zeros:

J =
(√

ω(gn−1,2n−1),
√
ω(gn−1,1)

)
(4.3.23)
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we can identify 2n−1 − 1 subintervals

Jk,k−1 =
(√

ω(gn−1,k),
√
ω(gn−1,k−1)

)
k = 2, 4, 8, ..., 2n−1 (4.3.24)

whose endpoints are consecutive zeros of Ln. Since Ln is a Chebyshev polynomial, and therefore
it is an orthogonal polynomial, it follows that between two consecutive zeros of Ln(x) there
exists one and only one zero of Ln+1(x). Therefore in each interval Jk,k−1 we find only one zero
of Ln+1(x). Let us understand how they are distributed. Let us start with the first 2n−1 zeros
of Ln+1(x), i.e.: √

ω(1, gn−1,1) < ... <
√
ω(1, gn−1,2n−1) (4.3.25)

The statements i) and ii) are true if we show that√
ω(1, gn−1,1) <

√
ω(gn−1,2n−1) (4.3.26)

and √
ω(1, gn−1,2) >

√
ω(gn−1,2n−1) (4.3.27)

In fact, let us recall that√
ω(1, gn−1,1) is related to the sequence 1 0 ... 0︸ ︷︷ ︸

n−1√
ω(gn−1,2n−1) is related to the sequence 1 0 ... 0︸ ︷︷ ︸

n−2√
ω(1, gn−1,2) is related to the sequence 1 0 ... 0︸ ︷︷ ︸

n−2

1 (4.3.28)

From the first two relations, we can show (4.3.26):

√
ω(1, gn−1,1) <

√
ω(gn−1,2n−1) ⇔

√√√√√√2−

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−1

<

<

√√√√√√2−

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

⇔

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−1

>

>

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

(4.3.29)

noting that √√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−1

=

√√√√√2 +

√√√√2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

(4.3.30)

is greater than √√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

. (4.3.31)
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Let us prove (4.3.27) by the same reasoning used previously.

√
ω(1, gn−1,2) >

√
ω(gn−1,2n−1) ⇔

√√√√√√2−

√√√√√2 +

√
2 +

√
2 + ...−

√
2︸ ︷︷ ︸

n−1

>

>

√√√√√√2−

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

⇔

√√√√√2 +

√
2 +

√
2 + ...−

√
2︸ ︷︷ ︸

n−1

<

<

√√√√√2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n−2

(4.3.32)

By squaring iteratively the n− 2 radicals and simplifying, we obtain −
√

2 < 0, which is true.

iii) follows immediately noting that

ω(gn−1,1) < 2 ; ω(0, gn−1,2n−1) = 2 +
√
ω(gn−1,2n−1) > 2 . (4.3.33)

The three points of the thesis are proven.

Remark 4.3.5. In the previous work [186] and in Section 4.1.4, the considerations made on
the map Ln were extended to an entire class of maps, obtained through the iterated formula

Ma
n = 2a

(
Ma

n−1

)2 − 1
a
, a > 0, with Ma

0 (x) = x. At each iteration the zeros of the map
Ma

n(n ≥ 1) have the form

± 1

2a
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2

and it is clear that the results obtained in this Section are also valid for polynomials obtained
through the iterated formula on Ma

n .

4.4 New formulas for π involving infinite nested square roots and
Gray code.

Viète’s formula [170], developed in 1593 and subsequently generalized (see, for example [135]),
is probably the oldest exact result derived for π and is based on an infinite product of nested
radicals. Another formula involving nested radicals is given by [55, 72]

π = lim
n→∞

2n+1 ·

√√√√√√2−

√
2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n

. (4.4.1)

which, following J. Munkhammar [2], [197], can be rewritten in the form

π = lim
n→∞

2n+1 πn (4.4.2)
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where πn is defined in an iterative way:

πn+1 =

√√√√(1

2
πn

)2

+

[
1−

√
1−

(1

2
πn

)2
]2

(4.4.3)

with π0 =
√

2 [197].

The brilliant English mathematician John Wallis, who lived in the XVIIth Century, highly
able in detecting formal schemes and regularity in mathematical structures [34] and celebrated
for his formula for π [72], defended the legitimacy of any method that could help the discovery
of the truth, even if not corroborated by a rigorous proof. He even stated that Archimedes
should have been more blamed because he did not explain the logical processes used for his
discoveries than admired for his very elegant proofs [34].

Wallis even got to assert that the contemplation of a finite number of particular cases is
all that can be defined as a proof. This kind of contemplation allows us the understanding of
the general rule leading to the expected formula. Let us however recall that for many other
mathematicians of his time (first of all Fermat) there was not yet the attitude to build a proof,
as we can understand today.

Modern Mathematics follows other, more rigorous, ways. However, all the results here
shown and proved are introduced as unavoidable consequences of this kind of “contemplation”,
as suggested by Wallis; thus, several mathematical proofs in this section are conducted by
mathematical induction, which can be viewed as a useful way to prove that some statements
are true not only for “a finite number of particular cases” but for every value of n = 1, 2, . . . .

The section is organized in the following way. We give a recursive formula for the sequence of
the first nonnegative zeros of Ln(x), in terms of nested radicals. We apply this formula in order
to prove again (4.4.1). We will start from this formula, in order to introduce the techniques we
will use to study the generalized sequences converging to π, in Section 4.4.2. Moreover, in this
Section, we show that the generalizations of the Lucas-Lehmer map, Ma

n for a > 0 introduced
in 4.1.4, have the same properties of Ln, for what concerns the distribution of the zeros and
the approximations of π. We also obtain π not as the limit of a sequence, but equal to an
expression involving the zeros of the polynomials Ln and Ma

n for a > 0. Finally, still in Section
4.4.2, we introduce two relationships between π and the golden ration ϕ.

4.4.1 A comparison with other results.

The cornerstone of the results shown in this section is the ordering of a class of continued
radicals, the nested square roots of 2, introduced in [187] and recalled just above.

The nested square roots of 2 are a special case of the wide class of continued radicals. They
have been studied by several authors. In particular, Cipolla [51] obtained a very elegant formula
for √

2 + in

√
2 + in−1

√
2 + · · ·+ i1

√
2 ,
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in terms of 2 cos
(
kn

π
2n+2

)
, where ik ∈ {−1, 1} and kn is a constant depending on i1, . . . , in. A

rigorous treatment of continued radicals of arbitrary, nonnegative terms was found, probably
for the first time, in a problem proposed by Pólya [152], solved by Szegö at a later time and
included in their famous problem book [153].

Servi [165] rediscovered and extended Cipolla’s formula, tying the evaluation of nested square
roots of the form

R(bk, ..., b1) =
bk
2

√√√√√√2 + bk−1

√√√√√2 + bk−2

√√√√2 + ...+ b2

√
2 + 2 sin

(
b1π

4

)
(4.4.4)

where bi ∈ {−1, 0, 1} for i 6= 1, to expression(
1

2
− bk

4
− bkbk−1

8
− ...− bkbk−1...b1

2k+1

)
π (4.4.5)

to obtain, amongst other results, some nested square roots representations of π:

π = lim
k→∞

 2k+1

2− b1

R

1,−1, 1, 1, . . . , 1, 1, b1︸ ︷︷ ︸
k terms

 (4.4.6)

where b1 6= 2. Nyblom [140], citing Servi’s work, derived a closed-form expression for (4.4.4)
with a generic x ≥ 2 that replaces 2 sin

(
b1π
4

)
in (4.4.4). Efthimiou [65] proved that the radicals

given by

a0

√
2 + a1

√
2 + a2

√
2 + a3

√
2 + · · ·, ai ∈ {−1, 1}

have limits two times the fixed points of the Chebyshev polynomials T2n(x), unveiling an inter-
esting relation between these topics. Previous formula is equivalent to (4.1.2).

In [134, 135], the authors report a relation between the nested square roots of depth n as

±

√
2±

√
2±

√
2± · · · ±

√
2 + 2z, z ∈ C ,

and the Chebyshev polynomials of degree 2n in a complex variable, generalizing and unifying
Servi and Nyblom’s formulas. In [134], the authors propose an ordering of the continued roots

bk

√
2 + bk−1

√
2 + · · ·+ b1

√
2 + 2ξ , (4.4.7)

where ξ = 1 and each bi is either 1 or −1, according to formula

j(bk, . . . , b1) =
1

2

(
2k −

(
k∑
j=1

(
2k−j

j−1∏
i=0

bk−i

))
+ 1

)
, (4.4.8)

for each positive integer k. Formula (4.4.7) expresses the nested square roots of 2 in (4.1.2),
and in [187] we gave an alternative ordering for them involving the so-called Gray code which,
to the best of our knowledge, is applied for the first time to these topics.
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Actually, there is a strong connection between [134] and [187]. From (4.4.8), we have, for
example,

j(1, 1, 1) = 1 j(1, 1,−1) = 2

j(1,−1,−1) = 3 j(1,−1, 1) = 4

j(−1,−1, 1) = 5 j(−1,−1,−1) = 6

j(−1, 1,−1) = 7 j(−1, 1, 1) = 8 .

If we associate bit 0 to number bi = 1 and bit 1 to number bi = −1, in the above expression of
index j, we obtain

(1, 1, 1) 7→ (0, 0, 0)

(1, 1,−1) 7→ (0, 0, 1)

(1,−1,−1) 7→ (0, 1, 1)

(1,−1, 1) 7→ (0, 1, 0)

(−1,−1, 1) 7→ (1, 1, 0)

(−1,−1,−1) 7→ (1, 1, 1)

(−1, 1,−1) 7→ (1, 0, 1)

(−1, 1, 1) 7→ (1, 0, 0) ,

which are just the strings {g3,i}8
i=1 shown in (4.3.3).

4.4.2 Main results: π formulas involving nested radicals.

Formulas for π which are based on nested radicals have forever received much attention from
mathematicians because of their inherent elegance. We give below a short discussion of the π
formulas and nested radicals. For this purpose we refer to some comprehensive reviews: [25],
[72] and [83], as well as [197].

Let Sn denote the length of a side of a regular polygon of 2n+1 sides inscribed in a unit
circle, with S1 =

√
2. More generally, Sn = 2 sin

(
π

2n+1

)
. Hence, by the half-angle formula,

Sn =

√
2−

√
4− S2

n−1

The length of this polygon of 2n+1 sides is 2n+1Sn and tends to 2π as n → ∞ [72]. Therefore
(4.4.1) is reobtained. In [52] we find a geometric viewpoint of these recursions.

Viète [190] obtained an elegant expansion with infinitely many nested square roots:

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· · · . (4.4.9)

It is included in a more general formula due to Osler [143]:

2

π
=

p∏
n=1

√√√√√1

2
+

1

2

√√√√1

2
+

1

2

√
1

2
+ · · ·+ 1

2

√
1

2
·
∞∏
n=1

2p+1n− 1

2p+1n
· 2p+1n+ 1

2p+1n
, (4.4.10)
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Figure 4.7: A possible subcode (orange), where the meaning of the limit (4.4.26) is highlighted: in
this way the number of symbols 0, on the left of the sub-code, increases.

where he reobtains Viète’s formula for p =∞ and Wallis’ product for p = 0. In [144] and [145]
new generalizations of this formula for π are obtained.

Another expression with products and radicals was discovered by Sondow [172]:

π

2
=
∞∏
n=1

[
1(−1)1(n0) · 2(−1)2(n1) . . . (n+ 1)(−1)n+1(nn)

]1/2n

. (4.4.11)

Besides Osler, in [146], derives an infinite product representation for the AGM (arithmetic-
geometric mean) of two positive numbers. The factors of this product are nested radicals
recalling Viète’s product for π.

The main result contained in the next subsection is in the spirit of formula (4.4.6). Some of
the results described in (4.4.6) were already known in the VIth century, thanks to Aryabhata,
the famous Indian mathematician and astronomer; see, for example [201].

Infinite sequences tending to π

Let us consider the writing:

ω(∗...∗︸︷︷︸
n−m

gm,h) = ωn−m(∗... ∗ gm,h)

where the asterisks represent n−m bits 0 and 1. Then we give the following results.

Lemma 4.4.1. For all m ∈ N one has:√
ω2(10gm,h+1) = 2 sin

(
2h+ 1

2m+4
π

)
h ∈ [0, 2m − 1] (4.4.12)

Proof. We proceed with induction principle for m to prove (4.4.12). If m = 1:√
ω2(10g1,h+1) = 2 sin

(
2h+ 1

25
π

)
h ∈ [0, 1] (4.4.13)

i.e. √
ω2(10g1,1) = 2 sin

( π
25

)
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for h = 0, and √
ω2(10g1,2) = 2 sin

(
3π

25

)
for h = 1, where g1,1 = 0 and g1,2 = 1. These formulas are easy to check. Now we are going to
check (4.4.12) for m+ 1:√

ω2(10gm+1,h+1) = 2 sin

(
2h+ 1

2m+5
π

)
h ∈ [0, 2m+1 − 1] (4.4.14)

having assumed it true for m ≥ 1. From Gray Code’s definition we have that either a)
gm+1,h+1 = (0, gm,h+1) or b) gm+1,h+1 = (1, gm,2m−h). In the former case:√

ω2(10gm+1,h+1) =
√
ω2(100gm,h+1)

where √
ω2(100gm,h+1) =

√
2−

√
ω2(00gm,h+1)

=

√
2−

√
2 +

√
ω2(0gm,h+1) (4.4.15)

But in fact: ω2(10gm,h+1) = 2−
√
ω2(0gm,h+1), so (4.4.15) becomes

√
ω2(100gm,h+1) =

√
2−

√
2 +

√
ω2(0gm,h+1)

=

√
2−

√
4− ω2(10gm,h+1)

=

√√√√2−

√
4− 4 sin2

(
2h+ 1

2m+4
π

)

=

√
2− 2 cos

(
2h+ 1

2m+4
π

)
= 2 sin

(
2h+ 1

2m+5
π

)
(4.4.16)

Therefore (4.4.14) is proved for the case a).

Now we assume that gm+1,h+1 = (1, gm,2m−h):√
ω2(10gm+1,h+1) =

√
ω2(101gm,2m−h)

thus √
ω2(101gm,2m−h) =

√
2−

√
ω2(01gm,2m−h)

=

√
2−

√
2 +

√
ω2(1gm,2m−h)

=

√√√√
2−

√
2 +

√
2−

√
ω2(gm,2m−h) (4.4.17)
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Noting that

ω2(0gm,2m−h) = 2 +
√
ω2(gm,2m−h)

it follows that √
ω2(101gm,2m−h) =

√
2−

√
2 +

√
4− ω2(0gm,2m−h) (4.4.18)

From ω2(10gm,2m−h) = 2−
√
ω2(0gm,2m−h), equation (4.4.18) becomes

√
ω2(101gm,2m−h) =

√
2−

√
2 +

√
4− [2− ω2(10gm,2m−h)]

2 (4.4.19)

From (4.4.12), we have √
ω2(10gm,2m−h) = 2 sin

(
2m+1 − (2h+ 1)

2m+4
π

)
and equation (4.4.19) can be rewritten

√
ω2(101gm,2m−h) =

√
2−

√
2 +

√
4− [2− ω2(10gm,2m−h)]

2

=

√√√√√2−

√√√√
2 +

√
4−

[
2− 4 sin2

(
2m+1 − (2h+ 1)

2m+4
π

)]2

=

√√√√√2−

√√√√2 +

√
4− 4 cos2

(
2m+1 − (2h+ 1)

2m+3
π

)

=

√√√√2−

√
2 + 2 sin

(
2m+1 − (2h+ 1)

2m+3
π

)

=

√√√√2−

√
2 + 2 cos

(
π

2
− 2m+1 − (2h+ 1)

2m+3
π

)

=

√
2− 2 cos

(
π

4
− 2m+1 − (2h+ 1)

2m+4
π

)
(4.4.20)

Accordingly: √
ω2(101gm,2m−h) = 2 sin

(
2(h+ 2m) + 1

2m+5
π

)
Since the term h + 2m ∈ [2m, 2m+1 − 1] for h ∈ [0, 2m − 1], then (4.4.14) is fully shown and,
with it, the whole proposition.

Proposition 4.4.2. For each n ≥ m+ 2, h ∈ N such that h ∈ [0, 2m − 1]:√
ωn−m(10...0gm,h+1) = 2 sin

(
2h+ 1

2n+2
π

)
(4.4.21)
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Proof. Put n−m = ], n−m−1 = ]′, n−m−2 = ]′′, . . . , n−m−k = ](k) for 0 ≤ k ≤ n−m−2.
Let us proceed by means of induction principle on n. Fixing m, suppose formula (4.4.21) to be
true for a generic index ]′, √

ω]′(10...0gm,h+1) = 2 sin

(
2h+ 1

2n+1
π

)
(4.4.22)

and proceed to check the case ]. We work on both sides of (4.4.22):

ω]′(10...0gm,h+1) = 4 sin2

(
2h+ 1

2n+1
π

)
2−

√
ω]′′(0...0gm,h+1) = 4− 4 cos2

(
2h+ 1

2n+1
π

)
−
√
ω]′′(0...0gm,h+1) = 2− 4 cos2

(
2h+ 1

2n+1
π

)
2 +

√
ω]′′(0...0gm,h+1) = 4 cos2

(
2h+ 1

2n+1
π

)
ω]′(0...0gm,h+1) = 4 cos2

(
2h+ 1

2n+1
π

)
(4.4.23)

whence √
ω]′(0...0gm,h+1) = 2

∣∣∣∣cos

(
2h+ 1

2n+1
π

)∣∣∣∣ = 2 cos

(
2h+ 1

2n+1
π

)
Thus: √

ω]′(0...0gm,h+1) = 2

(
1− 2 sin2

(
2h+ 1

2n+2
π

))
⇓

2−
√
ω]′(0...0gm,h+1) = 4 sin2

(
2h+ 1

2n+2
π

)
(4.4.24)

and

ω](10...0gm,h+1) = 4 sin2

(
2h+ 1

2n+2
π

)
hence, √

ω](10...0gm,h+1) = 2

∣∣∣∣sin(2h+ 1

2n+2
π

)∣∣∣∣ = 2 sin

(
2h+ 1

2n+2
π

)
.

The absolute value can be removed by the proposition’s assumptions. Therefore, the induc-
tive step is proved. Let us consider the base step: ] = 2. Indeed:√

ω2(10gm,h+1) = 2 sin

(
2h+ 1

2n−m+22m
π

)
or, √

ω(10gm,h+1) = 2 sin

(
2h+ 1

2m+4
π

)
h ∈ [0, 2m − 1] (4.4.25)

which is proved, for all m ∈ N, in Lemma 4.4.1.

Theorem 4.4.3.

lim
n→∞

2n+1

2h+ 1

√
ωn−m(10...0gm,h+1) = π (4.4.26)

for every h ∈ N such that h ∈ [0, 2m − 1] and n > m+ 1.
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Proof. From (4.4.21), we have

2n+1

2h+ 1

√
ωn−m(10...0gm,h+1) =

2n+2

2h+ 1
sin

(
2h+ 1

2n+2
π

)
(4.4.27)

that, for a well-know limit, tends to π for n→∞.

Example 4.4.4. With the help of computational tools we show below some iterations of a
sequence described by

2n+1

2h+ 1

√
ωn−m(10...0gm,h+1) .

Let us consider m = 3; then

g3,1 = 000 ; g3,2 = 001 ; g3,3 = 011 ; g3,4 = 010 ;

g3,5 = 110 ; g3,6 = 111 ; g3,7 = 101 ; g3,8 = 100.

We choose the binary string g3,6 = 111; in this case, if m = 3, one has h+ 1 = 6 and so h = 5.
This means that we are iterating

2n+1

11

√
ωn−3(10...0︸ ︷︷ ︸

n−3

111) =
2n+1

11

√
ω(10...0111) .

Hence, for n = 8:
29

11

√
ω(10000111) =

29

11

√√√√√√√√2−

√√√√√√√2 +

√√√√√√2 +

√√√√√
2 +

√√√√
2 +

√
2−

√
2−

√
2−
√

2 ' 3.140996 . . .

For n = 12:
213

11

√
ω(100000000111) =

213

11

√√√√√√√√√√√√2−

√√√√√√√√√√√2 +

√√√√√√√√√√2 +

√√√√√√√√√2 +

√√√√√√√√2 +

√√√√√√√2 +

√√√√√√2 +

√√√√√
2 +

√√√√
2 +

√
2−

√
2−

√
2−
√

2

' 3.141590324 . . .

and so on.

An asymptotic relationship between the golden ratio and π A simple application of The-
orem 4.4.3 allows us to obtain an asymptotic relationship between the golden ratio ϕ and π.
There are not many known relations between π and ϕ. From [72], we recall a geometric ap-
plication of the golden mean, which arises when inscribing a regular pentagon within a given
circle by ruler and compass. This is related to the fact that

2 cos
(π

5

)
= ϕ, 2 sin

(π
5

)
=
√

3− ϕ.
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Perhaps it is the simplest connection that one can find between π and ϕ. But there are not
many others. We also mention the four Rogers-Ramanujan continued fractions shown in [72]
at pages 7-8, and the harmonious and even unexpected links between the constants, in nature
and in architecture, illustrated in [201]. Despite also ϕ, like π, may be expressed in terms of
nested radicals, we are not aware of expressions that bind ϕ and π with infinite nested radicals.

Let k = 2. Therefore, from (4.4.26) we have

π ∼ 2n

5
·
√
ω(11) (4.4.28)

whence

5 ∼ 2n

π
·
√
ω(11) (4.4.29)

for which
√

5 ∼ 2n/2√
π
· 4
√
ω(11) (4.4.30)

dividing by 2 and adding 1/2, then

ϕ ∼ 2n/2−1

√
π
· 4
√
ω(11) +

1

2
(4.4.31)

where ϕ =

√
5 + 1

2
is the golden ratio.

Ma
n = 2a

(
Ma
n−1

)2 − 1
a map.

In [186] we introduced an extension of the map Ln, obtained through the iterated formula

Ma
n = 2a

(
Ma

n−1

)2 − 1
a
, a > 0, with Ma

0 (x) = x. It follows that

Ma
0 (x) = x ; Ma

1 (x) = 2ax2 − 1

a
; Ma

2 (x) = 8a3x4 − 8ax2 +
1

a
... (4.4.32)

Note that the map Ln is a particular case of Ma
n , obtained by setting a = 1/2. We briefly show

that the map Ma
n leads to the same π formulas stated in the previous sections.

Proposition 4.4.5. For n ≥ 2 we have

Ma
n(x) =

1

a
· cos(a 2nx) + o(x2) (4.4.33)

Proof. We must show that:

Ma
n(x) =

1

a
− a22n−1x2 + o(x2) (4.4.34)

where we take into account the McLaurin polynomial of cosine. We proceed by induction. For
n = 2:

Ma
2 (x) = 2a

(
2ax2 − 1

a

)2

− 1

a
=

1

a
− 8ax2 + o(x2) (4.4.35)
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Let us consider the second order McLaurin polynomial of 1
a
·cos(4ax): it is just 1

a
−8ax2 +o(x2),

thus verifying the relation for n = 2. Let us now assume (4.4.33) is true for a generic n, and
deduce that it is also true for n+ 1:

Ma
n+1 = 2a (Ma

n)2 − 1

a
= 2a

[
1

a
− a22n−1x2 + o(x2)

]2

− 1

a
=

=
1

a
− a22n+1x2 + o(x2) (4.4.36)

which is in fact the McLaurin polynomial of 1
a
· cos(a 2n+1x).

Proposition 4.4.6. At each iteration the zeros of the map Ma
n(n ≥ 1) have the form

± 1

2a
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.4.37)

Proof. It is obvious that at n = 1 this statement is valid.

Now assume that the (4.4.37) is valid for n. We have to prove that it is valid for n+ 1.

2ax2 − 1

a
= ± 1

2a
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.4.38)

or

x2 =
1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.4.39)

and placing under the radical sign

x = ±

√√√√√ 1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2 (4.4.40)

the thesis is obtained.

It is possible to prove that zeros of the map Ma
n+1 are related to those of Ma

n , n ≥ 1.

π-formulas: not only approximations.

From (4.1.46) and (4.1.47) we obtained [186] the following formula:

Ln(x) = 2 cos

2n−1 arctan


√

1−
(
x2

2
− 1
)2

x2

2
− 1

 (4.4.41)
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valid for x ∈ [−2, 2] and x 6= ±
√

2. This expression is equivalent to

Ln(x) =

(((
x2 − 2

)2 − 2
)2

... − 2

)2

− 2 (4.4.42)

Moreover, we already observed that, for |x| =
√

2, we have

L0(
√

2) =
√

2 ; L1(
√

2) = 0 ; L2(
√

2) = −2 ; Ln(
√

2) = 2 ∀n ≥ 3 . (4.4.43)

The right hand side of (4.4.41) vanishes when

2n−1 arctan


√

1−
(
x2

2
− 1
)2

x2

2
− 1

 = ±π
2

(2h+ 1) ; h ∈ N ; x 6= ±
√

2 (4.4.44)

i.e.,

−π
2
< arctan


√

1−
(
x2

2
− 1
)2

x2

2
− 1

 = ± π

2n
(2h+ 1) <

π

2
, x 6= ±

√
2 (4.4.45)

whence √
1−

(
x2

2
− 1

)2

=

(
x2

2
− 1

)
Tn,h (4.4.46)

where Tn,h = tan
[
± π

2n
(2h+ 1)

]
, for h = 0, 1, . . . , hmax, and hmax defined in this way: from

(4.4.44) and boundedness of inverse tangent function we have

π

2n
(2h+ 1) <

π

2

from which

h < 2n−2 − 1

2

therefore hmax = 2n−2 − 1, for n ≥ 2.

If the factor Tn,h is negative, the solutions of (4.4.46) belong to the interval (−
√

2,
√

2);

otherwise x ∈ [−2,−
√

2) ∪ (
√

2, 2], if Tn,h > 0. We have:

1−
(
x2

2
− 1

)2

=

(
x2

2
− 1

)2

T 2
n,h ⇒

x2

2
− 1 = ± 1√

1 + T 2
n,h

(4.4.47)

Therefore we can write the zeros of Ln in the form

xnh = ±
√√√√2± 2√

1 + tan2
[
π
2n

(2h+ 1)
] , n ≥ 2 ; 0 ≤ h ≤ 2n−2 − 1 (4.4.48)

Moreover, we know that, for every n ≥ 2, the h-th positive zero of Ln(x) has the form:√
ω(gn−1,2n−1−h) (4.4.49)
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where 0 ≤ h ≤ 2n−2 − 1. Equating the two expressions, one finds:

1

1 + tan2
[
π
2n

(2h+ 1)
] =

[
1

2
ω(gn−1,2n−1−h)− 1

]2

(4.4.50)

whence

π =
2n

2h+ 1
arctan

√
1[

1
2
ω(gn−1,2n−1−h)− 1

]2 − 1 . (4.4.51)

In this way we obtain infinite formulas giving π not as the limit of a sequence, but through an
equality involving the zeros of the polynomials Ln which is true for every choice of n and h as
in (4.4.48).

Similar considerations can be made for the polynomials Ma
n . Since, for |x| 6=

√
2

2a
,

Ma
n(x) =

1

a
cos

2n−1 arctan


√

1− (2a2x2 − 1)2

2a2x2 − 1

 (4.4.52)

vanishes if

2n−1 arctan


√

1− (2a2x2 − 1)2

2a2x2 − 1

 = ±π
2

(2h+ 1) (4.4.53)

i.e.,

arctan


√

1− (2a2x2 − 1)2

2a2x2 − 1

 = ± π

2n
(2h+ 1) , (4.4.54)

then √
1− (2a2x2 − 1)2 =

(
2a2x2 − 1

)
Tn,h (4.4.55)

where Tn,h = tan
[
± π

2n
(2h+ 1)

]
, with h = 0, 1, 2..., 2n−2 − 1.

Furthermore: (
2a2x2 − 1

)
Tn,h > 0 (4.4.56)

Inequality 2a2x2− 1 > 0 is verified for x < −
√

2
2a
∨ x >

√
2

2a
. If Tn,h is negative, the solutions of

(4.4.55) belong to the interval
(
−
√

2
2a
,
√

2
2a

)
, otherwise x ∈

[
− 1
a
,−
√

2
2a

)
∪
(√

2
2a
, 1
a

]
, if Tn,h > 0.

On the other hand:

1−
(
2a2x2 − 1

)2
= T 2

n,h

(
2a2x2 − 1

)2 ⇒ 2a2x2 − 1 = ± 1√
1 + T 2

n,h

(4.4.57)

from which:

xnh = ± 1

2a

√√√√2± 2√
1 + tan2

[
π
2n

(2h+ 1)
] (4.4.58)
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Since, from (4.4.37), the zeros of Ma
n(x) are proportional to the zeros of Ln(x), we can say that

also the 2n−1 positive zeros of Ma
n , in decreasing order, follow the order given by the Gray code:

1

2a

√
ω(gn−1,2n−1−h) (4.4.59)

Equating the two expressions we find again the identity:

π =
2n

2h+ 1
arctan

√
1[

1
2
ω(gn−1,2n−1−h)− 1

]2 − 1 (4.4.60)

An exact relationship between the golden ratio and π From the previous section we have

2h+ 1 =
2n

π
arctan

√
1[

1
2
ω(gn−1,2n−1−h)− 1

]2 − 1 (4.4.61)

Applying the root to both members of this equality, for h = 2, it becomes

√
5 =

2n/2√
π

√√√√arctan

√
1[

1
2
ω(gn−1,2n−1−2)− 1

]2 − 1 (4.4.62)

dividing by 2 and adding 1/2, one has:

ϕ =
2n/2−1

√
π

√√√√arctan

√
1[

1
2
ω(gn−1,2n−1−2)− 1

]2 − 1 +
1

2
(4.4.63)

As already seen for formula (4.4.51), let us remark that this is an exact formula, without
involving any limiting process.

4.5 Conclusions and perspectives.

In this chapter we introduced a class of polynomials which follow the same recursive formula
as the Lucas-Lehmer numbers. We showed several properties of the polynomials, including
important links with the Chebyshev polynomials, proving their orthogonality with respect to
a suitable weight.

This chapter intended just to introduce this new class of polynomials. Much more aspects
need to be deepened, concerning the properties of the polynomials and their applications.

Thanks to their strict link with the Chebyshev polynomials, we could determine other
properties of the Lucas-Lehmer polynomials, mainly of integral and asymptotic type. These
topics will be subject of future studies. Moreover, it would be interesting to determine and
study different classes of Lucas-Lehmer polynomials, for example modifying suitably the first
term of the sequence.
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Orthogonal functions, other classes of polynomials and Riesz bases have shown to be very
powerful for the search of solutions of several problems in disparate fields, from Physics to
Engineering, from Economics to Biology and so on. In Section 4.2 we applied Lucas-Lehmer
polynomials [186] and the tool of Riesz bases [147] in order to reinvestigate a classical problem,
due to Love [123], obtaining a further expansion of the solution that it is not in terms of
orthogonal polynomials, but in terms of non-harmonic functions cos(λns), s ∈ R, suitably
orthonormalized thanks to Theorem 4.2.4, which uses the celebrated result due to Kadec [103],
as stated in Chapter 3.

In Section 4.3 we have studied the distribution of the zeros of Ln, that can be expressed
in terms of nested radicals of 2; it allows us to give an ordering for nested square roots of
2 expressed by (4.1.2) thanks to a binary code employed in Informatics (the Gray code). In
Section 4.4, these zeros are used to obtain two new formulas for π: the first (i.e., formula
(4.4.26)) can be seen as a generalization of the known formula (4.4.1), because the latter can be
seen as the case related to the smallest positive zero of Ln; the second (i.e., formula (4.4.51))
gives infinite formulas reproducing π not as the limit of a sequence, but through an equality
involving the zeros of the polynomials Ln. We also introduce two relationships between π and
the golden ratio ϕ: (4.4.31) and (4.4.63).

In Section 4.4 we used Proposition 4.4.2 to prove new formulas for π. Actually, Proposition
4.4.2 can be fundamental for further studies. In fact, it not only allows to get the main results
of this section, but also allows the evaluation of nested square roots of 2 as:

√
ωn−m(10...0gm,h+1) =

√√√√√
2−

√√√√
2 +

√
2 + · · ·+

√
2±

√
2± · · · ±

√
2

for each n ≥ m + 2, h ∈ N such that h ∈ [0, 2m − 1]. This is a result to put in evidence and
to generalize in future researches, for example following interesting insights suggested by paper
[202], where the authors defined the set S2 of all continued radicals of the form

a0

√
2 + a1

√
2 + a2

√
2 + a3

√
2 + . . .

(with a0 = 1, ak ∈ {−1, 1} for k = 0, 1, . . . , n − 1) and investigated some of its properties by
assuming that the limit of the sequence of radicals exists.
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