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Obesity is a public health concern affecting both genders at all ages around the world (1). The 
worldwide prevalence of obesity is rapidly increasing and has nearly doubled between 1980 and 
2016 (2). Consequently, it places a large financial burden on the economy due to the increased 
morbidity and mortality, as well as the reduced quality of life and development of chronic diseases 
(3). Obesity is typically characterized by excessive amounts of the hormone leptin, a cytokine-like 
molecule produced in white adipose tissue (WAT) that is secreted into the systemic circulation 
(4). The circulating levels of leptin are proportional to the amount of fat and function as the 
 afferent signal in a negative feedback loop that seeks to maintain body fat in a very narrow range 
of variation (5). Leptin has a central role in body weight homeostasis due to its inhibition of food 
intake inhibition and stimulation of energy expenditure. The effect of leptin on body weight is 
attributed to its action in a specific brain region, the hypothalamus. Hence, leptin is released by 
adipocytes in proportion to the size of fat depots, enters the circulation, and reaches the central 
nervous system by crossing the blood-brain barrier (BBB) through receptor-mediated endocytosis 
(6) in which it acts mainly through the arcuate nucleus of the hypothalamus to mediate most of its 
actions (7). Specifically, leptin modulates the activity of two types of neurons to inhibit appetite, 
through production of anorexigenic peptides by the pro-opiomelanocortin (POMC) neurons (8) 
and suppression of the orexigenic agouti-related protein (AgRP) neurons (9). Besides acting on 
the hypothalamus to suppress appetite, leptin also induces lipolysis in WAT and thermogenesis in 
brown adipose tissue (BAT) and browning of WAT, via the activation of the sympathetic nervous 
system (SNS) (10). However, in most obese subjects, despite its high serum levels, leptin fails to 
perform its physiological functions and consequently fails to reduce weight (11, 12). This effect has 
been coined as leptin resistance.

The concept of leptin resistance is used to define states where hyperleptinemia is combined to 
lack of response to the hormone, with consequent maintenance of body weight excess and increased 
food consumption (13). Nevertheless, it has been described that the effect of leptin treatment on 
the control of body weight through the regulation of both food intake and energy expenditure is 
differently exerted in lean and obese humans, suggesting different sensitivity to the hormone (14). 
Although the mechanisms behind the development of leptin resistance are still unclear, several 
models have been proposed. As the hypothalamus mediates the anti-obesity actions of leptin, one 
of the models proposed a decrease in leptin transport across the BBB (15). In addition, a more 
recent study has shown that BBB impairment can also be attributed to higher plasmatic levels of 
cytokines and fatty acids in obese subjects (16). Another proposed mechanism is the disruption of 
leptin signal transduction as several proteins are able to inhibit the signaling from cytokine receptors 
(17, 18). In this context, suppressor of cytokine signaling 3 (SOCS3) seems to be a key protein 
in central leptin resistance because its loss of function in the hypothalamus confers protection 
to high-fat diet (HFD)-induced obesity (19). Other studies have also demonstrated that HFD 
induces SOCS3 expression by leptin in POMC and AgRP neurons (20, 21). More recently, increased 
endoplasmic reticulum stress was also suggested as a mediator of the obesity-associated central 
leptin resistance (22). Interestingly, hypothalamic inflammation is also emerging as a key mechanism 
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for leptin resistance development as it can be responsible for 
structural changes leading to inefficient circuits in food intake 
control (22–24). As an early response to HFD, reactive glial cells 
are able to proliferate and acquire a proinflammatory state even 
within few days before the detection of significant alterations in 
body weight (25). This early inflammatory response is neuro-
protective. However, the following chronic inflammatory state is 
responsible for synaptic alterations in the hypothalamus that are 
connected to the loss of leptin responsiveness (26). Moreover, 
several studies have demonstrated that inflammatory mediators, 
such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), 
and C reactive protein, are elevated in obesity (27–29) and are 
involved in the increase of circulating leptin concentrations 
in rodents and humans, suggesting that these factors may be 
related to hyperleptinemia and leptin resistance onset (30, 31). 
Interestingly, the ablation of IL-1β receptor and TNF-α receptor 
1 in mice protects from obesity induced by HFD (32, 33). On the 
other hand, other studies have already demonstrated that leptin 
is able to induce the secretion of proinflammatory cytokines (34).

But, when it comes to defining leptin resistance, it seems 
that our understanding of the involvement of hyperleptinemia 
in the development of impaired satiety is far more understood 
than that which is responsible for the loss of the lipolytic action 
of leptin. So, besides not so studied, a parallel peripheral leptin 
resistance can occur (35). In fact, elevation of SNS tone in WAT 
and BAT is essential for the dissipation of energy via activation of 
beta-adrenergic receptors post-synapticaly in target organs (36). 
Hence, the induction of lipolysis could be a therapeutic target 
in the context of obesity management, but for that we need to 
understand both how leptin controls the SNS output to WAT 
(37) and BAT (38) and how the decrease in energy expenditure 
observed upon leptin resistance develops, consequently driving 
the progression of obesity into metabolic syndrome.

The definition of metabolic syndrome, for which leptin 
 resistance is one of the major risk factors, highlights the connec-
tion between elevation of metabolic markers (abdominal obe-
sity, high triglyceride, low high-density lipoprotein cholesterol 
blood concentrations, and hyperglycemia) and elevation of risk 
for developing cardiovascular diseases (39). Moreover, obesity 
has been associated with a chronic increase of sympathetic tone, 
which can explain the development of obesity-associated hyper-
tension and other cardiovascular morbidities. These associations 
were based on observation of increased urinary noradrenaline, 
efferent muscle sympathetic nerve activity (MSNA), and 
noradrenaline spillover (global and regional) to the plasma in 
obese subjects (40). In the context of positive energy balance, 
the increase in SNS activity in obese individuals would serve 
the purpose of counteracting adiposity, by increasing energy 
expenditure and preventing weight gain (40). However, such 
increase of SNS tone seems to be differentially distributed 
across organs, such as heart, blood vessel muscle, or various 
fat depots. Indeed, abdominal visceral fat volume positively 
correlates with MSNA, while subcutaneous adipose mass seems 
not to be correlated with MSNA (41). The heart, kidney and 
muscle seem to be the major targets of increased sympathetic 
tone in obesity, linked to the development of hypertension, 

while limited lipolytic responsiveness to SNS-mediated stimuli 
in WAT might explain the impaired ability to use fat stores and 
progression of the disease (42). Hence, there is a need for a more 
complex understanding of how leptin drives SNS activity than 
what we currently have. The activity of SNS has been described 
to be preserved/elevated in other tissues and lost specifically 
in the adipose tissue (both WAT and BAT). As such, leptin 
 resistance could entail catecholamine resistance in the adipose 
tissue (43). Consistent with this idea, recent studies have shown 
that sympathetic neuro-adipose junctions drive local lipolysis in 
the adipose tissue (37). Local gain-of-function of sympathetic 
neuronal activity in the inguinal fat pad drives local lipolysis 
and local reduction of fat mass (37). Conversely, local loss-of-
function of sympathetic neurons in the fat pad abrogates leptin’s 
lipolytic action in a local manner (37).

Taking into account all the aspects referred above, leptin 
resistance may also involve decreased sympathetic local  activity, 
within the adipose organ. In this regard, and before the leptin era, 
George Bray and others proposed the “MONA LISA” hypothesis 
(Most Obesities kNown Are Low In Sympathetic Activity). This 
hypothesis was built up from studies of SNS activity and norepi-
nephrine decay in obese patients and rats (44–46). However, under 
the light of the well-known obesity induced hypertension, which 
is associated with increased sympathetic drive to the vasculature 
and kidney, the MONA LISA hypothesis was later regarded as a 
paradoxical model (47). The conciliation of having low and high 
SNS activity in the same model was difficult to attain at a time 
when the molecular genetics of obesity was giving its first steps. 
The view that a multitude of cells has to respond in the same man-
ner to the same stimulus, such as obesity, assumes that all SNS 
neurons are identical. This type of tabula rasa models precede 
the era of molecular genetics, which paved the way for molecular 
and functional diversity of seemingly alike cells. Indeed, the era 
of molecular genetics has enabled the mechanistic dissection of 
brain circuits, as well as, the immune system in spectacular ways. 
However, the molecular and circuit organization of the SNS, 
which innervates all known organs, is essentially unexplored. A 
molecular neuroanatomical map of the SNS may in turn revive 
the MONA LISA hypothesis. Once we understand the diversity 
of the SNS from a molecular and circuit standpoint, we then may 
be closer to resolving the mistery of leptin resistance.
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