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HER4 PROMOTES A STEM-LIKE PHENOTYPE IN OSTEOSARCOMA 

 
Rocio Krystal Rivera-Valentin, B.S. 

Advisory Professor: Eugenie S. Kleinerman, MD 

  

 Metastatic disease to the lungs is the primary cause of death for patients with 

pediatric osteosarcoma (OS). OS has a high degree of heterogeneity and genomic 

instability, making understanding the pathogenesis and drivers of metastasis of this 

disease challenging. In an effort to explain tumoral heterogeneity, the tumor initiating 

cell model (TIC) states that tumors are composed of cells that form the majority of 

the tumor and are terminally differentiated. This model however, attributes 

tumorigenesis, metastasis and chemoresistance to a distinct cell population with a 

stem-like phenotype that can be identified using selective markers. OS appears to 

follow this model where OS cells with tumor initiating potential can be identified by 

expression of Stro1, CD117 and embryonic stem cell transcription factors such as 

Sox2, Nanog and Oct3/4. Additionally, OS stem-like cells display high aldehyde 

dehydrogenase activity and sarcosphere formation under limited nutrient media and 

anchorage independence. These markers are not feasible targets for therapy due to 

their expression on normal tissue stem cells; however, upstream regulators of this 

phenotype may be targetable. Therefore, we investigated other modulators of the 

stem-like phenotype.  

 Her4, a transmembrane receptor of the EGFR family, has been recently 

studied for its role in cancer. Previously, we demonstrated that Her4 is highly 

expressed in neuroblastoma, and OS, while others have shown its importance in 
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Ewing sarcoma. This receptor is induced and required to survive stressors, like 

anchorage independence, serum starvation and chemotherapy treatment, which are 

similar in vitro conditions used to enrich for cells with tumor initiating potential. 

Therefore, we hypothesized that Her4 expression is an important regulator of a 

stem-like phenotype in OS.  

In sarcosphere culture, Her4 expression is induced and precedes the 

induction of CD117 and Stro1. OS cells with Her4 deleted by CRISPR/Cas9 have 

decreased aldehyde dehydrogenase activity and cannot upregulate the pluripotency 

transcription factors Sox2, Oct3/4 and Nanog even when in sarcospheres. 

Overexpression of exogenous Her4 was able to cause upregulation of these 

transcription factors and increase expression of CD117 in monolayer culture. We 

examined Her4 expression in OS diagnostic biopsies and determined the correlation 

with metastasis free survival. Tumors with high Her4 expression have higher 

probability of developing metastatic disease.  

 In this dissertation, we demonstrate that Her4 expression is induced by 

conditions that enrich stem-like cells and its expression correlates with the ability to 

upregulate various OS TIC markers. Therefore, Her4 may contribute to 

pathogenesis of OS by conferring a stem-like phenotype. 
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Osteosarcoma 
 

Osteosarcoma (OS) is the most prevalent bone tumor among pediatric 

patients comprising around 60% of all bone tumors in children [1-3]. It affects mostly 

adolescents and males more often and earlier than females, but there is an 

additional peak incidence amongst patients older than 50, pointing at a possible role 

of bone remodeling in tumor initiation common at both ages [1]. Around 4.4 cases 

per million per year are diagnosed in the U.S. making this malignancy fairly 

uncommon [4]. However, this tumor is highly deadly due to its high metastatic 

capacity making OS the second most common cause of cancer related deaths 

among pediatric patients [5, 6]. Metastatic disease localizes primarily to the lungs 

and less frequently to bone and it is the primary cause of death of OS patients [7]. 

Patients who initially present with localized disease have a 5-year survival of around 

70% compared to patients who present with metastatic disease upon diagnosis who 

have less than 20% survival at 5 years [1].  

Management of the Osteosarcoma Patient 
 

A common case presentation for OS is a young adolescent who presents with 

articular pain and swelling, commonly on the distal femur or proximal tibia, without 

any significant history of trauma [8]. Patients who present with OS suspecting 

lesions undergo biopsy and imaging studies as part of their initial workup. These 

typically include plain radiographs, which can show pathognomonic OS features like 

a sunburst pattern indicating bone destruction and deposition and presence of 

Codman’s triangle or periosteum elevation around the tumor [1] However, MRI of the 

affected area is necessary to determine the extent of disease and neurovascular and 
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soft tissue involvement. CT of the lungs is typically used to determine the presence 

of metastatic lesions. Histologic evaluation of the tumor is the standard for OS 

diagnosis. Lace patterning is indicative and a specific feature of osteosarcoma 

indicating osteoid (unmineralized bone matrix) deposition [2]. 

After the diagnosis of OS has been made, patients are placed on induction 

chemotherapy. Besides achieving local tumor control for better surgical excision, 

response to induction chemotherapy is the only validated prognostic factor for OS 

patients [9]. Patients who present with higher than 90% necrosis after induction are 

classified as good responders and have a 5-year disease free survival (DFS) of 

around 68%. Poor responders show less than 90% tumor necrosis and 5-year DFS 

of 51% [1]. Standard chemotherapy for OS consists of high-dose methotrexate, 

doxorubicin (Adriamycin) and cisplatin, also known as MAP therapy. Recent trials 

have evaluated whether there is an added benefit of combining ifosfamide and 

etoposide with MAP therapy to improve outcome of poor responders but 

unfortunately no significant success was obtained, with survival unchanged for over 

20 years since the discovery of neoadjuvant chemotherapy and surgical excision [9]. 

Osteosarcoma Pathogenesis 
 

Unlike other malignancies, no specific recurrent mutations have been 

identified as drivers of spontaneous OS, but some genetic alterations predispose to 

OS. Patients with mutations in the Retinoblastoma (RB1) gene have an incidence of 

osteosarcoma 500 times higher than the normal population and it’s the most 

common secondary malignancy these patients present [10-13]. Li-Fraumeni, a 

familial syndrome involving germline mutations in p53, confers patients an increased 
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risk in many cancers like breast, brain and osteosarcoma among others [14]. 

Overall, around 70-80% of OS patients present with some mutation in either of these 

genes [1]. Mutations in the RECQL4 (RecQ protein-like 4) gene, which encodes for a 

RecQ helicase are associated with Rothmund-Thomson syndrome and have an 

increased predisposition to OS [15, 16].  

 Secondary OS primarily occurs among patients that were treated for another 

malignancy during their childhood years. Ionizing radiation and anthracycline or 

alkylator containing chemotherapies for the treatment of childhood solid tumors have 

been associated with the development of OS in the following two decades after 

treatment [5, 17]. Secondary OS also occurs in around 1% of patients with osteitis 

deformans or Paget disease of the bone. Although there is a low probability of 

malignant transformation among this population, patients who do present secondary 

OS have a particular poor outcome [18]. 

Tumor Heterogeneity in OS 
 

One of the major features of OS is genomic instability [19]. Many studies have 

elucidated the complexity of the genomic alterations in this disease by whole 

genome sequencing and genome wide association studies (GWAS) on patient 

samples compared to paired normal tissue. We have learned from these 

investigations that OS is one of the cancers with the highest degree of structural 

variation. OS presents with two important phenomena that greatly contribute to 

genomic alterations and heterogeneity. Kataegis refers to hypermutated 

chromosome regions that have undergone somatic rearrangement [20]. These 

regions have been found throughout OS lesions and are not exclusive of specific 



 5 

chromosomes. The second event is chromothrypsis where entire chromosomes are 

shattered or broken into small fragments of DNA, which are then reassembled 

through non-homologous end joining generating a “stitched up” chromosome with 

many translocations and aberrations[20]. These two events make studying and 

understanding the biology of OS extremely challenging since there are no specific 

recurring chromosomal rearrangements that can be considered driving mutations 

among OS patients. 

Cancer Stem Cell Model: Understanding tumor heterogeneity  
 

Two models that have been extensively studied in order to understand more 

about tumor progression and heterogeneity are the stochastic model and the cancer 

stem cell model (CSC). In the early days of cancer biology research, the stochastic 

model was widely accepted and many if not all malignancies were thought to follow 

its principle [21]. This model posits that all cells within a tumor are biologically 

equivalent and have the same tumorigenic potential, therefore tumors are essentially 

homogeneous. Heterogeneity then is explained in this model by unpredictable 

random alterations in individual cells or particular and unique responses to intrinsic 

and extrinsic factors [22].  The stochastic model assumes that it is impossible to 

isolate pure populations of cancer cells that do not have tumorigenic potential, since 

the microenvironment and other uncontrollable factors will come into play and 

generate cells capable of tumor formation [23]. The CSC model is now more widely 

accepted over the stochastic model. The CSC model was initially described by Dick 

and colleagues in leukemia [22, 24, 25] but since then many malignancies, both 

solid and hematologic, have been shown to follow this principle. In the CSC model, 
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tumor heterogeneity is intrinsic. There are broadly two populations within tumors: 

those that form the bulk of the tumor and those with tumor initiating potential (see 

Figure 1). Cells that form the majority of the tumor have undergone clonal 

expansion, are rapidly dividing and can only generate progeny though symmetrical 

division [23]. In contrast, there is a small subpopulation of cells that are at the top of 

the cellular hierarchy since they can generate, through asymmetrical cell division, 

cells at different stages of differentiation. These CSCs or stem-like cells are thought 

to resemble normal tissue stem cells in many aspects including self-renewal, 

multipotency and differentiation into multiple lineages. This stem-like cell population 

is thought to be responsible for chemotherapy resistance and relapse due to their 

ability to remain in a quiescent state and their capacity to effectively dispose of 

drugs. Markers that identify normal tissue stem cells and also unique markers for 

CSCs have been studied in an effort to isolate this population. 
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Figure 1: Hierarchical versus stochastic model to explain tumor heterogeneity. 
The hierarchical model (left panel) states that tumor heterogeneity is due to the 
coexistence of various cell populations within a tumor. The bulk tumor is composed 
of cells that can be effectively targeted by chemotherapy and upon dissociation and 
serial transplantation in mice, these cells cannot effectively initiate tumors. A minority 
of cells within a tumor has tumor initiating potential and can be identified by markers 
used to identify stem cells. These termed stem-like cells can recreate tumors when 
serially transplanted and even when very low numbers of cells are injected. 
Recurrence and metastatic disease therefore occurs by the inadequate targeting of 
this population. On the contrary, the stochastic model (right panel) assumes that 
every tumor cell has the same ability to initiate tumors and therefore intrinsic factors 
will determine which cell will be clonally expanded in order to achieve tumor survival. 
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Stem-like cells in OS 
 

OS has been shown to follow a CSC model [26-31]. This discovery has paved 

the way for further identification of markers capable of selecting populations with 

high tumorigenic potential. Various CSC markers and capabilities, both unique to OS 

and shared between various malignancies, identify subpopulations of OS cells with 

stem-like features and tumor initiating potential. Table 1 summarizes key 

characteristics associated with a stem-like phenotype in OS. 

 

Table 1: Validated markers that identify stem-like cells in OS 

 

Markers Important Findings References 

CD117 (Mast/stem cell 

growth factor receptor) 

and Stro1 

(mesenchymal stem cell 

marker) 

1. Human and murine 

OS cells that 

expressed these 

markers were 

highly tumorigenic 

in vivo, highly 

metastatic and 

expressed self-

renewal potential. 

2. They also 

expressed 

additional markers 

of stem-like cells 

like: CXCR4, 

ABCG2 (ABC 

transporter for drug 

efflux), etc. 

3. Displayed sphere 

forming ability. 

[26, 29] 

Aldehyde 
dehydrogenase enzyme 

Cells with high 
Aldefluor expression 

[32] 
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(ALDH) in OS were 
chemoresistant, and 
displayed high tumor 
initiating frequency. 

Oct3/4, Sox2 and Nanog 

1. Highly tumorigenic, 
sphere forming 
and related to 
metastasis ability 

[26, 33, 34] 

CD133 (Prominin-1) 

1. Overexpress 
Embryonic stem 
cell transcription 
factors 

2. Invasive and 
metastatic 

3. Express sphere 
forming ability 

4. Displayed 
multipotency 

[27, 31, 35-37] 

Membrane dye retention 
PKH26 or PKH67 

1. Able to form 

spheres under 

limited media 

2. Form tumors in 

vivo under limiting 

dilution 

 

[38] 

Hoechst-33342 dye 
excluding side 

population 

3. Display ability to 
form spheres under 
limiting dilution 

4. Chemoresistant 

[39, 40] 

 
Although OS has been consistently thought of as a malignancy that follows a 

tumor initiating cell model, recent studies have suggested that this phenotype can be 

inducible demonstrating that tumor cells can have some degree of plasticity allowing 

them to adapt to their microenvironment [41]. Similar observations have been made 

in melanoma [21], and neural tumors [42-44]. 
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ErbB4 and EGFR Family 

ErbB4 also known as Her4, is a type I transmembrane protein and receptor 

tyrosine kinase part of the Epidermal Growth Factor Receptor (EGFR) family. This 

family is composed of four members: EGFR, ErbB2, ErbB3 and ErbB4 which share 

a similar structural composition consisting of an extracellular domain that contains a 

ligand binding site, a transmembrane region and a cytoplasmic domain [45]. 

Signaling is initiated by ligand binding to the extracellular portion of the receptor, 

which triggers receptor activation and homo- or heterodimerization with other family 

members. There are ligands that activate multiple family members (betacellulin, 

heparin-like binding factor and epiregulin which can bind and activate both EGFR 

and Her4) and specific members: EGFR (Epidermal growth factor (EGF), 

amphiregulin, TGF-alpha), ErbB3 (Neuregulin 1 and 2) and ErbB4 (Neuregulin 3 and 

4)[46, 47]. ErbB2 is an exception in the family because although it does contain an 

extracellular domain in its structure, no ligands or specific ligand binding sites have 

been identified. Upon activation, the EGFR family undergoes autophosphorylation of 

specific tyrosine residues that initiate a myriad of signaling cascades. ErbB3 

however possesses very little, if any, kinase activity. 

Her4 has an added layer of complexity due to exon splicing events that can 

generate various isoforms with specific cellular functions and differentially expressed 

within tissues. 4 different juxtamembrane isoforms of this receptor have been 

described termed Jma, Jmb, Jmc and Jmd (Figure 2). These isoforms differ by 

splicing of exon 16 that codes for a TACE (Tumor necrosis factor-alpha converting 

enzyme, also known as ADAM17) binding site rendering the receptor susceptible to 
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cleavage by this enzyme [48-50]. Only isoforms Jma and Jmd contain this exon and 

are therefore the cleavable forms of ErbB4 that allow this receptor to undergo a two-

step proteolytic processing. After the extracellular fragment of Her4 is released upon 

TACE cleavage, the membrane bound receptor of around 100 KD is then the 

substrate of a second cleavage event by gamma-secretase. A soluble 80 KD 

fragment of Her4 (s80) is released into the cellular cytoplasm where it can affect 

many signaling pathways or go into the nucleus to regulate transcription. It is 

important to note that s80 Her4 can go into the nucleus due to its nuclear localization 

sequence, however this receptor lacks DNA binding domains. Therefore its effects in 

regulating transcription are mediated through binding positive and negative 

regulators of transcription [48, 50, 51]. 

Additional cytoplasmic isoforms of ErbB4 exist due to further exon splicing 

events. As represented in Figure 2, the CYT1 isoform contains exon 26, which 

encodes for a PI3K binding site and can activate both the MAPK and PI3K signaling 

pathway; the CYT2 isoform on the contrary does not contain this exon and can only 

activate the MAPK pathway upon receptor activation [52, 53]. 
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Figure 2: Her4 receptor juxtamembrane and cytoplasmic isoforms. The Her4 
receptor can be expressed by a combination of various juxtamembrane and 
cytoplasmic isoforms that are generated by various splicing events. Expression of 
exon 16 allows for expression of a TACE cleavage site, allowing the receptor to 
release its extracellular domain and generating a membrane bound fragment that 
can be further cleaved by gamma-secretase. This leads to the release of a soluble 
80 KDa cytoplasmic fragment that can go to the nucleus and act as a chaperone 
affecting transcription. This exon is only expressed in Jma and Jmd isoforms. 
Cytoplasmic isoforms differ by the expression of exon 26 of Her4 which codes for a 
PI3K binding domain. This exon is contained in the Cyt1 isoform, allowing signaling 
through both PI3K and MAPK signaling pathways. The Cyt2 isoform lacks this 
domain and can only mediate MAPK signaling. 

 

Her4 in cancer and OS 

 
Early reports on Her4 have been contradictory showing both tumor 

suppressor and oncogenic features on the same malignancy. One example of these 

incongruent observations has been Her4 expression in breast cancer. Some reports 

show that survival is markedly improved in patients that have Her4 positive tumors, 

while others point at Her4 as an oncogene with overexpression conferring poor 
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survival [46, 51, 54]. These seemingly disparate results have been explained by 

understanding the specific roles of the different Her4 isoforms during 

carcinogenesis. Studies comparing cleavable JmaCyt2 versus non-cleavable 

JmbCyt2 demonstrated a role in survival for Jma versus a role in cell death for Jmb. 

In addition, the cytoplasmic isoforms of the receptor have opposing effects with 

CYT1 promoting growth inhibition and CYT2 involved in proliferation. Also, the CYT2 

isoform has a greater kinase activity than CYT1 and it is preferentially translocated 

to the nucleus [55]. 

Although Her4 has been mostly studied on breast cancer, other malignancies 

have demonstrated the important role this receptor plays in tumorigenesis. Some 

examples are in neuroblastoma [56], melanoma [57], Ewing sarcoma [58, 59] and 

more recently in lung cancer [60]. Particularly in Ewing sarcoma, reports from Poul 

Sorensen’s group showed that Her4 expression mediates chemoresistance and 

survival under anchorage independence. In this model, Her4 is upregulated in 

response to cell-cell interactions modeled by anchorage independence that activate 

E-cadherin and Her4 expression in turn promotes PI3K signaling and survival. In this 

malignancy, Her4 expression has also been associated with reduced disease-free 

survival. Similar observations were published by our department in neuroblastoma 

[56]. 

Therefore, Her4 expression in various malignancies seems to be important to 

promote resistance to chemotherapy, anoikis and promotes development of 

metastasis.  
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Hypothesis 
 
 Because Her4 expression is thought to be necessary for the survival of 

tumorigenic cells when they are under various stressors including chemotherapy, 

anchorage independence and serum starvation [56, 58] and these conditions are 

used to enrich cancer cells with stem-like features, we sought to determine whether 

Her4 expression in OS conferred a stem-like phenotype. 

 We hypothesized that Her4 plays an important role in OS, causing 

aggressive and metastatic disease in part by regulating the expression of 

stem-like characteristics in OS. 
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OS cell culture 
 
 Human OS cell lines CCHD, CCHK, CCHO, CCHM, Maos, HOS, MG63, 

SJSA, U2OS, SaOS2 were maintained in high-glucose Dulbecco’s modified Eagle’s 

medium (DMEM, Invitrogen, Carlsbad , CA) supplemented with 10% fetal bovine 

serum (FBS, HyClone, Logan ,UT) and 1% penicillin/streptomycin (Gemini Bio-

Products, Woodland, CA). Cells were incubated at 37°C with 5%CO2 and were kept 

in a humidified atmosphere. MG63, SaOS2, Hos, U2OS, SJSA were purchased from 

the American Type Culture Collection (ATCC, Manassas, VA). CCHD, CCHO, 

CCHM and CCHK are OS cell lines obtained from patients at the Children’s Cancer 

Hospital at the University of Texas MD Anderson Cancer Center. Maos was derived 

from a patient at the University of Michigan. CCHD was obtained from a 

pretreatment biopsy of a proximal femoral lesion in an 18-year-old male with 

pulmonary metastases upon diagnosis. CCHO was obtained from a hip lesion of a 

22-year-old male who presented T5 spinal metastasis. Unfortunately, additional 

information regarding the origin of remaining patient derived cell lines (CCHM, 

CCHK and Maos) is not available. Cells were routinely passaged upon reaching 

confluency of around 80% using trypsin (TrypLE Express, Invitrogen, Carlsbad, CA). 

Sarcosphere Assay 
 
 Sarcosphere culture using OS cell lines was performed as previously 

described [30] [32] with some modifications . Briefly, 60,000 cells per well of 6-well 

poly-Hema (poly 2-hydroxyethyl methacrylate, Sigma, St. Louis, MO) coated plates 

were seeded and supplemented with DMEM/F12 (Gibco), B27 supplement (Life 

Technologies, Waltham, MA), 50 ng/uL Epidermal Growth factor (EGF, Life 
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Technologies) and 50 ng/uL basic Fibroblastic Growth factor (bFGF, Life 

Technologies). Sarcospheres were supplemented EGF and bFGF every other day. 

Flow cytometry 
 
 To measure the expression of surface markers Stro1, CD117 and Her4, OS 

cell lines in monolayer culture were washed with Phosphate Buffered saline (PBS, 

Gibco) and detached from culture plates using enzyme-free cell dissociation buffer 

(Gibco). Cells were counted using Trypan blue exclusion in a Vi-Cell automated cell 

counter (Beckman Coulter).  For single cell dissociation, sarcospheres were 

collected, washed once in PBS and enzyme-free cell dissociation buffer was added. 

Cells were pipetted gently up and down until a uniform cell suspension without 

aggregates was observed.  Cells were counted manually using a hemacytometer 

and trypan-blue (Thermo) exclusion. Cells were suspended in blocking buffer 

consisting of PBS, 10% mouse serum (Thermo) and 5mM EDTA (Life Technologies) 

and the following antibodies were added: anti-human Stro1 PE or anti-human Stro1 

PerCP/Fitc (Santa Cruz Biotechnology, Santa Cruz, CA), anti-human CD117 PeCy7 

(eBioscience, San Diego, CA) and anti-human Her4 APC (Novus Biologicals, 

Littleton, CO). Samples were stained for 30 minutes in the dark and on ice and were 

later washed twice with blocking buffer and either analyzed immediately using the 

BD LSRFortessa cell analyzer (BD Biosciences) or fixed in 1% paraformaldehyde 

(Electron Microscopy Services) and fixed for later analysis. Analysis was performed 

using FlowJo software (Tree Star Inc.). 
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Immunofluorescence staining 
 
 OS sarcospheres were grown as described for 4 days. At this time, 

sarcospheres were collected, washed twice with PBS and incubated in a solution 

containing 0.1% Triton (Thermo Scientific) in PBS for 20 minutes at room 

temperature to achieve permeabilization. Spheres were washed twice with PBS and 

incubated for one hour at room temperature in a protein block solution containing 

PBS, 10% goat serum (HyClone) and 0.1% Triton. Following blocking of unspecific 

binding, primary antibodies were added at the following dilutions: anti-human Stro1 

(Santa Cruz Biotechnology, 1/100); anti-human Her4 (abcam HFR-1, Cambridge, 

MA, 1/200); anti-human CD117 (Stem Cell Technologies, Cambrigde, MA, 1/100) 

and were left incubating overnight at 4 degrees Celsius. Sarcospheres were washed 

three times in PBS and secondary antibodies conjugated to Alexa-Fluor 488 (CD117 

or Stro1) or Texas Red (Her4) were added and incubated at room temperature for 

1.5 hours in the dark. Cells were washed three times in PBS; one drop of DAPI was 

added (Thermo Fischer) and sarcospheres were transferred to slides and visualized 

using a Leica Fluorescent microscope. 

Western Blot 
 
 Whole cell lysates from human OS cell lines were obtained as follows: cells 

were detached from culture plates using cell scrapers (Falcon) and washed twice 

with cold PBS. Cell pellets were obtained by centrifugation at 13,000 rpm for 5 

minutes. These pellets were resuspended in lysis buffer containing: 25mM Tris-HCl 

pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40, 5% Glycerol, phosphatase inhibitor 

cocktail (Sigma) and protease inhibitor tablets (Roche Diagnostics). Cell pellets were 
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incubated with lysis buffer at 4 degrees Celsius with constant rotation for 30 minutes. 

Then, were centrifuged at 13,000 rpm for 10 minutes and supernatant was collected. 

Protein concentration was quantified by BCA assay (Thermo Scientific) using 

albumin standards to generate a standard curve. Equal lysate concentration 

between samples was loaded on 8% SDS-PAGE gels to allow protein separation. 

Proteins were transferred to nitrocellulose membranes using the iBlot transfer 

system (Invitrogen). Full-length Her4 expression was detected by incubating 

nitrocellulose membranes with anti-human Her4 antibody (Abcam) at a dilution of 

1/1000 in 5% Bovine serum albumin (BSA, Thermo Scientific) in TBST. Anti-rabbit 

secondary antibody conjugated to horseradish peroxidase was used. Pierce ECL 

(Thermo Scientific) western blotting substrate was used to detect chemoluminiscent 

signal. 

Aldefluor Assay 
 
 Aldefluor kit (Stem Cell Technologies) was used to measure the activity of 

aldehyde dehydrogenase enzyme and the assay protocol provided was followed. 

Briefly, after detaching cells from plastic culture dishes, cells were counted and one 

million cells were aliquoted in a separate tube. Cells were centrifuged, media was 

removed and the remaining cell pellet was resuspended in 1mL of Aldefluor Assay 

buffer and placed in a micro centrifuge tube. In a separate micro centrifuge tube 5uL 

of the DEAB control were aliquoted. The cell suspension was added 5uL of the 

Aldefluor substrate, immediately mixed by pipetting and 500uL of the cell suspension 

were added to the DEAB control. Both microcentrifuge tubes were incubated at 37 

degrees for 30 minutes, then centrifuged at 1.4 rpm for 5 minutes. Supernatant was 
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discarded and the cell pellet was resuspended in 300uL fresh Aldefluor Assay buffer 

and analyzed using the BD LSRFortessa. 

Real-time Polymerase Chain Reaction (RT-PCR) 
 
 To determine the expression of embryonic stem cell transcription factors in 

OS cell lines with either Her4 knockout or overexpressing constructs, polymerase 

chain reaction (PCR) was used. Total RNA was extracted from OS cell lines using 

the RNeasy Mini Kit (Qiagen) and cDNA was prepared through reverse transcription 

using the Omniscript Reverse Transcriptase Kit (Qiagen) supplemented with 

oligo(dT)s (Invitrogen) and RNAse inhibitor (New England Biolabs) and according to 

the instructions provided. Real-time PCR was performed using the Lightcycler 480 

(Roche) using relative quantification analysis and the following Taqman probes 

(Applied Biosystems): Nanog: Hs04260366_g1; Sox2 : Hs01053049_s1 and Oct4: 

Hs04260367_gH. PCR reactions were prepared using Taqman gene expression 

master mix (Applied Biosystems) and following the provided protocol. 

Statistical Analyses 

 
 Triplicate samples were analyzed in each experiment and every experiment 

was performed at least three times unless otherwise specified. Statistical analysis 

was performed using Student’s t test (GraphPad Software Inc.). Assessment of 

survival curves was done with log-rank test. P-values of <0.05 were considered 

significant. 
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Chapter 3: Her4 is highly expressed and a possible prognostic factor in OS 
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Rationale  
 

Previous studies have demonstrated the importance of the Her4 receptor in 

mediating an aggressive phenotype in many malignancies [46, 58, 59, 61-64]. More 

so, pediatric cancers like Ewing sarcoma and neuroblastoma have increased Her4 

expression and this correlates with resistance to chemotherapy and metastatic 

disease [58, 59]. Expression of the EGFR family has been reported in OS and 

among the family, Her4 is frequently highly expressed in both primary and metastatic 

OS lesions [65, 66]. However, no data is available specifically correlating survival 

among OS patients that express high Her4 expression in their primary tumors. In 

addition, no specific data is available regarding prevalence of the various Her4 

isoforms in OS. Therefore, we pursued to understand how Her4 affects survival of 

OS patients and specifically which isoforms are differentially expressed in patient-

derived and commercially available OS cell lines.  
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Results 
 

Her4 expression correlates with decreased metastasis free survival 

 
In order to determine correlation between Her4 expression and OS patient 

survival we analyzed the Mixed Osteosarcoma Kuijjer database set [67, 68] using 

the R2 Genomics Analysis and Visualization platform. This publicly available online 

tissue microarray contains gene profiles of 84 primary diagnostic osteosarcoma 

biopsies. We generated Kaplan-Meier survival curves with Her4 high (n=40) and low 

(n=28) expressing patient biopsies that did not present with metastasis at diagnosis 

and that were followed for development of metastasis over a period of 240 months 

(20 years). Cutoff for high and low Her4 expression was determined by comparison 

with osteoblasts and mesenchymal stem cells used as controls. From the generated 

curves we observed that patients with high Her4 expression had a significantly 

decreased metastasis free survival that remained steady at 50% after 48 months 

(Figure 3). In comparison, patients with low Her4 expression had a significantly 

higher metastasis free survival probability of around 90%.  
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Figure 3: Metastasis free survival is decreased in OS patients with high Her4 
expression. The R2 Genomics Analysis and Visualization platform (Academic 
Medical Center; http://r2.amc.nl) was used to create Kaplan-Meier metastasis-free 
survival curves using the ‘Mixed Osteosarcoma - Kuijjer - 127 - vst - ilmnhwg6v2’ 
dataset which comprises genome-wide analysis of 84 high-grade osteosarcoma 
diagnostic biopsies. These primary tumors were analyzed for Her4 high and low 
expression using osteoblasts (n=3) and mesenchymal stem cells (n=12) as controls. 
The R2 generated “scan” cut-off modus was used to determine the threshold point 
that most significantly separates high relative gene expression and low relative gene 
expression.  *p ≤0.05. 
 
 

Her4 juxtamembrane isoforms are variably expressed in OS cell lines 

 
 Next, we wanted to determine the expression of the different juxtamembrane 

isoforms of the Her4 receptor in OS. As previously discussed, the complex 

processing of this receptor can generate four different juxtamembrane isoforms of 

which only two (Jma and Jmd) can undergo a two-step proteolytic cleavage event 

releasing a soluble Her4 cytoplasmic fragment. This 80KDa peptide can then 

localize to the nucleus to regulate transcription by binding several transcription 

factors like STAT5, YAP1 among others [48-50]. We previously showed that Her4 is 
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highly expressed and primarily localized to the cytoplasm in patient-derived tumor 

biopsies [65, 66]. However, we were lacking information on specific isoform 

expression. To have more information regarding the abundance of the 

juxtamembrane isoforms of the Her4 receptor, we performed absolute quantification 

PCR using primers specifically designed to distinguish between the different 

cleavable and non-cleavable isoforms.  We noted from this experiment that 

compared to established commercially available OS cell lines, 4 out of 5 patient-

derived OS cell lines have a higher copy number of Her4 overall (Figure 4). In 

addition, these cell lines with high Her4 express preferentially the cleavable 

juxtamembrane isoform Jma.  
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Figure 4: OS cell lines have a variable expression of Her4 with the cleavable 
isoform Jma preferentially expressed. Quantitative real-time PCR was performed 
using standard curve analysis to determine copy number of the various 
juxtamembrane isoforms of the Her4 receptor. Patient derived cell lines CCHD, 
CCHO, CCHM and Maos have a higher copy number overall of the Her4 receptor 
compared to established OS cell lines MG63, HOS, SJSA, Saos2 and U2OS. 
Furthermore, in cell lines that express high Her4 copy number the most prevalent 
isoform is Jma, which contains exon 16 and encodes for a TACE cleavage site. This 
data suggests that Her4 expression in patient derived cell lines goes in accordance 
with Her4 expression in OS patient diagnostic biopsies. 

 

 

 

 

 
 



 27 

Summary 
 

Although reports of Her4 expression in OS showed increased expression of 

this receptor in patient biopsies, specific correlation on patient outcome and which 

specific isoform is preferentially expressed was lacking. For this purpose, we 

performed Kaplan-Meier survival curves using gene array data from primary OS 

biopsies and found that Her4 expression correlates with patient outcome indicating 

that Her4 may be a prognostic factor. Patients with high Her4 expression had a 

higher probability of developing metastasis than those with low expression of this 

receptor as shown in Figure 3. This data has translational applicability since current 

assessment on prognosis for OS patients is done after 12 weeks of induction 

chemotherapy where evaluation of tumor necrosis takes place [1, 9]. However, with 

Her4 expression being an important determinant for development of metastatic 

disease, patients that present Her4 upon diagnosis can be treated more 

aggressively under the expectation that their tumors are likely to metastasize.  

 Also, we identified the cleavable juxtamembrane isoform Jma to be 

preferentially expressed in cell lines derived from patient biopsies compared to 

established OS cell lines. This supports a potential role of intracellular Her4 signaling 

in OS and is consistent with previously published data showing that Her4 expression 

in OS tumors is primarily localized to the cytoplasm.  
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Chapter 4: Her4 is induced by sarcosphere culture and leads to up-regulation 
of markers that identify OS cells with a stem-like phenotype 
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Rationale 
 
 Tumor cells able to form distant metastatic lesions need to withstand adverse 

environments on the road to metastasis [69, 70]. One important aspect of metastasis 

is anoikis, which is described as the ability of cancer cells to grow effectively under 

anchorage independence. In vitro, this capacity is studied by growing cancer cells 

without allowing them to adhere to plastic surfaces [71]. Under these conditions, 

Her4 is upregulated in two pediatric malignancies, Ewing sarcoma and 

neuroblastoma. These studies showed that cells that have Her4 expression besides 

forming spheroid structures under anchorage independence, are highly 

chemoresistant and metastatic compared to those that do not express this receptor 

[58, 59]. 

 Furthermore, survival under anchorage independence has become a staple of 

cells with tumor initiating potential or stem-like cells [26, 72]. Subpopulations of cells 

thought to be stem-like display many distinct attributes including, but not limited to, 

growth as spheres under anchorage independence with limited nutrient media, 

expression of markers of pluripotency, expression of markers associated with normal 

tissue stem cells, high aldehyde dehydrogenase activity and high expression of ABC 

transporters leading to high drug clearance and increased chemotherapy resistance 

[33, 44, 73-75]. 

 Since Her4 expression in select pediatric malignancies leads to various 

attributes that characterize tumor initiating cells in vitro, we wanted to determine 

whether Her4 expression in OS correlates with expression of validated makers used 

to characterize and isolate OS stem-like cells. 
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Results 
 

Sarcosphere culture induces Her4 expression 

 
 In Ewing sarcoma cell lines, growth in suspension causes an increase in E-

cadherin signaling which ultimately leads to activation of Her4 as a downstream 

effector [58]. Similar to these findings, we were able to observe Her4 upregulation in 

patient derived OS cell lines after just 4 days in sarcosphere culture, as shown in 

Figure 5. For CCHO, Her4 upregulation was observed after 7 days in spheres. 

However, unlike previous studies focusing on anchorage independence only, our 

sarcosphere culture conditions were more strict and restrictive and included defined 

media without fetal bovine serum and supplemented with essential vitamins, 

minerals, EGF and FGF (see materials and methods section). These sarcosphere 

conditions have been described as stressors that allow selection and enrichment of 

cells with tumor initiating capabilities [26, 30]. In addition, in vitro sarcophere 

formation is accepted as a more representative model of actual disease in cancer 

patients than monolayer culture [71]. Therefore, this data validates a possible 

significance of Her4 in stem-like populations in OS. Since OS stem-like cells are 

more metastatic and chemoresistant than cells that do not express these traits [26, 

29, 30], correlation of Her4 with a stem phenotype in OS provides a feasible 

mechanism for our observations of Her4 as a prognostic factor in OS. 
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Figure 5: Her4 is inducible by sphere culture. Patient derived cell lines Maos, 
CCHD and CCHO were stained with Her4 antibody for flow cytometry analysis both 
in monolayer and sphere culture. Maos and CCHD cells show upregulation of Her4 
after 4 days under anchorage independence and limited media. CCHO upregulates 
Her4 after seven days in these conditions. 
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Her4 upregulation in spheres precedes upregulation of stem-like markers 
Stro1 and CD117 

 
 Subpopulations of cells with Stro1 and CD117 expression in OS have a 

higher metastatic potential and can form serially transplanted tumors in very low 

numbers recapitulating the initial tumor heterogeneity [29]. Therefore, since these 

markers have been specifically studied in OS cells with stem-like phenotype, we 

sought to determine whether there was a correlation between Her4 expression and 

expression of these markers. For this, we performed flow cytometry staining for Her4 

and stemness markers Stro1 and CD117 on various OS cell lines in monolayer 

culture and at different time points in sarcosphere. This experiments allowed us to 

observe specifically when Her4 upregulation occurs relative to upregulation of these 

markers. As Figure 6 shows, Her4 expression is consistently induced early after 

cells are placed under sarcosphere conditions but Stro1 expression occurs at later 

time points and mostly in cells that are Her4 positive. We also performed 

immunofluorescence staining on CCHD sarcospheres and observed that Stro1 

expression was limited to cells that co-expressed Her4 (Figure 7). 
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Figure 6: Her4 expression in OS sarcospheres is induced prior to expression 
of OS stemness marker Stro1. Maos OS cells were placed under sarcosphere 
culture and at day 1, 3, 5 and 7 cells were collected, dissociated into single cells, 
stained for Her4 and Stro1 and analyzed by flow analysis. In spheres, Her4 is 
induced at day 3 of sphere culture but Stro1 expression is not increased until day 7 
(top panel). CCHD and CCHO show similar findings at day 4 and day 7, respectively 
(bottom panel).  
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Figure 7: Stro1 expression co-localizes to Her4 positive cells in sarcospheres. 
Immunofluorescence staining was performed for Stro1 and Her4 expression on 
CCHD OS cells after 4 days in sarcosphere culture. Her4 expression was 
upregulated compared to Stro1. However, Stro1 expression was only found on Her4 
positive cells. 
 

 After these observations, we decided to analyze the expression of Stro1 

specifically gating on Her4 positive and negative cells. Figure 8 shows 

representative data for cell line CCHO. As expected, cells with higher expression of 

Her4 were also Stro1 positive. Similar results were obtained for CCHD (not shown). 
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Figure 8: Her4 positive cells are also Stro1 positive. Representative data for cell 
line CCHO is shown. Positive cells for Her4 expression were gated using the isotype 
control as a negative Her4 population. Then, histograms were created for both Her4 
positive and negative populations showing increased Stro1 expression among Her4 
positive cells. Similar findings were observed with CCHD (data not shown). 
 

 We also performed similar experiments comparing Her4 to CD117, an 

additional marker of stem-like cells in OS, using the CCHO OS cells and observed 

similar findings (Figure 9). 
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Figure 9: Her4 expression in sarcospheres correlates with CD117 expression. 
OS cell line CCHO was analyzed by flow cytometry after staining with Her4 and 
CD117 antibodies seven days after seeding under sarcospheres. There is a distinct 
population of cells that upregulate both Her4 and CD117 (top panel). Gating on Her4 
positive and negative populations in CCHO demonstrates that CD117 positive cells 
are also Her4 positive (bottom panel). 
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Summary 
 
 A variety of surface markers have been identified to effectively characterize 

cells with tumor initiating potential in OS (see Table 1). Stro1 expression has been 

observed on mesenchymal stem cells and particularly in OS, this marker has been 

shown to be preferentially expressed on cells with tumor initiating potential, 

generating aggressive tumors in vivo with metastases to the lung [29]. CD117 is also 

expressed on stem-like cells in OS and double expression of these markers has 

been published to effectively characterize murine OS cells with a stem-like 

phenotype, although Stro1 expression is more relevant in human OS cell lines [29]. 

 In this chapter, we have demonstrated that Her4 is upregulated under 

sarcosphere culture conditions used to enrich stem-like cells in OS. Different OS cell 

lines upregulate Her4 at various time points ranging from 4 to 7 days. One common 

finding was that when cells were double stained for Her4 and Stro1 or CD117, cells 

that express any of these markers became Her4 positive before expressing them. To 

our knowledge, this is the first study to link expression of the Her4 receptor to 

markers identifying stem-like populations. 
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Chapter 5: Genomic deletion of Her4 using CRISPR/Cas9 negatively impacts 
expression of stemness markers in OS 
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Rationale  
 

To understand the specific contributions of the Her4 receptor in OS we 

designed CRISPR (Clustered Regularly Interspaced Palindromic Repeats) /Cas9 

constructs targeting this receptor. The CRISPR/Cas9 system was discovered in 

bacteria and has been successfully implemented in molecular biology due to its 

convenience and stability [76]. Briefly, the CRISPR/Cas9 system works by inserting 

a vector in target cells containing a guide RNA sequence and Cas9 DNA. When the 

Cas9 protein its expressed it recognizes the guide RNA and the flanking palindromic 

repeats of the target DNA to bind and make double strand breaks around the gene 

of interest [76]. When the cell tries to repair these breaks it generates premature 

stop codons, not allowing the process of translation to take place or translating an 

aberrant non-functional form of the protein of interest. In addition, since this system 

works at the genomic level, the changes are considered stable and permanent [76]. 

Since Her4 has been shown to play an important role in survival under 

adverse culture conditions and stressors including anoikis and confers metastatic 

capability in pediatric malignancies and we observed an increased expression of 

Her4 in conditions used to enrich a stem-like population in OS (see Chapter 4), we 

wanted to decipher the specific contributions of this receptor in a stem-like 

phenotype in OS. In this chapter, we focused on exploring how different validated 

OS markers used to identify cells with tumorigenic potential are affected after Her4 

knockout. 
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Results 
 

Generation of Her4 CRISPR/Cas9 clones  

 
Various guide RNA sequences to different regions of Her4 were designed and 

inserted in the plasmid vector shown in Figure 10. The cell line CCHD was used to 

generate full-length Her4 knockouts since it has a high endogenous expression of 

this receptor. After transfection, GFP positive cells expressing the CRISPR vector 

were sorted and single clones were plated, expanded and Her4 expression was 

verified by western blot. Figure 11 and Figure 12 show verification of the 

downregulation of Her4 expression in single clones selected by western blot and 

flow cytometry for Her4. Using the CRISPR vector we were able to obtain high 

knockout efficiency compared to previous attempts using shRNA to Her4 (data not 

shown). 

     
 
Figure 10: Cas9 expression vector used to generate Her4 knockouts. 

Her4 knockouts were generated by transfection of expression vectors containing 
various guide RNA sequences to full length Her4, the Cas9 protein and GFP to allow 
selection of transfected cells. 
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Figure 11: CRISPR constructs targeting Her4 show high knockout efficiency. 
CRISPR/Cas9 vectors were transfected using lentivirus into CCHD. Parental cell line 
with guide RNA not targeting any specific gene is labeled Nonsense control (NC). 
Three different clones are depicted above (JMX-1-1, 1-3, and 1-4). Mcf7 is a breast 
carcinoma cell line and Her4 positive control. 60ng of protein lysate were loaded. 
 

 

Figure 12: Her4 knockout verification by flow cytometry corroborates effective 
deletion. Using an antibody that specifically recognizes Her4 surface expression we 
observed that this receptor was efficiently deleted at the genomic level. Black lines 
show unstained negative control, blue is isotype and purple is Her4 APC expression 
level. 
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Surface expression of tumor initiating cell markers is not affected by Her4 
knockout 

 
Next, we wanted to determine whether Her4 knockout affected the expression 

of validated surface markers for OS stem-like cells. For this, we used flow cytometry 

and measured the level of stem-like markers CD117 and Stro1 together with Her4 

expression in CRISPR clones 1-1 and 1-4 compared to nonsense control. Figure 13 

shows that in monolayer culture the expression of these markers is so low that there 

is not an obvious effect of genomic deletion of Her4. Therefore, we proceeded to 

generate sarcospheres for both nonsense control and CRISPR clones in order to 

determine whether changes in expression of these markers occur after sarcosphere 

culture induces its expression, as has been previously demonstrated [29]. While 

sarcospheres were formed by the CRISPR clones, upon dissociation of these 

CRISPR spheres into single cells most of these cells are non-viable. We interpret 

this to mean that Her4 expression is necessary for cells to be able to withstand 

dissociation from spheres. 
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Figure 13: Expression of OS stemness markers CD117 and Stro1 is not 
affected in monolayer culture after Her4 knockout. Flow cytometry staining of 
CCHD nonsense control and CCHD CRISPR clone 1-4 does not show significant 
effect of Her4 knockout in stem cell marker expression since basal levels of these 
markers are extremely low. Attempts to obtain single cell suspensions after 
sarcosphere culture in Her4 knockout clones were unsuccessful due to low cell 
viability. 
 

Her4 knockout mitigates Aldehyde dehydrogenase activity 

 
Aldehyde dehydrogenase (ALDH) activity has been studied extensively as a 

marker for cancer cells with tumor initiating potential in many tumor types, including 

OS [32, 77, 78]. It has also been validated as a marker for OS stem-like cells and it 

confers tumor cells with an increased detoxifying capability making them more 

resistant to chemotherapy and more tumorigenic [32]. We therefore analyzed the 
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activity of this enzyme in our control and CRISPR clones by measuring the 

percentage of Aldefluor bright cells after addition of the Aldefluor substrate. Figure 

14 and Figure 15 demonstrate that the percentage of Aldefluor bright cells in the 

CRISPR Her4 clones CCHD 1-1, 1-3 and 1-4 is significantly decreased compared 

with the CCHD nonsense control cells. In addition, we also looked at the activity of 

this enzyme after growth under sarcosphere conditions and observed that CCHD 

nonsense control cells are able to slightly increase their Aldefluor bright population 

whereas the Her4 CRISPR clone JMX 1-1 cannot (see Figure 16).  

 

 

 
 
Figure 14: Aldehyde dehydrogenase activity is decreased after deletion of 
Her4. Using Aldefluor fluorescence as a surrogate for aldehyde dehydrogenase 
activity, we were able to observe that Her4 CRISPR knockouts had a diminished 
percentage of cells with high activity of this enzyme after addition of a fluorescent 
substrate, which can only be processed by isoforms of ALDH. 
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Figure 15: Quantification of ALDH Bright cells in CCHD nonsense and Her4 
CRISPR Clones presented in Figure 14. 
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Figure 16: Aldehyde dehydrogenase in Her4 knockout remains diminished 
after sarcosphere culture. CRISPR clone CCHD JMX 1-1 and nonsense control 
were grown under sarcospheres, dissociated into single cells and added aldefluor 
substrate to measure activity of this enzyme. Enzymatic activity in the Her4 knockout 
remain decreased compared to the nonsense control. 
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Expression of embryonic stem cell transcription factors is decreased in Her4 
CRISPR clones even after sarcosphere culture 
 

Sox2, Oct3/4 and Nanog are embryonic stem cell transcription factors 

important in maintaining pluripotency and self-renewal in both normal tissue stem 

cells and tumorigenic stem-like cells [31, 33]. These transcription factors were 

initially observed in OS stem-like cells by Gibbs et al. who demonstrated that OS 

sarcospheres upregulated expression of Oct4 and Nanog. To determine if the 

expression of these transcription factors was affected after Her4 deletion, we 

performed quantitative real-time PCR using validated hydrolysis probes. After growth 

under sarcospheres the CRISPR clones were not able to upregulate the expression 

of these factors when compared to the nonsense control (Figure 17). 

 

Figure 17: Expression of pluripotency markers Sox2, Nanog and Oct4 
decreases with Her4 genomic deletion. mRNA expression of Sox2, Nanog and 
Oct4 was measured after seven days in sarcosphere culture for CCHD nonsense 
control and CRISPR clones JMX 1-1, 1-3 and 1-4. Data was normalized to GAPDH 
as internal control and compared relative to CCHD nonsense control. (*) denotes p-
value of less than 0.05. 
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Summary 
 

Validated markers for OS stem-like cells identify different subsets of cells 

within a tumor with the ability to confer aggressive disease and to initiate tumors 

even when implanted in very low numbers and these tumor cells can be serially 

transplanted in mice each time recapitulating the heterogeneity of the initial tumor 

[26]. Although no specific marker can accurately identify the entire pool of cells with 

tumor initiating potential, it is thought that a combination of several markers can 

provide a better understanding of this stem-like population [75, 79]. Through the 

analysis of several markers for stem-like cells in OS, our data indicates that 

aldehyde dehydrogenase activity and expression of embryonic stem cell 

transcription factors are compromised following Her4 knockout. Therefore, this data 

suggests that Her4 can modulate expression of markers associated with high 

tumorigenic potential, thus validating our prognostic data (see Chapter 3) that 

correlates Her4 with poor metastasis-free survival. 
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Chapter 6: Overexpression of Her4 Jma isoforms in OS cell lines promotes 
expression of stem-like markers 
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Rationale 
 
 In the previous chapter, we observed how genomic deletion of Her4 in the 

CCHD OS cell line mitigated the expression of markers that characterize cells with 

stem-like activity. In this chapter, we wanted to explore how cells would be affected 

after Her4 overexpression. Taking into consideration that the most common Her4 

isoform found in OS cell lines is the juxtamembrane isoform Jma (see Chapter 3), 

we wanted to observe whether there were specific effects mediated by the two Her4 

cytoplasmic isoforms: Cyt1 and Cyt2. These two cytoplasmic isoforms differ by 

mRNA splicing of exon 26 which encodes for a PI3K binding site and is expressed in 

Cyt1 but not in Cyt2 [49, 50]. There have been various studies that have 

demonstrated that these isoforms have complementary but distinct roles in the same 

tissue, with Cyt2 mainly mediating proliferation and Cyt1mediating survival and 

chemotaxis [51, 55, 80, 81]. Therefore, to uncover how Her4 is mediating its effects 

in OS and to have an idea of the possible signaling pathways involved, we decided 

to generate Her4 JmaCyt1 and JmaCyt2 overexpressing OS cell lines and measure 

how the expression of embryonic stem cell transcription factors and OS stem-like 

cell surface markers were affected.   
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Results 
 

Generation of Her4 JmaCyt1 and JmaCyt2 overexpressing cell lines. 

  

 To generate cell lines overexpressing the two different Her4 cytoplasmic 

isoforms with the juxtamembrane isoform Jma, we used the vector shown in Figure 

18 to transfect OS cell lines Maos and CCHM. These cell lines were chosen due to 

their efficacy for transfection and their moderate level of Her4 expression among our 

panel of patient derived OS cell lines. Selection of Her4 expressing cells was 

performed by either GFP or puromycin selection. 

 

Figure 18: Her4 JmaCyt1 
and JmaCyt2 vector used 
for transfection. OS cell lines 
Maos and CCHM were 
transfected using lentivirus 
using the vector depicted. 
Selection of transfected cells 
was performed by either GFP 
expression or puromycin 
selection. 
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Her4 JmaCyt1 isoform overexpression causes increased expression of 
pluripotency markers Sox2, Nanog and Oct4. 

 
 
 Maos and CCHM OS cell lines containing either MigR1, Her4 JmaCyt1 or 

Her4 JmaCyt2 were analyzed by quantitative real-time PCR for expression of 

pluripotency markers Sox2, Nanog and Oct4 since we wanted to determine if by 

overexpressing this receptor we were able to cause a shift towards a stem-like state 

in these OS cells. Indeed, we observed that with the Her4 JmaCyt1 isoform there 

was increased expression of these markers as shown in Figure 19. As a reminder, 

published data with these transcription factors in OS demonstrated that growth 

under sarcosphere conditions induced their expression and this correlated with 

expression levels in vivo and with tumor initiation potential [26, 30]. 
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Figure 19: Overexpression of the Her4 JmaCyt1 isoform upregulates 
embryonic stem cell transcription factors. Real-time PCR was performed using 
RNA extracted from OS cell lines Maos and CCHM with either MigR1 vector or 
overexpressing Her4 JmaCyt1 or Her4 JmaCyt2. Her4 JmaCyt1 overexpressing 
cells were able to upregulate expression of these markers in monolayer culture 
without sarcosphere culture necessary for induction. 
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Both Her4 JmaCyt1 and JmaCyt2 isoform overexpression in OS cell lines lead 
to increased CD117 expression 

 
 Next, we wanted to investigate whether increasing Her4 expression in OS 

affected expression of the surface markers Stro1 and CD117. Figure 20 shows that 

there is low to moderate basal expression of CD117 in both OS cell lines Maos and 

CCHM. In Maos MigR1 around 15% of the population expresses CD117 and 40% in 

CCHM MigR1. When Her4 JmaCyt1 is overexpressed in Maos cells there is not an 

evident increase in the total percentage of CD117 positive cells, however, 7% of the 

population is now double positive for both Her4 and CD117 in the JmaCyt1 construct 

compared with 0.1% in the control MigR1 cells. With Maos JmaCyt2, the total 

percentage of CD117 positive cells increased from 15% to 23% with now around 

20% of the population staining for Her4 and CD117 simultaneously. In CCHM, the 

majority of the CD117 positive cells also stained for Her4 in the JmaCyt1 construct 

and with the JmaCyt2 construct the total percentage of CD117 positive cells 

increased from 40% to 64% with the majority staining for Her4 as well. Therefore, 

these results indicate that overexpression of Her4 JmaCyt1 and JmaCyt2 in OS cells 

results in increased numbers of Her4/CD117 double positive cells and an increase in 

the total percentage of CD117 positive cells. 
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Figure 20: Her4 positive cells co-localize with CD117 positive cells. Maos and 
CCHM OS cell lines overexpressing Her4 JmaCyt1 or JmaCyt2 grown in monolayer 
culture were stained for flow cytometry analysis with Her4 and CD117. Both cell 
lines have basal expression of CD117 as seen in the MigR1 vector. However, when 
Her4 is overexpressed the majority of the CD117 positive cells also express Her4. 
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Summary 
 
 In this chapter, we have observed the direct effects of Her4 overexpression in 

OS cell lines. As others have reported in other tumor types, we observed that the 

two cytoplasmic isoforms of Her4 lead to distinct effects in vitro. In terms of 

expression of embryonic stem cell transcription factors, increasing the levels of the 

Her4 JmaCyt1 isoform, but not JmaCyt2 lead to increased levels of Sox2, Nanog 

and Oct4. However, in terms of surface expression of the stemness marker CD117, 

although Her4 JmaCyt1 seems to co-stain with CD117 positive cells, overexpression 

of the Her4 JmaCyt2 isoform caused an increase in the total number of CD117 

positive cells. Therefore, this data suggests that these two different isoforms might 

mediate a stem-like phenotype in OS by different but converging signaling pathways. 

 

 

 

 

 

 

 

 

 

 

 

 



 57 

 

 

 

 

 
 
 
 
 

 

 

Chapter 7: Discussion and Future Directions 
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 Development of metastatic disease and distant tumor initiation is a complex 

process that requires resilience and survival of cancer cells under adverse 

environments on the route to metastasis [69, 70, 82-84]. This process requires that 

cancer cells locally invade, intravasate and survive in circulation and arrest and 

extravasate in the metastatic niche [85]. Research studies in hematologic and solid 

malignancies have demonstrated that the majority of cancer cells within a tumor do 

not possess this ability; therefore tumors are considered heterogeneous 

conglomerates of malignant cells [26, 72]. Tumor cells with the innate ability to 

initiate tumors and with higher metastatic potential have been identified in vitro and 

in vivo by their ability to grow and travel as small clusters of cells and by using 

markers and enzymatic abilities that are attributed to normal stem cells, hence they 

have been termed cancer stem cells or stem-like cancer cells. The plasticity of this 

phenotype has been demonstrated in melanoma [21, 77] and other tumors including 

osteosarcoma [41], and regulators of this phenotype would allow for better 

understanding of metastasis progression and to develop effective targetable 

therapies that would benefit these patients. 

 Although relatively little is known about Her4 and its contribution in cancer 

compared to other EGFR family members like Her2, recent reports have shown that 

this receptor is highly expressed in malignancies like breast cancer, melanoma, 

colon and lung cancer and its expression correlates with aggressive disease and 

metastasis [57, 60, 61, 86-89]. In pediatric malignancies like Ewing sarcoma and 

neuroblastoma, Her4 is necessary for anoikis resistance and survival under noxious 

stimuli [56, 58, 59]. Her4 is overexpressed in OS patients in both primary tumors and 
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metastatic lesions [65, 66], however the relevance of this receptor in OS has not 

been previously described. Since Her4 expression seems to be an important factor 

for survival in many malignancies mediating its effects by conferring resilience under 

stressors and similar conditions are used to enrich cancer cells with a stem-like 

phenotype, we sought to determine the importance of Her4 in OS and whether its 

effects could be mediated by the promotion of a stem-like phenotype in OS. 

 In Chapter 3 we demonstrated that Her4 expression has prognostic 

significance in OS patients, where high Her4 expression in their diagnostic biopsies 

correlated with a diminished metastasis free survival. This finding has potential for 

clinical translation in patients initially diagnosed with OS. Upon diagnosis, OS 

patients undergo 2-3 cycles of induction with high-dose methotrexate, doxorubicin 

and cisplatin (MAP) chemotherapy comprising a period of 10-12 weeks [9, 90]. 

Then, tumor response is evaluated by imaging and histologic analysis and patients 

are stratified in good and poor responders based on the level of necrosis in their 

tumors. This entails that patients have to wait at least three months to know if their 

chemotherapy regime is adequate in order to treat their tumor. If Her4 indeed has 

prognostic potential, upon OS diagnosis Her4 expression can be assessed and 

patients that express Her4 in their tumors can be offered aggressive chemotherapy 

initially since it is expected that these patients will have a higher probability of 

developing metastatic disease. Further experiments to validate Her4 as a potential 

prognostic marker need to show how Her4 expression is comparable to percent 

necrosis after induction chemotherapy.  
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 Although these observations correlating Her4 expression to decreased 

metastasis free survival may suggest a link between Her4 and formation of 

metastasis, it is necessary to directly address whether Her4 expression is sufficient 

to promote development of metastatic disease to the lungs in OS. For this, we can 

design an in vivo experiment with CCHD OS cell line with and without Her4 and Fas 

expression. Fas expression in OS has been demonstrated to be vital for 

development of metastasis [91, 92], with primary OS tumors having variable Fas 

expression but Fas negative OS cells are selected for metastatic growth. Taking 

advantage of this, we can observe whether it will be possible to rescue metastatic 

potential in Fas positive cells after Her4 overexpression. This experiment will then 

establish Her4 as a sufficient mechanism to drive OS metastatic disease. 

 In Chapter 3 we also investigated the Her4 juxtamembrane expression level 

in a panel of commercially available OS cell lines and patient-derived cell lines. In 

this experiment we demonstrated that patient derived cell lines have comparable 

Her4 expression to that of OS patient biopsies. Furthermore, published data on Her4 

expression in OS suggests that this receptor is mainly localized in the cytoplasm of 

tumor cells [65, 66], where it could be possibly mediating its effects. Our data from 

patient-derived OS cell lines is consistent with these observations since we showed 

that Jma is the highest expressing Her4 isoform in these cell lines. As discussed in 

Chapter 1, only the juxtamembrane isoforms Jma and Jmd can undergo proteolytic 

cleavage by ADAMS17 and gamma-secretase to release a soluble intracellular 

fragment of the Her4 receptor [49]. Experiments to understand the impact of 

expression of cleavable Her4 isoforms in OS should further analyze the level of 
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expression of these cleavable isoforms in more patient derived cell lines and/or 

patient tissue samples and if Jma or Jmd are validated as the most prevalent 

isoforms, specific mutations on exon 16 (the ADAMS17 binding site) could be 

generated and determine if there is any impact on in vivo tumor formation. 

Alternatively, non-cleavable isoforms of Her4 (Jmb and Jmc) could be 

overexpressed and similar experiments could be performed. Furthermore, to truly 

understand the pathobiology of Her4 in OS, in vivo models using patient xenografts 

should be performed, as they will more accurately represent actual disease and 

Her4 expression in OS patients. 

 To understand whether Her4 expression was affected by conditions used to 

enrich cells with a stem-like phenotype, in Chapter 4 we studied Her4 expression 

with validated markers used to identify cells with tumor initiating potential in OS. 

From this set of experiments we observed that Her4 expression is inducible after 

sarcosphere culture and that expression of CD117 and Stro1, published markers for 

OS stem-like cells [29], is mainly exhibited by Her4 expressing cells. Although 

previous experiments have demonstrated that Her4 becomes upregulated under 

anchorage independence [56, 58], our results are the first to directly study Her4 

under conditions that are used to enrich cancer stem-like cells. Sarcosphere 

conditions have important translational implications. Recent studies have uncovered 

that the majority of tumor cells able to form metastatic disease travel to their niche 

as small cellular clusters [70, 83, 84], and thus this culture system serves as a useful 

in vitro model of tumor cell interaction. In addition, these findings support a possible 
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targetable mechanism to identify cancer stem-like cells in OS, which are thought to 

display increased metastatic potential [26, 30].  

In Chapter 5 we assessed the specific contributions of Her4 to OS stem-like 

populations by generating CRISPR/Cas9 constructs targeting this receptor and 

causing genomic deletion. Our studies with Her4 knockout clones from the patient 

derived OS cell line CCHD demonstrated that when Her4 expression is abrogated 

there is decreased aldehyde dehydrogenase activity and decreased expression of 

embryonic stem cell transcriptions factors Sox2, Nanog and Oct4. These markers 

have been shown to identify highly tumorigenic subpopulations in OS [30] [28]. 

Therefore, this data further supports a possible role of Her4 as an upstream 

mediator of a stem-like phenotype. Further experiments to corroborate these 

observations are needed and should mainly focus on in vivo models. In vitro models, 

although useful to test hypothesis in a cost-effective manner, have certain limitations 

that become more evident when studying cells with stem-like attributes. As 

discussed in Chapter 1, characterization of cells that have the ability to initiate 

tumors should not focus only on a specific surface marker or enzymatic ability. 

Rather, studying a collective array of abilities and molecules expressed in these cells 

allow for better understanding and more accurate representation of this population. 

Additionally, the gold standard to assess tumor-initiating capacity is self-renewal [22, 

70, 75]. This refers to the ability that cancer stem-like cells have, like tissue stem 

cells, to undergo asymmetric cellular division to generate both identical and more 

differentiated progeny, thereby allowing single cancer cells to recapitulate tumor 

heterogeneity. Using in vivo models can only accurately represent this ability. An 
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ideal experiment to assess whether Her4 affects tumor-initiating capacity should be 

performed by injecting Her4 high and low OS cells in low numbers (around 100 cells) 

intratibially in mice. Since it is thought that even one cancer cell with stem-like 

features can recapitulate its parental tumor with similar tumor heterogeneity [75], this 

first experiment will allow us to see if by having Her4 expression the ability of OS 

cells to initiate tumors is enhanced, even when OS cells are injected in low 

concentration. Furthermore, to demonstrate self-renewal in mouse models, serial 

transplantation should be performed by isolating OS cells from primary bone lesions 

and sorting for Her4 high and low expressing OS cells. These cells should then be 

injected intratibially in a second set of mice. If Her4 expressing cells have self-

renewal capacity and represent a subset of OS cells with tumor initiating potential, 

they should be able to efficiently recapitulate tumor heterogeneity in secondary 

tumors whereas Her4 low OS cells should not. Currently, initial in vivo experiments 

are undergoing in our lab where we performed intratibial injection of CCHD 

nonsense control and CCHD CRISPR clone JMX 1-1 OS cells in NOD/SCID mice in 

order to understand the effects of Her4 knockout in terms of primary tumor size, 

metastatic disease burden and expression of OS stem-like markers. Taking into 

account our observations from in vitro experiments, we expect to see that the 

CRISPR mice will develop decreased metastatic lesions compared to our nonsense 

control group. Additionally, we expect to observe decreased expression of OS stem-

like markers in these tumors.  

 To further demonstrate the importance of Her4 for a stem-like phenotype, we 

overexpressed the isoforms JmaCyt1 and JmaCyt2 as depicted in Chapter 6. The 



 64 

Jma isoform was selected for overexpression due to its abundance across patient 

derived OS cell lines as shown in Chapter 3. Upon overexpression of these two Her4 

isoforms we observed that expression of embryonic stem cell transcription factors 

Sox2, Nanog and Oct4 increased with Her4 JmaCyt1 overexpression. Previous 

experiments with OS cell lines showed upregulation of these transcriptions factors 

after sarcosphere culture [30, 36] and our observations indicate that overexpressing 

Her4 is enough to cause these factors to be upregulated. Also, upon Her4 JmaCyt2 

overexpression we observed that CD117 expression increased. These findings 

suggest that when Her4 is highly expressed, OS cells acquire a more aggressive 

phenotype, as these markers have been linked to metastasis in OS and other tumor 

models [26, 28, 29]. Also, these observations validate that different Her4 isoforms 

may mediate different cellular effects as observed in breast cancer [53]. Clear 

understanding of the roles of the various Her4 isoforms in OS and signaling 

pathways activated is necessary.  Although the Her4 Cyt1 isoform containing a PI3K 

binding site has been demonstrated to mediate survival effects compared to more 

proliferative effects of Her4 Cyt2, the latter preferentially binds transcription 

regulators and translocates to the nucleus to regulate transcription [49, 50, 93]. The 

Yes-associated protein 1(YAP1) is one such transcription coactivator that selectively 

binds Her4 Cyt2 in the nucleus, leading to transcription of a genetic signature to 

promote migration [94, 95]. YAP1 in turn, has been associated with a cancer stem 

cell phenotype on breast cancer [96-98]. Therefore, we predict that effects of the 

cytoplasmic isoforms of Her4 in OS are specific but complementary to promote a 

stem-like phenotype.  
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 In conclusion, the observations presented herein suggest that Her4 can be an 

important mediator of aggressive disease in OS through the induction of a stem-like 

phenotype. These findings are of great translational potential and can lead to the 

development of new and targeted therapies in order to improve survival among OS 

patients, which has remained unchanged for the past 20 years [1]. More so, 

individualized chemotherapy regimens can be designed for OS patients who are at 

risk for developing metastasis. Conversely, in those patients with low Her4 and a 

better prognostic outcome the chemotherapy exposure may be able to be reduced in 

terms of number of post-op cycles of chemotherapy agents that can diminish quality 

of life and may lead to development of secondary malignancies during adulthood 

years. 
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