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EFFECT OF ENTINOSTAT ON NK CELL-MEDIATED CYTOTOXICITY 

AGAINST OS CELLS AND OS LUNG METASTSIS 

 

Simin Kiany, MS 

Advisory Professor: Eugenie S. Kleinerman, M.D. 

  

The purpose of this study was to investigate the effect of the HDAC inhibitor 

entinostat on the efficacy of NK cell therapy for OS lung metastasis. The Lung is 

the most common site of OS metastatic spread in OS and pulmonary metastasis 

is the main cause of mortality. We have previously demonstrated that NK cell 

therapy has minimal efficacy against OS metastasis. We wished to determine 

whether we could augment the killing of OS cells in vitro and improve the efficacy 

of NK cell therapy in vivo by adding oral administration of entinostat. We elected 

to use our nude mouse human OS lung metastasis model for this purpose. In vitro, 

entinostat increased NK cell ligands on OS cells (MIC A/B, ULBP1, ULBP2/5/6, 

and CD155) and enhanced the NK cell-mediated cytotoxicity. Entinostat oral 

administration also increased MICA/B expression on lung tumors. Entinostat (≤ 2 

μM) did not have any adverse effect on NK cell viability, receptor expression, or 

function within the 24 h treatment. 

We demonstrated two potential mechanisms by which entinostat enhanced 

expression of MICA and MICB. Our data showed that entinostat increased the 

acetylation of histone 4 on the MICA and MICB gene promoters which enhanced 

MICA and MICB gene transcription. We also showed that entinostat decreased the 



 

vi 
 

expression of mir-20a, mir-93, and mir-106b, microRNAs that up-regulate both 

MICA and MICB. 

Although our findings showed that entinostat augmented NK cell-mediated 

cytotoxicity against OS cells in vitro, the in vivo studies failed to show enhanced 

efficacy of the combination therapy. This may be explained by our finding that while 

NK cells infiltrated into the lungs and were at the tumor periphery, we were unable 

to detect the presence of NK cells inside lung tumors. This suggests that adding a 

cytokine such as IL-2 and IL-21 may enhance the NK cells trafficking into the lung 

nodules and improve the NK cell therapy efficacy. Entinostat up-regulated the 

immune inhibitory molecule PD-L1 on OS cells. Therefore, blocking PD/PDL1 

interaction by PD-L1 monoclonal antibody may increase the anti-tumor effect of 

entinostat+ NK cells. Further investigations are necessary to define the specific 

mechanism of resistance. 
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Osteosarcoma 

Osteosarcoma (OS) is the most common primary bone tumor that originates 

from transformed mesenchymal stem cells. OS occurs in both children and adults 

with two peaks of incidence, one at the age of 10-14 years, and the second at age 

of 65 and older. The survival rate of OS patients is inversely correlated with their 

age and older patients have a worse prognosis (1). Based on the National Cancer 

Institute SEER report, the incidence of OS is more frequent in the African American 

and Hispanic population than in the white population. Although OS can be 

diagnosed in any bone, the most common sites of occurrence are the femur (42%), 

the tibia (19%), and the humerus (10%) bones. OS usually initiates in the medullary 

cavity of long bones and then spreads to the cortex. At the time of diagnosis, 80% 

of the cases are localized in one bone and about 20% of newly diagnosed patients 

present with the lung metastasis. Lung is the most common site of metastasis and 

the main cause of mortality. Bone is known to be the second most common site 

for metastasis while metastasis to other organs is very rare (2).  

The current treatments for OS consists of neoadjuvant chemotherapy 

followed by surgical resection of tumor and then adjuvant chemotherapy post-

operatively. The advantage of neoadjuvant chemotherapy is tumor burden 

reduction, and elimination of lung micrometastasis. The standard combinational 

chemotherapy for OS include treatment with cisplatin, doxorubicin, high-dose 

methotrexate with leukovorin rescue, and ifosfamide. Although there has been 

remarkable improvement in the prognosis of patients with primary OS over the past 

30 years, patients with local relapse or those that develop metastasis following 
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therapy experience significantly lower survival rates. Current treatments have 

enhanced the 5-year survival rate of patients with non-metastatic OS to 70%; 

however, for those who present with pulmonary metastasis, the 5-year survival 

rate is less than 20% (3-5). New therapeutic modalities are needed to combat OS 

especially for the disease at the metastatic stage which is resistant to standard 

treatments such as chemotherapy and radiation. 

 

Immunotherapy in osteosarcoma 

 Poor survival rates in patients with OS pulmonary metastasis highlights the 

necessity for development of new therapeutic approaches, including 

immunotherapies. The immune system has a critical role in eliminating cancer, 

thus any approach to up-regulate immunity against cancer may have a significant 

impact on OS treatment (6). Current immunotherapy treatments available for 

cancer can be classified into 6 broad categories:  

1- Adoptive immunotherapy:   

Adoptive immunotherapy refers to infusion of allogeneic or autologous 

immune cells (T- or NK-cell) or antibodies in order to boost anticancer immune 

response (7). Chimeric antigen receptor (CAR) T‑cells that have genetically 

modified T cell receptors are considered as a promising cellular immunotherapy 

for cancer. In brief patients T cells are removed and genetically modified with the 

variable regions of antibodies specific to the targeted antigen on tumor cells and 

re-introduced into the patient. Thus these specifically re-directed T cells will kill 

antigen bearing tumor targets (8). Several clinical trials targeting sarcoma are 
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underway. Two phase I trials targeting the tumor antigen NY-ESO-1 on metastatic 

and recurrent synovial sarcoma in children and adults (NCT01343043), or on 

advanced NY-ESO-1-expressing sarcomas in patient receiving radiation 

(NCT02319824) with CAR T-cells therapy are underway.  

It has been shown that IL-11Rα is overexpressed on OS and in vivo studies 

showed that IL-11Rα-CAR T cell therapy resulted in regression of OS pulmonary 

metastasis (9). Human epidermal growth factor receptor 2 (HER2)-specific CAR T 

cells resulted in tumor reduction in a mice model established with OS lung 

metastasis (10). Adoptive immunotherapy using NK cells is considered as another 

emerging immunotherapeutic modality for cancer which is a major focus of this 

dissertation. 

2. Therapeutic vaccines:  

Therapeutic cancer vaccines trigger immune system to attack cancer cells 

expressing tumor associated antigens. Vigil formerly known as FANG vaccine, 

which expresses  targeted antigen and GM-CSF, for patients with metastatic Ewing 

sarcoma (NCT02511132) is in a phase II clinical trial; CMB305 vaccine is 

developed for NY-ESO-1+  tumors for patients with advanced disease is in a phase 

I trial (NCT02387125); DSP-7888 vaccine targeting WT1+ cancers including 

sarcoma (NCT02498665), and dendritic cell vaccine for adults and children with 

sarcoma (NCT01803152A) are in phase I trials.  

3. Checkpoint inhibitors/immune modulators 

https://clinicaltrials.gov/ct2/show/NCT02511132
https://clinicaltrials.gov/ct2/show/NCT02387125
https://clinicaltrials.gov/ct2/show/NCT02498665
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Checkpoint inhibitors are drugs or monoclonal antibodies used to block the 

inhibitory receptor/ ligand to enhance the immune response otherwise they are 

exhausted or energetic, e.g. blocking immune inhibitory molecules PD-1, PD-L1, 

and CTLA4. Several antibodies blocking these molecules (check-point inhibitors) 

are under evaluation in clinical trials (11). 

Immunomodulation refers to taking advantage of immunomodulatory 

agents such as cytokines to augment immunity against tumor cells nonspecifically 

by activating innate immunity (mostly NK cells, monocytes, and macrophages). An 

example of a promising immunomodulatory agent for OS treatment is Liposome-

encapsulated Muramyl Tripeptide-Phosphatidyl Ethanolamine (L-MTP-PE). The 

mechanism underlying the use of L‑MTP‑PE is that monocytes and macrophages 

uptake the liposome-encapsulated MTP-PE and become activated and release 

pro-inflammatory cytokines e.g. IL‑1β, IL-6, and tumor necrosis factor-α (TNF-α) 

in the tumor microenvironment (12, 13). In relapsed OS patients, L-MTP-PE alone 

or in combination with ifosfamide significantly increased the disease-free survival 

rate (14). Adding L-MTP-PE to the standard chemotherapy resulted in a 29% 

decreased mortality rate in newly diagnosed OS (15).  

Interleukin-12 (IL-12), the key inducer of cell-mediated immunity, has also 

been studied as an immuno-stimulatory agent for OS. Aerosolized delivery of 

polyethylenimine (PEI) carrying the murine IL-12 gene (PEI: IL-12) to the lung of 

mice with established OS lung micro metastasis demonstrated therapeutic 

potential and dramatically reduced the number of lung metastases (16, 17). 
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Aerosolized PEI: IL-12 also significantly increased the therapeutic effect of 

ifosfamide for OS pulmonary metastases (18). 

4. Oncolytic virus therapy 

Oncolytic viruses selectively kill tumor cells by replicating inside the cell 

whereas normal cells are resistant to this mechanism.  A phase I/II trial of Pexa-

Vec (JX-594), a virus engineered to lyse cancer cells and induce GM-CSF-driven 

tumor immunity, for patients with soft tissue sarcoma (NCT02630368) is ongoing.  

5. Adjuvant immunotherapies 

Adjuvants are substances that are used to boost immune response either 

alone or in combination with other immunotherapies. Adjuvants can be either 

stimulating or blocking antagonist ligands. For instance, Poly-ICLC (Hiltonol), a 

Toll-like receptor 3 agonists is used as an adjuvant for several cancers including 

sarcoma (NCT02423863) 

6. Monoclonal antibodies 

Monoclonal antibody-based treatment of immunotherapy for cancer has 

been established as one of the most successful therapeutic strategies for both 

blood malignancies and solid tumors for the past 20 years.  Monoclonal antibodies 

targeting CD56-expressing tumors, including synovial sarcoma, 

rhabdomyosarcoma (NCT02452554), GD2 antigen on neuroblastoma and 

recurrent osteosarcoma (NCT02502786, NCT02484443), gpNMB antigen 

https://clinicaltrials.gov/ct2/show/NCT02423863
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overexpressed by recurrent osteosarcoma (NCT02487979), RANK ligand, and in 

children with osteosarcoma (NCT02470091) are in phase II clinical trials. 

 

Natural killer cell biology and function 

NK cells are a type of lymphocyte that play a major role in the innate immune 

system against virus-infected and tumor cells (19). NK cell had initially been 

identified in 1975 due to their killing activity against mouse leukemia cells (20). NK 

cells develop from common lymphoid progenitor cells (CLPs) in bone marrow; 

however, the precursors of NK cells are not fully characterized in humans.  

Developed NK cells are distributed in lymphoid as well as non-lymphoid organs 

i.e. BM, spleen, peripheral blood, lymph nodes and lung and liver (21).  NK cells 

represent 10– 15% of peripheral lymphocytes and are identified by the basic 

immunophenotype as CD56+ CD3- cells.  

 In contrast to T cells, NK cells recognize their target cells without needing 

antigen-specific receptors. Indeed, they become activated by the signals 

transduced through a group of activating and inhibitory cell surface receptors. The 

net balance between activating and inhibitory signals define the NK cell fate. When 

the activating signals exceed the inhibitory signals, NK cells become activated 

(22). Among activating receptors, natural killer group 2D (NKG2D) is the most well-

characterized and effective receptor. NKG2D interacts with its ligands expressed 

on target cells, including UL-16-binding proteins (ULBPs) 1–6 and  the  major 

histocompatibility complex class I (MHC-I) polypeptide-related sequence (MIC) A 
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and B and. Some other NK cell activating receptors include the natural cytotoxicity 

receptors (NCRs) NKp30, NKp44, and NKp46 and DNAX accessory molecule-1 

(DNAM-1). The respective ligands for NCRs are still unknown; however, it has 

been shown that NK cells recognize their target cells at least in part through these 

ligands. The ligands for DNAM-1, Nectin-2 (CD112) and poliovirus receptor (PVR, 

CD155) are vastly expressed on several tumors, including sarcomas. Killer cell 

immunoglobulin-like receptors (KIRs) and the CD94–NKG2A receptor are known 

as NK cell inhibitory receptors that bind to the classic and non-classic human 

leukocyte antigen (HLA) class I molecules (23-26).  

NK cells kill tumor cells either by secreting cytotoxic granule or by inducing 

apoptosis through its death-inducing receptors. To induce its cytotoxic function, 

NK cell needs to contact its target cell through an immunological synapse in which 

several receptors, signaling molecules and organelles are involved. This ensures 

specific targeting of the cytolytic process to a single cell within a tissue without 

adjacent cells being affected  (27). Releasing cytotoxic granules (perforin and 

granzymes) in the immunological synapse is considered as the most effective and 

fastest way of NK cell killing function (28). NK cells may also induce apoptosis in 

tumor cells by death-inducing Fas ligand (CD178), tumor-necrosis factor-related 

apoptosis-inducing ligand (TRAIL), and TNF. These ligands bind to their receptors 

(FAS and TRAIL receptor) on tumor cells and induce tumor-cell apoptosis (29). NK 

cell also secrets various cytokines such as IFN-γ which promotes antiangiogenic 

factors in tumors, increases NK cell cytotoxicity, and stimulates adaptive anti-

cancer T cells (30). 
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Natural killer cells and cancer immunotherapy 

Adoptive transfer of activated NK cells in the autologous and allogeneic 

setting has emerged as an effective immunotherapeutic strategy for cancer (31). 

Although haploidentical hematopoietic stem cell transplant has been effective for 

clinical benefit of NK cells, growing evidence suggests NK cell activity against 

carcinomas and sarcomas (32).  

Unlike T cells, NK cells have antigen-independent cytolytic activity against 

tumor cells, thus allogenic NK cells can be infused with a decreased risk of graft-

versus-host disease (GVHD) in the recipient (33). Allogeneic ex vivo expanded NK 

cells from healthy donors are also beneficial for cancer patients with nonfunctional 

NK cells (34). Moreover, allogenic NK cell therapy can be even more effective 

when there is a mismatch between KIR on donor NK cells and the KIR-ligand on 

recipient tumor cells due to the absence of NK cell inhibitory signal (35). In fact, 

enhanced NK cell tumor cytotoxicity owing to incompatibility between KIR and KIR-

ligand was the original rational for the improvement of allogeneic NK cell therapy. 

Allogenic NK cells can be transferred either in a hematopoietic cell transplantation 

(HCT) setting or as an adoptive immunotherapy. NK cells can be purified and 

expanded from healthy donor lymphapheresis products, umbilical cord blood, or 

embryonic stem cells. Various methods for in vitro NK cell expansion have been 

reported which use a combination of different cytokines and feeder cells. Our 

method for NK cell expansion includes culturing of NK cells on irradiated K562 cell 

expressing membrane-bound IL21 (mbIL21) supplemented with interleukin-2 (IL-
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2). This ethod results in rapid proliferation of NK cells with 21,000 fold expansion 

in 21 days (36).  

The first clinical trial of immune cell therapy was performed by Dr. Steven 

Rosenberg and his group in 1980s by using lymphokine-activated killer (LAK) cells 

and IL-2 in patient with metastatic melanoma (37, 38). Autologous PBMCs were 

incubated with IL-2 to induce LAK cells. The feasibility and safety of allogenic NK 

cell therapy was first shown by Miller and his colleagues in patients with poor 

prognosis acute myeloid leukemia (AML). The haploidentical NK cells therapy 

followed by subcutaneous IL-2 infusion daily for 2 weeks resulted in complete 

remission in 5 patients out of 19 (31).  Success in allogenic NK cell therapy in 

patients with AML was the beginning of many clinical trials to investigate the safety 

and efficacy of this cellular therapy for cancers, most of them in hematologic 

malignancies (33, 39). However, it has been reported that adoptively transferred 

allogeneic NK cells may have a therapeutic potential in solid tumors as well (40, 

41).  

Investigations suggest that NK cells are involved in OS prevention and 

prognosis. A study of 44 children with OS showed that they had fewer numbers of 

peripheral NK cells compare to the control group, supporting the role of NK cell in 

preventing OS (42). OS patients who had early lymphocyte recovery after 

chemotherapy showed a better prognosis than patients with late 

lymphocyte recovery (43). Moreover, Buddingh and his collogues reported that 

unlike patients with other types of cancer, NK cell function was normal in 
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osteosarcoma patients and was able to lyse tumor cells, suggesting that NK cell 

therapy may be beneficial for patients with OS (44).  

Studies have shown that Osteosarcoma cells are sensitive to NK cell-

mediated cytotoxicity. For example Duck Cho et al., reported that human OS cell 

lines are killed by activated NK cells (32). Furthermore, human OS primary cell 

lines (either from primary OS or from lung metastasis) were susceptible to 

activated NK cell killing due to the NKG2D-NKG2DL interaction (45). This study 

also demonstrated that in a xenograft orthotopic OS model (NSG mouse) NK cell 

therapy followed by IL-2 administration (10,000 IU IP injection/mouse) for 5 days, 

resulted in significant primary tumor regression, no lung metastases, and an 

increased survival rate. In our lab we also have shown that aerosol IL-2 combined 

with NK cell therapy, significantly augments NK efficacy against OS lung 

metastasis. Nude mouse model injected with human LM7cells i.v. which resulted 

in the formation of metastasis in the lung. Although expanded human NK cell could 

decrease the tumor burden in the lung, adding aerosolized IL-2 to the treatment 

enhanced NK cell efficacy dramatically. Aerosolized IL-2 increased the number of 

infused NK cells in the lung and in the metastatic tumor, but not in the other organs.  

Moreover, NK cell therapy with aerosolized IL-2 improved the overall survival of 

mice with established OS pulmonary metastasis (46, 47).  

A phase I study of NK cell infusion after hematopoietic stem cell 

transplantation in patients with solid tumors (including OS) is ongoing 

(NCT01287104). Furthermore, infusion of activated NK cell line NK-92 in patients 

with advanced OS has been completed; however, the results show that the 
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treatment was not clinically effective (48). Therefore, new approaches to augment 

the efficacy of NK cell therapy for cancer treatment are necessary.  

 

Histone deacetylase (HDAC) inhibitors 

Epigenetic modifications such as DNA methylation and acetylation leads to 

chromatin remodeling, altered gene expression and cellular phenotype. Genetic 

defects in proteins regulating epigenetics results in loss or gain function and these 

epigenetic aberrations leads to onset and progression of human disease (49).  

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are 

responsible for histone modifications. HAT stimulates gene transcription by adding 

acetyl group to histones and unfolding the chromatin which in turn enables access 

for transcriptional machinery to chromatin. While, HDAC remove the acetyl group 

from histones and results in condense chromatin and less gene expression. In 

human 18 HDACs have been identified and classified in four classes. Class I 

includes HDAC 1, 2, 3, and 8; Class II includes HDAC 4, 5, 6, 7, 9, and 10; Class 

III includes sirtuins; Class IV includes HDAC 11. Abnormal function of HDACs is 

often associated with tumorigenesis and poor prognosis in cancer (50).  Therefore, 

HDACs have become promising therapeutic targets in cancer and other immune 

related diseases (51). Several HDAC inhibitors having various target specificity 

and pharmacokinetics have been synthesized (52) and many of them are in clinical 

trials for treatment of malignancies. These inhibitors induce senescence, 

apoptosis, growth arrest, and differentiation of cancer cells. Studies shows that 

HDAC inhibitors are selectively cytotoxic to tumor cells while normal cells appear 
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to be resistant (53). Moreover HDAC inhibitors involve in chromatin remodeling by 

allowing access for transcriptional machinery to chromatin resulting in controlled  

gene expression, e.g. NK cell related genes NKG2D ligands, killer cell 

immunoglobulin-like receptor, and 11 Ly49a (54, 55).  HDAC inhibitors belong to 

4 structural classes: benzamide, hydroxamic acid, cyclic peptides or short chain 

fatty acid. Entinostat (MS-275) belongs to the benzamide group and known to be 

a narrow-spectrum HDACi which affect HDAC class I with almost no effect on 

HDAC 8. Entinostat is in clinical trial for treatment of both solid and hematological 

malignancies (56). 

Though HDAC inhibitors exhibited anticancer activity accumulating 

evidence suggests that enhanced and efficient anti-tumor activity is achieved by 

combination with other drugs or adaptive immunotherapy i.e NK cells.  Studies 

have shown that HDAC inhibitors play roles as immune modulators resulting in 

enhanced recognition of tumor cells by immune cells (57). Cytotoxicity of natural 

killer cells correlates with the interaction of their receptors (e.g NKG2D) with the 

ligands (e.g., MICA and MICB) on target cells. Benzamide containing HDAC 

inhibitor entinostat enhances NK cell- mediated cytotoxicity against cancer cells by 

up-regulation of both NKG2D on NK cells and corresponding ligands on tumor (58). 

Further, HDAC inhibitors, including entinostat, increased the susceptibility of 

Ewing sarcoma cells for NKG2D-dependent cytotoxicity by NK cells (59). 

Schmudde et.al showed that the HDAC inhibitors SAHA, sodium butyrate, and 

entinostat treatment increased the susceptibility of prostate carcinoma and 

medulloblastoma cell lines for NK killing using the same mechanism (60). These 
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results are also in accordance with published data concluding that HDAC inhibitors 

increase the susceptibility of tumor cells to NK cell-mediated cytotoxicity by 

increasing the expression of MICA/B (61-63). The main focus of this thesis is 

investigating the role of entinostat (MS-275) in enhancing NK cell-mediated killing 

by upregulating NKG2D ligands on osteosarcoma tumor model as a combination 

therapy. 

 

MicroRNA biogenesis and function 

 

MicroRNAs (miRNAs) are classified as a large family of small, non-coding, 

and single-stranded RNAs. They consist of 21 to 25 nucleotides and negatively 

regulate gene expression at the post transcriptional level. The biogenesis of a 

miRNA happens by a series of processing events (64).  The miRNA formation 

starts with the genome transcription by RNA polymerase II which results in a long 

Pri-miRNA precursor (pri-miRNA) generation.  Later, the nuclear Drosha5 – 

DGCR86 complex (RNase III Drosha) cleaves pri-miRNA into a 60–70 nt miRNA 

precursor (pre-miRNAs) which is then transported to the cytoplasm by the protein 

exportin-5 (61, 65). In the cytoplasm the pre-miRNA will be processed to a mature 

miRNA by RNase III Dicer (66, 67). The mature miRNA is then incorporated into 

the RNA-inducing silencing complex (RISC) and binds to 3’ untranslated region 

(3’-UTR) of the targeted mRNA which induces gene silencing by inhibiting of 

mRNA translation or by promoting mRNA degradation (68). 
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MiRNAs play an important role in the control of diverse biological processes 

such as cell proliferation, differentiation, and death as well as the development and 

differentiation of hematopoietic and immune cells (69). In cancer, expression of 

specific miRNAs has been reported to be abnormal. Increasing evidence shows 

that miRNAs play a crucial role in cancer initiation and progression, by controlling 

tumor cell proliferation, differentiation, invasion, metastasis formation, and 

apoptosis (70-72). 

Stern-Ginossar and his colleagues introduced a group of miRNAs (miR-

520d, miR-373, miR-372, miR-106b, miR-93, and miR-20a) that suppress MICA 

and MICB expression by targeting MICA and MICB mRNA 3’ UTR sites (73). 

Knowing that many of these miRNAs are up-regulated in various tumors and play 

a role in tumorigenesis (72, 74-76), they suggested that the overexpression of 

relevant miRNAs provide a way for tumor cells to escape from immune cell 

recognition. Overexpression of these miRNAs suppress MICA and MICB 

expression in tumor cells and prevent them from being recognized by NK cells, 

CD8+ T cells and γδ T cells that express NKG2D. 
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Aim of the study 

Our previous studies demonstrated that NK cell therapy has minimal 

efficacy against OS metastasis. Considering the critical need for a new therapeutic 

approaches for metastatic OS we aim to determine whether combining an HDAC 

inhibitor entinostat with NK cells would augment the efficacy of NK cell therapy 

against OS lung metastasis. Effect of entinostat on NK cell function investigated 

both in vitro and in our nude mouse human OS lung metastasis model. We also 

investigated the mechanism by which entinostat up-regulated NK cell ligands on 

OS cells. We hypothesized that combining entinostat with NK cell therapy 

would augment cytotoxic effect of NK cells against osteosarcoma lung 

metastasis by increasing the ligands for activating NK cell receptors on OS 

cells.  
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RESULTS 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Entinostat up-regulates ligands for activating NK cell receptors on 

osteosarcoma cells and makes them more susceptible to NK cell-mediated 

cytotoxicity  
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RATIONAL  

 Our research group had previously shown that NK cell therapy in 

combination with aerosol IL-2, significantly decreased tumor burden of human OS 

lung metastasis in mice. However, this therapy failed to eliminate tumor completely 

from the lungs (46, 47). It is well known that the level of NK cell-mediated 

cytotoxicity against tumor cells is highly dependent on the number of NK cell 

ligands on their surface and the interaction with the corresponding receptors on 

NK cells.  In order to increase the therapeutic efficacy of NK cell for OS pulmonary 

metastasis, we decided to enhance NK cell ligand expression on OS cells and for 

that purpose we investigated combining the HDAC inhibitor entinostat with NK cell 

therapy. We hypothesized that entinostat would sensitize tumor cells to the 

cytotoxic effects of NK cells, by increasing cell surface ligand expression specific 

to the NK cell activating receptors. A similar effect of HDAC inhibitors has been 

reported in other studies. For example, Schmudde et.al, showed that HDAC 

inhibitors SAHA, sodium butyrate, and entinostat treatment increased the 

susceptibility of prostate carcinoma and medulloblastoma cell lines for NK killing 

using the same mechanism (60). Ewing sarcoma cells treated with HDAC inhibitors 

including entinostat had enhanced susceptibility NKG2D-dependent cytotoxicity by 

NK cells (59). 

To determine whether entinostat would increase NK cell ligands on OS 

tumor cells in vitro, we treated OS cell lines with entinostat and evaluated surface 

ligand expression by flow cytometry. We also assessed mRNA and protein levels 

of NK cell ligands by quantitative real-time PCR and western blot respectively. To 
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examine whether entinostat enhances OS cell sensitivity to NK cell mediated 

cytotoxicity, we used the calcein release assay. Using blocking antibodies against 

NK cell receptors, we showed that NK cell-mediated cytotoxicity against OS cell is 

dependent on receptor and ligand interaction.  

 

RESULTS 

Entinostat up-regulates ligands for activating NK cell receptors on OS cells  

To determine whether entinostat would increase the expression of ligands 

specific for activating NK cell receptors on OS cells, various human OS cell lines 

(LM7, CCH-OS-D, CCH-OS-O, and KRIB) were treated with 2 µM entinostat (≤ 

IC50) for 48 hours and analyzed by flow cytometry. Entinostat treatment 

significantly up-regulated ligands for NK cell–activating receptors but did not affect 

the ligand for the NK cell inhibitory KIR receptor (HLA-ABC). The up-regulated 

ligands included CD155 (except for CCH-OS-D and KRIB), MIC A/B, ULBP1, and 

ULBP2/5/6 (figure 1). 
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Figure 1. The effect of entinostat on the expression of NK cell ligands on 
OS cells. Human OS cells LM7 (A), CCHOSD (B), CCHOSO (C), and KRIB cell 
(D), were incubated with 2 μM entinostat for 48 hours and NK ligand expression 
analyzed by flow cytometry. The level of receptor ligand expression is indicated 

as a mean fluorescence intensity (MFI).  P value < 0.05 are marked with *. All 

experiments were repeated three times, bars show mean +/- S.E.M. 

 

MICA and MICB are major ligands of NKG2D, and the NKG2D–MICA/B 

interaction plays a major role in NK cell activation. Therefore, we investigated the 

effect of entinostat on MICA/B mRNA and protein expression as well.  LM7 cells 

were incubated with 0, 0.5, 1.0, or 2 μM entinostat for 48 hours and total RNA was 

extracted using Trizol reagent and analyzed by quantitative real-time PCR (qRT-

PCR) using primers specific for MICA and MICB. Protein levels of MICA/B from 

whole cell lysate were analyzed by western blot. LM7 cells treated with entinostat 

showed increased mRNA (figure 2A) and protein expression (Figure 2B) levels for 

MICA and MICB in a dose dependent manner. 
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Figure 2. The effect of entinostat on MICA and MICB mRNA and protein 
expression in LM7 cells. (A) LM7 cells were incubated with 0, 0.5, 1.0, or 2 μM 
entinostat for 48 hours. RNA was extracted and MICA and MICB mRNAs were 
measured by quantitative real-time PCR using specific primers for MICA and 
MICB. (B) MICA and MICB protein levels determined by western blot from LM7 
whole cell lysate treated with increasing doses of entinostat 0.5, 1.0, or 2 μM. 
Untreated cells used as control. Bars show mean +/- S.E.M, n=3. 

 

 

Next, we determined the stable expression of the increased ligands for NK 

cell receptors on OS cells in response to entinostat treatment. LM7 and CCH-OS-

D cells were incubated with 2 μM entinostat, and fresh medium was added after 

48 hours. Cells were harvested at the end of 48 h of treatment, at 24, 48, and 72 

h after replacing the media. Cells were examined for MICA/B, ULBP1, and 

ULBP2/5/6 expression by flow cytometry. As mentioned before, treatment with 2 

µM entinostat for 48 hours significantly increased MICA/B, ULBP1, and ULBP2/5/6 

expression on OS cells (figure 1). The findings from this experiment demonstrated 

that the expression of up-regulated ligands on OS cells were stable for more than 

24 h after the drug was removed from the culture media, suggesting that for the in 

vivo study there can be a window of time between drug administration and the 

initiation of NK cell therapy since the up-regulated ligands are stable for at least 24 

h. 
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 ULBP1 ULBP2/5/6 MIC A/B 

 MFI MFI MFI 

 CCHOSD LM7 CCHOSD LM7 CCHOSD LM7 

Untreated 16.3 7.9 43.0 77.0 36.9 151.0 

2 uM 
entinostat for 

48 h 

29.6 29 85.8 156 61.5 335 

24 h after 
drug 

withdrawal 

30.7 24 86.0 150 72.6 306 

48 h after 
drug 

withdrawal 

26.7 16 77.7 86 67.4 273 

72 h after 
drug 

withdrawal 

27.1 11.2 74.3 67 70.3 270 

 

Table 1.  Up-regulated NK cell ligands on OS cells by entinostat are stable 
for more than 24 h. LM7 and CCH-OS-D cells were treated with 2 µM entinostat 
for 48 hours followed by replacing the conditioned media with fresh media. Cells 
were harvested at the end of 48 hours treatment and 24, 48, and 72 h after 
replacing the media and analyzed by flow cytometry with antibodies specific for 
MICA/B, ULBP1, and ULBP2/5/6. 

 

 Entinostat increases OS cell susceptibility to NK cell-mediated cytotoxicity 

 

Having shown the stable expression of ligands for NK cell receptors on OS 

cells in response to entinostat treatment, we next hypothesized that the increased 

expression of ligands on OS cells would enhance NK-cell mediated cytotoxicity. 

The underlying rationale was that increased expression of NK cell ligands on tumor 

cells would make them more susceptible to NK cell-mediated cytotoxicity. To prove 

our hypothesis, control and entinostat-treated LM7 cells were incubated with 1 µM 

calcein-AM at 37οC for 1 hour and then were co-cultured with ex vivo activated NK 

cells in  various  effector-to-target cell ratios (0.3, 0.6, and 1.3) for 4 hours. The 
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amount of lysis was quantified using a fluorescence plate reader at excitation and 

emission wavelengths of 485 nm and 530 nm, respectively. Our findings revealed 

that OS cells treated with entinostat were more sensitive to NK cells and were 

killed more effectively than control cells (Figure 3A and 3B).  

 

 

       

A 
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Figure 3. The effect of entinostat on OS cell susceptibility to NK cell-
mediated cytotoxicity. Entinostat  treated and control OS cells (A) LM7 (B) 
CCHOSD were labeled with 1 µM calcein-AM at 37οC for  an hour and  washed 
with RPMI media and co-cultured with ex vivo expanded NK cells at  effector to 
target cell (E:T)  ratio of 0.3, 0.6, and 1.3 for 4 hours. P value < 0.05. Data pooled 
from three independent experiments. Bars show mean +/- S.E.M. 

 

To demonstrate that NK cells recognize and kill OS cells via NK cell receptor 

and ligand interaction, we blocked NK cell receptors with the use of blocking 

antibodies specific to NKG2D, NKp46, and DNAM receptors and then co-cultured 

them with untreated LM7 or 2 µM entinostat treated LM7 cells for 48 hours. NK 

cells not treated with blocking antibodies were used as control. Our data indicated 

that blocking NK receptors abolished NK cell cytotoxic activity against both 

untreated and treated OS cells (Figure 4A and 4B, respectively), confirming that 

NK cell-mediated cytotoxicity for OS cells is dependent on receptor and ligand 

interactions. 
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Figure 4. NK cell-mediated cytotoxicity against OS cells is dependent on 
receptor and ligand interaction. Untreated LM7 cells or pretreated LM7 cells with 
2 µM entinostat for 48 hours (Fig 4A and 4B, respectively) were used in calcein 
release assay. LM7 cells were labeled with 1 µM calcein-AM at 37οC for 1 hour 
and co-cultured with ex vivo expanded NK cells pre-treated with blocking 
antibodies specific to NK cell receptors for 4 hours at 37οC. NK cells not treated 
with blocking antibodies were used as control. Bars show mean +/- S.E.M, n=3. 
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SUMMARY  

These data support our hypothesis that entinostat enhances the expression 

of ligands for activating NK receptors on OS cells and sensitizes them for NK cell-

mediated cytotoxicity. Entinostat increased MICA/B, ULBP1, and ULBP2/5/6 on 

four human OS cell lines (LM7, CCH-OS-D, CCH-OS-O, and KRIB), making them 

more susceptible to NK cell mediated killing. The increased ligands are stable for 

more than 24 hours after drug removal from the culture media. By blocking NK cell 

receptors, we also demonstrated that NK cells recognized and lysed OS cells 

through interaction between NK cell receptors and their corresponding ligands on 

the OS cells.  
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RESULTS 

 

 

 

 

 

 

Chapter 3 

Entinostat does not affect NK cell viability, receptor expression, or 

cytotoxic function 
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RATIONALE  

Since the final goal of this study was to use combination therapy with NK 

cells along with entinostat for the treatment of OS lung metastasis in a mouse 

model, we needed to determine whether the drug had any adverse effects on NK 

cell viability, receptor expression, and cytotoxic function to ensure that NK cell 

therapeutic efficacy in clearing tumors is not compromised. It has been reported 

that HDAC inhibitors including suberoylanilide hydroxamic acid (SAHA) and 

valproic acid reduced NK cell cytotoxic function against leukemic cells due to their 

inhibitory effects on NK cell activating receptor expression (77). However, based 

on another study, entinostat increased NK cell-mediated cytotoxicity against 

sarcomas by up-regulating both NK cell activating receptors and their ligands on 

tumor cells (58). To evaluate the effect of entinostat on NK cells, we treated ex 

vivo expanded and activated NK cells with various doses of the drug for 24 and 48 

hours and then examined the NK cell viability, receptor expression and cytotoxic 

function.   

 

RESULTS 

Entinostat has no effect on NK cell viability 

To determine whether entinostat has any effect on the viability, NK cells 

were expanded ex vivo for 4 weeks and treated with 0, 0.1, 0.5, 1.0, and 2.0 µM 

entinostat. Cells were collected after 24 and 48 hours and their viability was 
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assessed using Vi-CELL. Our data indicated that neither 24 nor 48-hour treatment 

with various doses of entinostat affected NK cell viability (figure 5). 

  

 

  

 

Figure 5. Entinostat does not affect NK cell viability.  Ex vivo expanded NK 
cells were incubated with various concentrations of entinostat  0, 0.1, 0.5, 1.0, and 
2 µM. Cells were harvested after  24  and 48 hours and NK cell viability was 
assessed by using Vi-CELL. Untreated NK cells were used as control. Data was 
shown as mean +/- S.E.M, n=3. 

 

24 h 
Treatment 
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NK cell receptor expression is not affected by 24 hour treatment with 

entinostat 

To determine whether entinostat had any negative affect on NK cell receptor 

expression, ex vivo expanded NK cells were treated with 0, 0.1, 0.5, 1.0, and 2.0 

µM entinostat for 24 and 48 hours. NK cell receptors NKG2D, NKp30, NKp44, 

NKp46, and DNAM-1 expression was analyzed by flow cytometry.  Though dose 

dependent entinostat treatment for 24 hours did not change NK cell receptor 

expression, after 48 hours higher doses of the drug decreased NK cell receptors 

expression, except for the DNAM-1 (figure 6). These findings suggests that 

entinostat concentration of ≥ 0.5 µM for 48 hours may down-regulate the 

expression of NK cell activating receptors. Thus, for the in vivo study, care has to 

be taken not to administer the drug and NK cells on the same day, but with at least 

24 hours duration between drug and NK cell administration to avoid adverse 

effects on NK cell receptor expression. 
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Figure 6.Treatment with entinostat for 24 hours does not affect NK cell 
receptor expression. Ex vivo expanded NK cells were treated with 0, 0.1, 0.5, 
1.0, and 2.0 µM entinostat for 24 and 48 hours. Cells were stained with antibodies 
specific to NKG2D, NKp30, NKp44, NKp46, and DMAM-1. NK cell receptors 
expressions were analyzed by flow cytometry. The expression levels were shown 

as a mean fluorescence intensity (MFI). P value < 0.05 are marked with *. Bars 

show mean +/- S.E.M, n=3. 

 

Entinostat treatment does not affect the NK cell-mediated cytotoxicity 

against OS cells  

Having shown that entinostat treatment did not alter NK cell receptor 

expression within 24 hours of treatment, we also sought to determine whether 

entinostat had any negative effect on NK cell cytotoxic function. OS cells were  

incubated with 1 µM calcein-AM at 37οC for 1 h. Cells were washed with RPMI 

media and co-cultured with control or entinostat-pretreated NK cells (2 µM for 24 

h) at the effector: target cell ratio of 0, 0.3,0.6,1.3, 2.5,5,10. Plates then were 

incubated at 37οC for 4 h. Following incubation, 100 μL of the supernatant was 

harvested and transferred to a new plate and absorbance was assessed using a 

spectrophotometer. Our results indicated that NK cells pre-treated with entinostat 

had almost the same level of cytotoxicity against both LM7 and CCH-OS-D cells 

compared to the cytotoxicity of untreated NK cells (figure 7), suggesting that 

entinostat does not abrogate NK cell functional activity within 24 hours of 

treatment. 
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Figure 7. Entinostat does not reduce NK cell-mediated cytotoxicity against 
OS cells within 24 h treatment. OS cells were incubated with 1 µM calcein-AM 
at 37οC for 1 hour. Cells were washed with RPMI media and co-cultured with 

pretreated NK cells with entinostat (2 µM for 24 h) at a ratio of 0, 0.3,0.6,1.3, 
2.5,5,10  (effector cell: target cell). Untreated NK cells served as control.  Plates 
then were incubated at 37οC for 4 h. A total of 100 µL of supernatant was 
transferred a new plate. The plate was read at excitation and emission 
wavelengths of 485 nm and 530 nm, respectively. Bars show mean +/- S.E.M, n=3. 
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SUMMARY 

 

Our data support that 48 h treatment with up to 2 µM entinostat is not 

cytotoxic for ex vivo activated NK cells and does not reduce NK cell viability. 

Furthermore, the drug does not decrease NK cell activating receptor expression 

within the 24 h of treatment; however, our finding showed that 48 h treatment 

with ≥ 0.5 µM may affect the NK cell receptor expression. These data suggest 

that for in vivo studies it is optimal to administer the treatments on different days 

to avoid any possible adverse effect of the drug on NK cell function. As we have 

shown, there is stable expression of the up-regulated NK cell ligands on OS cells 

in response to entinostat treatment (Table 1). But the NK cell receptor expression 

is decreased with > 24 h entinostat treatment. Then we decided to have 24 hours 

in between the entinostat treatment and infusion of NK cells to avoid any adverse 

effect on NK cell cytotoxicity. Finally, we have shown that 24 h pretreatment with 

entinostat does not affect the NK cell-mediated cytotoxicity against OS cells 

(Figure 7). 
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RESULTS 

 

 

 

 

 

 

Chapter 4 

Entinostat controls MICA/B expression in OS cells by increasing 

acetylation of histone 4 linked to the MICA and MICB gene promoters. 
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RATIONALE 

We demonstrated previously that entinostat increased the expression of 

ligands for activating NK cell receptors on OS cells (MIC A/B, ULBP1, and 

ULBP2/5/6). Next we wished to investigate the underlying mechanism by which 

entinostat enhances expression of these ligands on OS cells. We decided to focus 

on MICA and MICB, known to be the most important ligands for NKG2D. As an 

HDAC inhibitor, entinostat stimulates gene transcription by adding acetyl group to 

histone and unfolding the chromatin which in turn enables access for 

transcriptional machinery to chromatin (51). We hypothesized that histone 

acetylation by entinostat at MICA and MICB gene promoters leads to increase in 

MICA and MICB gene expression in OS cells. A previous study showed that 

increased acetylation of histones3 (AcH3) binds to the promoters of MICA and 

MICB is correlated with enhanced MICA and MICB expression in a colon 

carcinoma cell line treated with entinostat (58). The histone deacetylase inhibitor 

SAHA has also been shown to enhance MICA/B gene transcription by promoting 

MICA-associated histone acetylation (78). 

To examine our hypothesis we first investigated whether entinostat 

increases total acetylated H3 and H4 in LM7 cells by using western blotting. 

Thereafter, chromatin immunoprecipitation (CHIP) assay was performed to 

compare the level of acetylated histone 3 and histone 4 in untreated and treated 

LM7 cells (2 µM entinostat for 48 hours). 
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RESULTS  

Entinostat increases acetylated H3 and acetylated H4 in OS cells in a dose 

dependent manner. 

We first determined whether acetylation of Histone 3 and 4 is increased in 

LM7 cells treated with entinostat. Lysates of control and LM7 cells pretreated with 

0.5, 1.0, or 2.0 µM entinostat for 48 hours was prepared and acetylated H3 and H4 

protein levels were analyzed by western blotting. Our results showed that 

entinostat enhanced acetylated H3 and acetylated H4 expression in a dose 

dependent manner compared to untreated control cells (Figure 8). 
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Figure 8. Entinostat increases acetylated H3 and acetylated H4 in LM7 in a 
dose dependent manner. LM7 cells were treated with 0, 0.5, 1.0, or 2.0 µM 
entinostat for 48 h. Cells were harvested and proteins were extracted. Western 
blotting was performed using rabbit anti-human acetyl-histone3 or rabbit anti-
human acetyl-histone4 antibodies to detect total acetylated H3 and acetylated H4 
levels, respectively.  

 

Acetylation of histone 4 linked to the MICA and MICB gene promoters 

contributes to up-regulation of MICA/B expression by entinostat. 

We performed the CHIP assay to confirm that one of the mechanism by 

which entinostat up-regulates MICA and MICB gene expressions in OS cell is by 

enhancing MICA- and MICB-associated histone acetylation. LM7 cells were 

treated with 2 µM entinostat for 48 hours and cell lysates were treated with 1% 

formaldehyde to crosslink protein and DNA. Lysates were sonicated to shear 

chromatin to 200-1000 bp in length. Then, chromatins were immunoprecipitated 

by using the following antibodies: anti-acetyl-histone H3, anti-acetyl-histone H4, 

anti-histone H3, anti-histone H4, or control IgG.  MICA and MICB promoter regions 

were amplified by using quantitative real-time PCR. Two different sets of primers 

for MICA or MICB promoters and two different antibodies specific for acetylated 

H3 were used to confirm the accuracy of the results.  After normalizing the readings 

to inputs, the results were presented as a ratio of acetylated histone (H3 or H4) to 

total histone (H3 or H4). The data suggested  that entinostat significantly increased 

acetylated H4 linked to the MICA and MICB promoters, but did not have any 

significant effect on acetylation of H3 (Figure 9). Together, these data suggest that 

increased acetylation of H4 associated with MICA and MICB gene promoters may 

play a role in enhancing MICA and MICB expression induced by entinostat.     
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Figure 9. H4 acetylation associated with MICA and MICB gene promoters 
contributes to up-regulation of MICA/B expression by entinostat in OS cells. 
LM7 cells were treated with 2 µM entinostat for 48 h. Chromatins were 
immunoprecipitated using the following antibodies: anti-acetyl-histone H4, anti-
acetyl-histone H3, anti-histone H4, anti-histone H3, or control IgG.  MICA and 
MICB promoter region were amplified by using quantitative real-time PCR. Two 
different set of primers for MICA or MICB promoters and two different antibodies 
against acetylated H3 were used to confirm the accuracy of the results. Bars show 
mean +/- S.E.M, n=3. 
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SUMMARY 

 

We have shown previously that entinostat increases ligands for NK cell 

receptors on OS cells (figure 1). In this chapter we aimed to explore the underlying 

mechanism of how entinostat upregulates NK cell ligands on OS cells with the 

main focus on NKG2D ligands MICA and MICB.  We investigated whether up-

regulation of MIC A/B expression by entinostat is associated with increased 

histone acetylation of MICA/B gene promoters, using CHIP assay. Our findings 

showed that entinostat increased acetylated H3 and acetylated H4 in LM7 in a 

dose dependent manner. CHIP assay revealed that entinostat enhanced the 

accumulation of acetylated histone 4, but not acetylated histone 3 on chromatin 

linked to both MICA and MICB genes.   
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RESULTS 

 

 

 

 

 

 

 

Chapter 5 

Entinostat controls MICA and MICB expression in osteosarcoma tumor 

cells by down-regulating miR-20a, miR-93, and miR-106b expression. 
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RATIONALE 

Stern-Ginossar et. al., reported that cellular miRNAs including miR-520d, 

miR-373, miR-372, miR-106b, miR-93, and miR-20a control MICA and MICB 

expression by targeting their mRNA 3’ UTR sites (73). They demonstrated that 

miR-20a, miR-93, miR-106b were ubiquitously expressed in all the cell lines that 

they examined (including: 293T, JEG3, DU145, RKO, HFF, and Me1-A1 cells); 

however, miR-372, miR-373, and miR-520d expression was dependent on cell 

type.  Consistent with their results our findings also confirmed no expression of 

miR-372, miR-373, and miR-520d in OS cells. Therefore, we chose to study the 

role of miR-20a, miR-93, and miR-106b in MICA and MICB expression in OS cells.  

miRNAs can inhibit gene expression by binding to the 3’UTR of the targeted 

mRNA resulting in either inhibition of mRNA translation or its degradation. In this 

chapter we also sought to understand the mechanism by which miR-20a, miR-93, 

and miR-106b down-regulate MICA and MIC/B expression in OS cells. 

We have shown in chapter 4, figure 9 that increasing the acetylation of 

histone 4 on chromatin linked to the MICA and MICB gene promoters might be one 

of the mechanism that entinostat uses to up-regulate MICA and MICB expression 

on OS cell surface. In this chapter we further demonstrate another molecular 

mechanism by which entinostat can increase MICA and MICB expression, i.e. 

through down-regulation of miR-20a, miR-93, and miR-106b expression. Similarly, 

a study done by H Yang et.al, indicated that the histone deacetylase inhibitor 

SAHA also up-regulated MICA expression in hepatocellular carcinoma cells (HCC) 

by suppressing miR-20a, miR-93 and miR-106b expression (78).  
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RSULTS 

MiR-20a, miR-93, and miR-106b regulate MICA and MICB expression in OS 

cells.  

The role of miR-20a, miR-93, and miR-106b in regulating MICA and MICB 

expression was examined in OS cell lines. LM7 and KRIB cells were transiently 

transfected with the miR-20a, miR-93, and miR-106b mimics or control miRNA. 

These cell lines were chosen for the study because of high levels of MICA and 

MICB expression on the surface. Overexpression of miRNA in transfected cell lines 

was confirmed by quantitative RT-PCR (figure10A and 10B).  

Cells were harvested 24 and 48 hours after transfection and MICA and MICB 

expression levels were analyzed by flow cytometry. Consistent with the studies 

done by Stern-Ginossar et al., our data showed that these miRNAs down-regulated 

MICA and MICB expression in LM7 and KRIB cells 24 and 48 hours post 

transfection (figure 10C and 10D). These results supported the role of miRNAs i.e 

miR-20a, miR-93, and miR-106b in regulating MICA and MICB expression in OS 

cells.  
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Figure 10. miR-20a, miR-93, and miR-106b down-regulate MICA/B expression 
in OS cells. miR-20a, miR-93, or miR-106b mimics or control miRNA were 
transiently transfected into LM7 and KRIB cell lines that express high levels of 
MICA/B. (A) Overexpression of miRNA in LM7 cells was confirmed by quantitative 
RT-PCR after 24 and 48 hours (B) Overexpression of miRNA in KRIB cell line was 
confirmed by quantitative RT-PCR 6 and 12 hours post-transfection. (C) LM7 and 
(D) KRIB cell lines were analyzed for MICA and MICB expression by flow cytometry 
24 and 48 hours after miRNA transfection. Red lines: cell transfected with miRNA 
mimics; gray lines: cells transfected with control miRNA. Bars show mean +/- 
S.E.M, n=3. 
 
 

Down-regulation of MICA and MICB expression by miR-20a, miR-93, and 

miR-106b is not controlled by MICA and MICB mRNA degradation.  

mirRNAs can induce gene silencing by either inhibition of mRNA translation 

or by promoting mRNA degradation and both mechanisms result in reduced 

protein expression level. We over-expressed miR-20a, miR-93, or miR-106b in 

LM7 cells and measured MICA and MICB mRNA levels. Our results showed no 

significant changes in MICA and MICB mRNA levels in LM7 transfected with miR-

20a, miR-93, or miR-106b (figure 11B-11D). These findings suggest that MICA and 

MICB down-regulation in LM7 by miRNAs may be secondary to the inhibition of 

mRNA translation rather than the degradation of the mRNA.  
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Figure 11. miR-20a, miR-93, and miR-106b decreases MICA and MICB 
expression in OS cell lines but has no effect on total mRNA levels. (A) miR-
20a, miR-93, or miR-106b mimics (orange lines) or control miRNA (blue lines) were 
transiently transfected into LM7.Cells were collected 48 h following transfection 
and were analyzed by flow cytometry for MICA/B expression. (B-D) Total RNA was 
extracted 24, 36, and 48 h following miRNA transfection and MICA and MICB 
mRNA levels were measured by using quantitative RT-PCR. Bars show mean +/- 
S.E.M, n=3. 

 

Entinostat up-regulates MICA and MICB expression by down-regulating miR-

20a, miR-93, and miR-106b in OS cells in vitro and in vivo. 

Having shown previously that entinostat significantly increased the 

expression of MICA/B (chapter 2, figure 1) and that miR-20a, miR-93, and miR-

106b down-regulated MICA/B expression in OS cell lines (chapter 5, figure 10C 

and 10D), next, we hypothesized that entinostat indirectly controls MICA/B 

expression by down-regulating miR-20a, miR-93, and miR-106b in OS cells. To 

test this hypothesis, three OS cell lines LM7, CCH-OS-D, and CCH-OS-O were 

treated with 2 µM entinostat for 48 hours. Quantitative RT-PCR analysis revealed 

that all three miRNAs were significantly decreased in the entinostat treated OS cell 

lines compared to the control samples (figure 12A). We also sought to investigate 

whether entinostat regulates MICA and MICB expression in OS lung metastasis 

by reducing miR-20a, miR-93, and miR-106b using in vivo mouse model. 

Approximately 2 × 106 LM7 cells, a human OS cell line that forms direct metastasis 

in the lung, were injected intravenously into nude mice. After visible nodule 

formation in the lung, the mice were treated with 5 mg/kg entinostat by oral/gavage 

three times a week for 2 weeks. Control mice were treated with DMSO. The mice 

were the euthanized, total RNAs were extracted from lung nodules, and MICA and 
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MICB mRNA levels as well as miRNA expression were evaluated by quantitative 

RT-PCR. Results indicated that 5 mg/kg entinostat significantly increased MICA 

and MICB mRNA levels (figure 12B) and decreased miR-20a, miR-93, and miR-

106b in OS lung metastasis (figure 12C). These in vitro and in vivo results indicate 

that entinostat treatment regulates MICA and MICB expression by down-regulating 

miR-20a, miR-93, and miR-106b expression in OS cells and also in lung 

metastasis.  

 

 

 

 

A 
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Figure 12. Entinostat regulates MICA and MICB expression by down-
regulating miR-20a, miR-93, and miR-106b expression. (A) LM7, CCH-OS-D, 
and CCH-OS-O cell lines were treated with 2 µM entinostat for 48 h. Total RNAs 
were isolated with the use of Trizol reagent. Reverse Transcription was performed 
using TagMan miRNA reverse transcription kit. The resulting cDNA was subjected 
to PCR amplification using primers specific for mir-20a, mir-93, or mir106b. (B, C) 
Mice were injected with 2× 106 LM7 cells intravenously. Following visible nodule 
formation in the lung, mice were treated with 5mg/kg entinostat three times a week 
for two weeks. Control mice received DMSO instead. Thereafter, mRNA was 
extracted from lung nodules and (B) MICA and MICB mRNA levels and (C) miRNA 
expression were evaluated by quantitative RT-PCR. Data shown mean + S.E.M. 
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SUMMARY 

In this chapter we demonstrated that expression of MICA and MICB is regulated 

by miR-20a, miR-93, and miR-106b in OS cells lines. We also showed that miR-

20a, miR-93, and miR-106b down-regulate MICA and MICB expression without 

altering the mRNA levels, suggesting that the effect is through the inhibition of 

MICA and MICB mRNA translation. Our data support the conclusion that entinostat 

increases MICA and MICB expression by down-regulating miR-20a, miR-93, and 

miR-106b.  
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RESULTS 

 

 

 

 

 

 

 

Chapter 6 

NK cell therapy in combination with oral administration of entinostat in 

mice with OS pulmonary metastasis  
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RATIONALE 

In the previous chapters we showed that entinostat up-regulates MICA/B 

expression in OS cells in vitro (figure 1) and in OS lung metastasis in vivo (figure 

12B), and also enhances ULBP2/5/6, and CD155 in OS cell lines in vitro (figure 1). 

Increased expression of NK cell ligands on OS cells should enhance NK cell-

mediated cytotoxicity as we showed in our in vitro experiments. Accordingly, we 

hypothesized that combination therapy using entinostat with NK cells would 

enhance NK cell therapeutic effect in our mouse model with established OS lung 

metastasis.  It has been reported previously in a mouse model 

(NOD.CgRag1tm1MomPrf1tm1Sdz/SzJ) with fibrosarcoma lung metastasis, that 

treatment with NK cells and entinostat significantly lowered tumor burden. (58). 

Further, in a xenograft orthotopic OS model (NSG mouse), mice treated with NK 

cells and IL-2 (10,000 IU IP injection/mouse) had reduced bone damage, lower 

tumor burden in the tibia, and longer survival rates with no lung metastasis when  

compared to control group (45).  

 

RSULTS 

Five mg/kg is the lowest dose of entinostat that significantly increases MICA 

and MICB mRNAs in OS lung metastasis.  

Before initiating our in vivo study with combination NK cells and entinostat 

therapy, we first wished to determine a sub-therapeutic dose of entinostat that can 

significantly increase the expression of NK cell ligands on the OS lung metastasis. 
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Approximately, 2 × 106 LM7 cells were injected via tail vein into nude mice. After 

visible nodule formation in the lungs, the mice were treated with entinostat of 2.5, 

5, or 10 mg/kg by oral/gavage three times a week for 2 weeks (figure 13). Our 

group had previously demonstrated that 20 mg/kg of entinostat has a therapeutic 

effect against OS lung metastasis and inhibits tumor growth (79). Therefore, the 

highest dose of the drug we examined was 10 mg/kg. At the end of the treatment, 

total RNA was extracted from the lung tumors and MICA and MICB mRNA levels 

were evaluated by using quantitative RT-PCR. The results demonstrated that both 

5 and 10 mg/kg entinostat significantly enhanced the MICA and MICB mRNA 

levels; however, 2.5 mg/kg of entinostat did not significantly increase the MICA 

and MICB mRNAs (figure 14). Thus, we chose to use 5 mg/kg entinostat in our 

animal study as the lowest dose that significantly increased MICA and MICB 

ligands in OS lung metastasis. 
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Figure 13. Schematic of mice experimental design to determine sub-
therapeutic dose of entinostat for increasing MICA and MICB mRNA levels. 
Approximately 2× 106 LM7 cells in 0.2 mL of PBS were injected into nude mice 
through the tail vein. Following visible nodule formation in the lung, mice were 
treated with 2.5, 5, 10 mg/kg entinostat by oral/gavage 3 times a week for 2 weeks. 
Mice were sacrificed and total RNA was extracted from lung nodules. MICA and 
MICB mRNA levels were determined by quantitative RT-PCR. 
 

 

 

 

 

 
Figure 14. Determining the lowest dose of entinostat that significantly 
increases MICA and MICB mRNAs in OS lung metastasis. 2× 106 LM7 cells 
suspended in 0.2 mL of PBS was injected into nude mice. Following visible nodule 
formation in the lungs, mice were treated with entinostat concentrations of 2.5, 5, 
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or 10 mg/kg by oral/gavage 3 times a week for 2 weeks. At the end of the treatment 
nodules were removed from the lungs and total RNA was extracted and MICA and 
MICB mRNA levels were determined by quantitative RT-PCR. Data was shown as 
mean + S.E.M, n=5.  
 
 
 
NK cells used for immunotherapy were highly activated and functional.  

Human NK cells were isolated from normal donors’ buffy coats and were 

expanded in vitro for 4 weeks using genetically engineered K562 supplemented 

with 50 IU/ml recombinant human IL-2. K562 cells were used as an artificial 

antigen-presenting cell (aAPC) to propagate NK cells in vitro. The genetically 

engineered K562 expressed IL-21, CD86 (B7-2), CD64 (FccRI), and CD137L (4-

1BBL). 

 Expanded NK cells were depleted for CD3+ T cells and had basic 

phenotype CD3- CD56+ (Fig 15A). Their receptor expression i.e. NKG2D, CD16 

and functional activity were also evaluated before being used in vivo. All expanded 

NK cells were ≥ 95% and ≥ 80% positive for NKG2D and CD16, respectively. The 

expanded NK cells were also tested for their cytotoxicity against LM7 cells before 

Infusing into mice. At a ratio of 0.3:1 and 10: 1 (effector: target cell ratio), NK cell-

mediated cytotoxicity against LM7 cell were 22± 5 and 93± 3 respectively (figure 

15B). Our data demonstrated that NK cells from all donors were healthy and 

functional after four weeks of being expanded in vitro. 
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Figure 15. Ex vivo expanded NK cells were fully activated and highly 
functional. Human NK cells were purified from blood buffy coats and were 
expanded in vitro for 4 weeks using genetically engineered K562 and recombinant 
human IL-2. (A) NKG2D and CD16 receptor expression on NK cells after 4 weeks 
of expansion assessed by flow cytometry. (B) Representative in vitro cytotoxicity 
of expanded NK cells for OS cell LM7 by calcein release assay. Target cells 
labeled with 1 µM calcein-AM and incubated at 37οC for 1 h. Cells were washed 
with RPMI media and co-cultured with ex vivo expanded NK cells in 96-well U-
bottom plates at a ratio of 0.3, 0.6, 1.3, 2.5, 5, and 10 (effector: target cell ratio). 
Plates were incubated at 37οC for 4 h. 100 µL of supernatant was transferred to a 
96-well flat bottom plate. The plate was read at excitation and emission 
wavelengths of 485 nm and 530 nm, respectively. 
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NK Cell therapy in combination with entinostat treatment did not inhibit 

tumor growth in mice with osteosarcoma lung metastases.  

We demonstrated that entinostat sensitized OS cells to NK cell-mediated 

cytotoxicity by up-regulating  the ligands for NK cell activating receptors, in vitro; 

therefore, we anticipated that adding entinostat to NK cell therapy would increase 

the therapeutic effect of NK cells for OS lung metastasis. To test this, we used our 

established OS pulmonary metastasis mouse model in which nude mice were 

injected with 2 × 106 LM7 cells via the tail vein.  Pulmonary micrometastasis 

formation in 3 mice euthanized at week 5 was confirmed by H&E  staining of 

paraffin-embedded lung section. After confirmation of micrometastsis formation, 

treatment was initiated  in four groups of mice with DMSO, entotstat, NK cells+ 

DMSO, or entinostat+ NK cells for five weeks. A total of 12-16 mice were included 

in each group (figure 16).  

  We previously demostrated that up-regulated ligands on OS cells (MIC A/B, 

ULBP1, and ULBP2/5/6) by entinostat are stable for more than 24 h (Table 1), 

suggesting that there could be a window time between entinostat administration 

and NK cell infusion.  Furthermore, we showed that 48 h but not 24 h of treatment 

with entinostat down-regulated NK cell receptor expression including: NKG2D, 

NKp30, NKp44, and NKp46 (figure 6). Therefore, we elected to administer 

entinostat and NK cells 24 h apart to minimize the effect of entinostat on NK cell 

receptor expression (Table 2).   

At the end of treatment, mice were sacrificed and lungs were preserved for 

analysis. Contrary to our initial hypothesis, our findings showed that combining oral 
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administration of entinostat with NK cell therapy showed no therapeutic effect for 

OS lung metastasis. The combination therapy did not reduce either the number or 

the size of nodules in the lung (Figure 17,18). 

 

 

Table 2. Experimental plan for combination therapy with entnostat and NK 
cells in mice with OS lung metastasis. Mice were treated with entinostat at a 
concentration of 5 mg/kg of weight by oral/gavage three times a week (Monday, 
Thursday, and Saturday) for five weeks. 50 x 106 NK cells were injected via tail 
vein two times in a week (Tuesday, and Friday) for 5 weeks.  
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Figure 16. Schematic of experimental plan for in vivo study. Nude mice were 
injected with 2 × 106 LM7 cells through tail vein. Presence of micrometastasis was 
confirmed by H&E staining five weeks after tumor cell infusion. Treatment was 
initiated on week six with DMSO, NK cells+ DMSO, entotstat, or entinostat+ NK 
cells for five weeks. 

 

 

 

 

 

 

 

Figure 17. Representative pictures of lungs from each mouse group after 5 
weeks of treatment.  Nude mice were injected via tail vein with 2 × 106 LM7 cells. 
Following micro metastasis formation mice were treated with DMSO, NK cells+ 
DMSO, entinostat, or entinostat+ NK cells for five weeks. Mice were sacrificed, 
their lungs were resected and analyzed for the presence of metastasis.  
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Figure 18. Combination therapy with NK cells and entinostat did not have 
therapeutic effect in mice with stablished OS lung metastasis. Nude mice 
were injected i.v. with 2 × 106 LM7 cells. Following micrometastasis formation mice 
were treated with DMSO, NK cells+ DMSO, entinostat, or entinostat+ NK cells for 
five weeks. Mice were sacrificed and lungs were resected. (A) Number of visible 
nodules in each mouse was quantified and the mean number of metastatic nodules 
was calculated for each group. (B) Diameter of each individual visible nodule was 
recorded and the area of all nodules in each lung was calculated. The results are 

A 

B 
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indicated as mean metastatic area of the nodules in each treatment group. Number 
of mice per groups= 12-16. Data= mean +/- S.E.M. 

 

The second in vivo study showed that NK cell therapy combined with the 

oral administration of entinostat had no therapeutic effect on OS lung 

metastasis.  

It is known that efficacy of immunotherapy for cancer is highly dependent 

on the effector to target cell ratio and that immunotherapy is mostly effective on 

minimal residual disease. The sooner we apply the immunotherapy the more 

chance of response. In order to monitor onset of micrometastasis formation in the 

lung more precisely, we used a genetically modified LM7 OS cell line that 

expresses firefly luciferase. We monitored tumor burden in the lungs by 

bioluminescent imaging (BLI). Mice were examined on a weekly basis and when ≥ 

75% of the mice  were positive for micrometastasis, they were evenly distributed 

into four groups and were treated with DMSO, entinostat, NK cells+ DMSO, or 

entinostat+ NK cells for five weeks (n=12/ group). Tumor burden was assessed by 

BLI the day before treatment and 5 weeks after treatment (figure 19). Relative fold 

increase in the flux was compared between the groups. Similar to our first study, 

our results indicated that combination therapy with NK cells and entinostat had no 

therapeutic effect on OS lung metastasis and did not reduce the tumor burden in 

the lung (figure 20). Furthermore, overall survival of mice treated with entinostat 

and NK cells was not improved (figure 21). No significant differences were 

observed in overall survival between mouse groups.   
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Figure 19. Tumor burden assessed by BLI before (A) and after five weeks of 
treatment (B). Nude mice were injected via tail vein with 2 × 106 LM7-Luc cells. 
Mice were monitored for micro metastasis formation in the lung every week. When 
micrometastasis were observed in 75% of mice, they were evenly distributed into 
four groups. Treatment was initiated with DMSO, NK cells+ DMSO, entinostat, or 
entinostat+ NK cells for five weeks. Before treatment and at the end of treatment 
tumor Burden was assessed by BLI using the IVIS spectrum system. 
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Figure 20. Combination therapy with NK cells and entinostat did not have a 
therapeutic effect on mice with established OS lung metastasis. Nude mice 
were injected via tail vein with 2 × 106 LM7-Luc cells. Following micrometastasis 
formation treatment was initiated with DMSO, NK cells+ DMSO, entinostat, or 
entinostat+ NK cells for five weeks. Tumor burden was evaluated by BLI before 
treatment and after 5 weeks of treatment and then mean relative fold increase in 
the flux was calculated for each group. 
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Figure 21. Overall survival of mice treated with entinostat and NK cells were 
not improved. Nude mice were injected i.v. with 2× 106 LM7-Luc cells. Following 
micrometastasis formation mice were treated with DMSO, NK cells+ DMSO, 
entinostat, or entinostat+ NK cells for five weeks. Long term survival was assessed 
from the day that treatment was initiated until the mice died.  

 

 

Entinostat increased MICA/B expression on OS lung metastasis.  

 To determine whether entinostat up-regulated MICA/B expression on OS 

lung metastasis, tumor sections from our in vivo experiment were analyzed by 

immunohistochemistry staining for MICA/B. Our results showed that MICA/B 

expression was significantly up-regulated in mice treated with entinostat or 

entinostat+ NK cells (figure 22). Before, we showed that entinostat significantly 

increases MICA and MICB mRNAs in OS lung metastasis (figure 14). These 

results are consistent with our in vitro findings (figure 1, 2).  
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Figure 22. Entinostat increased MICA/B expression on OS lung metastasis. 
(A) Paraffin-embedded lung tissues were analyzed for MICA/B expression using 
immunohistochemistry staining. (B) Mean PD-L1 positivity was calculated in 5 
random fields per section using the Simple PCI software.  

 

 

Infused NK cells can infiltrate into the mouse lung but do not penetrate into 

the lung tumor nodules.  

In order for NK cells to have a therapeutic effect, they must reach the target 

organ and penetrate into the tumor nodules. Having shown that combining NK cell 

therapy and oral administration of entinostat had no therapeutic effect in mice with 

OS lung metastasis, we first examined whether injected NK cells can traffic to the 

lungs. For addressing this question, nude mice were injected via the tail vein with 

50 x 106 CM-DiL-labeled NK cells. At 50 min and 24 h after NK cell injection, the 
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mice were euthanized and lungs were removed. Frozen sections of the lungs were 

examined under a fluorescent microscope. High numbers of NK cells were present 

in the lung 50 min after injection; however, by 24 h after injection there were very 

few NK cells left in the lung (figure 23). This data confirmed that NK cell can traffic 

into the mouse lungs but either exit or die within 24 h.  

 

 

 

Figure 23. Infused NK cells can infiltrate into the mouse lungs. Nude mice 
were injected via tail vein with 50x106 CM-DiL-labeled NK cells. Fifty minutes and 
24 h post injection, mice were sacrificed and lungs were resected. The frozen 
sections of the lung tissues were stained for nucleus using Hoechst 33342 nucleic 
acid stain. In vitro NK cells labeled with CM-DiL were examined under the 
microscope to confirm that NK cell staining had been successful (top row).  
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We further investigated whether following migration to the lungs, NK cells 

also penetrated into the OS lung metastasis. Tumor sections from our in vivo 

experiment were analyzed by immunofluorescence staining for NK cells. As shown 

in figure 24, NK cells were observed at the border of the nodules, but not inside 

them. Therefore, the lack of therapeutic effectiveness of combination therapy may 

be due to the inability of the NK cells to infiltrate into OS lung metastasis. 

 

Figure 24. Infused NK cells did not infiltrate into the OS lung metastasis. 
Representative pictures of NK cells in OS lung metastasis from mice treated with 
NK cells in combination with entinostat. Frozen sections of the tumor nodules were 
stained for the NK cell marker NKp46 and was examined using a fluorescent 
microscopy. Ex vivo expanded NK cells were stained for the NKp46 marker to 
confirm that staining had been successful (top row). 

 

Control 

Mouse 1  

Mouse 2 
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Entinostat increased PD-L1 expression on OS cells in vitro.  

To further investigate why our combination therapy was not effective against 

lung metastasis, we examined whether entinostat treatment increased expression 

of programmed death-ligand 1 (PDL-1) on OS cells. PDL-1 is a ligand for the 

programmed death 1 (PD-1) receptor which is an immune inhibitory receptor 

expressed on immune cells, including NK cells. Interaction between PD-1 and 

PDL-1 induces an immune suppressive effect on immune cell and allows tumor 

cells to escape from immune cell mediated killing (11). 

 LM7 and CCH-OS-D cells were treated with various doses of entinostat for 

24 h and expression of PDL-1 was evaluated by flow cytometry. Results 

demonstrated that PDL-1 expression is upregulated on LM7 and CCH-OS-D cells 

in a dose dependent manner, suggesting a mechanism by which OS metastasis 

can escape from NK cell therapy (figure 25). 
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Figure 25. Entinostat increases PD-L1 expression on OS cells in a dose 
dependent manner. LM7 and CCH-OS-D cells were treated with 0.1, 0.5, 1.0, or 
2.0 µM entinostat for 24 h. Cells were stained for PD-L1 and were analyzed by flow 
cytometry. Untreated cells were used as control.  

 

 

Ex vivo expanded human NK cells express PD-1.  

To verify that the NK cells used for the animal studies expressed PD-1, we 

purified human NK cells from heathy donors’ buffy coats and expanded them in 

vitro for three weeks, as described earlier. PD-1 expression was then analyzed by 

flow cytometry. As it is shown in figure 26, approximately 6-8% of ex vivo expanded 

NK cells express PD-1.  

 

Figure 26. Ex vivo expanded human NK cells express PD-1. Flow cytometry 
analysis for PD-1 expression on expanded NK cells.  Human NK cells were purified 
from buffy coats and were expanded in vitro for three weeks using genetically 
engineered K562 and recombinant human IL-2. Cells were stained for PD-1 and 
expression of receptor was analyzed by flow cytometry.  
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SUMMERY 

Our in vivo findings demonstrated that combination therapy with entinostat and NK 

cell had no therapeutic effect on OS lung metastasis in our mouse model. This 

result is in contrast with our in vitro data showing that OS cells are sensitive to NK 

cell killing and that entinostat enhances OS cell susceptibility to NK cell-mediated 

cytotoxicity. We also showed that although infused NK cells infiltrate into the lung, 

they are not able to penetrate into the tumors.  Further, by showing that entinostat 

increased PD-L1 expression on OS cells in vitro, we proposed an additional 

mechanism of escape by tumor cell by interacting with the PD-1 receptor on NK 

cells and inducing inhibitory signals.  
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DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 7 

Discussion: Implications of Results and Future Directions 
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There has been no improvement within the past 25 years in the 20% 5-year 

survival rate for patients with OS lung metastasis. Disease relapse with pulmonary 

metastasis continue to be the major causes for death (1). Poor survival rates for 

patients who present with pulmonary metastasis highlights the necessity of new 

therapeutic strategies. Boosting the patient’s own immune system is one such 

option. Our group has previously showed that IL-11Rα specific CAR-T cells 

resulted in regression of lung metastasis in IL-11Ra overexpressing osteosarcoma 

tumors (9).Though the CAR T cells exhibited anti-tumor efficacy, there is a risk of 

organ toxicity since the targeted antigen is expressed on normal cells i.e. liver and 

endothelial cells.  NK cell mediated immunotherapy is emerging as a promising 

therapeutic strategy for cancer as NK cells exhibit antigen independent cytolytic 

activity so that normal cells can be spared. 

Our group had previously shown that aerosol IL-2 given in combination with 

NK cell therapy significantly augmented the antitumor efficacy of NK cells for OS 

lung metastasis. Adding aerosolized IL-2 to NK cell therapy decreased the tumor 

burden in the lung dramatically and improved the overall survival of mice; however, 

this therapy failed to eliminate tumors completely from the lungs (46, 47). Some 

novel strategies are needed to improve the overall survival of patients with OS 

pulmonary metastasis.  Our focus has been to further augment the therapeutic 

efficiency of NK cell therapy. The main goal of this thesis is to investigate the role 

of entinostat, an HDAC inhibitor, on the efficacy of NK cell-mediated 

immunotherapy using our human OS pulmonary metastasis mouse model.  



 

78 
 

Entinostat sensitize OS cells to NK-cell mediated cytotoxicity by increasing 

ligands for activating NK cell receptors  

NKG2D is a primary activating receptor expressed by NK and T cells 

against tumor targets. NKG2D interacts with target cell ligands heterogeneously 

expressed on tumor cells including MHC-class 1 related genes MICA and MICB 

and UL16-binding proteins (ULBP-1 through 6). These cell ligands are upregulated 

in response to cellular stress, however tumors may escape NK cell recognition by 

either suppressing NKG2RD receptor expression or by down regulating their ligand 

expression (80, 81).  

Our group along with others showed that OS cells are susceptible to NK-

cell mediated cytotoxicity due to the high expression of ligands for NK cell 

activating receptors (32, 45, 46). The aim of this study was to augment the efficacy 

of NK cell therapy against OS pulmonary metastasis by up-regulating NK cell 

ligands on the tumor cells. It is known that besides the immediate inhibitory effects 

of HDAC inhibitors on tumor growth, they also enhance recognition of tumor cells 

by immune cells (80). Our data showed that entinostat up-regulated expression of 

ligands specific for NK cell activating receptors (MIC A/B, ULBP1, ULBP2/5/6, and 

CD155) in OS cell lines (chapter 2, figure 1). Protein and mRNA levels of MICA 

and MICB were upregulated in a dose and time dependent manner consistent with 

our previously published results (58). Expression of up-regulated ligands on OS 

cells was stable for more than 24 h after drug removal from the culture (chapter 2, 

table 1); this provide an  evidence that there would be sufficient time for NK cells 

to recognize and kill tumor cells in our mouse model. 
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Our laboratory demonstrated in vitro that NK cell mediated cytotoxicity is 

directly correlated with the number of NKG2D ligands expressed on OS cells, e.g. 

KRIB cells were less sensitive to NK cell lysis than LM7 and CCH-OS-D cells due 

to their lower level of NKG2D ligands expression (46, 47). In this study we showed 

that up-regulation of NK cell ligands on OS cell lines by entinostat increased their 

susceptibility to NK cell-mediated cytotoxicity, and that the NK cell function was 

abrogated by NK cell receptor blockade (chapter 2, figure3, 4). Our results are in 

agreement with many other’s published data. Burghuis et. al., demonstrated that 

HDAC inhibitors, including entinostat, increased the susceptibility of Ewing 

sarcoma cells for NKG2D-dependent cytotoxicity by NK cells (59). Schmudde et.al 

showed that the HDAC inhibitors SAHA, sodium butyrate, and entinostat treatment 

increased the susceptibility of prostate carcinoma and medulloblastoma cell lines 

for NK killing using the same mechanism (60). These results are also in 

accordance with published data concluding that HDAC inhibitors increase the 

susceptibility of tumor cells to NK cell-mediated cytotoxicity by increasing the 

expression of MICA/B (61-63). These finding suggest that sensitizing OS cells for 

NK cell killing by HDAC inhibitors may be an approach to improve the efficacy of 

NK cell immunotherapy.  
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Effect of entinostat on NK cell viability, receptor expression, and cytotoxic 

function 

Although increased expression of NK cell ligands on OS cells with entinostat 

treatment resulted in enhanced tumor recognition and lysis, the adverse effects of 

the drug on NK cells might diminish this benefit. To evaluate this possibility, we 

examined the effect of entinostat on NK cell viability, receptor expression, and 

cytotoxic function. Our findings demonstrated that entinostat was not cytotoxic for 

NK cells and did not affect their viability within 48 hours of treatment (chapter 3, 

figure 5). Previous studies indicated that even low dose of entinostat (0.1 μM) 

increased NKG2D expression on freshly purified human NK cells (58). Here we 

showed that exposure to ≤ 2 µM of entinostat for 24 h resulted in no change in ex 

vivo expanded NK cell receptor expression (NKG2D, NKp30, NKp44, NKp46, and 

DNAM-1). However, after 48 hours, higher doses of the drug (≥ 0.5 µM) down-

regulated NK cell receptors expression except for the DNAM-1 (chapter 3, figure 

6). Based on these findings, the in vivo study was designed in which the 

administration of the drug and infusion of NK cells were at least 24 hours apart to 

avoid down-regulation of NK cell receptor expression. 

Importantly, our data demonstrated that 24 hours pretreatment with 

entinostat did not affect the NK cell-mediated cytotoxicity against OS cells (chapter 

3, Figure 7). Contrary to our results, Ogbomo et al., showed that VPA (a broad-

spectrum class I- and IIa-specific HDACi) and SAHA (a pan-HDACi) suppressed 

NK cell lytic activity (77). However, they did not include entinostat in their study. 

The differences in the reported effect of HDAC inhibitors on NK cells may be 
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explained by the relative specificity of HDAC inhibitors for various HDAC isoforms 

and their ability to inhibit the function of a specific HDAC. Ogbomo et al., used 

freshly purified NK cells from blood buffy coats in their study. By contrast we used 

activated ex vivo expanded NK cells. Presently, the exact mechanism involved for 

the disparity between two studies is unclear. In conclusion our findings suggest 

that combining entinostat with NK cell therapy should not interfere with NK cell-

mediated cytotoxicity. 

 

Entinostat’s mechanism of action and its regulation of MICA/B expression in 

OS cells  

We proposed two mechanisms by which entinostat up-regulates MICA/B 

expression in OS cells (figure 27). As an HDAC inhibitor, entinostat promotes 

activation of gene transcription by inducing histone acetylation on chromatin. We 

demonstrated that entinostat may increase MICA and MICB gene transcription by 

acetylation of histone 4 linked to the MICA and MICB gene promoters; but not 

through enhancing acetylation of histone 3 (chapter 4, figure 9). This may be 

unique to OS cells as previous reports showed that treating colon carcinoma cells 

with entinostat resulted in up-regulation of MICA and MICB expression by 

acetylation of histones 3 linked to MICA and MICB gene promoters (58). The 

histone deacetylase inhibitor SAHA has also been shown to enhance MICA/B gene 

transcription by increasing MICA-associated histone acetylation (78). 

The second mechanism we investigated for up-regulating MICA and MICB 

expression is the role of miRNAs i.e miR-20a, miR-93, and miR-106b (73). Our 
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data showed that these 3 miRNAs down-regulated MICA and MICB expression in 

OS cells (chapter 5, figure 10, 11). We further demonstrated that down-regulation 

of MICA and MICB expression by miR-20a, miR-93, and miR-106b is not controlled 

by MICA and MICB mRNA degradation.  We are the first to show that entinostat 

leads to the up-regulation of MICA/B by down-regulating miR-20a, miR-93, and 

miR-106b in OS cells in vitro and in vivo (figure 12). Similarly, it has been 

demonstrated that SAHA upregulates the transcription of MICA/B by suppressing 

the MICA/B-targeting miRNAs miR-20a, miR-93 and miR-106b in hepatocellular 

carcinoma (78). 
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Figure 27. Mechanisms by which entinostat increases MICA/B expression in 

OS cells. Entinostat increases the accumulation of acetylated histone 4 in 

chromatin linked to both MICA and MICB genes and results in MICA and MICB 

gene up-regulation. Entinostat also increased MICA and MICB expression by 

down-regulating mir-20a, mir-93, and mir-106b expression in OS cells.  
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NK cell therapy in combination with entinostat in mice with OS pulmonary 

metastasis 

Clinical data suggest that NK cells may have a role in OS prevention and 

prognosis. For example, study on children with OS showed that they had fewer 

number of peripheral NK cells compared to the control group. This suggests a role 

for NK cells in preventing OS (42). OS patients who had early lymphocyte recovery 

(including NK cells) after chemotherapy showed better prognosis than patients with 

late lymphocyte recovery (43). Further, OS patients treated with IL-2 in addition to 

chemotherapy had higher number of NK cells and the degree of the NK cell activity 

and the number of NK cells significantly correlated with the clinical outcome (82). 

Having demonstrated that entinostat increases the susceptibility of OS cells 

to NK cell lysis in vitro (described in Chapter 2), we next determined whether 

entinostat in combination with NK cell infusion enhances the anti-tumor efficacy of 

NK cells in a nude mouse model with established OS pulmonary metastasis. 

Contrary to our in vitro findings, our results showed that combining oral 

administration of entinostat and NK cells infusion did not decrease the tumor 

burden in the lungs (chapter 6, figure 18).  

Having shown that ex vivo expanded NK cells used for immunotherapy were 

fully activated and highly cytotoxic to LM7 cells (chapter 6 figure 15), it is unlikely 

that the ineffectiveness of NK cells to eliminate the tumor cells in vivo was due to 

their impaired function. Further, we demonstrated that the sub-therapeutic dose of 

entinostat (5 mg/kg) used was enough to significantly increase NKG2D ligand 

(MICA and MICB) expression on OS lung metastasis (chapter 6 figure 14, 22). 
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Taken together, these data indicate that entinostat had done its predicted role in 

our therapy.  

The efficacy of immunotherapy for cancer is highly dependent on the 

effector to target cell ratio. Thus, for the second animal study we used genetically 

modified OS cell line LM7 expressing firefly luciferase to be able to monitor 

micrometastasis formation in the lungs by bioluminescent imaging and initiate 

therapy at the earliest time.  We started the treatment when >75% of the mice 

developed micrometastasis, and we observed similar results as the first animal 

study (chapter 6, figure 20). This result indicates that the therapy’s ineffectiveness 

was probably not secondary to high tumor Burden.   

In order for NK cell therapy to be effective, the cells must reach the target 

organ (lung) and penetrate into the tumor. We showed that infused NK cells are 

able to traffic to the mouse lungs. However, these NK cells failed to infiltrate into 

the lung nodules to eliminate the tumor cells (chapter 6 figure 23, 24). This may 

explain why entinostat together with NK cells had no additive effect on tumor 

regression. In addition to this, the presence of immune suppressive cells and/or 

absence of activating and chemotactic factors in tumor microenvironment may 

have played a role in the lack of therapeutic effect by NK cells. 

Ex vivo activated NK cells have a limited survival time and show low tumor 

penetration without cytokine support in vivo (83, 84).  IL-2 promotes activation, 

proliferation and survival of NK cells, resulting in enhanced cytotoxic function for 

numerous different tumor cells (85). Most of the clinical trials of adoptive NK cell 

therapy use the subcutaneous administration of IL-2 to patients (31, 86, 87). Our 
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research group used aerosol IL-2 in combination with NK cells to increase their 

anti-tumor efficacy to OS lung metastasis and to avoid the significant side effects 

that accompany systemic IL-2 administration (46, 47). Aerosol IL-2 dramatically 

increased the number of infused NK cells in the metastatic pulmonary nodules 

resulting in increased tumor regression and improved overall survival of mice 

compared to those treated with NK cells alone. Another study also showed that NK 

cell immunotherapy decreased the tumor burden in the tibia, reduced bone 

damage, and raised the overall survival in NSG mice with OS lung metastasis only 

when IL-2 (10,000 IU IP injection /mouse) was added to the therapy (45). All these 

results suggest that adding IL-2 cytokine support to entinostat and NK cell 

combination therapy may be beneficial for the persistence in the lung, penetration 

into the tumor and enhanced cytotoxic function of infused NK cells in vivo. This is 

even more crucial in our mouse model in which the crosstalk between NK cells 

and T cells is absent due to the lack of T cells in nude mice. T cell interaction with 

other immune cells including NK cells enhance immune response against tumors. 

CD4+ T cells are known to be the main source for IL-2 production and tumor 

antigen-specific CD8+ T cells has been shown to provide stimulatory signals for 

NK cells in the tumor microenvironment setting (88, 89). In conclusion, although 

we demonstrated that entinostat increased the expression of NK cell ligands on 

OS lung metastasis, this may not have been enough to augment the efficacy of NK 

cell therapy due to the absence of factors (such as cytokines and chemokines) 

augmenting NK cell proliferation and survival in the tumor microenvironment. 
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Combining NK cell therapy with cytokines such as IL-2 or IL-21 may provide the 

needed additional support.  

It is well known that tumor cells can induce immune escape mechanisms 

(90). Many tumors down-regulate or internalized their NKG2D ligands (91) or 

reduce MICA and MICB surface levels by ligand proteolytic shedding from the cell 

surface (92-94). Reduced expression of MICA and MICB on the tumor cell surface 

and increased levels of their soluble forms in the tumor microenvironment and 

serum can impair NKG2D-mediated cytotoxicity of NK cells. High levels of soluble 

MICA (sMICA) in OS patient’s serum has indeed been detected (95). In another 

study serum and tumor biopsies from OS patients before radiotherapy and 

chemotherapy showed high expression levels of MICA (96). Very high serum 

levels of sMICA were detected in one third of the patients but not in healthy controls 

and elevated sMICA levels were associated with the disease progression and rate 

of metastasis. Therefore, in our mouse model the proteolytic shedding of MICA 

may also have interfered with NK cell cytotoxicity. Future studies investigating this 

aspect might are warranted.  

PD-L1 up-regulation on tumor cells contributes to tumor immune-escape 

(97, 98). Interaction between the PD-1 receptor, expressed on immune cells, and 

its ligand PD-L1, expressed on tumor cells, leads to immune cell anergy, and 

apoptosis and allows tumor cells to escape from immune-mediated cytotoxicity.  

Blockade of the PD-1/PD-L1 interaction in patients with solid tumors lead to 

improved clinical outcome (99, 100). PDL-1 has been reported to be expressed on 

OS cell lines as well as OS tumor samples (101-104). Blocking PD-1/PD-L1 axis 
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in K7M2 mice with OS pulmonary metastasis resulted in enhanced T cell 

cytotoxicity, tumor regression and improved survival. However the impact of PD-

L1 blockade on NK cell function has not been studied in this mice model (103). 

Our in vitro data demonstrated that entinostat upregulated PD-L1 expression on 

OS cell lines in a dose dependent manner (figure 25); approximately 6-8% of ex 

vivo expanded NK cells expressed the inhibitory receptor PD-1 (figure 26).  Hence 

we proposed that up-regulation of PD-L1 on metastatic OS by entinostat may 

compromise tumor reactive PD-1+ NK cell function leading to reduced anti-tumor 

effect. However, we have not determined the level of PD-L1 on OS lung metastasis 

following the infusion of NK cells in vivo. 

Malignant cells can also interfere with anti-tumor efficacy by producing 

immune suppressive factors such as TGF-β, IL-10, and Macrophage Migration 

Inhibitory Factor (MIF), or by recruiting immunosuppressive leukocytes such as 

myeloid-derived suppressor cells (MDSCs) and regulatory T cells into the tumor 

microenvironment (90, 105). TGF-β1 secreted by tumor cells can down-regulate 

NKG2D and NKp30. Overexpression of MIF on ovarian cancers is associated with 

the down-regulation of NKG2D on NK cells (106-109). Investigating the effect of 

TGF- β and MIF on NK cell functionality in our in vivo studies might provide insight 

for the reduced anti-tumor effect in mice. 
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Conclusions 

The immune system is a critical regulator for controlling cancer growth. Adoptive 

immunotherapy is a promising approach to combat cancer. However, cellular 

immunotherapy including NK cell therapy seems to be more challenging in patients 

with solid tumors. In this study we demonstrated that HDAC inhibitor, entinostat, 

augmented NK cell-mediated cytotoxicity for several different OS cell lines by up-

regulating the ligands specific for NK cell activating receptors. Up to 2 μM 

entinostat for 24 hours did not change NK cell viability, or the activating receptor 

expression and function. We also demonstrated two possible mechanisms by 

which entinostat increases NKG2D ligands (MICA and MICB) in OS cells, first by 

increasing histone 4 acetylation on the MICA and MICB gene promoters, and 

second by down-regulating mir-20a, mir-93, and mir-106b expression. We did not 

observe significant differences in the tumor burden in mice treated with entinostat 

plus NK cells compared with entinostat or NK cells alone. Our data suggest that 

the reason for the lack of a therapeutic effect is secondary to the failure of the NK 

cells to traffic into the tumor nodules. Although, NK cells migrated into the lung, we 

only observed NK cells at the periphery of the tumor and not in the center.  

Entinostat treatment also resulted in up-regulation of immune inhibitory 

molecules PD-L1 on OS cell lines. Thus, blockade of PD/PDL1 axis with PD-L1 

monoclonal antibodies may improve the anti-tumor effect of NK cells against the 

OS lung metastasis. More studies are needed to reveal the mechanism of 

resistance. 
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FUTURE DIRECTIONS 

 

Enhancing NK cell infiltration and retention in osteosarcoma lung metastasis 

by aerosol IL-2 or IL-21 administration 

Our data demonstrated that treating OS cells with entinostat up-regulated 

the expression of NK cell activating ligands on OS cells and increased NK cell-

mediated cytotoxicity in vitro. However, while the oral administration of entinostat 

also resulted in increased ligand expression in vivo, combination therapy did not 

augment the efficacy of NK cell therapy against OS lung metastasis. One of the 

reasons could be the inability of infused NK cells to infiltrate into the OS lung 

nodules. We observed the infused NK cells only at the periphery of the tumors. 

Since NK cells are highly dependent on cytokine milieu support like IL-2 and IL-21 

for their function, proliferation, and retention in the tumor microenvironment, we 

propose that adding a stimulatory cytokine to the treatment may increase the 

efficacy of NK cell therapy with or without entinostat. This would create a dual 

effect, i.e. increases the susceptibility of OS cells to NK cell-mediated killing by 

enhancing the expression of NK cell ligands and increasing NK cell efficacy by 

increasing the penetration of the NK cells dipper into the tumor tissue.  

To avoid the side effects of systemic IL-2 administration and to activate the 

injected NK cells in the lung specifically, we propose using aerosol IL-2 delivery. 

To assess this, nude mice would be injected i.v. with 2 x 106 LM7 cells to establish 

micrometastasis in the lungs. A similar treatment schema that we used in our study 

will be followed with the exception of adding of aerosol IL-2 administration (mice 
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groups: aerosol IL-2; NK cells+ IL-2; entinostat+ IL-2; or NK cells+ entinostat+ IL-

2). For example, recombinant human IL-2 will be given at 2000 U/mouse three 

times a week for five weeks (Table 3). The safety of aerosol IL-2 has been reported 

both in clinical trials and in our mouse model as well as in immunocompetent 

BALB/C mouse (46, 110, 111). We have previously demonstrated that no acute or 

chronic inflammation, toxicity, elevated liver enzymes or abnormal CBC was seen 

following aerosol IL-2 administration, supporting the concept of using organ-

specific delivery as a way to treat lung metastasis (46, 47). 

After 5 weeks of treatment, the number of visible nodules would be 

quantified and the weight of lungs will be compared with the control group in order 

to evaluate the therapeutic effect of combination therapy. Paraffin-embedded OS 

lung metastasis tissues will be stained for the NK cell marker NKp46 to assess the 

number of infiltrated NK cells in the lung nodules. We anticipated that aerosol IL-2 

will result in increased NK cells inside the tumor nodules. The correlation between 

the number of NK cells in the lung nodules and the tumor apoptosis (using TUNEL 

staining) will be assessed. We anticipated that increased NK cell content will 

correlate with increased apoptosis. Survival will also be evaluated. We predict that 

aerosol IL-2 therapy will enhance infiltration, and retention of NK cells in tumors 

resulting in decreased tumor burden in the lungs and improved survival. 
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Table 3. Experimental plan for combination therapy with entnostat, NK cells 
and aerosol IL-2 in mice with OS lung metastasis. Mice will be treated with 
entinostat at a concentration of 5 mg/kg of weight by oral/gavage three times a 
week (Monday, Thursday, and Saturday) for five weeks. Recombinant human IL-
2 will be given by aerosol delivery at 2000 U/ mouse three times (Monday, 
Thursday, and Saturday) for five weeks. 50x 106 NK cells will be injected via tail 
vein two times in a week (Tuesday, and Friday) for 5 weeks. 

 

Another alternative for increasing NK cell infiltration into the OS lung 

metastasis is the use of Interleukin‑21 (IL-21). This cytokine is mostly produced 

by NKT, CD4+ T, and Th17 cells.  IL-21 regulates T, B, and NK cells function (112). 

The antitumor activity of IL-21 has been shown in various preclinical investigations 

(113-115). In clinical trials, the safety and efficacy of IL-21 has been demonstrated 

for metastatic melanoma and renal cell carcinoma (116-118). Furthermore, it has 

been shown that IL-21 stimulated NK- and CD8+ T cell-mediated cytotoxicity 

against mantle cell lymphoma, and renal cell carcinoma in vivo (119, 120). In 

addition, tumor regression in mice bearing fibrosarcoma or melanoma after 

treatment with IL-21 was dependent on NK cell-mediated cytotoxicity rather than T 



 

93 
 

cell cytotoxicity (121). These findings suggest that adding IL-21 to our treatment 

may enhance the efficacy of NK cell therapy with or without entinostat. In the latter 

study, injection of a plasmid DNA encoding murine IL-21 resulted in increased and 

constant expression of IL-21 in the blood (121). Murine IL-21 plasmid can be 

administered through tail vein injections and the maximum tolerable DNA dose 

would be determined in our mouse model as previously described (122, 123). The 

volume of the DNA solution and number of injections will be optimized. Based on 

the method used in the previous studies, various amounts of plasmid in 1-3 ml of 

saline within 5-7 second will be administered (121-123). More than one injection 

per mouse may be needed to gain the maximum plasmid DNA expression in 

hepatocytes. 

After optimizing the conditions for plasmid administration, we would follow 

the same treatment schema that we used for aerosol IL-2 but would substitute 

systemic IL-21 plasmid DNA. After 5 weeks of treatment, mice will be sacrificed 

and lungs will be weighed and examined for the number of nodules. The number 

of infiltrated NK cells and its correlation with the tumor cell apoptosis and 

regression will be evaluated as well. The presence of organ cytotoxicity and 

elevated liver enzyme levels due to IL-21 administration will also be assessed. We 

expect that administration of IL-21 would result in increased number of NK cells in 

the OS lung tumors along with the enhanced NK cell anti-tumor effect as 

demonstrated by increased tumor cell apoptosis, decreased numbers and size of 

lung metastasis and an improved survival rate.  
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The limitations of these studies is our nude mouse model which does not 

exactly mimic the human clinical setting due to absence of T cells. T cell crosstalk 

with other immune cells including NK cells has been shown to enhance the 

immune response against tumors.  For example, T cells secrete cytokines such as 

IL-2 and IL-21 that play an important role in NK cell activation. IL-2 activates both 

cytotoxic T and immunosuppressive regulatory T cells (124). Although, activation 

of regulatory T cells is not a concern in our nude mouse model, this can be a 

limitation for IL-2 administration in a clinical setting.  

Crosstalk between macrophages and NK cells may also play a role in NK 

cell-mediated tumor regression. Tumor-associated macrophages (TAMs) are 

known to be the most dominant immune cells in the tumor microenvironment (125). 

M1 and M2 macrophages are two subtypes of macrophage with completely 

different functions in the tumor setting. In the initial phase of tumor development, 

the tumor microenvironment induces the polarization of TAMs toward the M1 

phenotype while the M2 phenotype is dominant during tumor progression (126). 

By producing Th1-type cytokines, e.g. IL-12 and TNFα, M1-polarized 

macrophages induce anti-tumor responses. In the Th1/M1-polarizing context, 

interaction between different immune cells like macrophages, DCs, and 

neutrophils results in NK cells activation and enhanced anti-tumor effect. 

Alternatively, activated NK cells may further promote activation of other immune 

cells such as macrophages, T cells, and DCs and enhance Th1/M1 polarization 

(19, 127-131).  In contrast, M2-polarized TAMs enhance tumor progression by 

producing immunosuppressive cytokines (TGF-ß and IL-10) and promote 
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angiogenesis, stroma formation, tissue reconstruction, and metastasis. High 

numbers of M2-polarized macrophages in the tumor microenvironment may 

correlate with the tumor progression and poor prognosis (132) and may also 

contribute to the inability of NK cells to penetrate into the tumor due to the stoma 

formation. Since nude mice do have macrophages this may have contributed to 

the inability of NK cells to migrate into the lung tumors.  

In our in vivo studies, administration of aerosol IL-2 may activate mouse NK 

cells in the lung nodules since mouse NK cells can be activated by human IL-2 

(46, 133). Activated NK cells may produce cytokines and immune stimulatory 

factors (INF- γ, TNFα, GM-CSF, and MIP-1) that induce M1 polarization. To 

investigate this possibility, IHC staining for M1 and M2 TAMs on OS lung 

metastasis samples may be performed using their markers CD86 and CD163, 

respectively. Flow cytometry of dissociated tumor cells stained with antibodies 

specific for M1 and M2 would also be performed. It would be important to evaluate 

if entinostat has any modulatory effect on macrophage and the ratio of M1 and M2 

macrophages in our mouse model.  Interestingly, higher number of macrophages 

in the pretreated biopsies of patients with OS correlated with longer overall survival 

and fewer metastasis (134). These findings suggest a rationale for using 

macrophage activating agents such as L-MTP-PE in patients with OS. Combining 

L-MTP-PE with the standard chemotherapy resulted in a 29% decrease in mortality 

rate in newly diagnosed OS (15) and significantly increased the disease-free 

survival rate in relapsed OS patients (14). Therefore, using L-MTP-PE together 
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with other immune therapies which increases macrophage infiltration into the lung 

metastasis may be beneficial.  

 

Investigating the interference of soluble forms of MICA and MICB with the 

NK cell therapy in mice with OS lung metastasis  

Stress-inducible MICA and MICB ligands are heterogeneously expressed 

on tumor cells. Many tumors escape from the immune system by proteolytic 

cleavage of the ligands and releasing the soluble forms of MICA, MICB (sMICA 

and sMICB) or other NKG2D ligands (135-138). The process of ligand shedding 

results in decreased expression of MICA and MICB on the tumor cell surface and 

increased soluble forms in the serum and microenvironment, which in turn can 

impair NKG2D-mediated cytotoxicity of NK cells and cytotoxic T lymphocytes. 

Recently, the presence of soluble forms of NKG2D ligands has been demonstrated 

as a prognostic factor and diagnostic biomarker for cancer (139, 140). In fact, the 

mechanisms involved in the release of these ligands from the cell membrane are 

considered as potential targets to be blocked with the goal of increasing the 

efficacy of antitumor immunity. 

Elevated levels of MICA in the serum of OS patients are correlated with the 

stage of the disease and rate of metastasis. Further, MICA expression on OS 

tissues was adversely correlated with the stage of the disease (95, 96). Previous 

studies demonstrated that Matrix metalloproteinase 9 (MMP9) may be responsible 

for MICA shedding from the OS cell surface (141) and other tumors (142). Down-
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regulation of MMP9 resulted in reduced MICA cleavage from OS cells (143, 144). 

MMPs are over-expressed in many tumor cells and clinical trials are underway 

using MMP-inhibitors in cancers. MMPs consist of 24 human zinc-binding 

endopeptidases that play different roles in tumor cell growth, survival, invasion, 

and migration (145). Proteolytic cleavage by MMPs is known to be the main 

mechanism involved in the release of MICA, MICB, and ULBP2 from the cell 

membrane (146).  

Thus, it would be interesting to investigate the role of sMICA and sMICB in 

the NK cell therapy in our mouse model. Valproic acid has been shown to up-

regulate MICA and MICB expression on OS cells and reduce the sMCA and sMICB 

shedding due to the down-regulation of MMP9 expression (143). However, UCI-

10, an ovarian cancer cell line, released more sMICA and sMICB after being 

treated with HDAC inhibitor trichostatin A both in vitro and in vivo (94). The effect 

of entinostat on sMICA and sMICB secretion is unknown at present. To investigate 

this, sMICA and sMICB levels will be measured in control and entinostat-treated 

OS cell culture media by ELISA. Next, NK cells will be mixed with the culture media 

of control and entinostat-treated OS cell lines. The cytotoxicity of these two groups 

of NK cells against OS cells would be assessed by calcein release assay. Since 

the effect of entinostat on MICA and MICB shedding from OS cells is unknown, the 

results of these experiments cannot be predicted. 

In order to determine whether shedding of MICA and MICB can be reduced 

by MMP9 inhibitor and to investigate how this process will be affected by 

entinostat, we will treat OS cells with various doses of MMP9 inhibitor with or 
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without entinostat treatment. As other studies have shown, we expect that the 

inhibitor would reduce the shedding of sMICA and sMICB (94, 143, 144).  The 

effect of the MMP9 inhibitor on the NK cell-mediated tumor cytotoxicity against OS 

cells would be assessed. NK cells will be mixed with the culture media from 

untreated or treated OS cells with MMP9 inhibitor and then their cytotoxicity 

against OS cells would be evaluated using calcein release assay. We expect that 

media from OS cells treated with MMP9 inhibitor would have less ability to block 

the NK cell-mediated cytotoxicity due the lower levels of MICA and MICB in the 

media.  

To assess the in vivo effect, nude mice bearing OS lung metastasis will be 

treated with a sub-therapeutic dose of entinostat with or without the MMP9 

inhibitor. Serum levels of sMICA and sMICB will be measured in each group. Lung 

nodules will be stained for MICA and MICB expression. If we find enhanced MICA 

and MICB expression on the lung metastasis and lower levels of sMICA and 

sMICB in the serum from mice treated with both entinostat and MMP9 inhibitor, 

then we will use the combination of MMP9 inhibitor and entinostat to investigate 

whether the inhibitor can increase penetration of NK cells into the tumor and the 

efficacy of NK cells in mice established with OS pulmonary metastasis.  
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The effect of anti-PD-L1 antibody on the efficacy of combination therapy of 

NK cells and entinostat in mice with OS lung metastasis.  

PD-L1 up-regulation on tumor cells inhibits the anti-tumor activity of immune cells 

by triggering inhibitory signals into the immune cells following PD-L1/PD-1 

interaction (11). PDL-1 has been shown to be expressed on OS cell lines as well 

as OS tumor samples (101-104). In vitro, we demonstrated that entinostat 

enhanced PD-L1 expression on OS cell lines in a dose dependent manner. 

However, the effect of entinostat on PD-L1 expression on OS lung metastasis is 

unknown at this time. This effect can be investigated by treating nude mice bearing 

OS lung metastasis with 5 mg/kg entinostat or DMSO 3 times a week for 2 weeks. 

The level of PD-L1 expression on the lung tumors would be determined using IHC 

staining and flow cytometry of dissociated tumor cells stained for PD-L1. If our 

results show that entinostat up-regulates PD-L1 expression on OS lung 

metastasis, we will add anti-PD-L1 to our combination therapy to block the PD-

1/PD-L1 axis. Using PD-L1 antibody in Balb/cJ mice with OS pulmonary metastasis 

resulted in enhanced T cell cytotoxicity, tumor regression and improved survival. 

However the impact of PD-L1 blockade on NK cell function has not been studied 

in this mouse model (103).  

A similar treatment schema as described in the results section will be used 

with the addition of anti-PD-L1 (mice groups: control; NK cells; entinostat; PD-L1 

mAb; NK cells+ entinostat; NK cells+ PD-L1 mAb; entinostat+ PD-L1 mAb, or NK 

cells+ entinostat+ PD-L1 mAb). 200 μg PD-L1 antibody (10F.9G2, BioLegend) 

would be administered every three days for five weeks (147). At the end of 
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treatment, mice will be sacrificed and lungs will be examined for the number and 

size of the nodules. The number of infiltrated NK cells in the lung tumors and its 

correlation with the tumor regression will be also determined in each group. PD-L1 

expression on lung tumors will be determined by IHC staining. Infiltrated NK cells 

into the lung tumors will be isolated and analyzed by flow cytometry to determine 

whether the expression of PD-1 is different. If the in vivo results show that 

administration of PD-L1 antibody enhances the efficacy of NK cell therapy, then it 

would be interesting to create and inject PD-L1 shRNA knockdown LM7 cells into 

nude mouse to establish OS metastasis and to investigate the efficacy of NK cell 

combination therapy with entinostat in the absence of PD-L1 expression on tumor 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 
 

MATERIALS AND METHODS 
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Reagents and antibodies 

Entinostat was purchased from Sigma-Aldrich (St. Louis, MO). For in vitro 

experiments, entinostat was dissolved in absolute ethanol and then diluted in 

Dulbecco’s modified Eagle’s medium (DMEM) for working solutions. For in vivo 

experiments, entinostat was dissolved in DMSO. Anti-human acetyl-histone3, anti-

human acetyl-histone4, anti- human acetyl-histone H3 antibody, and anti- human 

acetyl-histone H4 antibody were purchased from Millipore (Temecula, CA). Anti-

human MICA/B was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

  

Cell lines 

The metastatic human LM7 OS cell line used in our study was derived from 

the parental SAOS-2 cell line by re-cycling the cells 7 times through the lungs of 

nude mice. KRIB, CCH-OS-D, and CCH-OS-O OS cell lines were kindly provided 

by Dr. Dennis Hughes from MD Anderson Cancer Center. CCH-OS-D and CCH-

OS-O are primary OS cell lines derived from patient samples at the Children’s 

Cancer Hospital at MD Anderson Cancer Center. Cell lines were cultured in DMEM 

supplemented with 1% streptomycin/penicillin, 1 mmol/L nonessential amino 

acids, 2 mM L-glutamine, 1 mmol/L sodium pyruvate, and 10% fetal bovine serum 

(Intergen, Purchase, NJ). All cells were incubated at 37°C with 5% CO2. Cells 

were split no more than 4 times before they were injected intravenously (i.v.), and 

they were free of mycoplasma. 
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Animals 

Four- to six-week-old nu/nu mice were purchased from the National Cancer 

Institute Mouse Repository, Frederick, MD, and kept in pathogen-free conditions 

in a laminar air flow room as approved by the American Association for 

Accreditation of Laboratory Animal Care. Experiments were conducted according 

to the animal protocols approved by the Institutional Animal Care and Use 

Committee (IACUC).  

 

Human NK cell isolation and expansion 

Human NK cells were isolated from healthy donors’ buffy coats. Then they 

were expanded in vitro for 4 weeks using genetically engineered K562 and 

recombinant human IL-2, as previously described (36). Briefly, NK cells were 

purified from blood buffy coats using RosetteSep Human NK Cell Enrichment 

Cocktail (Stem Cell Technologies, Vancouver, BC) and buoyant density 

centrifugation on Ficoll-Paque (GE Healthcare Life Sciences, Little Chalfont, UK). 

Isolated NK cells were seeded with irradiated K562 (100 cGy) at a ratio of 1:2 in 

RPMI 1640 medium (Cellgro/Mediatech, Manassas, VA). RPMI was supplemented 

with 10% fetal bovine serum (Intergen, Wellington, New Zealand), 2 mmol/L 

glutamine , 1 mmol/L sodium pyruvate, and 50 IU/ml recombinant human IL-2. 

Every 3 days, half of the NK cells medium was replaced with fresh RPMI and then 

fresh IL-2 was added to the entire media. At the end of each week, NK cells were 

re-stimulated with irradiated K562 at the ratio of 1:1 and re-suspended in fresh 

RPMI plus 50 IU/ml recombinant human IL-2. Four weeks after expansion, NK cells 



 

104 
 

were frozen in freezing medium (FBS+ 10% dimethyl sulphoxide, DMSO) at a 

concentration of 5x107 cells/ vial and kept at -80οC for further use.  By end of 4-

weeks of expansion, NK cell purity was ≥98%. Before NK cells were infused into 

mice, their viability and receptor expression were evaluated with use of Vi-CELL 

and flow cytometry, respectively. Furthermore, to confirm that expanded NK cells 

can recognize and lyse LM7 cells, their cytotoxicity against LM7 cells was 

evaluated by calcein release assay.  

 

Flow cytometry analysis 

NK cell phenotypes were analyzed weekly with flow cytometry using murine 

anti-human CD16-PE, CD3-PE, NKG2D-PE, and CD56-APC antibodies (BD 

Pharmingen, San Jose, CA). Murine anti-human HLA/ABC-PE, MICA/B-PE (BD 

Pharmingen), ULBP2/5/6-PE, ULBP3-PE, and ULBP-PE (R&D Systems) 

antibodies were used to determine HLA and NKG2D ligand (NKG2DL) expression. 

Anti-human Nectin-2/CD112 and anti-human CD155/PVR antibodies from R&D 

Systems were also used to detect NK cell ligands on OS cells. Flow cytometry was 

performed on a FACSCalibur cytometer (BD Biosciences) and data were analyzed 

with use of FlowJo software (Tree Star, Inc., Ashland, OR).  

 

Western blot analysis 

LM7 OS cells were treated with 0.5, 1.0, or 2 µM entinostat for 48 h and 

collected and lysed with RIPA lysis buffer supplemented with protease and 

phosphatase inhibitors (Santa Cruz Biotechnology, Inc.). Total protein 
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concentration in each sample was analyzed by a Bicinchoninic acid (BCA) assay 

kit (Bio-Rad Laboratories) according to the manufacturer’s instructions. Protein 

samples were boiled in SDS loading buffer for 5 minutes before loading onto 10% 

of SDS-poly acrylamide gels (SDS-PAGE). Samples were electrophoresed at 90 

V for 2 ½ h and transferred to nitrocellulose membranes at 85 V for an hour. 

Samples were then blocked in 5% milk or BSA at room temperature for 1 hour. 

Expression of each individual protein was examined by overnight incubation with 

primary antibody at 1:1000 ratio at 4⁰C against MICA/B, acetyl-histone3, or acetyl-

histone4 and visualization by horseradish peroxidase (HRP) conjugated 

secondary antibody. Signal was detected after incubation with enhanced ECL 

reagent (GE healthcare life sciences). Beta actin was used as loading control. 

 

Real-time polymerase chain reaction 

LM7 OS cells were treated with 0.5, 1.0, or 2 µM entinostat for 48 h. Total 

RNA was  isolated and purified from treated and untreated LM7 with use of Trizol 

reagent (Life Technologies, Inc., Gaithersburg, MD). Reverse transcription was 

performed by using the ReverseTranscription System with oligo-dT primer 

(Promega Corporation, Madison, WI) according to the manufacturer’s instructions. 

mRNA levels of MICA and MICB were measured by real-time  polymerase chain 

reaction by using iQ SYBR Green Supermix (Bio-Rad Laboratories). The PCR 

reaction mixture of 25 μL was prepared by using 100 ng of reverse-transcribed 

total RNA as template, 50 nM each forward and reverse primers, and 12.5 μL of 

SYBR green buffer (Bio-Rad Laboratories Inc., Hercules, California).  Specific 
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primers for MICA and MICB were as follows: MICA, 5ʹ- 

AGGGTTTCTTGCTGAGGTACA-3ʹ (forward) and 5ʹ- 

GGTCTCTCTGTCCCATGTCTTA-3ʹ (reverse); MICB, 5ʹ-

TCTTCGTTACAACCTCATGGTG-3ʹ (forward), and  

5ʹ-TCCCAGGTCTTAGCTCCCAG-3ʹ (reverse). Cycling conditions were 950C for 3 

min, 45 cycles of 59 ͦ C annealing for 30 s, 95 ͦ C for 30 s, and 60 ͦ C for 1 min. 

For the miRNA assay, total RNA was isolated and purified from cultured 

cells with use of Trizol reagent. Reverse transcription was performed by using a 

TagMan miRNA reverse transcription kit according to the manufacturer’s 

instructions.  For each 15-µL RT reaction, 7 µL RT master mix, 5 µL total RNA (5 

ng), and 3 µL of RT primer were combined. The resulting cDNA was subjected to 

PCR amplification with use of specific primers for Mir-20a, Mir-93, or Mir106b. 

 

Cytotoxicity assay  

NK cell cytotoxicity was measured by using a calcein release assay as 

described previously (58). Briefly, 1 x 106 target cells were resuspended in 1 µM 

calcein-AM diluted in DMED and incubated at 37οC for 1 h. Cells were washed 

with RPMI media twice and co-cultured with ex vivo expanded NK cells in 96-well 

U-bottom plates in a total volume of 200 µL in triplicate and at a ratio of 0.3125:1-

1:10 (effector cell: target cell). Plates then were incubated at 37οC for 4 h. Calcein-

labeled target cells and calcein-labeled target cells treated with 2% Tween 20 were 

considered as spontaneous release and maximum release, respectively. A total of 
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100 µL of supernatant was transferred to a 96-well flat bottom plate. The plate was 

read at excitation and emission wavelengths of 485 nm and 530 nm, respectively. 

Percent specific lysis was calculated according to the formula [(test release − 

spontaneous release) / (maximum release − spontaneous release)] × 100. 

 

Chromatin Immunoprecipitation (CHIP)  

LM7 cells were treated with 2 µM entinostat for 48 h. Chromatin 

immunoprecipitation was performed by using a CHIP assay kit (Millipore, 

Temecula, CA) according to the manufacturer’s instructions. Briefly, cell lysates 

were treated with 1% formaldehyde to crosslink protein and DNA. Lysates were 

sonicated to shear chromatin to 200-1000 bp in length and immune-precipitated 

by antibodies specific to acetyl-histone H3, acetyl-histone H4, histone H3, histone 

H4, or respective isotype control IgG antibodies.  MICA and MICB promoter 

regions were amplified by quantitative real-time PCR using primers specific to 

MICA or MICB.  A 423-bp segment located at -439 upstream of the translation 

initiation site of the MICA (1), as well as a 233-bp of MICA (2) located at –215 to 

+18 of the gene were amplified by using the following primers: MICA (1) forward 

5′-GAAGGAACAAGCCAGTG-3′, reverse 5′-GCCAGAAGCAGGAAGACC-3′; 

MICA (2) forward 5′-TTA GGC TGC GCT CCC GCG TGC TCC-3′, reverse 5′-CTC 

AGC GGC TCA AGC AGT GGC CGG-3′.  Likewise, a 220-bp fragment of the MICB 

(1) promoter covering bases from –239 to –20 as well as a 678-bp located at MICB 

(2) gene promoter were amplified by using the following primers: MICB (1) forward 

5′-GTT TGG AGC TGT ACT CTC AGC TAC-3′, reverse 5′-CCC GCT CAG CGA 



 

108 
 

CCG CTT ATC CAG-3′; MICB (2) forward 5′ GCGACAGGGTCCAGGTCGTGCTC-

3′, reverse 5′-CCCTACGTCGCCACCTTC TCAGCT-3′. After normalizing the 

readings to inputs, the results were presented as a ratio of acetylated histone (H3 

or H4) to total histone (H3 or H4).              

                  

miRNA mimics transfection.  

miRNA mimics and the negative control of miRNA mimics were transfected 

into OS cells lines using Lipofectamine RNAiMAX transfection reagent (Invitrogen, 

Carlsbad, CA). A total of 2 × 105 OS cells/well were seeded in a 24-well plate and 

transfected with the miRNA mimics at a final concentration of 5 pmol.  Cells were 

collected at 24 and 48 hours and analyzed by a flow cytometry assay. Total RNAs 

were isolated and purified from cells by using Trizol reagent and subjected to RT-

PCR and then quantitative real-time PCR. 

 

Determination of sub-therapeutic dose of entinostat for the in vivo study 

Female nu/nu mice (aged 4-6 weeks) were injected intravenously with 2 × 

106 LM7 cells suspended in 0.2 mL of PBS solution. Visible nodule formation was 

confirmed 8 weeks later after euthanization. Mice then were treated with 2.5, 5, or 

10 mg/kg entinostat 3 times a week for 2 weeks. At the end of treatment nodules 

were removed from the lungs and total mRNAs were extracted using Trizol 

reagent. MICA and MICB mRNA levels were evaluated by quantitative real-time 

PCR. 
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Animal model 

Four- to six-week-old nu/nu mice were injected intravenously with 2× 106 

LM7 cells suspended in 0.2 mL of PBS solution. About 5-6 weeks later, a few mice 

were euthanized to evaluate lung micrometastasis formation. Thereafter, 

treatment was started in the following four mouse treatment groups: 1) DMSO; 2) 

entinostat; 3) NK cells+ DMSO; and 4) NK cells+ entinostat. Mice received 5 mg/kg 

of entinostat or 200 µL of DMSO (control) by oral gavage three times a week for 5 

weeks. A total of 50× 106 NK cells were injected via the tail vein twice a week for 

5 weeks. A total of 12-16 mice were included in each mouse group. Mice were 

euthanized after 5 weeks of treatment. The lungs were removed, and the visible 

lung metastases were counted and measured. Fresh-frozen samples from the 

resected lungs were prepared for further use.  

In the case of using luciferase-expressing LM7 cells, nude mice were 

injected via tail vein with 2 × 106 LM7-Luc cells (a gift from Dr. Gottschalk from 

Baylor College of Medicine). Mice were monitored every week for micrometastasis 

formation in the lung by bioluminescent imaging. When micrometastases were 

observed in 75% of the mice, the mice were evenly distributed into four groups. 

Treatment was initiated with DMSO, entinostat, NK cells+ DMSO, or NK cells+ 

entinostat for 5 weeks. Mice received 5 mg/kg of entinostat or 200 µL of DMSO 

(control) by oral gavage 3 times a week for 5 weeks. A total of 50× 106 NK cells 

were injected via the tail vein twice a week for 5 weeks. A total of 11-12 mice were 

included in each mouse group. Before treatment and at the end of treatment the 
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tumor burden was evaluated by bioluminescent imaging using the IVIS spectrum 

system (Xenogen). Mice were kept for the survival assay. 

Immunohistochemistry 

 Paraffin-embedded lung tissues were used for analysis. After 

deparaffinization and rehydration of slides, antigen retrieval was performed by 

using sodium citrate. To block exogenous peroxidase, slides were incubated with 

3% H2O2 for 12 minutes followed by PBS supplemented with 4% fish gelatin in 

PBS. Antibodies specific to MICA/B (abcam, US) was applied and left overnight at 

4°C followed by incubation with horse radish peroxidase-labeled secondary 

antibodies for 2 hours at room temperature. Slides were then developed with 3, 3′-

diaminobenzidine (DAB) as a substrate, and counterstaining was done with 

hematoxylin. Negative controls were prepared in the same manner as the samples 

except that they were treated with primary antibodies. 

 

Immunofluorescence 

To quantify the presence of infused NK cell in the mouse lung, 50 x 106 CM-

Dil labeled NK cells were injected via the tail vein.  At 50 min and at 24 h after NK 

cell injection, the mice were euthanized and the lungs removed. The frozen 

sections of the lung tissues were stained for the nucleus using Hoechst 33342 

nucleic acid stain (Molecular Probes) at 1:50,000 dilution in PBS. Slides were 

examined under a fluorescence microscope. Lung tissues from mice that did not 

receive CM-Dil labeled NK cells were used as the controls.  
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Frozen sections from our in vivo experiment were analyzed by 

immunofluorescence staining for NK cells. Slides were fixed with 4% formaldehyde 

for 10 minutes. Slides then were incubated with blocking solution (4% fish gelatin 

in PBS) for 20 minutes at RT. Goat anti-human NKp46 antibody (10 μg/ ml) was 

added (R&D System, US) and slides were incubated at 4ο C overnight. After 

washing with PBS, slides were incubated with anti-goat secondary antibody for 1 

hour at RT. After washing with PBS, nucleus were stained with use of Hoechst 

33342 nucleic acid stain. Slides then were mounted and examined with the use of 

a Zeiss Axioplan fluorescence microscope (Carl Zeiss, Inc., Thornwood, NY) 

 

Statistical analysis 

The unpaired student t-test was used for statistical comparisons of groups. 

Survival studies were analyzed with use of a Mann-Whitney rank-sum test.  P 

values of less than 0.05 were considered statistically significant. 
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