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DETERMINATION OF THERMAL DOSE MODEL PARAMETERS 

USING MAGNETIC RESONANCE IMAGING 

 

Christopher James MacLellan, B.S. 

Advisory Professor: R. Jason Stafford Ph.D. 

 

Magnetic Resonance Temperature Imaging (MRTI) is a powerful technique for noninvasively 

monitoring temperature during minimally invasive thermal therapy procedures. When coupled with 

thermal dose models, MRTI feedback provides the clinician with a real-time estimate of tissue 

damage by functioning as a surrogate for post-treatment verification imaging. This aids in 

maximizing the safety and efficacy of treatment by facilitating adaptive control of the damaged 

volume during therapy. The underlying thermal dose parameters are derived from laboratory 

experiments that do not necessarily reflect the surrogate imaging endpoints used for treatment 

verification. Thus, there is interest and opportunity in deriving model parameters from clinical 

procedures that are tailored to radiologic endpoints.  

The objective of this work is to develop and investigate the feasibility of a methodology for 

extracting thermal dose model parameters from MR data acquired during ablation procedures. To 

this end, two approaches are investigated. One is to optimize model parameters using post-

treatment imaging outcomes. Another is to use a multi-parametric pulse sequence designed for 

simultaneous monitoring of temperature and damage dependent MR parameters. These 

methodologies were developed and investigated in phantom and feasibility established using 

retrospective analysis of in vivo thermal therapy treatments. This technique represents an 

opportunity to exploit experimental data to obtain thermal dose parameters that are highly specific 

for clinically relevant endpoints.   
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 Introduction 

Minimally invasive, image-guided thermal ablation therapies are increasingly being 

incorporated into clinical practice as an alternative to traditional surgery. This trend is largely driven 

by synergy with advanced imaging modalities during treatment planning, monitoring, and 

assessment. In particular, real-time temperature monitoring using Magnetic Resonance 

Temperature Imaging (MRTI) can be a powerful tool for guiding these procedures when coupled to 

appropriate thermal dose models. MRTI acts as a surrogate to post-treatment imaging that provides 

a means for assessing procedure progress, safety, and efficacy in real-time. This is useful in that 

post-treatment verification imaging often takes time, or makes use of injected contrast agents, to 

assess the procedure efficacy.   

On a fundamental level, thermal dose models predict the probability of observing an effect 

of interest (EOI) after a given thermal exposure. Clinically utilized thermal dose models typically 

assume that the onset of an EOI can be modeled as an Arrhenius process and rely almost exclusively 

on empirical parameters derived from laboratory experiments. This is direct consequence of the 

underlying Arrhenius kinetics, which generally demand that temperature be precisely monitored 

and controlled throughout the experiments. However, the gold standard for treatment assessment 

is based on radiologic EOIs that exploit irreversible changes in MR parameters. Traditionally, this 

encompasses post-treatment imaging of the thermal lesion using one or more contrast mechanisms, 

although intra-treatment changes in intrinsic MR parameters have also been associated with 

irreversible changes in tissue. This incongruity between the dose monitoring and assessment makes 

a method for extracting thermal dose model parameters directly from radiologic data of interest. 

Such a technique would provide predictions that are more closely aligned with clinical endpoints 
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and provide an opportunity to leverage ever increasing amounts of patient data for continual 

refinement. 

Therefore, the hypothesis of this research is that the MR imaging information acquired 

during thermal ablation procedures can be used to derive unique Arrhenius based thermal dose 

model parameters for MR observable effects of interest in vivo. This hypothesis will be tested by 

completing the following specific aims: 

Specific Aim 1: Design and validate a multi-parametric pulse sequence suitable for 

monitoring multiple temperature dependent MR parameters with high temporal and spatial 

resolution. 

Arrhenius damage models are parameterized by two empirically derived constants and 

predict the onset of an EOI as a function of tissue temperature-time history. Deriving these 

constants requires monitoring tissue temperature and measuring the specified EOI. While it is 

possible to construct a MR-derived model of thermal dose solely using post-treatment imaging, 

several damage dependent intrinsic MR parameters that have been associated with irreversible 

damage may be able to provide complementary information when monitored simultaneously with 

temperature. The working hypothesis in this aim is that the abrupt changes in the linearity of the 

temperature dependence of relaxation rates T1 and T2* associated with irreversible tissue changes 

can be accurately measured during heating. In order to investigate this hypothesis, a multi-echo 

gradient-recalled echo pulse sequence will be modified so that flip angles can be alternated 

throughout the acquisition to facilitate simultaneous measurements of T1, T2*, and PRF during 

heating. 

Specific Aim 2: Develop and characterize an experimental and computational 

methodology for estimating thermal dose model parameters for MR-observable EOIs and validate 

in phantom. 
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Traditionally, experiments for developing Arrhenius models of thermal dose have been 

restricted to the laboratory due to the transcendental nature of the governing equations and 

measurements. The working hypothesis in this aim is that the MR temperature information 

collected during thermal therapy delivery can be coupled with independent MR imaging information 

acquired during or after therapy to obtain Arrhenius model parameters that are predictive of the 

imaging EOIs. Using multi-parametric feedback (SA1), post-treatment imaging, and nonlinear 

regression algorithms, a technique will be developed for training Arrhenius models for intra- and 

post-treatment radiologic EOIs. This method will be validated to heating experiments in a protein 

coagulation phantom that can be well controlled and compared to literature values.   

Specific Aim 3: Derive and validate MR based damage models from in vivo human data 

using the methodology outlined in SA2. 

To demonstrate feasibility of deriving thermal dose model parameters from MR data, the 

methods developed in SA2 will be investigated in in vivo ablation procedures. The optimal dose 

model parameters will be investigated by retrospectively analyzing laser ablation (N=5) procedures 

in human brain and using contrast enhanced T1-weighted imaging as an EOI. These parameters will 

be critically compared to existing literature both in terms of values and predicted areas of damage.  

The organization of the dissertation is thus. Chapter 2 begins with a broad overview of 

thermal therapies followed by an examination of the role of MR during treatment planning, 

monitoring and assessment. Chapter 3 takes an in depth look at the theoretical basis of thermal 

dose models and previous investigations into different models. Chapters 4, 5 and 6 address specific 

aims 1, 2, and 3, respectively.  
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 MR Guided Thermal Therapy 

2.1 Introduction 

Thermal therapies are clinical procedures where an external energy source is used to 

elevate the temperature of target tissue to achieve a therapeutic effect. The development of non-

invasive imaging techniques has played a large role in the adoption of thermal therapies into the 

clinic and is critical in each of four stages common to all thermal therapy procedures: planning, 

targeting, monitoring, and asessment.1 MR is particularly well suited to these tasks due to its ability 

to image in arbitrary planes, lack of ionizing radiation, and the ability to exploit a variety of contrast 

mechanisms that are uniquely suited for each stage of the procedure.  

2.2 Thermal Therapies 

Thermal therapies that employ heating can be broadly categorized into two general 

regimes: thermal ablation and hyperthermia. In the former tissue temperature is raised to relatively 

high temperatures for short periods to destroy tissue via acute thermal injury whereas hyperthermia 

uses relatively low temperatures to sensitize tissue to other treatments.  

2.2.1 Thermal Ablation 

Ablation procedures are characterized by high temperatures (>50 ⁰C) maintained for short 

durations (seconds-minutes) where the primary goal is an immediate catastrophic and irreversible 

breakdown of structural proteins called coagulative necrosis.2 These procedures have several 

advantages over conventional surgery and are predominantly used in the ablation of cancerous 

tumors. Procedures are designed to be noninvasive or minimally invasive, which better preserves 

surrounding tissues, and are associated with lower morbidity and complications. Consequently, 

much of the attractiveness of the procedures are because they are associated with shorter 

hospitalization times and reduced cost relative to open surgery. They also represent the only 
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treatment option in situations where surgery is contraindicated and are repeatable in case of 

recurrence.3  

A variety of modalities exist for delivering thermal energy including radiofrequency ablation 

(RFA), microwave ablation (MWA), laser ablation, and high intensity focused ultrasound (HIFU).4 The 

two most commonly used techniques, RFA and MWA, utilize percutaneously administered 

electrodes and antennas, respectively, to heat surrounding tissue using electromagnetic energy. 

Both methods have been used in a variety of malignancies and are commonly used in the liver, 

lungs, bone and kidneys.3,5,6 MWA is associated with faster heating and larger ablation zone and is 

used for larger tumors (5-8cm) whereas RFA is used for smaller tumors (<3cm).3,5 Despite the 

theoretical advantages provided by MWA, RFA remains in widespread clinical use because it is a 

more mature and established technology with greater familiarity among physicians. Generally, 

image guidance is provided by computed tomography or ultrasound for probe placement and the 

ablation zone is identified using post treatment imaging, usually via administration of exogenous 

contrast agent to assess the region of perfusion deficit.7 Temperature is typically not monitored 

during these procedures using computed tomography or MRI due to dose considerations and 

electromagnetic interference, respectively.   

Laser ablation is a third method for thermal ablation that uses a percutaneously 

administered laser fiber to ablate surrounding tissue. These procedures are less common than both 

RFA and MWA, mostly due to a reduced effective ablation zone (1-2cm).2 One inherent advantage is 

that the laser does not interfere with MRI signal acquisition allowing temperature to be monitored 

in real-time using magnetic resonance temperature imaging (MRTI) techniques. The ability to 

monitor in real-time coupled with the relatively small ablation zone make laser ablation a precision 

technique that can maximize normal tissue sparing and be used in close proximity to critical 
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structures. For this reason laser ablation has been utilized in additional anatomic sites such as the 

brain, spine, prostate, and head and neck.8–12 

A fourth clinically used method for thermal ablation is high-intensity focused ultrasound 

(HIFU). HIFU is a noninvasive procedure where an array of ultrasound transducers is focused onto a 

point of interest to raise the tissue to ablative temperatures. Each individual sonication achieves 

coagulative necrosis in a matter of seconds over a limited area (≈0.5cm) and many of these 

sonications are performed to cover an entire target area. HIFU is unique in that it typically relies on 

MRTI to confirm proper delivery of thermal energy.  HIFU is one of the oldest methods of thermal 

ablation and has been investigated in a variety of sites13 including breast, prostate, uterus14, liver, 

and bone15.  Traditionally, this procedure has been limited by high attenuation in bone but recent 

technological advances have led to specialized devices for transcranial ablation. 16–18 

In each of these procedures the primary method for evaluating the extent of thermal 

damage is diagnostic imaging. This often includes injection of exogenous contrast agents to evaluate 

perfusion in tissue. MR is particularly well suited for these types of evaluations as many contrast-

mechanisms are available to evaluate different physiological effects. (section 2.6.3) 

2.2.2 Hyperthermia 

The second temperature regime for thermal therapies is hyperthermia which is 

characterized by moderate loco regional temperature (39-45⁰C) increases in tissue temperature 

over long time scales (101-102 minutes). Unlike ablation, the primary goal of hyperthermia is to 

sensitize malignant tissue to another treatment modality such as radiation therapy, chemotherapy, 

or immunotherapy.19 As such, hyperthermia is typically considered for oncologic applications. While 

hyperthermia has been the subject of research since the 1970s, it has experienced resurgence over 

the last decade due to advances in delivery and monitoring mechanisms and greater understanding 

of the underlying physiologic processes. Various techniques have been used to bring all or part of 
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the body to hyperthermic temperatures including conduction, electromagnetic energy and focused 

ultrasound. 

2.3 MR for Thermal Therapy Planning 

Thermal therapy planning encompasses the identification of the therapeutic target and the 

guidance of the external energy source to that target. Several contrast mechanisms can be exploited 

to identify a target and the surrounding critical structures by adjusting MR sequence parameters. 

Basic T1-weighted and T2-weighted pulse sequences often provide sufficient contrast but 

exogenous T1 contrast agents may be administered to delineate tumor margins in some oncologic 

cases.  

2.4 MR for Thermal Therapy Targeting 

Once the target is identified, additional imaging is used to direct the external energy source 

to the target. Real-time anatomic imaging is used to guide the probe to the target for percutaneous 

ablation techniques. Computed tomography and ultrasound (US) are the most commonly used for 

this purpose, particularly in body procedures. MR plays a larger role in cases with small and/or 

difficult to identify tumors or in in sensitive areas such as the prostate, brain, head, and neck that 

require MRTI monitoring.9,20 FUS procedures are unique in that they require MR or US to confirm 

good acoustic coupling between the patient and the ultrasound transducers before treatment. 2122  

2.5 MR for Thermal Therapy Monitoring 

MR is unique in that it is capable of noninvasively monitoring temperature during thermal 

therapy procedures. This can be a critical component to ensuring the safety and efficacy of the 

procedure, particularly when performed in close proximity to critical structures. CT is also 

theoretically capable of monitoring temperature but requires repeated acquisitions at an increased 

radiation dose.23,24 However, due to the repeated RF pulses needed to acquire MR images, MRTI 
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techniques are restricted to laser and HIFU procedures unless special triggering equipment, filtering, 

and/or processing are used.25 Just as in anatomic imaging, there are multiple contrast mechanisms 

that can be used to acquire MRTI data.   

2.5.1 Proton Resonance Frequency 

The most commonly used contrast mechanism for MRTI procedures is the proton resonance 

frequency (PRF). The complex MRI signal for a spoiled gradient echo acquisition at a fixed flip angle 

is given by:  

 
𝑆 = 𝑆0𝑒

−𝑇𝐸(
1
𝑇2∗

−2𝜋𝑖∆𝑓) = 𝑆0𝑒
−
𝑇𝐸
𝑇2∗𝑒𝑖𝜑 2-1 

Where S is the complex valued signal,  TE is the echo time, 𝑆0is the signal magnitude at TE=0 

ms, T2* is the transverse relaxation time, ∆𝑓 is the resonance frequency in the rotating frame of 

reference, and 𝜑 is the signal phase. The dependence of the proton resonance frequency of water 

protons with temperature has been shown to be linear and is given by: 

 ∆𝑇 = 𝛽∆𝑓 2-2 

Where 𝛽 is the temperature sensitivity coefficient with a value of approximately -0.01 

ppm/⁰C.26,27 The primary advantages of using the PRF shift for MRTI are that the temperature 

dependence is linear and largely tissue independent (with the notable exception of adipose tissue). 

The most common challenges result from sensitivity to other effects that can alter the resonance 

frequency. 𝐵0 shifts caused by motion present a significant challenge and several techniques have 

been developed to address this in clinical scenarios.28–30 Field drift caused by heating in gradient 

coils over long acquisition times contributes a bias to temperature measurements and can be 

corrected by subtracting the temperature increase in reference region provided the phase drift is 

sufficiently uniform across the image. Like many other MRTI techniques, the PRF technique can only 

give relative changes in temperature so a baseline must be measured or assumed. 
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There are two primary approaches for measuring temperature using changes in the PRF. The 

first and most common is the complex phase difference (CPD) method where a single gradient echo 

is acquired at each time point and the temperature is calculated from the difference between 

successive phase images via: 

 
∆𝑇 =

tan−1(𝑆 ∗ 𝑆∗)

𝛽𝛾𝐵0𝑇𝐸
 2-3 

where the phase difference is explicitly calculated in complex space to avoid phase wrapping 

errors.  

The CPD method can be implemented on fast gradient echo or echo planar imaging 

sequences to maximize coverage in the slice direction and/or temporal resolution. SNR can be 

optimized by choosing TE=T2*, which balances the increased in phase difference with the 

simultaneous loss of signal magnitude as TE is increased. The primary drawbacks are that it relies on 

a single measurement to calculate the resonance frequency and there is an implicit assumption that 

the water is the only chemical species in each voxel. Additional chemical species in the voxel(s) will 

corrupt the measurements if the signal is not suppressed. For this reason, traditional fat/water 

separation techniques such IR-preparation, fat saturation, and Dixon, may be needed to obtain 

reliable results from PRF.31 

Another approach to using the PRF shift to measure temperature is to perform chemical 

shift imaging techniques to directly measure the PRF.32–34 Practically, this requires measuring 

multiple echo times at each time point at the cost of spatial and/or temporal resolution. If it can be 

safely assumed that water is the only chemical species present in the voxel the resonance frequency 

can be found by linear regression that is theoretically more precise than the single point 

measurement in the CPD method and also more likely to encompass the optimal echo time. 

Alternatively, spectral methods can be used to separate chemical species on a voxel basis and the 
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water resonance frequency can be extracted for purposes of temperature calculation. Using this 

technique, signal from multiple chemical species can be detected and the non-temperature sensitive 

lipid signal can theoretically be used as an internal frequency reference and/or to calculate absolute 

temperature. 35 

2.5.2 Longitudinal Relaxation Time (T1) 

A second MR parameter that has been shown to be temperature dependent is the 

longitudinal relaxation time, T1. During T1 relaxation spins in an excited state return to thermal 

equilibrium after exchanging energy with the surrounding molecular lattice. In physiological 

samples, this phenomena is primarily caused by intermolecular rotational motion of water 

molecules creating a time varying magnetic field at the resonance frequency, 𝜔,. This contribution 

to relaxation can be written: 

 1

𝑇1
= 𝑘 [

2𝜏𝑐

1 + 𝜔2𝜏𝑐
2 +

8𝜏𝑐

1 + 4𝜔2𝜏𝑐
2] 2-4 

Where 𝜏𝑐 is the correlation time (the average time it takes for the molecule to rotate one 

radian), and 𝐶 is a constant. The rotational speed of the water molecules is governed by the 

Boltzmann distribution so the temperature dependence of the 𝜏𝑐 can be written:  

 𝜏𝑐 = 𝜏0𝑒
𝐸𝑐/𝑘𝑇 2-5 

Where 𝑘 is the Boltzmann constant, 𝑇 is the temperature (°K), 𝜏0 is the correlation time at 

𝑇 = ∞, and 𝐸𝑐 is the activation energy of the rotation process. Correlation times are on the order of 

10-12s in pure water which allows the frequency dependent dispersion terms to be neglected 

(𝑖. 𝑒. 𝜔2𝜏𝑐
2 ≪ 1) and the following approximation for the temperature dependence of T1: 

 𝑇1 ∝ 𝑒−𝐸𝑒𝑓𝑓/𝑘𝑇 2-6 

Which implies that T1 has an approximately inverse relationship with temperature if the 1st order 

terms of the Taylor series expansion are used. 36,37 



11 
 

 𝑇1 ∝ 1/𝑇 2-7 

The above derivation explicitly assumes that the signal comes from pure water with 

extremely short correlation times. In tissue, the presence of large macromolecules causes the 

surrounding water molecules to form a hydration layer where motion is restricted and correlation 

times are decreased. It is generally accepted that these different hydrogens populations undergo 

fast exchange with one another and that the observed T1 is a weighted average of these different 

populations. 36 

 1

𝑇1
=∑𝑓𝑖

1

𝑇1𝑖

𝑁

𝑖=1

(𝜏𝑖) 2-8 

Where 𝑓𝑖 is the fraction of hydrogens contained within each population, or more generally 

for a continuous distribution of correlation times 𝑔(𝜏𝑐):
37 

 1

𝑇1
= ∫ 𝑔(𝜏)

1

𝑇1

∞

0

(𝜏)𝑑𝜏′ 2-9 

Fung and colleagues38–40 showed that the temperature dependence of the hydration layers 

water can be accurately modeled by assuming that the correlation times follow a log-normal 

distribution and numerically solving equation 2-4. Their results suggests that temperature 

dependence of these hydration layer waters is negligible and equation 2-7 remains a reasonable 

appproximation.41  

While an inverse relationship between T1 and 𝑇 is expected from equation 2-7 it has been 

shown to be effectively linear over the relatively small range in absolute temperatures required for 

physiological samples. 42 This linear relationship is attractive for temperature monitoring and has 

been measured in the range of 1-2% in tissue. However, there are several drawbacks to measuring 

T1 for temperature monitoring. The temperature dependence is tissue dependent and has to be 

calibrated in each type of tissue being used. The temperature sensitivity also changes abruptly in 

response to physiologic changes in tissue caused by heating which makes using T1 as a primary 
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measure of temperature problematic.43–45 Additionally, the time required to make T1 measurements 

is limiting in the context of temperature monitoring. Traditional inversion recovery (IR) methods 

require several minutes to acquire multiple inversion times. Accelerated methods for sampling the 

magnetization recovery exist but typically requires minutes to acquire an image compared with 

seconds for PRF techniques46–48 An alternative approach is the estimate T1 using variable flip angle 

(VFA) technique. This technique is especially sensitive to slice profile effects inherent to 2D imaging 

so it is generally necessitates a 3D acquisition with acquisition times on the order of minutes. 49 For 

these reasons temperature monitoring using T1 has been used as a complement to PRF monitoring 

in a research settings or in hyperthermia applications where temporal resolution is less critical.32,50,51 

2.5.3 Transverse Relaxation Times (T2/T2*) 

The transverse relaxation time (𝑇2) can also be written in terms of the intermolecular 

rotation of water molecules36,52: 

 1

𝑇2
= 𝑘 [3𝜏𝑐 +

5𝜏𝑐

1 + 𝜔2𝜏𝑐
2 +

2𝜏𝑐

1 + 4𝜔2𝜏𝑐
2] 2-10 

Where the non-frequency dependent term represents static alterations in the magnetic field 

that cause rapid loss of phase coherence. Unlike T1 relaxation, which requires field alterations that 

match the resonance frequency, the T2 relaxation time is sensitive to lower frequency field 

variations. While the expression in equation 2-10 is adequate for predicting T2 in non-viscous liquids 

such as pure water, it fails to explain why T2 values are 5-10 times lower than T1 in tissue. This 

observation coupled with the lack of observed frequency dependence of T2 values suggests that 

other mechanisms contribute significantly T2 relaxation.36,37,53 This is typically attributed to diffusion 

of water molecules through static field inhomogeneities in the hydration layer.54,55 The contribution 

of these processes are highly dependent on the specimen being imaged and makes a theoretical 

relationship between T2 and temperature elusive.  
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Early experiments by Belton56,57 showed non-monotic temperature dependence at 

temperatures below room temperature but T2  has been empirically found to increase nonlinearly 

with temperature in the physiological range.58 The relative increase is generally smaller compared to 

the simultaneous increase in T141 and shows similar nonlinear behavior when the structure of tissue 

is altered by coagulation59,60. Aside from the nonlinear nature and reduced sensitivity to 

temperature, measurement of T2 for temperature monitoring is impractical due to the long 

acquisition times required to acquire T2 maps compared to T1 maps.  

When a gradient echo acquisition technique is used a relaxation rate, T2* is measured: 

 1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ 2-11 

Where 𝑇2
′represents the dephasing caused by macroscopic magnetic field inhomgeneities from 

macroscopic susceptibility interfaces and the imperfect B0 field that are traditionally refocused in 

spin echo type sequences. Few researchers have examined the temperature dependence of T2* but 

it is expected to follow the same dependence at T2 with a near constant contribution form field 

inhomogeneities. One notable exception may be found as susceptibility interfaces where the small 

but nonzero temperature dependence of magnetic susceptibility may contribute a temperature 

dependence of 𝑇2
′ (see section Magnetic Susceptibility). One study by Taylor et al. qualitatively 

confirmed this behavior by observing increases in T2* with increasing temperature until samples 

reached temperature typically associated with coagulation. While T2* inherently suffers from most 

of the same limitations as T2 for temperature monitoring, it can be mapped with much faster multi-

echo gradient echo sequences and is a potential complement to traditional PRF monitoring given its 

sensitivity to changes in tissue state. 
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2.5.4 Magnetization Transfer (MT) 

Magnetization transfer (MT) is MR contrast mechanism that is sensitive to protons in the 

hydration layers of macromolecules and is closely related to the theory of T1/T2 relaxation 

described in sections 2.5.2 and 2.5.3 . Protons in the hydration layer see a range of local magnetic 

fields which results in inefficient excitation by on resonance pulses and extremely short T2s. In a MT 

experiment an off resonance pulse is applied after which the saturated protons undergo fast 

exchange with free water. When a traditional imaging sequence follows the MT pulse the observed 

signal decreases due the exchange of these saturated hydration layer protons with the free water 

pool. The traditional quantity of interest in these experiments is the magnetization transfer ratio 

(MTR) 

 
𝑀𝑇𝑅 = 1 −

𝑀𝑀𝑇

𝑀0
 2-12 

Wher 𝑀𝑀𝑇 is the signal after the magnetization transfer pulse and 𝑀0 is the signal without 

the magnetization transfer pulse.61 

The exchange mechanisms characteristic of MT are temperature dependent and have been 

investigated as a method for monitoring temperature. However, there are conflicting reports of 

whether MTR increases or decreases with temperature59,62,63 The response appears to be highly 

tissue dependent and possibly sensitive to competing interactions involving macromolecules in the 

sample. Similar to T1 and T2, nonlinear changes in MT temperature dependence are associated with 

changes tissue state which limit its use for temperature monitoring but make it of interest for 

monitoring tissue damage. MT pulses can be implemented relatively easily into traditional gradient 

echo temperature monitoring techniques as a complement to traditional PRF monitoring. However, 

this comes with a loss of SNR and slightly increased acquisition time. Additionally, the choice of echo 

time(s) must be chosen judiciously to balance the competing need of high SNR for MT contrast and 

the temperature sensitivity of the PRF.62 
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2.5.5 Diffusion 

Diffusion of water protons is another temperature dependent MR parameter that can be 

measured when diffusion sensitizing gradient are employed. If all other sequence parameters are 

held constant the addition of these gradients is given by 

 𝑆 ∝ 𝑆0𝑒
−𝑏𝐷 2-13 

Where 𝑏 is a characteristic parameter of the diffusion sensitizing gradients and 𝐷 is the 

diffusion coefficient. The temperature dependence of the diffusion coefficient, 𝐷, is similar to T1 as 

it is also governed by the Boltzmann distribution: 

 𝐷 ∝ 𝑒−𝐸𝐷/𝑘𝑇 2-14 

Where 𝐸𝐷 is the activation energy of the diffusion process. Diffusion has a relatively high 

temperature sensitivity of approximately 2% per degree and has been employed for temperature 

monitoring phantoms64–66 and in vivo67,68. However, long imaging times and sensitivity to motion 

make practical implementation in vivo difficult. 26,69 Like T1 and T2, diffusion values also respond 

nonlinearly to changes in tissue state and is of interest for directly monitoring damage to tissue.26 

2.5.6 Magnetic Susceptibility 

The available longitudinal magnetization, 𝑀0, for a given MR experiment is directly 

proportional to magnetic susceptibility, 𝜒0, of the material being imaged which has a temperature 

dependence governed by the Curie law: 

 
𝑆0 ∝ 𝜒0 ∝

1

𝑇
 2-15 

The magnetic susceptibility cannot be easily isolated in an MR experiment so this 

temperature dependence practically manifest as a decrease in signal. The dependence is relatively 

small and on the order of 0.3%/°C.26 This small temperature dependence combined with the long 

imaging times required to remove relaxation effects from the observed signal make it a poor choice 
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for direct temperature monitoring. However, it is important to consider this dependence in certain 

situations such as at susceptibility interfaces70 and when interpreting changes in signal intensity with 

temperature rather than maps of other intrinsic MR parameters.  

2.5.7 Thermal Dose 

MRTI is an integral part of monitoring thermal therapies but knowledge of the temperature 

history alone does not elucidate the state of treated tissue. Thermal dose models are needed to fully 

understand the effect of heat on tissue. In the most general sense a thermal dose model is a 

mathematical relationship that converts a temperature history into a probability of having some 

effect on tissue. These models can vary widely in complexity and their applicability is highly 

dependent on the procedure in question. On one extreme, tissue that reaches temperatures of 100 

degrees Celsius is certainly nonviable, and a simple threshold model based on the maximum 

temperature is sufficient. For hyperthermia applications where temperatures are relatively low and 

treatment times are long, the relationship between temperature history and biological effect cannot 

be understood through intuition alone. Given the diffusive nature of heat, temperature histories 

between these extremes are unavoidable, with the possible exception of the highest power short 

duration FUS and LA procedures. A detailed treatment of thermal dose models and clinically 

relevant biological effects is left to Chapter 3. 
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2.6 MR for Thermal Therapy Assessment 

The gold standard method for assessing the biological effects of ablation procedures is 

examination of the thermal lesion using histology. However, histologic examination is impossible to 

incorporate into the routine clinical workflow. Consequently, post-treatment imaging is the primary 

surrogate for assessing damage after therapy and providing a baseline for follow-up imaging and are 

integral to monitoring disease progression. While T2-weighted (T2-W) imaging and contrast 

enhanced T1-weighted (CE-T1-W) are routinely used in the clinic to identify the extent of the 

thermal lesion there are many additional MR contrast mechanisms that have been investigated to 

investigate various biological responses to thermal injury in tissue. 

2.6.1 Physiology of the Thermal Lesion 

The thermal lesion that occurs after an ablation procedure consists of two zones 

characterized by the physiological state of tissue.2,4 The central zone is the area immediately 

surrounding the probe or FUS focus that receives the highest thermal dose. This area is 

characterized by a catastrophic breakdown in cellular and tissue function. Immediately outside the 

central zone is the peripheral or transition zone that consists of a mixture of tissue that will become 

nonviable via delayed processes such as apoptosis and tissue that will recover from reversible 

thermal injury. This zone is of primary interest as it borders untreated tissue and contains the 

margin of clinically meaningful damage. The biological processes governing the fate of tissue in this 

region are numerous and interconnected. They include but are not limited to: mitochondrial 

damage, DNA damage, induction of apoptosis and inflammatory immune response. Blood vessels 

are also disrupted in this zone, causing accumulation of fluid and local swelling.71,72  In hyperthermia 

treatments, the central zone is absent since the objective is to modulate the biologic processes in 

tissue. The entire treated region can be considered analogous to the peripheral zone in ablation, 

albeit with exclusively sub lethal biological effects. 
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2.6.2 Clinical Imaging of the Thermal Lesions 

When MRI is employed for guidance of a clinical ablation procedure, the most commonly 

used MR techniques for visualizing thermal lesions are T2-weighted (T2-W) imaging and contrast-

enhanced T1-weighted (CE-T1-W) imaging.1,73 Lesions are characterized by a nonenhancing central 

region that can be either hypo- or hyperintense with respect to surrounding normal tissue 

depending on tissue type and the time elapsed since treatment. For high temperature ablations, 

vascular stasis and the region of irreversible tissue damage are closely linked.  Therefore, lack of 

enhancement on contrast-enhanced imaging is the most consistent attribute of this region so 

contrast is indicated and is often visualized using subtraction imaging. This region is generally 

considered to be synonymous with the central zone described in section 2.6.1 and contains only 

nonviable tissue. A peripheral region of altered intensity and/or contrast enhancement often 

develops following ablation and is attributed to leakage of contrast agent into the interstitial space 

due to damage to the vasculature and accumulation of fluid and/or inflammation-induced 

hyperemia.73–78 This region is consistently observed in the brain where it expands in the first 1-40 

days after treatment before reducing to pretreatment size within 16 weeks where it will continue to 

enhance on long term follow up.74,79,80 

While a lack of enhancement is MR imaging can identify the central zone, the viability of 

tissue in the peripheral enhancing region is more nuanced. Some studies in the brain that have 

attempted to correlate this region with histology suggest that the enhancing/hyperintense ring 

remains viable81–83 whereas others have suggested the opposite7,84–87. Given the complexity of the 

biological response, considerable uncertainties associated with registering images to histology, and 

the fact that the size of the hyperintense/enhancing rim changes over time makes a definitive 

determination on the viability of tissue in this region a challenge.88 
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2.6.3 Multi-Parametric Imaging of the Thermal Lesion 

Several advanced MR techniques have been investigated for imaging thermal lesion that are 

potentially sensitive to specific biological effects in the peripheral zone. These have not been 

incorporated into routine clinical practice primarily due to time constraints and lack of consensus 

regarding their clinical utility. T1, T2, MT and diffusion were discussed in section 2.5 in the context of 

their temperature dependence and each suffered from the limitation that their dependence became 

nonlinear at high temperatures. At these high temperatures there is a complex interaction of 

different physiological effects that cause changes in intrinsic MR parameters. These include 

disruption of cellular membranes that restrict diffusion, denaturation and coagulation of proteins 

and blood, and increased fluid in the peripheral zone. These processes can have opposite effects on 

intrinsic MR parameters that manifest as changes that are highly dependent on tissue type. Variable 

results have been observed in a variety of ex vivo59,63,89,90 and in vivo91–93studies. Generally, a 

consistent decrease in T1 is observed across a variety of tissue types while changes in T2 and MT are 

varied. Inconsistent changes in the apparent diffusion coefficient (ADC) have also been observed. 

Jacobs 94 et al observed an initial decrease in ADC immediately following FUS ablation of uterine 

fibroids but observed an increase upon 6 month follow up. This underscores that thermal effects in 

tissue are not static and can be highly dependent on when follow up imaging is performed. Dynamic 

contrast enhanced (DCE) MRI has also been investigated to evaluate the viability of the thermal 

lesion. In this technique, the uptake of intravenously injected contrast agent is monitored using 

serially acquired T1-weighted images to assess perfusion in tissue. Studies in animals92,95,96 and 

humans96 have associated changes in semi-quantitative and quantitative DCE parameters with 

regions that were distinct from the non-enhancing volume on traditional CE-T1-W imaging. 

While multi-parametric imaging of thermal lesions is still investigational and has not been 

standardized for clinical use, these techniques have the potential to elucidate the complexities of 
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the biologic response in the thermal lesion. In a series of recent papers91,92, Hectors et al. correlated 

the post-treatment measurements of several of MR parameters with histology. They found that no 

single MR parameter was sufficient for predicting damage in tissue and that a more specific 

prediction of the nonviable region could be made by applying clustering techniques to multiple 

parameters. These results suggest that multi-parametric techniques may provide complementary 

information to current clinically utilized methods and further investigation in clinical models is 

warranted. These results not only suggest that multiple MR contrast mechanism should be used for 

evaluating the thermal lesion but also that multiple thermal dose models that reflect each of these 

contrast mechanism may be most appropriate for monitoring.  
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 Thermal Dose Models 

3.1 Introduction 

Like any intervention, thermal therapies are only of clinical utility if the balance between 

therapeutic efficacy and patient safety is understood. In section 2.5 MRTI was described as a tool for 

monitoring these procedures in real-time. However, to maximize the utility of MRTI the measured 

temperature histories must be converted by some model into values predictive of thermal damage. 

Intuitively, one knows that the primary variables are the temperature and the duration of exposure 

and that there is some degree of variation in different tissues. Therefore, in principle, a thermal 

dose model should be able to predict the onset of a thermal damage for an arbitrary temperature 

history for a particular tissue. Several different models of thermal dose have been developed that 

vary widely in complexity and applicability to different types of thermal therapies. However, three 

models dominate the literature: The absolute rate (AR), the cumulative effective minutes (CEM), and 

critical temperature (CT) model. 

3.2 Effects of Interest (EOIs) and Isoeffects 

The defining characteristic of a thermal dose model is the effect of interest (EOI) that it is 

designed to predict. Many different EOIs have been used for thermal dose models and are 

intimately related to the experimental techniques used to measure them. EOIs can be categorized as 

quantitative or categorical based the types of data (in a statistical sense) that define them. They can 

also be categorized as intra-treatment effects or post-treatment effects based on when they are 

measured. For example, cell survival is a quantitative and post-treatment EOI since it is represented 

by a quantitative quantity (e.g. 63% cell survival) that can only be measured after thermal exposure.  

It is often useful to discuss these effects in terms of a specific value of the EOI, or isoeffect. In the 

previous example cell survival is the EOI and 63% survival is an isoeffect. In the special case of 
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categorical EOIs this distinction becomes trivial if the data are binary (e.g. enhancing/non-enhancing 

on post-treatment imaging). The subtle distinction between the types of EOIs and isoeffects are 

concepts are critical when discussing the theoretical basis of each thermal dose model.  

3.3 Absolute Rate (AR) Model 

3.3.1 Theory 

The Absolute Rate (AR) model of thermal dose approximates a given EOI as a first-order 

irreversible reaction. Such a reaction can be described conceptually as 

 𝑁
𝑘
→𝐷 3-1 

Where a sample the in a native state, N, is irreversibly converted into a denatured state, D, 

with conversion rate k. If this process is assumed to be first order it can be described using a 

differential equation:  

 𝑑𝑁

𝑑𝑡
= −𝑘𝑁 3-2 

With solution: 

 
𝑙𝑛 (

𝑁0
𝑁
) = ∫ 𝑘𝑑𝑡

𝜏

0

 3-3 

The conversion rate can be related back to fundamental thermodynamic quantities using 

the Eyring equation from transition state theory 

 
𝑘 =

𝑘𝐵𝑇

ℎ
𝑒
−Δ𝐺∗

𝑅𝑇  3-4 

Where 𝑘𝐵 is the Boltzmann constant, T is the temperature (⁰K),  ℎ is Planck’s constant, R is 

the universal gas constant, and Δ𝐺∗ is the Gibbs’ free energy of formation. Δ𝐺∗ can also be 

expressed using the thermodynamic relation: 

 
∆𝐺∗ = ∆𝐻∗ − 𝑇∆𝑆∗ 

3-5 



23 
 

Where Δ𝐻∗ is the enthalpy of formation and ∆𝑆∗is the entropy of formation. The activation 

energy for a first order reaction is given by: 

 
𝐸𝑎 = 𝑅𝑇 + Δ𝐻∗ ≅ Δ𝐻∗ 

3-6 

Which a reasonable approximation for physiological processes which have 𝐸𝑎~10
5 and 

𝑅𝑇~103. Combining equations 3-3 through 3-6 an Arrhenius relationship is obtained97,98: 

 
Ω = 𝑙𝑛 (

𝑁0
𝑁
) = 𝐴∫ 𝑘𝑑𝑡

𝜏

0

= 𝐴∫ 𝑒
−𝐸𝑎
𝑅𝑇(𝑡)𝑑𝑡

𝜏

0

 3-7 

Where Ω is a unitless damage parameter and the pre-exponential term defined as: 

 
𝐴 ≡

𝑘𝐵𝑇

ℎ
𝑒
Δ𝑆∗

𝑅  
3-8 

Despite the explicit temperature dependence in equation 3-8, it is assumed to be 

insignificant compared to the temperature dependence in the exponential term and is often treated 

as a constant over the range of temperatures involved in thermal therapies.99,100 This constant, 

dubbed the frequency factor, and the activation energy together make up what are called the 

Arrhenius parameters and define the damage process for a given EOI. While Ω has been used 

historically, its physical significance is not intuitive and its value increases exponentially to 

impractically large values. Often a more practical quantity of interest is the fractional conversion 

(𝐹𝐶): 

 
𝐹𝐶(𝑡) = 1 − 𝑒−Ω(𝑡) =

𝑁(𝑡)

𝑁0
 

3-9 

which is easily interpreted as the fraction of the sample that has been converted to the non-

native state and is bounded from 0 to 1.  

3.3.2 Experimental Measurements 

Measurement of the Arrhenius parameters is complicated by the transcendental nature of 

equation 3-7 and cannot generally be solved analytically. Laboratory experiments are designed such 

that 𝑇is constant101–105 (isothermal) or linearly increasing106–109 so that the right hand side of 
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equation 3-7 can be solved analytically for 𝐴 and 𝐸𝑎.This traditionally precludes the use of ablation 

and hyperthermia data because of the inability to precisely control the temperature throughout the 

experiment. The quantitative nature of Ω or 𝐹𝐶 make the AR model well suited for describing 

quantitative EOIs provided they can be experimentally measured. In practice, quantitative 

measurements in tissue are impractical or impossible for many relevant EOIs and many models are 

derived from gross observations in the affected tissues that are categorical in nature. In these cases, 

values of Ω or 𝐹𝐶 are typically arbitrarily assigned (e.g. Ω=1, 𝐹𝐶 = 63%) for a given EOI for the 

purposes of model fitting.97,110 This is particularly challenging when using histopathological EOIs 

which suffer from the additional uncertainties associated with relating the temperature history 

location back to the area evaluated histopathologically.   

A review of the kinetic parameters that define various biological processes can provide 

additional insight into the effect of heat on tissue. Regardless of the type process being examined, a 

plot of the activation energy versus of the log of the frequency factor approximately follows a 

straight line. This empirical relationship has been measured independently by Rosenberg,111 and 

Wright,112 and in this work we use the relationship measured by He and Bischof 98 (Figure 3-1):  

 log(𝐴) = 3.80 × 10−4𝐸𝑎 − 9.36 3-10 

If this result is compare to theory by writing the frequency factor explicitly as a function of 

the activation energy by combining equations 3-4 and 3-8 to obtain: 

 
𝑙𝑛(𝐴) =

∆𝐸

𝑅𝑇
+ 𝑙𝑛 (

𝑘𝑏𝑇

ℎ
) −

∆𝐺∗

𝑅𝑇
 3-11 

Comparing equation 3-10 and 3-11 shows that the slope is remarkably close to the range of 

values of 1/RT in the ablation temperature range (3.9x10-4-3.3x10-4 for 90⁰C to 37⁰C). A constant 

intercept implies only a small change (100-110  kJ/mol) in the Gibb’s free energy as a function of 

temperature, which is characteristic of the thermal denaturation of proteins.98 This relationship is 

incredibly useful as a rule of thumb when trying to ascertain the validity of measured coefficients.99 
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In cases where non isothermal experiments are used to determine the Arrhenius coefficients this 

relationship can be used as a constraint on the nonlinear optimization problem to make it more 

tractable.108 A second trend that observed in the values is tendency for both the activation energy 

and frequency factor to decrease in magnitude as temperature increases. This is seen in isothermal 

experiments by the addition of a break point in the coefficients or in dynamic experiments as lower 

activation energies for high end temperatures.  

 
Figure 3-1: Selected Arrhenius parameters. Arrhenius parameters compiled by Wright112 and He and Bischof98 
for macromolecules (blue), tissues (red), and cells (green).The empirically derived He-Bischof line (black; 
equation 3-10) shows the correlation between the experimentally measured values. The equivalent RCEM 
values (magenta; equation 3-13) are shown as a function of activation energy for reference. 

3.4 Cumulative Effective Minutes (CEM) Model 

The CEM model is a fundamentally different approach to modelling thermal injury that 

seeks to normalize the time required to reach an observed effect after a time history,𝑇(𝑡), to an 
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equivalent exposure at a constant reference temperature, 𝑇0. However, the CEM model still relies 

on the same Arrhenius kinetics as the AR model. For isothermal exposures at two temperatures, 𝑇𝐴 

and 𝑇𝐵, the times, 𝑡𝐴 and  𝑡𝐵, required to reach an arbitrary dose is defined by the reciprocal of the 

rate, k,  in equation 3-7. The ratio of these times is given by:  

 


𝑡𝐴
𝑡𝐵

=
𝑒
−
𝐸𝑎
𝑅𝑇𝐵

𝑒
−
𝐸𝑎
𝑅𝑇𝐴

= (𝑒
−𝐸𝑎
𝑅𝑇𝐴𝑇𝐵)

(𝑇𝐴−𝑇𝐵)

 
3-12 

In the special case of 𝑇𝐴 = 𝑇0 and 𝑇𝐵 = 𝑇0 + 1  a constant, 𝑅𝐶𝐸𝑀, is defined by 

 
𝑅𝐶𝐸𝑀 ≡ 𝑒

−𝐸𝑎
𝑅(𝑇0+1)𝑇0 

3-13 

If the exponential term in equation 3-14 is approximated by 𝑅𝐶𝐸𝑀 (i.e. temperature 

dependence is negligible) and an arbitrary temperature distribution and single reference 

temperature (i.e. 𝑇𝐴 = 𝑇0 and 𝑇𝐵 = 𝑇𝐵(𝑡))  are considered the CEM model equation can be 

derived: 

 
CEM = ∫ 𝑅𝐶𝐸𝑀

𝑇0−𝑇(𝑡)𝑑𝑡
𝜏

0

 
3-14 

Where CEM is the cumulative effective minutes and represents how long a similar 

experiment would take if the temperature were held constant at the reference temperature.  

The CEM model was originally developed for hyperthermia research at relatively low temperatures 

(<47⁰C) which somewhat justifies the assumptions needed to derive equation 3-14 from 3-10 but 

becomes suspect when extended to higher temperatures observed during ablation procedures. 

These simplifications also demand that the value of 𝑅𝐶𝐸𝑀 be determined using an isothermal 

experiments near the reference temperature. Early studies focused primarily on cell survival 

measured in vitro for a variety of cells lines. However, as practical matter, the values chosen by 

Sapareto and Dewey102 are used almost exclusively in thermal therapy literature. These values 

correspond to 𝑅𝐶𝐸𝑀 of 0.5 and 0.25 for temperatures above and below 𝑇0 = 43°C, respectively. This 
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model is referred to with the subscript “SD” (e.g. 𝑅𝐶𝐸𝑀−𝑆𝐷) to distinguish it from the more general 

version in equation 3-13. 

Despite being based on the same kinetics, the relative nature of the CEM model has 

important practical implications. Unlike the AR model, which is inherently capable of predicting 

quantitative EOIs, CEM values are meaningless without an associated isoeffect. Additionally, the 

𝑅𝐶𝐸𝑀−𝑆𝐷 model implicitly assumes that the kinetics of all processes are the same which is not 

supported by the 𝑅𝐶𝐸𝑀 dependence on activation energy from equation 3-13 (Figure 3-1). 

3.5 Critical Temperature (CT) Model 

The CT model differs from both the AR and CEM model in that the entire temperature 

history is assumed to contribute negligibly to the prediction of thermal damage. Instead, tissue is 

classified on whether it achieved some critical temperature, 𝑇𝑐,: 

 
𝐷 = 𝐻(𝑚𝑎𝑥(𝑇(𝑡)) − 𝑇𝑐) 

3-15 

where 𝐻 is the Heaviside step function and 𝐷 = 1 and 𝐷 = 0 correspond to denatured and 

native tissue, respectively. The maximum temperature term in equation 3-15 makes the CT model 

especially sensitive to the noise and temporal resolution of temperature measurements. It also 

limits its application to categorical EOIs. Since the time dependence of the onset of thermal damage 

is ignored, this approach can only be realistically applied to single high temperature/short duration 

exposures and explains its prominence in FUS literature.  

Like the CEM model, the CT model can be connected back to the AR model. Taking the 

derivative of equation 3-7 and setting it equal to an isoeffect of interest, Ω = Ω𝐶, one can get a 

second representation of the critical temperature (𝑇𝑐′):  

 
𝑇𝑐′ =

𝐸𝐴

𝑅 (ln
𝐴
Ω𝐶

)
 3-16 
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which represents the temperature that will result in the dose of interest if achieved 

instantaneously. While these quantities are roughly analogous, 𝑇𝑐′ is theoretical in nature and 

implicitly assumes that the temperature history is a delta function whereas measurements of 𝑇𝑐 are 

practically convolved with previous temperature exposure. As such, one should expect 𝑇𝑐′ to be 

higher than 𝑇𝑐. 

3.6 Application to Thermal Therapies   

Each of the previously described dose models have been applied in thermal therapies. 

Traditionally, the focus of previous research has been to measure Arrhenius or CEM parameters in 

the laboratory and correlate the calculated doses with a categorical EOIs observed using imaging or 

histology. Few studies87 have attempted to derive model parameters directly from histologic or 

radiologic endpoints due to the inability to control the temperature with high precision. 

The Henriques97 skin burn model (Ω = 1)  has been correlated with acute coagulative 

necrosis observed on H&E stained samples113 and has been incorporated into a commercial laser 

ablation system. Sherar et al.114 examined the correlation of three different models with post-

treatment imaging and histology after MWA in rabbit brain. The Jacques103 model correlated with 

the central region on post-treatment T2-W imaging while the Borrelli104 and Brown105 models 

correlated with the transition region using an isoeffect of Ω = 4.9. However, this agreement was 

found to be insensitive to the chosen isoeffect, an observation that was corroborated by Yung115 in 

canine brain. This is attributed to the exponential nature of equation 3-7 which causes rapid dose 

increases. While the corresponding uncertainty in dose threshold may be inconsequential for 

experiments with high dose gradients, it is expected to have a larger impact for procedures involving 

lower temperatures and longer exposures.  

Dose thresholds have also been derived from histologic and radiologic EOIs using the CEM 

model. 240 minutes at 43°C has traditionally considered to be a conservative threshold for complete 
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coagulation.116 However, many studies have shown a large range for the onset of coagulation and/or 

necrosis for doses that are up to an order of magnitude smaller.117–119 This can be explained by 

variations in tissue type and the fact that equation 3-14 increases exponentially like equation 3-7. 

The CEM model is implemented into one clinical laser ablation systems at with three different dose 

thresholds with three dose levels (2,10,60 minutes) the correspond to low, intermediate, and high 

thermal doses.8  

High uncertainties in the thresholds observed using the CEM model has led at least one 

author119 to advocate using the critical temperature model. As previously mentioned in section 3.5, 

these applications come almost exclusively from FUS literature since the short duration high 

temperature exposures are most appropriate for the CT model. Within a single experiment, the 

uncertainty in 𝑇𝑐 is much smaller than the AR or CEM model. However, 𝑇𝑐 values reported across 

different studies vary from as low as 48°C-60°C based on modality used and length of 

exposure.27,115,119,120  

There are several limitations in the way that thermal dose models are applied to ablation 

procedures. Both the AR and CEM models rely on model parameters that are derived from 

experiments that only approximate biological effects in tissue. The implicit assumption that the 

kinetic parameters are similar can be mitigated by empirically determining thresholds for particular 

EOIs. However as this method is associated with high uncertainty and can only be considered valid 

for the types of experiments that were used to derive the thresholds. Similarly, the CT model 

necessarily relies on this empirical analysis. Thus, there is a need for determining model parameters 

that are EOIs specific, especially as the number of clinically relevant EOIs expands. 
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 A Multi-Parametric Pulse Sequence for Thermal Therapy 

Monitoring 

4.1 Introduction 

Clinically utilized imaging EOIs are currently almost exclusively based on post-treatment 

imaging.  These are usually longer acquisitions which take considerable time to acquire.  The current 

standard approach for thermal ablation is to identify the region of damaged tissue by administration 

of contrast agent in order to assess the regions which have lost perfusion. In section 2.5 the 

temperature dependence of several intrinsic MR parameters was reviewed. Consistent with prior 

literature, it was demonstrated that these parameters changed linearly with temperature.  

However, as tissue is irreversibly damaged, and substantial changes in the chemical environment 

alter the rate at which these parameters change with temperature. These changes in linearity have 

been widely considered to be a liability in the context of providing an independent means of 

temperature monitoring during high temperature thermal ablation therapies. However, when this 

information is instead used in conjunction with temperature monitoring, such as from the PRF shift, 

there is potential to be used as direct measurement of tissue damage during treatment. Multi-

parametric pulse sequences that measure multiple temperature sensitive parameters 

simultaneously are of interest for direct damage monitoring and for training thermal dose models 

because they provide pixel-wise information on tissue temperature and state throughout the entire 

procedure. In this chapter, a multi-parametric MR sequence is designed for this purpose. An existing 

multi-echo pulse sequence is modified so that the flip angle can be altered in dynamic fashion for 

real-time estimates of the PRF, R2*, and T1 during thermal therapy procedures. The modified 

sequence is validated against the product pulse sequence and the ability to quantify each of the 

parameters is investigated.  
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4.2 Methods  

4.2.1 Pulse Sequence Design and Validation 

The multi-parametric pulse sequence was designed for a clinical 3T MRI scanner (Discovery 

750; GE Healthcare Technologies; Waukesha, WI) using the EPIC pulse sequence design 

environment. Modifications were made to the product fast gradient-recalled echo (FGRE) source 

code, which serves as the basis for a majority of the product 2D gradient echo sequences. This 

custom sequence was renamed ‘mfamfgre2d’ (multi-flip angle, multi-echo FGRE 2D) and the pulse 

sequence diagram for a single phase utilizing unipolar readout is shown in Figure 4-1.  

 

Figure 4-1: Mfamfgre2d pulse sequence diagram. RF pulse amplitude and gradient waveforms for slice (zgrad), 
phase (ygrad), and unipolar frequency (xgrad) encode gradients. 

  



32 
 

Although multi-phase (i.e. time points) and multi-echo options are available within the 

product FGRE sequence, the source code had to be modified to make both options available 

simultaneously. The flip angle was controlled at each acquisition phase by scaling the RF pulse 

amplitude using the control variable (CV) ‘ia_rf1’. This CV represents the amplitude of the RF pulse 

relative to the value determined during automated tuning of the scanner prior to acquisition (e.g., 

‘prescan’) and has a maximum value of 215-1=32,676. The value of this CV can be written as a 

function of the desired flip angle, 𝛼, and the nominal flip angle,𝛼𝑛𝑜𝑚 if the small flip angle 

approximation 121holds: 

 𝑖𝑎_𝑟𝑓1 = 32,767 ∗
𝛼

𝛼𝑛𝑜𝑚
 4-1 

Use of the small flip angle approximation limits the application of this sequence to flip 

angles of approximately <30°. However, in this sequence the RF pulse is optimized using a Shinnar-

Le Roux algorithm122 and so the shape of the RF pulse is automatically changed as the flip angle 

changes for SAR and timing purposes. One of the thresholds for transition between different RF 

shapes occurs at 30° which provides a practical reason for restricting the available flip angles and 

justifies the small flip angle assumption.  While higher flip angles may be used, the change in the 

shape of the pulse could reduce the accuracy of the calculations. 

Two additional CVs were added to allow the operator to control the behavior of the 

sequence at the scanner console without recompiling the source code. The first, ‘mfa_mode’, 

defines how the flip angle changes with each phase. Three options are available: constant flip angle 

(mfa_mode=0), alternating flip angle (mfa_mode=1), and a continuously decreasing flip angle. In the 

case of alternating flip angle, an additional CV, ‘mfa_low_flip’, controls the value of the second flip 

angle. The dependence of the flip angle on the mfa_mode variable, total number of acquisition 

phases, 𝑁𝑝ℎ𝑎𝑠𝑒𝑠, and current acquisition phase, 𝑛𝑝ℎ𝑎𝑠𝑒, is given in Table 1.  
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Multi-Flip Angle Scheme mfa_mode Flip Angle 

Constant 0 𝛼 = 𝛼𝑛𝑜𝑚 

Alternating 1 𝛼 = {
𝛼𝑛𝑜𝑚(𝑛𝑝ℎ𝑎𝑠𝑒 = 𝑜𝑑𝑑)

𝛼𝑛𝑜𝑚/𝑚𝑓𝑎_𝑙𝑜𝑤_𝑓𝑙𝑖𝑝(𝑛𝑝ℎ𝑎𝑠𝑒 = 𝑒𝑣𝑒𝑛)
 

 

Continuously Decreasing 2 𝛼 = 𝛼𝑛𝑜𝑚 (1 −
𝑛𝑝ℎ𝑎𝑠𝑒 − 1

𝑁𝑝ℎ𝑎𝑠𝑒𝑠
) 

Table 1: Flip angle control using the mfa_mode control variable 

A phantom experiment was designed to validate the performance of the modified FGRE 

source code did not have unintended consequences on the pulse sequence. A phantom was 

designed containing 8 50 mL centrifuge tubes with different concentrations (0.06-0.42 mM) of 

Gadolinium based contrast agent (Omniscan, GE Healthcare Technologies, Waukesha, Wisconsin) in 

deionized water. The phantom was placed in a transmit-receive quadrature birdcage head coil and 

images were acquired at 5 flip angles using the mfamfgre2d sequence. (FOV=25.6 x 25.6 cm, TR= 50 

ms, 8 echoes, TEmin=1.4 ms, ESP=1.7 ms, RBW=390 Hz/pixel, slice thickness=5mm, α=10,15,20,25,30, 

Nslices=1). Two nearly identical FGRE scans were acquired sequence by manually scaling ia_rf1 

between acquisitions. Only the first echoes were used for analysis due to a slight (.1 ms) discrepancy 

in echo spacing. A rectangular ROI was drawn just inside the phantom edges to isolate voxels with 

significant signal and assure Gaussian distributed noise. (Figure 4-2). Every voxel within this ROI was 

compared using Bland-Altman analysis for the two identical FGRE sequences to identify the baseline 

differences caused by noise. A second Bland-Altman analysis was performed to compare the 

mfamfgre2d sequence and one of the product FGRE sequences in order to detect any systematic 

differences between the sequences.  
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Figure 4-2: Phantom setup and ROI used for comparison of mfamfgre2d and FGRE sequences. The ROI was 
chosen to contain areas with signal due to the non-Gaussian noise properties at low SNR. Gadolinium 
concentrations increase counter-clockwise from bottom right corner. Gadolinium concentrations/T1s: 0.06 
mM/1214 ms, 0.07mM/1195ms, 0.08mM/1143ms, 0.11mM/1011ms, 0.15mM/877ms, 0.21mM/731ms,  
0.32mM/560ms, 0.42mM/461ms. 

4.2.2 Object Oriented Multi-Parametric Post-Processing 

An object oriented framework was implemented in the MATLAB (Mathworks, Natick, MA) 

environment to facilitate multi-parametric processing of the mfamfgre2d sequence. The primary 

design goals were to create self-contained object that reduces the memory use and to streamline 

routine processing tasks to make them as fast and flexible as possible. The constructor method loads 

DICOM images into the object as native 16-bit integers, which reduces the memory required (4x) 

compared with the MATLAB default of double precision. PRF, R2*, signal magnitude, and 

temperature were all calculated using the autoregressive moving average (ARMA) approach 

developed and investigated by Taylor, et al34 that models the signal as damped exponentials in 

complex space. Methods developed were for calculating ARMA coefficients with an ROI in parallel, 

simultaneously reducing the required memory and processing time for the most computationally 

expensive step. Once the ARMA coefficients are known, the calculation of parameters maps is trivial 

from a computational perspective so each map was implemented as a dependent method to further 
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reduce the required memory. Additional properties are available to define the options for 

processing. For example, when calculating temperature, the temperature sensitivity coefficient and 

drift correction ROI are determined from corresponding properties within the object and allows fast 

and robust changes to processing. This object oriented framework greatly expedites the multi-

parametric processing, especially as the number of time-points, echoes, and model order increases.  

4.2.3 PRF/T2* Dependence on Flip Angle 

Multi-flip angle capability was incorporated into the mfamfgre2d sequence to enable T1 

quantification. However, it is important to ensure that this addition does not adversely impact 

quantification of the other two parameters of interest: PRF and T2*. A phantom containing 6 

centrifuge tubes with different concentrations (0.04-0.62 mM) of Gadolinium based contrast agent 

(Omniscan, GE Healthcare, Waukesha, Wisconsin) in deionized water. The phantom was placed in 

the T/R quadrature head coil and images were acquired at 12 flip angles using the mfamfgre2d 

sequence. (FOV=25.6 x 25.6 cm, TR= 30 ms, 8 echoes, TEmin=1.4 ms, ESP=1.7 ms, RBW=390 Hz/pixel, 

slice thickness=5mm, α=2.5°-30° Nslices=1). This sequence was repeated 5 times to get assess the 

uncertainty in the signal measurements. Average values of PRF and T2* were measured in a 5x5 

pixel ROIs for each repetition and Gadolinium concentration using in the center of each centrifuge 

tube. ( 

Figure 4-3) A one way analysis of variance (ANOVA; α=0.05) was performed for each 

concentration to assess whether the any of the mean parameter were significantly different at any 

of the flip angles. In cases where a difference was observed, a Tukey-Kramer (α=0.05) multiple 

comparison test was used to identify which flip angles were significantly different from one another. 
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Figure 4-3: Setup and ROIs for assessing the dependence of PRF and T2* on flip angle. Each centrifuge tube 
analyzed contains Gadolinium based contrast agent. Gadolinium concentrations/T1s: 0.04 mM/1303 ms (blue), 
0.06 mM/1214 ms (red), 0.10mM/1085 ms (green), 0.16mM/881 ms (black), 0.27mM/633 ms (magenta), 
0.62mM/340 ms (cyan). 

4.2.4 Temperature Sensitivity Coefficient 

A critical component of temperature imaging is validation of the temperature sensitivity 

coefficient, 𝛽, that relates changes in the PRF to temperature (equation 2-2). The temperature 

sensitivity coefficient was measured in two separate phantom experiments by comparing the 

change in PRF with an independent temperature measurement during laser heating. Each phantom 

was composed of 50% egg white (Crystal Farms, Minnetonka, MN) and 50% deionized water by 

volume mixed with 1.5% agarose (weight/volume) (A0169, Sigma-Aldrich, St. Louis MO) and 

Gadolinium based contrast agent (0.06mM/0.21mM; Omniscan, GE Healthcare, Waukesha, WI). A 

water-cooled diffusing tip laser fiber (VCLAS-400-12-T10-11, Medtronic Navigation; Louisville, 

Colorado) attached to a 980nm diode laser (Photex15, Biotex, Houston, Texas) was inserted into the 

phantom. A fluoroptic temperature probe (m3300/STB, Lumasense, Santa Clara CA) was inserted 

within a few cm of the diffusing fiber tip. The phantom was exposed a 10 W for 8-9 minutes while 

monitored using the mfamfgre2d sequence. (field of view (FOV)=25.6 x 25.6/19.2x19.2 cm, TR= 35 
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ms, 8 echoes, minimum echo time (TEmin)=2.5/2.1 ms, echo spacing (ESP)=2.5/2.1 ms, receiver 

bandwidth (RBW)=195/325 Hz/pixel, slice thickness=3mm, number of slices =1, α=30, 

mfa_mode=1/0, mfa_low_flip=2/2, time between phases=4.8s). The temperature values measured 

using the fluoroptic probe were interpolated to match the MRTI temporal resolution. The 

temperature sensitivity coefficient and the 95% confidence intervals were calculated using linear 

regression (“regress”, MATLAB, Mathworks, Natick, MA) on the PRF values measured using MRTI in 

a single pixel at the probe tip and the interpolated fluoroptic probe measurements.   

Figure 4-4: Setup and pixels of interest for two temperature sensitivity coefficient measurements in phantom. 
The position of the laser fiber and temperature probe are indicated by regions of low signal on magnitude 
images. The pixels used for the temperature sensitivity measurements (red) were identified by comparing 
images with multiple echo times and using knowledge of how far the temperature probe extended beyond the 
introducing catheter.  
  

4.2.5 T1 Quantification 

Multiple-flip angle capability was incorporated into the mfamfgre2d sequence for the 

purposes of evaluating the quantification of the T1 relaxation time during the MRTI acquisition. 

Theoretically, the steady state signal, S, of a spoiled-gradient echo sequence as a function of flip 

angle, α, is given by: 

 
𝑆 = 𝑆0

(1 − 𝐸1) sin(𝛼)

1 − 𝐸1 cos(𝛼)
 4-2 
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where 𝑆0 is the equilibrium magnetization and 𝐸1 = 𝑒−𝑇𝑅/𝑇1. In a multi-flip angle acquisition 

𝑇1can be found using nonlinear regression techniques or by linearizing equation 4-2: 

 𝑆

sin(𝛼)
= 𝐸1

𝑆

tan𝛼
+ 𝑆0(1 − 𝐸1) 4-3 

The number and choice of flip angles for dynamic 𝑇1mapping must balance the tradeoff 

between temporal resolution and the accuracy and precision of the measurement. Several studies 

have shown that that high precision can be maintained with only two flip angles provided that 

optimal flip angles are chosen.48 However, it should be noted that 𝑇1 accuracy can be biased at low 

SNR due to Rician noise properties of the MR signal123. The optimal flip angle pair is given by:124,125 

 
𝛼𝑜𝑝𝑡 = cos−1 (

𝐸1 ± √2(𝐸1
2 − 1)

2 − 𝐸1
2 ) 4-4 

Or alternatively: 

 𝑆(𝛼𝑜𝑝𝑡) = 0.71 × 𝑆(𝛼𝐸) 4-5 

Where 𝑆(𝛼𝑜𝑝𝑡) is the signal at the optimal flip and 𝑆(𝛼𝐸) is the signal at the Ernst angle 

(𝛼𝐸 = cos−1(𝑒−𝑇𝑅/𝑇1)). The values of the optimal flip angles are plotted in Figure 4-5 for 

physiologic T1s and range of TRs that are compatible with ablation monitoring.  
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Figure 4-5: Optimal flip angle pairs for T1/TR combinations relevant for MRTI monitoring. For a given T1, there 
exists a pair of flip angles that optimize the precision of dual flip angle T1 measurements. One flip angle is 
higher (dotted) than the Ernst angle (not shown for clarity) and while the other is lower (solid) than the Ernst 
angle. T1 values were selected to represent physiologic values in tissue. Limits on TR were chosen to maintain 
temporal resolution consistent with ablation procedures (128 phase encode lines x 100 ms = 12.8s per image). 

The above discussion of mapping T1 using optimal flip angles ignores the unavoidable 

contributions of B1 inhomogeneity caused by spatially varying conductivity and permittivity in the 

sample. B1 inhomgeneities cause the actual flip angle to deviate from the nominal flip angle in a 

spatially varying manner. Several methods126–130 exist for mapping the B1 field so that equations 4-2 

and 4-3 can be fit using the true flip angle at each pixel. In this work we use the Double Angle 

Method (DAM)131  for primarily practical purposes as it does not require modification of pulse 

sequence source code. In the DAM method two images are acquired at angles 𝛼𝑛𝑜𝑚 and 2𝛼𝑛𝑜𝑚 

with a long TR (>5𝑇1). After substituting into equation 4-2 and using the double angle formula the 

ratio of the two images can be written: 

 
𝛼 = cos−1 (

𝑆(2𝛼𝑛𝑜𝑚)

2𝑆(𝛼𝑛𝑜𝑚)
) 4-6 

For the case of the mfamfgre2d sequence, slice profile effects significantly alter the 

measured signal as a function of flip angle. This is caused by a distribution of flip angles in the slice 

select direction. To account for these effects the mfamfgre2d time domain Shinnar-LeRoux (SLR) RF 
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pulse was plotted over a variety of flip angles using the WTools (GE Healthcare, Waukesha, WI) 

simulation environment and exported to MATLAB (MathWorks, Natick, MA) where it was Fourier 

transformed and scaled by the slice select gradient magnitude to convert to physical distance. 

Assuming that the slice profile is given by the Fourier Transform of the RF pulse is a reasonable 

approximation in the small flip angle regime. A plot of the slice profile as a function of slice thickness 

is shown in Figure 4-6. These slice profiles were used to numerically solve for the theoretical signal 

response, 𝑆′(𝛼)as a function of the nominal flip angle by integrating equation 4-2 over α.132 

Figure 4-6: Mfamfgre2d slice profiles. Slice profiles were calculated by simulating the RF pulse in the WTools 
environment, performing a Fourier transform, and scaling by the magnitude of the slice encode gradient. These 
profiles assume the simulated RF pulse accurately reflects the true pulse experience by an object being imaged 
and that the small flip angle approximation holds 

Phantom experiments were designed to evaluate the ability to quantify T1 using the 

mfamfgre2d pulse sequence. A phantom containing 8 centrifuge tubes with different concentrations 

(0.001-1.215 mM) of Gadolinium based contrast agent diluted in deionized water (Omniscan, GE 

Healthcare, Waukesha, Wisconsin). A ninth centrifuge tube was filled with 1:1 deionized water:lard 

(Armour, Grand Prairie, TX) mixture mixed with 1.5% agarose (weight/volume) (A0169, Sigma-

Aldrich, St. Louis MO) and 4 lecithin dietary supplements (4.8 mg; CVS Pharmacy, Woonsocket, RI) as 

an emulsifier. The phantom was placed in the 32 channel head coil (GE Healthcare, Waukesha, 
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Wisconsin) and images were acquired at 12 evenly spaced flip angles using the mfamfgre2d 

sequence. (FOV=19.6 x 19.6 cm, 128x128 acquisition matrix TR= 35 ms, 8 echoes, TEmin=1.6, ESP=2 

ms, RBW=326 Hz/pixel kHz, slice thickness=5mm, α=2.5°-30°). The B1 field was mapped using a 12 

flip angle mfamfgre2d (FOV=19.6 x 19.6 cm, 64x64 acquisition matrix, TR= 6,000 ms, 8 echoes, 

TEmin=1.6, ESP=1.3 ms, RBW=326 Hz/pixel kHz, slice thickness=5mm, α=2.5°-30°).  All T1 related 

measurements used the first echo only. Gold standard T1 measurements for comparison were made 

using an multi-inversion time fast spin echo (FSE) (FOV=19.6 x 19.6 cm, 256x256 acquisition matrix, 

TR= 4000 ms, ETL=4, TE=8.3, RBW=244 Hz/pixel kHz, slice thickness=5mm, 

TIs=50,75,100,150,250,500,750,1000,1500, 2000, 2500 ms) and fit using the IR signal equation: 

 𝑆 = 𝑆0(1 + 𝑒𝑇𝑅/𝑇1 − 2𝑒−𝑇𝐼/𝑇1) 4-7 

For each sequence and concentration the signal was averaged over a 9x9 ROI for analysis 

(Figure 4-7).  

 

Figure 4-7: T1 quantification phantom and ROIs. Concentrations/T1s:1.2150 mM (blue), 0.6075 mM (red),  
0.3038 mM (green), 0.1519 mM (magenta), 0.0759 mM (cyan), 0.0380 mM (white), 0.0190 mM (yellow), 
0.0095 (orange) 
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The DAM method for B1 mapping also suffers from slice profile effects so the two sources of 

error cannot be corrected independently. A modified version of the technique described by Hsu133 

was used to correct for each effect simultaneously. Using this relationship a 5 step procedure was 

used to estimate T1 from the measured signal, 𝑆𝑇1̃ and the measured DAM signal, 𝑆𝐷𝐴�̃� : 133 

1. Derive an expression for the flip angle at the center of the slice profile, 𝛼𝑐𝑒𝑛𝑡, as a 

function of the observed flip angle, 𝛼𝑜𝑏𝑠, by simulating the DAM acquisition using 

𝑆′(𝛼𝑐𝑒𝑛𝑡) and calculating 𝛼𝑜𝑏𝑠 using equation 4-6. 

2. Calculate 𝛼𝑐𝑒𝑛𝑡 for each DAM pair in 𝑆𝐷𝐴�̃�  using equation 4-6 and𝛼𝑐𝑒𝑛𝑡(𝛼𝑜𝑏𝑠).  

3. Estimate 𝑇1 by fitting 𝛼𝑐𝑒𝑛𝑡 vs. 𝑆𝑇1̃ using equation 4-2 

4. Using the 𝑇1 calculated in 3, calculate the theoretical ratio, 𝑘, between the observed 

signal 𝑆′(𝛼𝑐𝑒𝑛𝑡)/𝑆(𝛼𝑐𝑒𝑛𝑡)  

5. Divide 𝑆𝑇1̃by 𝑘 to get 𝑆𝑇1’, the signal one would observe in the absence of slice 

profile effects. 

6. Iterate through steps 3-5 while replacing 𝑆𝑇1̃ with 𝑆𝑇1’ in step 3 but not step 4 (5 

iterations) 

The T1 values recovered using this iterative approach are compared to two other 

approaches for reference: a direct fit of 𝑆𝑇1̃ using 4-2 (ignore B1 effects and slice profile effects) and 

a direct fit of 𝑆𝑇1̃using 𝑆′(𝛼𝑐𝑒𝑛𝑡) (ignore B1 effects). 

4.3 Results  

4.3.1 Pulse Sequence Design and Validation 

The pulse sequence modifications were successfully implemented and run on the GE MR750 

scanner for 4 different software versions (DV23, DV24, DV25, DV2R2). The Bland-Altman comparison 
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between the signal magnitudes of the two FGRE scans is shown in Figure 4-8. The difference 

between the two scans appears to be independent of the mean signal value and there is a 

statistically significant (p<.01) mean difference of 0.3 AU with a 95% confidence interval from -29 to 

28 AU. The same comparison is made between the FGRE sequence and mfamfgre2d sequence in 

Figure 4-9. The mean difference is 0.054 AU and the 95% confidence interval ranges from -32 to 32 

AU. In this case there is a slight but visible increase in the difference over a range approximately 750 

to 1250 AU. Although these mean differences are statistically significant in both cases they are 

inconsequential compared to the median signal value (≈1100 AU) and when the integer nature of 

the signal magnitude is considered. There is a 7 AU increase in the 95% confidence interval when the 

FGRE and which is also small compared to the median signal value. This is most likely caused by the 

increase in the differences from 750-1250 AU, which is likely local in nature given its mean signal 

dependence.  This could be caused by minor alterations in the phantom that occurred between the 

two scans (e.g. air bubble, motion) and is consistent with the timing of when the scans were 

acquired (≈15 minutes between mfamfgre2d and FGRE vs. 3 minutes between FGRE and FGRE).  

 

Figure 4-8: Bland-Altman comparison of signal values obtained using two identical FGRE sequences. 
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Figure 4-9: Bland-Altman comparison of signal values obtained using mfamfgre2d and FGRE sequences. 

4.3.2 PRF/T2* Dependence 

Representative examples of the PRF and T2* dependence on flip angle are shown in Figure 

4-8 and Figure 4-9 and the p-values from the 1 way ANOVA are tabulated in Table 2. For PRF, no 

significant change with flip angle is observed with the exception of the 0.04 mM concentration. For 

T2*, a significant change with flip angle was detected at all concentrations except 0.06 mM and 0.62 

mM. In each of these cases the Tukey-Kramer multi-comparison test reveals that the significant 

difference is only found at the lowest two flip angles (2.5°/5°) which suggests that the differences 

are SNR dependent rather than caused by alterations to the pulse sequence. Coincidentally, the only 

significant difference observed in the PRF measurements was found at the highest T1 and close to 

the edge of the coil, further supporting the difference is an SNR effect rather than a pulse sequence 

effect.  
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Figure 4-10: Representative comparison of PRF±2σ (A) and T2*±2σ (B) as a function of flip angle. Flip angles 
with significantly different means are denoted by and asterisk (Concentration 0.06 mM; T1=1214 ms). 

T1 (ms) 1303 1214 1085 881 633 340 

Concentration (mM) 0.04 0.06 0.10 0.16 0.27 0.62 

PRF  <0.01* 1.00 1.00 0.99 0.99 1.00 

T2* <0.01* 0.01* 0.02 <0.01* <0.01* 0.90 

Table 2: P-Values from ANOVA comparison of T2* and PRF values for each Gadolinium concentration. (p<0.01 
bolded and with asterisk)  

4.3.3 Temperature Sensitivity 

The measured value of the temperature sensitivity coefficient and 95% confidence intervals 

were -0.0103(-0.0105-0.0101) and -0.0110(-0.0113-0.0106) which are consistent with the expected 

value -0.01 ppm/°C and the previous results measured by Taylor for the same sequence and post-

processing technique. (Figure 4-11)134  



46 
 

Figure 4-11: Example of temperature sensitivity coefficient measurement. A linear regression is performed 
between the temperature measurement made using a fluoroptic probe and the PRF values measured using 
MRTI.  

4.3.4 T1 Quantification 

The theoretical relationship 𝛼𝑐𝑒𝑛𝑡(𝛼𝑜𝑏𝑠) for the mfamfgre2d sequence is plotted as 

function of the observed flip angle in Figure 4-10. The center flip angle is always greater than the 

observed flip angle and the deviation increases with the observed flip angle. This trend is closest to 

the results of Hsu133 for a Hamming windowed 4-lobe sinc pulse. However, the magnitude of the 

difference is increased. This is not entirely unexpected because the mfamfgre2d pulse is 

approximately Gaussian and deviates from the ideal slice profile more than a truncated sinc pulse. 
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Figure 4-12: Center flip angle as a function of the observed flip angle measured using the DAM method. The 
relationship between the center flip angle and observed flip angle (red) is calculated by simulating the DAM 
experiment using 𝑆′(𝛼). The line of unity (black dotted) is plotted for reference. This relationship can 
theoretically correct the observed flip angles using the DAM method for slice profile effects.  

The results in Figure 4-10 were applied to the DAM acquisition to obtain the 𝛼𝑐𝑒𝑛𝑡 for each 

flip angle pair and Gadolinium concentration and is expressed as a ratio 𝛼𝑐𝑒𝑛𝑡/𝛼𝑛𝑜𝑚 (Figure 4-13) 

 

Figure 4-13: Center flip angle as a function of nominal flip angle for each Gadolinium concentration. 
Concentrations/T1s: 1.2150 mM (blue), 0.6075 mM (red),  0.3038 mM (orange), 0.1519 mM (purple),  0.0759 
mM (green),    0.0380 mM (cyan), 0.0190 mM (maroon), 0.0095 (blue) 
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The measured center flip angle increases drastically at low flip angles to unrealistically high 

values. This is consistent with the contribution of the inherent bias in MR signal increasing at low flip 

angles. For this reason the center flip angles were scaled by the measured at 15° as this is the most 

reliable measurement. The flip angle ratios were 2.00, 1.94, 1.8, 1.85 1.82, 1.61 1.58, 1.60 for 

concentrations of 1.2150, 0.6075, 0.3038,  0.1519, 0.0759, 0.0380, 0.0190, 0.0095, respectively. 

When these flip angles the used to correct the signal the corrected values are far lower than the 

values measured using inversion recovery and had a minimum difference of approximately 100ms. 

(Figure 4-14) If no correction is made, a similar underestimation of T1 is observed (Figure 4-15) 

 

Figure 4-14: T1 measurement using iterative method for simultaneous B1 and slice profile correction.T1 values 
measured using inversion recovery (±95% confidence interval) compared to multi-flip angle method. 



49 
 

 

Figure 4-15: T1 measurement without B1 or flip angle correction.  T1 values measured using inversion recovery 
(±95% confidence interval; blue) compared to multi-flip angle method (±95% confidence interval; red). 

4.4 Discussion 

In this chapter a multi-parametric pulse sequence for thermal therapy monitoring was 

successfully implemented on a clinical 3T MRI. This sequence is effectively equivalent to the product 

pulse sequence when the directly compared using the same scan parameters. A scheme for altering 

the flip angle via scaling the amplitude of the RF pulse was added for dynamic measurement of T1. 

This addition has no discernable impact on the quantification of T2* or PRF outside of SNR effects 

observed at low flip angles. Measurements of the temperature sensitivity coefficient are also 

consistent with expected values.   

Quantification of T1 is complicated by several constraints. MFA measurements are 

effectively restricted to flip angles under 30° due to the practical limitations in the pulse sequence 

design. The impact of this can be understood by examining Figure 4-5. The Ernst angle is always in 

between the optimal flip angle pair and remains under 35° over the entire T1/TR range in the figure. 

The high flip angle rapidly exceeds the 30° limit of the mfamfgre2d sequence. However, Schabel et 

al.125 have shown that the precision is relatively insensitive to the value of the higher flip angle 
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compared to low flip angle for TRs in this range.  Thus, in the case where 4-2 holds, the limited range 

of flip angles is suboptimal but it can be worked around through careful selection of sequence 

parameters.  

Two factors that have a larger impact on T1 quantification in the mfamfgre2d sequence are 

the effects of B1 inhomogeneity and the slice profile. An iterative method that accounts for both 

effects simultaneously was tested against gold standard inversion recovery method. The corrected 

T1 values remained substantially lower than the true values and showed no discernible 

improvement over the uncorrected values (Figure 4-15). It is difficult to isolate where this correction 

fails as both effects are convolved with one another. However, Figure 4-13 provides some insight 

into the appropriateness of the correction for B1 inhomogeneity. The measurement is clearly biased 

at small flip angles but the B1 inhomogeneity at the highest flip angle is still approximately double 

the nominal value. Although localized deviations of this magnitude have been measured using the 

DAM135, they are not expected to cover a region that contains the centrifuge tubes . Even if this 

measurement is assumed to be accurate it implies that the flip angle far exceeds the 30° limit and 

the small flip angle approximation is violated.  

Several options exist for rectifying the inability to obtain accurate T1 values. Perhaps the 

most straightforward approach is to make similar alterations to 3D spoiled gradient echo sequence. 

This would eliminate slice profile effects and allow B1 effects to be isolated. Far shorter TRs would 

result in in lower optimal flip angles and certainly justify the small flip angle approximation and the 

same amplitude scaling scheme. The primary draw back to using a 3D sequence is the additional 

time required to phase encode in the z-direction to prevent aliasing. While this could be mitigated 

by using some combination of parallel imaging, view sharing, and saturation bands, the impact on 

temporal resolution would need to be carefully considered on a case by case basis. Implementing a 

B1 mapping method that is less sensitive to slice profile effects, such as the Bloch-Siegert130 
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technique, would also aid in deconvolving the two sources of uncertainty with reduced scan time. 

Greater control over the RF pulse shape would also be advantageous as it would allow systematic 

examination of impact of the slice profile, including pulses that are far closer to the ideal rectangular 

slice profile. Techniques that use look-up tables are also available136 but require acquisition of large 

amounts of data before experiments and rely on the assumption that the B1 field does not change 

significantly when different objects are scanned.  

 These results are best viewed in comparison to other studies in the literature examining 

hyrbrid PRF/T1 technique for temperature monitoring. Hey et al.50 used a similar approach with a 2D 

acquisition. The primary difference was the use of high specific bandwidth sinc-Gaussian pulse137 to 

obtain a more rectangular profile. The increase in SAR was offset somewhat an EPI readout which is 

not compatible with the multi echo acquisition. Todd et al.32,138 used an almost identical sequence 

where all flip angles were scaled using a calibration factor calculated from inversion recovery 

experiments. However, their approach was intended primarily to supplement the PRF method in 

breast adipose tissue. It was successful in this respect but still suffered similar underestimation was 

in pork muscle due to its longer T1 (≈900 ms). This is consistent with the results presented here of 

decreasing error with T1.  
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 Development of a Methodology for Fitting Thermal Dose 

Models Using Magnetic Resonance Imaging 

5.1 Introduction 

One of the primary barriers to fitting thermal dose models to clinical ablation data is the 

underlying mathematics associated with applying the model in the face of a dynamically changing 

temperature. Equations 3-7 and 3-12 are transcendental and impossible to solve analytically for the 

case of an arbitrary temperature history. Consequently, thermal dose models have traditionally 

been derived from laboratory experiments where the temperature is precisely controlled and the 

integrals can be solved analytically. This requirement is practically impossible to adapt to clinical 

procedures where spatial and temporal temperature gradients are unavoidable. An additional 

drawback of dose models based on Arrhenius kinetics is that they predict continuous dose values 

which are poorly suited for the categorical EOIs that are often observed in the clinic. In this chapter 

a novel methodology for solving the AR model parameters is proposed and validated. The proposed 

technique relies on solely MRI to acquire the necessary information on both the temperature and 

state of tissue. A logistic model is coupled to the AR model to better account for categorical EOI and 

nonlinear optimization techniques are used to overcome the transcendental nature of the governing 

equations. The overall methodology is first described in a general sense and subsequently validated 

in an egg white phantom using intra-treatment and post-treatment changes observed on MRI as 

EOIs. Egg white was chosen because it is readily available and is known to be predominantly made 

up of proteins whose kinetics closely match the underlying assumptions of the Arrhenius model. 

Both models are compared to the Arrhenius parameters in the literature and the region of protein 

coagulation observed on a post-treatment T1 which acts as surrogate for visible coagulation. 
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5.2 Methods 

5.2.1 Model Definition 

The AR model is explicitly chosen for model fitting because it relies on the fewest simplifying 

assumptions and CEM and CT model parameters can be approximated by the Arrhenius parameters, 

𝐸𝑎 and 𝐴. As mentioned in section 3.3.2 the quantitative nature of the AR model is ideal if the 

corresponding EOI is quantitative but is problematic for categorical EOIs which need to be arbitrarily 

assigned a particular value of Ω or 𝐹𝐶. Many radiologic isoeffects are categorical so this deficiency 

needs to be considered in any dose fitting methodology. This is addressed by coupling the 

traditional Arrhenius model to a second model that predicts the EOI as a function of 𝐹𝐶. In this work 

we consider binary categorical EOIs so a binary logistic model is used. In this case, temperature 

histories are assigned a binary classification (𝑦 ∈ {0,1}) that reflects the EOI.  

 
�̂�(FC; 𝑘50, FC50) =

1

1 + exp(−𝑘50(FC − FC50))
 5-1 

This coupled model can be interpreted as predicting the probability of observing an binary 

EOI as a function of thermal dose. Instead of assigning an EOI to an arbitrary thermal dose value an 

optimal dose threshold can be found that best classifies pixels or represents a probability of interest. 

Theoretically, this approach can be generalized to arbitrary models depending on the effect of 

interest (e.g. clustering, multinomial logistic regression etc.)  

5.2.2 Arrhenius Parameter Optimization 

Optimizing the multi-level model in the previous section is not trivial due to the 

transcendental nature of the Arrhenius equation. The optimal Arrhenius parameters were defined 

to be the pair of 𝐸𝑎 and 𝐴 values that maximize the joint log likelihood,𝑙𝑜𝑔(ℒ(𝐸𝑎 , 𝐴|𝑦)), of the 

logistic model in equation 5-1: 
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𝑙𝑜𝑔(ℒ(𝐸𝑎 , log(𝐴) , |𝑦)) = ∑ 𝑦𝑖𝑙𝑜𝑔(𝑦�̂�) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)

𝑁𝑝𝑖𝑥𝑒𝑙𝑠

𝑖=1

 5-2 

The Arrhenius parameters are known to be correlated (see section 3.3.2) over a wide range 

of biological processes which further complicates the fitting of dose models. Regardless of whether 

this correlation is a consequence of a thermodynamic compensation law or an artefact of the fitting 

process139–143, it restricts the possible parameter pairs in the 𝐸𝑎/𝑙𝑜𝑔(𝐴) parameter space to a line 

within some experimental tolerance.  A reparametrized expression for the reaction rate, 𝑘, was used 

during the optimizations: 

 
𝑘 = exp(𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) −

𝐸𝐴
𝑅
(
1

𝑇
−

1

𝑇𝑅𝑒𝑓
)) 5-3 

where 

 
𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) ≡ 𝑙𝑜𝑔(𝐴) −

𝐸𝐴
𝑅𝑇𝑅𝑒𝑓

 5-4 

and 𝑇𝑅𝑒𝑓 was chosen to be equal to 316.5°K to remove the correlation in equation 3-10. This 

new 𝐸𝑎/𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) parameter space effectively focuses the parameter search on values near the 

line in equation3-10 while facilitating the convergence of the optimization algorithm and aiding in 

visualizing the solution144,145. This method of optimization is analogous to the method of Qin et al. 108 

with a different objective function and no explicit constraints on the parameter values. The 

optimizations were solved using a Quasi-Newton BFGS algorithm (fminunc, MATALB, Mathworks, 

Natick, MA) with the Arrhenius parameters reported by Henriques97 as the initial guess. The 

approximate Hessian at the solution was inverted to estimate the covariance matrix and generate 

confidence ellipses for the parameter values. The solutions and covariance matrices were then 

transformed into the traditional 𝐸𝑎/𝑙𝑜𝑔(𝐴) parameter space for comparison with parameters found 

in the literature.  
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5.2.3 Egg White Phantom Preparation and Laser Exposure    

Egg white phantoms were created using a mixture of 50% egg white (Crystal Farms, 

Minnetonka, MN) and 50% deionized water by volume mixed with 1.5% agarose (weight/volume) 

(A0169, Sigma-Aldrich, St. Louis MO) and Gadolinium based contrast agent (0.06mM-0.21mM; 

Omniscan, GE Healthcare, Waukesha, WI). Thermal lesions (N=17) were created using a water-

cooled diffusing tip laser fiber (VCLAS-400-12-T10-11, Medtronic Navigation; Louisville, Colorado) 

attached to a 980nm diode laser (Photex15, Biotex, Houston, Texas). The applied power and time 

was varied from 7-15W for 3-13 minutes with the intention of maximizing lesion size, preventing 

melting of the agarose, and sampling a variety of temperature histories. The temperature was 

independently measured within a few cm of the diffusing fiber tip using a fluoroptic temperature 

probe (m3300/STB, Lumasense, Santa Clara CA). 

Multi-parametric monitoring was performed using the mfamfgre2d sequence (FOV=19.2 x 

19.2 - 19.6 x 19.6 cm, 128x128 acquisition matrix, TR= 35-100 ms, 8 echoes, TEmin=1.8-2.1 ms, 

ESP=2.1-1.8 ms, RBW=195-326 Hz/pixel, slice thickness=3mm, α=25-30°C, mfa_mode=0/1, 

mfa_low_flip=2, number of slices=1-3, time between images=4.8-12.4s) on a clinical 3T MRI scanner 

(Discovery 750; GE Healthcare Technologies; Waukesha, WI). All slices placed along the long axis of 

the laser fiber (coronal). Temperature was calculated using the PRF estimates provided by the ARMA 

model and a temperature sensitivity coefficient of -0.01ppm/°C while the apparent temperature 

increase caused by drift in the main magnetic field was accounted for by placing an ROI far away 

from heating or in an attached centrifuge tube filled with vegetable oil.  

After each laser exposure a T1 map was acquired using a multi inversion time fast spin echo. 

((FOV=19.2 x 19.2 - 19.6 x 19.6 cm, 256x256 acquisition matrix, TR= 4000 ms, Echo train length=4, 

TE=8.3, RBW=244 Hz/pixel kHz, slice thickness=5mm, inversion times(TIs)=100-1200 ms)). A semi-

automatic segmentation procedure was performed to determine the extent of the coagulated area 
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on post-treatment imaging. Heavily filtered (wiener filter; 10x10 kernel) T1 maps were subtracted 

from lightly filtered images (wiener filter; 3x3 kernel) to represent the increase in T1 compared to 

background. These maps were thresholded at 10% of the maximum value and used as a starting 

point for manual segmentation of the coagulated area.  Manual segmentation was necessary 

primarily to account for artifacts caused by the presence of the laser fiber. After the experiments the 

phantoms were sliced along the axis of the laser fiber to best approximate the MR slice position and 

the size of the coagulated area was measured in two dimensions using a ruler. 

The exposures are divided into three groups based on differences in scan parameters and 

how they were used during post-processing. The alternating flip angle scheme was used for the first 

three exposures (group A) but was abandoned in in favor of increased SNR and temporal resolution 

when it was observed that the T1-W signal was a sufficient surrogate for identifying an intra-

treatment EOI. The group A exposures and the subsequent 8 exposures (group B) were determined 

to have experienced significant melting over the course of heating. This manifests as a large scale 

susceptibility artifact that corrupts temperature imaging in the region of interest. For this reason the 

thermal exposure cannot be directly compared to post-treatment imaging. However, the intra-

treatment EOIs were observed at approximately 60°C so these temperature histories were reserved 

for training the intra-treatment models. The final group (group C) was intended to serve as a 

validation cohort for the intra-treatment model trained on groups A and B. T1-Weighting was less 

critical in this group so the number of slices was increased at the expense of longer TR. The specific 

variations between scan parameters and power for each exposure is tabulated in Appendix 1 for 

reference. 

5.2.4 Intra-Treatment Arrhenius Models 

Arrhenius models were investigated for intra-treatment EOIs based the T1-W signal and T2* 

measured during each exposure. Both parameters exhibited temperature dependence that changed 
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abruptly at one or more breakpoints (i.e. the second derivative became nonzero). In both cases, the 

models were trained on breakpoints closest to 60°C that are consistent with those observed in ex 

vivo studies.44,14643. For each exposure, all pixels whose temperature exceeded 65°C were isolated 

for analysis. The signals were observed to be approximately linear on either side of the breakpoint 

and a temperatures were only considered in the range from 40°C-80⁰C to minimize the contribution 

of other nonlinearities not associated with the EOI. The T1-W signal was normalized to its 

preheating value and a constrained piecewise linear fit was used to identify this breakpoint on a 

pixel by pixel basis (fmincon, MATLAB, MathWorks, Natick MA).  

This 4 parameter fit is given by: 

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐶1,𝐶2,𝐶3,𝐵𝑃

  ‖𝐶1 + 𝐶2𝑇 + 𝐶3(𝑇 − 𝐵𝑃)𝑠𝑔𝑛(𝐵𝑃) − 𝑆(𝑇)‖2 

𝑠. 𝑡.  𝐶1 ∈ [0,2] 
𝑠. 𝑡.  𝐶2 ∈ [−∞, 0] 
𝑠. 𝑡.  𝐶3 ∈ [−∞, 0] 

𝑠. 𝑡.  𝐵𝑃 ∈ [min(𝑇) ,max(𝑇)] 

 

5-5 

 

where 𝐶1−3 are constants, 𝐵𝑃 is the breakpoint, 𝑇 is the temperature, and 𝑆(𝑇) is the 

relative change in the T1-W signal magnitude. A representative example of this fit is shown in figure 

5-4.  
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Figure 5-1: Representative example of piecewise linear fit used to for the intra-treatment Arrhenius model. The 
breakpoint where the temperature dependence of the normalized T1-W signal changes abruptly is used to 
classify temperature histories according to equation 5-8. 

A similar approach was used for finding the breakpoints in T2*. However, visual inspection 

of the data showed the behavior of the T2* temperature dependence was not as consistent as the 

T1-W signal. For example, the magnitude of the slope of the temperature dependence varied from 

positive to negative between pixels which required modification of the optimization constraints: 

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐶1,𝐶2,𝐶3,𝐵𝑃

  ‖𝐶1 + 𝐶2𝑇 + 𝐶3(𝑇 − 𝐵𝑃)𝑠𝑔𝑛(𝐵𝑃) − 𝑇2∗(𝑇)‖2 

𝑠. 𝑡.  𝐶1 ∈ [0,2] 
𝑠. 𝑡.  𝐶2 ∈ [−∞, 0] 
𝑠. 𝑡.  𝐶3 ∈ [−∞, 0] 

𝑠. 𝑡.  𝐵𝑃 ∈ [min(𝑇) ,max(𝑇)] 

 

5-6 

Where 𝑇2∗(𝑇) is the measured T2* as a function of temperature. Breakpoints were also not 

consistently observed in every pixel. To exclude these data from analysis in an automated manner 

the Akaike information criterion (AIC)147 was calculated for each piecewise linear fit. For a least 

squares model the AIC is defined as: 

 𝐴𝐼𝐶 = 2𝑘 + 𝑁𝑙𝑜𝑔(𝑅𝑆𝑆) 
 

5-7 
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Where k is the number of model parameters, N is the number of data points, and RSS is the 

residual sum of squares. This AIC is a measure of the quality of a model that penalizes for the 

number of model parameters to prevent overfitting. Data were excluded if the AIC values from the 

piecewise linear fit were larger than the values calculated for a traditional linear least squares fit. 

Examples of a temperature history that were included and excluded not excluded using the AIC 

criteria are shown in Figure 5-2. This rejection criteria was also applied to the intra-treatment model 

based on T1-w signal. 

Once the breakpoints were determined they were used to make two binary classifications: 

 𝑇(𝐵𝑃 − 2.5℃) → 𝑦 = 0 

𝑇(𝐵𝑃 + 2.5℃) → 𝑦 = 1 
5-8 

Where the 2.5℃ is added to account for uncertainty in the breakpoint and the temperature 

imaging. This is particularly important at low heating rates where the precise time the breakpoint 

was reached is not known with high precision. After applying AIC rejection criteria both models were 

fit using the optimization scheme outlined in section 5.2.1.  
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Figure 5-2: Example of breakpoint determination for the T2* intra-treatment Arrhenius model. The existence of 
a breakpoint was determined by comparing AIC values between the piecewise linear fit (solid) and a traditional 
linear fit (dotted). A break point was observed in A but not B.  

5.2.5 Post-Treatment Arrhenius Model 

A third model was trained using post-treatment increases in T1 as a post-treatment 

isoeffect. Temperature histories associated with increases in T1 using the method described in in 

section 5.2.3 were assigned values of 𝑦 = 1. This region was dilated using a 5x5 kernel (≈5mm). Any 

unassigned pixels within this larger region were assigned values of 𝑦 = 0. A representative example 
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of these ROIS is shown in Figure 5-3. This model was only trained using exposures in group C only 

due to the previously measured susceptibility artifacts. (Total number of pixels = 3,956) 

 

Figure 5-3: ROIs used for post-treatment model. The inner region represents the region of T1 increase (y=1) 
while the surrounding region represents pixels that were exposed to elevated temperatures without any T1 
increase (y=0). 

5.2.6 Model Comparisons 

The Arrhenius parameters were directly compared to values found in the literature for 

protein denaturation measured using dynamic scanning calorimetry (DSC) and turbidity measured 

using spectrophotometer. References were restricted to those examine whole egg white148,149 rather 

than isolated constituent proteins, such as ovalbumin150,151. Unfortunately, independent 

measurements of the frequency factor are not available and they had to be estimated using 3-10. 
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Effect of Interest (EOI) 

Log Frequency Factor, 

log(𝐴) 

Activation Energy, 𝐸𝐴 

[kJ/mol] Note 

Denaturation148,149 157 439 pH 7.6149 

 136 383 pH 8.8149 

 135 380 pH 7.6148 

Turbidity148,149 87 254 pH 7.6149 

 85 248 pH 7.6148 

*Estimated using equation 3-10 

Table 3: Selected literature values for egg white 

The model predicted regions, 𝐴𝑚𝑜𝑑𝑒𝑙, were calculated for each ablation and compared to 

the segmented regions,𝐴𝑠𝑒𝑔, found on post-treatment T1 mapping to get a practical measure of the 

goodness of fit using three methods of comparison. The first is the Dice Similarity Coefficient (DSC): 

 
𝐷𝑆𝐶 =

2|𝐴𝑚𝑜𝑑𝑒𝑙 ∩ 𝐴𝑠𝑒𝑔.|

|𝐴𝑚𝑜𝑑𝑒𝑙| + |𝐴𝑠𝑒𝑔.|
 5-9 

The DSC is a measure of the spatial overlap of two regions where a value of 1 corresponds to 

complete overlap and a value of 0 corresponds to no overlap. While the DSC is commonly used in 

radiology research, its value is biased by the center of the lesion which is virtually guaranteed to 

match assuming the areas are properly registered. For this reason, two additional quantities of 

interest based on the distances between the model and segmentation boundaries were used. In 

general, for two boundaries defined as sets of Cartesian coordinates, 𝐴 = {𝑎1…𝑎𝑛} and 𝐵 =

{𝑏1…𝑏𝑚}, the quantity 𝑑(𝐴, 𝐵): 

 𝑑(𝐴, 𝐵) = min{
𝑏∈𝐵

‖𝑎 − 𝑏‖2} 5-10 
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represents the minimum Euclidean distance from between every point on boundary A and 

any point on boundary B. Note that 𝑑(𝐴, 𝐵) is not communitive (𝑑(𝐴, 𝐵) ≠ 𝑑(𝐵, 𝐴)). Model and 

segmentation boundaries were compared using the Hausdorff Distance (HD): 

 𝐻𝐷(𝐴, 𝐵) = max {max
𝑎∈𝐴

𝑑(𝐴, 𝐵) ,max
𝑏∈𝐵

{𝑑(𝐵, 𝐴)}} 5-11 

Which is the maximum value of 𝑑 found in 𝑑(𝐴, 𝐵) and 𝑑(𝐵, 𝐴). This is a common measure 

of agreement between two sets because it is a metric in the formal sense and can be interpreted as 

the worst case disagreement between the two contours. However, as a maximum value it is 

inherently sensitive to noise and outliers. For this reason the average difference between the 

boundaries or mean distance to agreement (MDA): 

 
𝑀𝐷𝐴(𝐴, 𝐵) =

∑ 𝑑(𝐴, 𝐵)+∑ 𝑑(𝐵, 𝐴)𝑚
𝑖=1

𝑛
𝑖=1

𝑚 + 𝑛
 5-12 

was also used to compare the radiologic feature models to the inner and outer boundary 

segmentations. Taken together these three methods give a more complete picture of model 

performance. The value of each of these metrics was averaged over the 3 slices for each exposure in 

group C and are given in Table 6 and Table 7. 

5.3 Results 

Each exposure resulted in a coagulated regions that could be identified visually and on T1-

weighted imaging. The upper limit on lesion size while preventing melting in the agarose gel was 

approximately 1.1 cm. Excellent agreement was observed between the lesions measured visually 

and the regions segmented on post-treatment imaging in group C. The maximum difference was 1 

mm which is small considering the uncertainties associated with precisely cutting the phantom, 

partial voluming, and the pixel size of 0.75mm. Thus, the post-treatment changes in T1 were 

considered surrogates for visible coagulation when evaluating the fitted models.  
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 The post-treatment and intra-treatment T1 models converged to unique solutions that are 

plotted in the 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓)/𝐸𝐴parameter space in Figure 5-4a-b. Both solutions are plotted together 

in the traditional 𝑙𝑜𝑔(𝐴)/𝐸𝐴reference space in Figure 5-4c. The advantage of the 

reparameterization in equations 5-3 with respect to visualizing the solutions are obvious by 

comparing these two figures. The activation energies associated with the 95% confidence intervals 

ranged from 342-470 kJ/mol and 257-344 kJ/mol for the intra-treatment and post-treatment 

models, respectively. Although the solutions are close to one another and the objective function 

surfaces are similar, their confidence ellipses do not overlap. However, they do cover the range of 

activation energies found in the literature. The complete set of parameters that define these 

confidence intervals along with 𝑅𝐶𝐸𝑀 and 𝑇𝐶 ′ calculated using equations 3-13 and 3-16 are found in 

Table 4. The intra-treatment model using T2* as an EOI did not converge to a unique solution within 

the range of physically realistic values (Figure 5-2). Significantly more pixels were rejected for this 

EOI (29%) compared to the T1-W intra-treatment EOI (6%). 
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Figure 5-4: Optimal Arrhenius parameters for the intra- and post-treatment models (T1-W signal and ΔT1). The 
optimal Arrhenius parameters (green circle) and 95% confidence regions (green) are shown with the negative 

log likelihood in the background in the 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) /𝐸𝐴 parameter space for the intra treatment (A) and post-

treatment dose (B) models. The same data is shown in the 𝑙𝑜𝑔(𝐴) /𝐸𝐴parameter space (C) where the intra-
treatment model is plotted in green and the intra-treatment model is plotted in red.  Selected Arrhenius 
parameters from the literature (magenta) for egg white are plotted using denaturation (●) and turbidity (▲) 
as EOIs. 
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Intra-treatment (T1-w) Post-treatment (T1) 

Activation Energy, 𝐸𝐴 [kJ/mol] 405 301 

Log Frequency Factor, log(𝐴) [s-1] 142 103 

Minor axis length 0.225 0.197 

Major axis length 68.1 45.9 

Slope [kJ-1] 0.364 0.365 

Intercept -4.71 -6.15 

𝑅𝐶𝐸𝑀 0.62 0.70 

𝑇𝐶 ′ [°C] 68 74 

Table 4: Optimal Model Parameters and 95% Confidence Ellipse for intra-treatment and post-treatment 
models. 

 

Figure 5-5: Objective function surface for intra-treatment T2* model. The optimization does not converge to a 
solution. Selected Arrhenius parameters from the literature (magenta) for egg white are plotted using 
denaturation (●) and turbidity (▲) as EOIs. 

The optimal dose thresholds were found to be 𝐹𝐶 = 0.53 and 𝐹𝐶 = 0.40 for the intra-

treatment and post-treatment model, respectively (Table 5). Plots of these optimal dose thresholds 
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are shown in Figure 5-6 along with the false positive and true negative rates for reference. The area 

under curve (AUC) and accuracy were 0.92/88% and 0.93/86% and for the intra-treatment and post-

treatment model, respectively. The model predicted regions were compared with the segmented 

regions for each exposure in group C and a representative example of the contours is shown in 

Figure 5-7. Qualitative comparison shows good agreement between the model predicted and 

segmented regions and very little difference between the two dose models. This is confirmed using 

the three metrics with DSC/HD/MDA of 0.82/2.84 mm/0.98 mm and 0.83/2.72 mm/0.92 mm for the 

intra-treatment and post-treatment isoeffects, respectively. (Table 6 and Table 7) 

 Intra-Treatment Post-Treatment 

𝒌 6.35 7.1 

𝑭𝑪𝟓𝟎 0.53 0.40 

AR Model Thresholds (�̂�/𝑭𝑪/𝜴) 0.53/0.54/0.78 0.45/0.40/0.51 

Table 5: Optimal dose thresholds for intra-treatment and post-treatment isoeffect 

  



68 
 

 
Figure 5-6: Logistic model results for intra- and post-treatment models. The logistic model prediction (black 
solid) ± 95% confidence intervals (black dotted) for the intra-(A) and post-treatment(B) dose models with false 
positive rate (blue) and true negative rate (red). The thresholds that optimize the accuracy are shown cyan. 

Figure 5-7: Comparison between segmented regions and predicted dose for intra-treatment and post-
treatment models. The segmented regions (red) and the predicted dose (green) are shown for all three slices 
the intra-treatment (A-C) and post-treatment models (D-F). Magenta arrows identify subtle differences 
between the predicted dose contours from each model. 
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Exposure # DSC HD (mm) MDA (mm) 

1 0.86 2.71 0.98 

2 0.77 2.17 0.87 

3 0.88 2.69 0.79 

4 0.78 2.54 1.04 

5 0.82 2.78 0.91 

6 0.86 3.35 0.87 

Mean 0.83 2.71 0.91 
Table 6:  DSC, HD, and MDA between the segmented regions and predicted dose for the intra-treatment model.  

Exposure # DSC HD (mm) MDA (mm) 

1 0.86 2.69 0.97 

2 0.77 2.16 0.88 

3 0.89 2.72 0.77 

4 0.77 2.84 1.16 

5 0.85 2.54 0.81 

6 0.86 3.41 0.91 

Mean 0.83 2.72 0.92 
Table 7: DSC, HD, and MDA between the segmented regions and predicted dose for the post-treatment model. 

5.4 Discussion 

In this aim a novel methodology for fitting thermal dose models using MR data was 

proposed and validated in phantoms. A logistic model was coupled to the traditional Arrhenius 

equation to better account for the categorical EOIs commonly experienced in radiology. This multi-

level model was reparametrized to facilitate the use of nonlinear optimization algorithms for finding 

the Arrhenius parameters. The proposed technique theoretically confers several advantages over 

traditional approaches to thermal dose modeling. First, the nonlinear optimization techniques 

makes clinical and experimental ablation data available for model training. This better aligns the 

derived model parameters with their intended application. Second, the addition of the logistic 

model provides an additional mapping from thermal dose to the observed effect. This effectively 

loosens the assumptions between the effect of interest and the underlying assumption of the 

Arrhenius kinetics which may not be appropriate for all EOIs (including continuous EOIs). This model 
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is not restricted to a logistic model and can be substituted for any model that’s tailored to particular 

EOI provided that a corresponding likelihood function can be derived for optimization.  

This new model fitting technique was validated in an egg-white phantom using both intra-

treatment (change in T1-W signal temperature dependence) and post-treatment EOIs (change in 

T1). These models converged to solutions that are consistent with the range of values obtained by 

van de Plancken et al.148,149 for two different EOIs (denaturation and turbidity). While the similarity 

in the objective function surfaces suggest that the underlying processes are closely related, the 

confidence intervals of these solutions do not overlap.  

The areas predicted by both dose models compare favorably with the areas segmented on 

post-treatment imaging when measured using DSC, HD, and MDA. In both cases DSC values 

exceeded 0.8, which is considered good agreement in the context of radiology.115,152 The HD 

measurements showed disagreement of 2-3mm (2-4 pixels) that can be primarily attributed to 

artifacts caused by the presence of the laser.  The mean distance to agreement was under 1mm for 

both models which is small compared to the pixel size of 0.75mm. Each of the area comparison 

metrics performed slightly better for the post-treatment model compared to the intra-treatment 

model. This can be ascribed to the fact that the post-treatment model was trained to the same EOIs 

and exposures that was used for evaluation whereas the intra-treatment model was trained to a 

different (but related) EOI in a separate training group of exposures. However, the differences 

(ΔDSC=0.01/ΔHD=0.08 mm/ΔMDA=0.06 mm) are so small that the model predicted areas can be 

considered equivalent for practical purposes. 

A third model that used changes in T2* as an intra-treatment isoeffect failed to converge to 

a solution. Variations within this data prevented breakpoints from being identified consistently. The 

temperature dependence of this data was inconsistent and a breakpoint could not be identified in 

all pixels. Ultimately, 29% of the pixels were rejected using the AIC to prevent overfitting. This result 
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suggests that changes in T2* are not a reliable indicators of Arrhenius processes in this phantom 

setup. In contrast, Taylor et al.44 found opposite results regarding the utility of T1-W imaging and 

T2* in ex vivo tissue. Further research is needed to evaluate the applicability of this parameter in 

other samples.  

While the experiments in this aim are sufficient for establishing the feasibility of the 

proposed technique there are several areas where improvements can be made in future 

experiments to enable additional characterization. One limitation of the phantom design was the 

effect of melting agarose on MRTI measurements. This limited the number of exposures that could 

be used for training the post-treatment model and effectively reduced the available lesion sizes. 

Melting was also problematic when investigating other imaging effects such as magnetization 

transfer (MT) and transverse relaxation (T2/T2*) rates since reliable changes in these parameters 

were only observed at higher temperatures. This could be remedied by using higher melting point 

agarose or switching to another MR visible gel with a higher melting point. Another alteration to the 

experimental procedure would be to use isolated proteins for the measurements. Egg white is a 

mixture of several proteins that denature with different kinetics. This would allow independent 

verification in variety of different proteins while removing the uncertainty associated with having 

mixed effects from multiple proteins.   
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 Application of Thermal Dose Models in vivo 

6.1 Introduction 

Post-treatment MRI, usually in the form of contrast-enhanced imaging, is often employed 

immediately following thermal ablation therapies as the primary method of assessing the extent of 

the thermal damage to tissue. These post-treatment images serve as a baseline for follow-up 

imaging and are critical for monitoring for local progression.10,74 The availability of magnetic 

resonance compatible delivery devices and the ability to monitor these therapies using real-time MR  

temperature imaging has led to rapid adoption of these therapies in sensitive anatomic sites such as 

the central nervous system. 153–157 Temperature feedback coupled with appropriate thermal dose 

models facilitates periprocedural adjustments to maximize target coverage and reduce damage to 

critical structures. 8,113 Together, treatment monitoring and post-treatment verification imaging help 

provide a more complete assessment of the extent of therapy delivery. 

Despite the outsized role radiologic appearance plays in treatment evaluation, existing 

thermal dose models are not designed to be predictive of the radiologic changes that are ultimately 

used for treatment assessment. Instead they rely on empirically derived parameters from laboratory 

experiments that only approximate clinical endpoints8,97,102,113 or simplified models that may only be 

applicable to a small subset of treatments158. Rather than deriving novel model parameters, 

previous research in preclinical and clinical dose modelling has focused almost exclusively on 

correlating dose estimates using existing models with radiologic observations for a narrow set of 

procedures 114,118–120,159. This can be directly attributed to the mathematics that underlie the effects 

of heat on tissue. However, as the frequency and types of MR-guided ablation procedures increases 

there is a growing need and opportunity for developing methodologies that leverage existing clinical 
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data to investigate novel dose models that are tailored to an expanding number of available 

radiologic endpoints.160 

In this work we develop and investigate a method for fitting novel thermal dose models 

using intra-operative MR imaging during laser ablation of brain metastases in human subjects. The 

high temporal and spatial resolution of MRTI is combined with nonlinear optimization techniques 

and logistic modeling to overcome the challenges that have traditionally restricted these types of 

studies to the laboratory. To demonstrate the feasibility of developing models in this manner, two 

models are investigated that predict the size of the non-enhancing central region and enhancing ring 

that are characteristic of thermal lesion on post-treatment contrast-enhanced T1-weighted imaging. 

A third model is examined that seeks to interpret these regions in terms of probability of tissue 

viability. These parameters are compared to several other models that have been investigated for 

use during thermal ablation therapies. The predicted areas are then compared to the areas 

segmented on post-treatment imaging and the areas predicted by two clinically used dose models. 

6.2 Methods 

6.2.1 Lesion Selection and Image Processing 

Intra operative MR temperature imaging estimates and post-treatment contrast-enhanced 

imaging were retrospectively analyzed for 5 intracranial metastatic lesions (2 melanoma/3 breast; 2 

male/3 female; age range: 57-69) treated using a 15W 980nm laser with a single, water cooled laser 

applicator (Visualase, Medtronic, Minneapolis, MN, USA) on a 1.5T MRI (MAGNETOM Espree, 

Siemens Healthcare, Erlangen, Germany). MRTI was acquired in two orthogonal planes using a 

dynamic, radiofrequency spoiled gradient echo pulse sequence (TR=24 ms, TE=15 ms, α=30°, 

acquisition matrix=256x128 , field of view= 26 x 26 cm, slice thickness=3 mm, RBW = 80 Hz/pixel, 

time between phases=6s) and temperature estimates were calculated by applying the complex 
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phase difference technique to Wiener filtered complex data (3x3 kernel) in MATLAB (R2015a, 

MathWorks, Natick, MA, USA) using a temperature sensitivity coefficient of -0.01ppm/°C27. To 

account for drift in the main magnetic field, the apparent temperature increase in a 15x15 pixel ROI 

in a region far from heating was subtracted from the temperature maps. In cases where transient 

shifts in the magnetic field were observed, temperature maps were linearly interpolated in the 

temporal direction and a new baseline image was selected. Lesions treated with multiple fibers or 

containing major MRTI artefacts were excluded to ensure the accuracy of the MRTI data.  

Each lesion was imaged before and after treatment using a 3D T1-weighted spoiled gradient 

echo sequence with and without contrast (TR=5.25 ms, TE=2.5 ms, α=15°, acquisition 

matrix=256x256, field of view= 28 x 28 cm, slice thickness=1.25 mm, RBW= 400 Hz/pixel). The 3D 

series that preceded the MRTI acquisition was identified as the target series for 3D image 

registration and distortion correction was kept consistent across all series.   

Each 3D series was converted from DICOM file format to the Neuroimaging Informatics 

Technology Initiative (NIfTi) format161 and skull stripped162to facilitate image registration. An affine 

registration161  was used to register each series to the target series and accuracy was assessed 

qualitatively by verifying the position of the laser fibers.  

The region of contrast enhancement was segmented manually (Amira 5.4.2, FEI, Hillsboro, 

OR, USA) using pre-treatment subtraction images to delineate the gross tumor volume. On post-

treatment subtraction images, the non-enhancing central region and enhancing ring were 

segmented to define the thermal ablation lesion. The registered T1-weighted images and 

segmentations were then resampled161 into the 2D geometry of the MRTI acquisition so that 

temperature histories could be linked to the segmentation data on a per pixel basis. After 

resampling, the outer edge of the enhancing ring was dilated using a 5x5 kernel (≈5mm) to define an 

outer non-enhancing region where there was temperature increase but no radiologic change. 



75 
 

6.2.2 Inner/Outer Boundary Models 

For post-treatment contrast-enhanced imaging the radiologic features of interest are the 

boundaries between the central nonenhancing region and the enhancing ring (inner boundary) and 

the enhancing ring and the outer nonenhancing region (outer boundary). A model for the inner ring 

boundary was created by assigning all pixels in the central nonenhancing region 𝑦 = 1 and all pixels 

in the enhancing ring and outer nonenhancing region 𝑦 = 0. Similarly, a model of the outer ring 

boundary was created by assigning all pixels in the central nonenhancing region and enhancing ring 

𝑦 = 1 and those in the outer nonenhancing region 𝑦 = 0. Pixels that enhanced on both pre and 

post-treatment subtraction images were excluded from the outer boundary model since it is 

ambiguous whether their enhancement is due to treatment effect or residual tumor.  Data in these 

regions would be inappropriate for training our model as the logistic regression demands we know 

the fraction of damaged tissue and no assumptions can be made in these areas. 

Figure 6-1: Tumor/thermal lesion segmentations and model regions for boundary models. The segmented 
tumor (blue) and the thermal lesion defined by the central nonenhancing region (red dotted) and enhancing 
ring (red solid) with skull-stripped post-treatment post-contrast image in the background (A). The regions 
classified as y=1 (yellow) and y=0 (cyan) for the inner boundary (B), outer boundary (C), models with skull-
stripped post-treatment post-contrast image in the background. The area adjacent to the skull has been 
excluded due to uncertainty in the segmentation and the area of ambiguous enhancement was excluded in the 
outer boundary model (C). 

Temperature histories for each patient were grouped together to generate a patient 

averaged model of the inner/outer boundaries with optimal dose thresholds chosen to minimize the 

sum of false positives and false negatives. The inner and outer boundary models were fit using 4,676 
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and 4,337 pixels, respectively. The Arrhenius parameters of both of these models were compared to 

7 values from the literature. 

In the special case of the CEM model, equations 3-10 and 3-13 were used to calculate the 

Arrhenius parameters for the CEM model parameters at high temperatures (𝑇0 = 43°C; R𝐶𝐸𝑀 =

0.5) to reflect the effective parameters used in the literature. A summary of each model and its 

corresponding EOIs are shown in Table 8. The inner and outer boundary Arrhenius parameters were 

also used to calculate the equivalent 𝑅𝐶𝐸𝑀 and 𝑇𝑐′ using equations 3-13 and 3-16 respectively. 

Optimal dose thresholds were also calculated using the traditional CEM model (𝐶𝐸𝑀𝑡ℎ𝑟𝑒𝑠ℎ) and the 

maximum temperature (𝑇𝑐) for direct comparison to previous work in the literature. 

The radiological feature models were compared to the segmentations using the DSC, HD, 

and MDA metrics described in 5.2.4. After comparing the radiologic features models to the 

segmented regions they were compared to the two dose models used in FDA cleared systems to get 

an understanding of the impact of the new models in a clinical scenario. Dose thresholds of Ω=1113 

and CEM=2, 10, 60, and 240 minutes at 43°C8 were used for the Henriques model and CEM model, 

respectively.  
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Study 

Log Frequency Factor, 

log(𝐴)  

Activation Energy, 𝐸𝐴 

[kJ/mol] Effect of Interest (EOI) 

Henriques†97 227 628 
Second degree burns; 

porcine skin (in vivo) 

CEM*† 102 210 578 
Various (in vivo/ex vivo) 163 

 

Qin 108 64.2 189 

Protein denaturation; whole 

cells; 

DSC with 𝑇𝑚𝑎𝑥 = 60℃ 

Qin 108 145 401 

Protein denaturation; whole 

cells; 

DSC with 𝑇𝑚𝑎𝑥 = 50℃ 

Jacques‡ 103 87.2 258 

Optical scattering 

coefficient; 

porcine liver (ex vivo) 

Borelli‡ 104 185 506 
Cell survival; 

baby hamster kidney cells  

Brown‡ 105 245 667 
Microvasculature disruption;  

murine muscle (in vivo) 

†Used in FDA cleared ablation system  

*Calculated assuming R=0.5 and equations 3-10 and 3-13 

‡Associated with inner/outer ring boundaries on T2-weighted imaging by Sherar et al. 114  

Table 8: Selected Arrhenius parameters from literature. 

6.2.3Tissue Viability Model 

The primary limitation of the radiologic feature models is that they provide no direct 

information on the viability of the tissue. Real-time prediction of the inner and outer ring 

boundaries still requires interpretation of a physician when making treatment decisions. Several 

studies have examined the viability of tissue in each of the segmented regions and there is 
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considerable ambiguity in the fate of tissue in the enhancing ring.81,81,83,84,86,87,119 However, if pixels in 

the central nonenhancing region are assumed irreversibly damaged (𝑦 = 1) and pixels in the outer 

nonenhancing region are assumed to viable (𝑦 = 0) the resulting model can be interpreted as a 

model of tissue viability. (Figure 6-2) This a subtle but significant difference from the inner/outer 

boundary models where the objective was to find a threshold that best classifies pixels as being on 

either side of a boundary. Here thresholds are chosen a priori that represent the amount of isoeffect 

of practical clinical interest.   

Similar to the inner/outer ring boundary models, a patient averaged model was calculated 

using data from all patients. A series of tissue viability thresholds (10%, 50%, and 90%) were 

examined that represent different degrees of confidence in tissue viability. These can be interpreted 

as the thresholds for onset of irreversible damage, equal likelihood of viability and nonviability, and 

almost certain tissue nonviability, respectively. Since no radiologic gold standard measure of tissue 

viability exists, the areas predicted by the cell viability model were compared to the two clinical 

utilized dose models using the DSC, MDA, and HD.  

Figure 6-2: Tumor/thermal lesion segmentations and model regions for tissue viability model. The segmented 
tumor (blue) and the thermal lesion defined by the central nonenhancing region (red dotted) and enhancing 
ring (red solid) with skull-stripped post-treatment post-contrast image in the background (A). The regions 
classified as nonviable (y=1; yellow) and viable (y=0; cyan) for the tissue viability (B) model with skull-stripped 
post-treatment post-contrast image in the background. Pixels in the enhancing ring are interpreted as 
nonviable while 
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6.3 Results 

6.3.1 Arrhenius Parameter Optimization 

To evaluate the convergence of the optimization algorithm the negative log likelihood was 

calculated over the range of 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓)/𝐸𝐴values commonly found in the literature. For each model 

there is a single local minimum where the surface is smooth and convex. These solutions and 95% 

confidence ellipses are plotted in the 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓)/𝐸𝐴reference space along with selected literature 

values for comparison for the inner/outer boundary models (Figure 6-3a-b) and tissue viability 

model (Figure 6-4a). The axis limits in this figure were deliberately chosen to represent the upper 

limits of the values observed in the literature. The advantages of the reparameterization in equation 

3-10 are apparent when the same data is plotted in the traditional 𝑙𝑜𝑔(𝐴)/𝐸𝐴space (Figure 6-3c; 

Figure 6-4c). The high correlation between parameters causes the confidence ellipses to appear as 

lines and makes visual comparison using the confidence regions and literature values nearly 

impossible. The confidence ellipses do not overlap, suggesting that all three models are distinct and 

that the differing values are not a statistical consequence of the compensation law. The parameters 

that define these ellipses are given in Table 9.  
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Figure 6-3: Optimal Arrhenius parameters for inner/outer boundary models. The optimal Arrhenius parameters 
(green circle) and 95% confidence regions (green) are shown with the negative log likelihood in the background 

in the 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) /𝐸𝐴 parameter space for the inner boundary (A) and outer boundary (B) models. The same 

data is shown in the 𝑙𝑜𝑔(𝐴) /𝐸𝐴parameter space (C). The Arrhenius parameters (magenta) from Henriques 

(♦), CEM (●), Qin (𝑇𝑚𝑎𝑥 = 60℃;▲), Qin (𝑇𝑚𝑎𝑥 = 50℃;▼), Jacques (✱), Borelli (■), and Brown (⋆). The 
empirical linear relationship between 𝐸𝐴 and 𝑙𝑜𝑔(𝐴) (black line) is also plotted for reference. 
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Figure 6-4: Optimal Arrhenius parameters for tissue viability boundary model The optimal Arrhenius 
parameters (green circle) and 95% confidence regions (green) are shown with the negative log likelihood in the 

background in the 𝑙𝑜𝑔(𝐴𝑅𝑒𝑓) /𝐸𝐴 parameter space (A). The same data is shown in the 𝑙𝑜𝑔(𝐴) /𝐸𝐴parameter 

space (C). The Arrhenius parameters (magenta) from Henriques (♦), CEM (●), Qin (𝑇𝑚𝑎𝑥 = 60℃;▲), Qin 

(𝑇𝑚𝑎𝑥 = 50℃;▼), Jacques (✱), Borelli (■), and Brown (⋆). The empirical linear relationship between 𝐸𝐴 and 
𝑙𝑜𝑔(𝐴) (black line) is also plotted for reference. 
 

6.3.2 Optimal Model Parameters 

The Arrhenius parameter values of the inner boundary model are lower than the outer 

boundary model and span activation energies from 143kJ/mol to 182 kJ/mol. They do not overlap 

with any of the models from the literature but are closest to the coefficients reported by Jacques 

and Qin (𝑇𝑀𝑎𝑥 = 60℃). These coefficients correspond to equivalent 𝑅𝐶𝐸𝑀 values and 𝑇𝑐′ values of 

0.82 and 94.5⁰C, respectively. The outer boundary model has higher coefficient values that span 

activation energies of 384 kJ/mol to 506kJ/mol. Like the inner boundary model, these coefficients do 
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not overlap with any of those found in the literature but they are closest to coefficients of the CEM, 

Qin (𝑇𝑀𝑎𝑥 = 50℃), and Borrelli models. The activation energy of the Borelli and Qin (𝑇𝑀𝑎𝑥 = 50℃) 

model is consistent with the values of the outer boundary model but a difference in the frequency 

factor prevents it from overlapping with the confidence ellipse. These coefficients correspond to 

equivalent 𝑅𝐶𝐸𝑀values and 𝑇𝑐′ values of 0.59 and 57.3⁰C, respectively. In both models the 

confidence ellipses imply a linear relationship between 𝑙𝑜𝑔(𝐴) and 𝐸𝐴with slopes and intercepts 

that are larger than used in equation 3-10. 

The 95% confidence interval of the tissue viability model is centered on 445 kJ/mol and 

spans energies from 293 kJ/mol to 553 kJ/mol. The activation energy of the outer boundary model 

are within the range activation energies of the tissue viability model but they do not overlap due to 

a difference in the values of log(𝐴). The confidence interval is also approximately twice the size of 

the outer boundary model which is direct consequence of excluding pixels in the enhancing ring. 

This solution does not overlap with any of the literature values but the activation energies are 

consistent with the Borelli and Qin (𝑇𝑀𝑎𝑥 = 50℃) models. The Jacques and CEM models are also 

just outside the lower and upper edges of the confidence interval, respectively. Similar to the inner 

and outer boundary models the confidence intervals imply a slope that is larger than equation 3-10. 

These Arrhenius parameters imply 𝑅𝐶𝐸𝑀=0.60 and a𝑇𝐶′ of 62.1°C. 
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Inner Boundary 

Model 

Outer Boundary 

Model 

Viability 

Model 

Activation Energy, 𝐸𝐴 [kJ/mol] 162 445 423 

Log Frequency Factor, log(𝐴) 

[s-1] 53.0 161 152 

Minor axis length 0.187 0.251 0.350 

Major axis length 20.8 65.4 139.7 

Slope [kJ-1] 0.366 0.376 0.3721 

Intercept -6.25 -6.99 -5.90 

𝑅𝐶𝐸𝑀 0.82 0.59 0.60 

𝑇𝐶 ′ [°C] 94.5 57.3 62.1 

Table 9: Optimal Model Parameters and 95% Confidence Ellipses 

6.3.3 Optimal Boundary Model Thresholds and Viability Thresholds 

Figure 6-5 shows the probability of being within the model region as a function of 𝐹𝐶 along 

with the thresholds that optimize the accuracy of the boundary models model. The optimal 

threshold for the inner boundary model is a thermal dose of Ω=0.99/𝐹𝐶 = 0.63. This threshold is 

coincidentally effectively equal to the historically used threshold of Ω=1. The optimal threshold for 

the outer boundary model is a thermal dose of Ω=0.22/𝐹𝐶 = 0.20. (Table 10) Both models 

performed extremely well, with areas under the curve and accuracy in excess of 0.95 and 85%, 

respectively. The values 𝐶𝐸𝑀𝑆𝐷−𝑡ℎ𝑟𝑒𝑠ℎ were 1.8x105 min. and 32 min. for the inner and outer 

boundaries, respectively. 𝑇𝑐 was found to be 61.5°C and 47.6°C for the inner and outer boundaries, 

respectively.  

The relationship between 𝐹𝐶 and tissue viability is shown in Figure 6-6. The dose thresholds 

that correspond to 10, 50, and 90% probability of viability were Ω=0.31/𝐹𝐶 = 0.37, Ω=0.49/𝐹𝐶 =
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0.68, and Ω=0.66/𝐹𝐶 = 1.07, respectively (Table 11). Excellent classification (AUC=1.00; 

accuracy=0.99) is maintained at all 3 thresholds due to the exclusion of pixels in the enhancing ring. 

 

Figure 6-5: Inner and outer boundary logistic models The probability of being contained within the inner (A) 
and outer boundary (B) as a function of fractional conversion using the optimal Arrhenius parameters in table 
1. The threshold that maximizes the accuracy is shown in cyan. The false positive (blue) and true negative rates 
(red) are shown for reference. 

  Inner Boundary Model  Outer Boundary Model 

𝑘 7.80 7.11 

𝐹𝐶50 0.608 0.255 

AR Model Thresholds (�̂�/𝐹𝐶/𝛺) 0.542/0.630/0.994 0.399/0.197/0.219 

Table 10: Optimal Logit Parameters and Thresholds for the Inner and Outer Boundary Models 
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Figure 6-6: Tissue viability logistic model.The probability of tissue viability as a function of fractional conversion 
using the optimal Arrhenius parameters in table Table 9. The threshold that maximizes the accuracy is shown 
in cyan. The false positive (blue) and true negative rates (red) are shown for reference. 
 

 �̂� = 10% �̂� = 50% �̂� = 90% 

𝑘 12.37 

𝐹𝐶50 0.51 

AR Model Thresholds (𝐹𝐶/𝛺) 0.31/0.37 0.49/0.68 0.66/1.07 

Table 11: Dose thresholds for tissue viability model 

6.3.4 Model Predicted Region Comparison 

Figure 6-7 shows a representative comparison between the areas predicted by the 

inner/outer boundary models and the segmentations (a), the Henriques model (b), and CEM model 

(c) for the three clinically used dose thresholds. The mean DSC/DTA/HD between the boundary 

models and segmentations was 0.87/0.93 mm/2.92 mm and 0.89/ 1.1 mm/3.5 mm for the inner and 

outer boundary models, respectively. In both cases the mean DTA is on the order of the pixel size (1 

mm). There is consistent disagreement at the edge of the skull in Figure 6-7 that is likely caused by 

partial voluming which underscores the need to remove selected areas from model fitting. On 



86 
 

average the Henriques dose model fell between the predicted inner and outer ring boundaries with 

a MDA of 1.5 mm from each boundary. The CEM model using a threshold of 60 minutes practically 

indistinguishable from the outer ring model with a DSC/DTA/HD of 0.98/0.24 mm/0.99 mm. The 240 

and 10 minute thresholds were just inside and outside the outer boundary model and agreed within 

a pixel size with a DSC/DTA/HD of 0.91/2.17 mm/0.84 mm and 0.92/0.88 mm /2.93 mm, 

respectively. The Jacques, Borelli, and Brown models show excellent agreement with the outer and 

inner boundary models as previously investigated by Sherar et al. with DSC/DTA/HD = >0.96/<0.38 

mm/<1.22 mm.114 

The areas predicted by the tissue viability model are practically indistinguishable (MDA<0.75 

mm (pixel size)) from one another so only the 50% viability threshold is shown in Figure 6-8 for 

clarity. These thresholds are closest to the areas predicted by the Henriques and CEM model using a 

threshold of 240 minutes. A complete comparison between all of the models for each metric is given 

in Appendix 2 for reference. 

 

Figure 6-7 Isodose lines predicted by the inner and outer boundary models compared to the inner and outer 
boundary segmentations (A), Henriques model (B), and CEM model (C). 
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Figure 6-8: Isodose lines predicted by the tissue viability model compared to the inner and outer boundary 
segmentations (A), Henriques model (B), and CEM model (C). 

6.4 Discussion 

In this work a technique for deriving thermal dose models from intra-operative MR data 

acquired during thermal ablation is developed and its feasibility is demonstrated using clinical laser 

ablation data. To address challenges typically associated with these measurements, a coupled AR-

logistic model of thermal dose and nonlinear optimization techniques were employed. This 

approach makes the ever expanding amount of clinical ablation data available for training thermal 

dose models that are predictive of clinically utilized radiologic endpoints and represents a significant 

shift from dose models based on non-clinical endpoints in non-human samples. However, special 

care must be taken to ensure that only data free of artifacts and errors should be utilized for model 

development. 

In this work demonstrating feasibility, post-treatment contrast-enhanced images were used 

as a radiologic endpoint. As implemented, this technique can be generalized to any available 

radiologic endpoint, such as diffusion, perfusion, or magnetization transfer based techniques, 

provided that they can be reliably and accurately registered to the MRTI dataset.  However, if the 

EOI cannot be reliably modeled as a first order rate process as a function of temperature, changes in 

the underlying approach to modeling will be required. The proposed approach is also agnostic to the 

modality used to deliver the thermal therapy and can be applied to any procedure where MRTI is 
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acquired with sufficient spatial and temporal resolution. This flexibility enables in vivo investigation 

models that are disease, tissue, and procedure specific. It is important to note that since this 

approach focuses on radiologic endpoints as pragmatic way of unifying treatment monitoring and 

assessment, the prediction of tissue viability is only as reliable as the surrogate imaging marker 

used. Additional research is needed to validate the procedure investigated here by correlating 

predicted damage to remaining viable tissue. 

The inner and outer boundary models compare favorably to similar investigations found in 

the existing literature. The ranges of 𝐶𝐸𝑀𝑆𝐷−𝑡ℎ𝑟𝑒𝑠ℎ and 𝑇𝑐 are consistent with similar investigations 

in the literature8,27,114,115,119,120. Sherar et al. found that the model developed by Jacques correlated 

well with the inner boundary while the Brown and Borelli models correlated well with the outer 

boundary measured using T2-weighted imaging. For the laser heating in brain neoplasms analyzed 

here, our inner and outer boundary model solutions are consistent with these findings both in terms 

of the Arrhenius parameters and the model predicted regions. Additionally, the inner and outer 

boundary Arrhenius values derived from the patient data are consistent with the average effective 

activation energies for overall protein denaturation in 4 different cell lines measured by Qin et al if 

the critical temperature, 𝑇𝑐, is used as a surrogate for the maximum temperature (𝑇𝑐=61.5°C and 

47.6°C for the inner and outer boundary model, respectively). This suggests that post-treatment 

contrast-enhanced imaging may be an appropriate surrogate for the denaturation of major cellular 

proteins. 

The models investigated here can provide additional insight into the utility of each thermal 

dose model. The AR model was optimized because it relies on only few simplifying assumptions and 

should be accurate over a large range of different time-temperature histories. The AR model 

parameters can also be conveniently converted into CEM and CT model coefficients using equations 

3-10 and 3-16. The equivalent R𝐶𝐸𝑀 values (0.82, 0.59, 0.60 for inner boundary, outer boundary, 
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and viability models, respectively) were substantially higher than the commonly used R𝐶𝐸𝑀−𝑆𝐷 =

0.5. Dewhirst reported a R𝐶𝐸𝑀 of 0.72 for 𝑇 > 47℃for the Henriques skin burn data but also 

cautioned that there is high uncertainty because the assumption of isothermal exposure was likely 

violated at high temperatures in the original experiment. 164 However, the technique described here 

does not require an isothermal exposure, suggesting that further work should be performed to see if 

increased R𝐶𝐸𝑀 values are appropriate when applying the CEM model to ablation procedures.  

Comparison of the model predicted regions with dose models that are currently being used 

clinically is of practical interest. On average, the Henriques model was halfway between the inner 

and outer boundaries of the thermal lesion, suggesting that it may represent a conservative 

estimate of the size of the thermal lesion. The 60 min. CEM threshold appears to accurately reflect 

the size of the outer boundary with the 240 min. and 10 min. thresholds predicting slightly smaller 

and larger areas, respectively. For the viability model, the transition region between viable and 

nonviable tissue occurred very rapidly compared to the spatial resolution of MRTI. The close 

agreement between the areas predicted by the viability model and the Henriques and CEM240 

predicted areas suggests that these models are most consistent with the underlying assumptions of 

the viability model. Further study is needed to investigate if these results are consistent within a 

larger patient population and how they relate to clinical outcomes after extended follow up.  
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 Discussion 

In this work we proposed and demonstrated the feasibility of a methodology for deriving 

novel thermal dose model parameters exclusively from MR data acquired during thermal ablation 

procedures. This approach was investigated for intra- and post-treatment effects of interest in 

protein coagulation phantom (SA2) using a customized multi-parametric pulse sequence (SA1) 

before being applied retrospectively to clinical laser ablation cases where the appearance of the 

thermal lesion on post-treatment contrast-enhanced imaging served as an effect of interest (SA3). 

The optimal Arrhenius parameters and predicted regions were consistent with expected values in 

both the phantom and clinical data.  Using this approach, thermal dose model parameters can be 

tailored to clinically relevant EOIs. This represents a paradigm shift away from existing model 

parameters that are derived from laboratory experiments and can only be considered surrogates for 

clinical effects. The ability to derive thermal dose model parameters specific to clinical EOIs is 

increasingly important as the number of clinical ablation procedures continues to grow and 

additional EOIs become incorporated into clinical workflow.   

While this methodology can be used to understand kinetics that govern the radiologic 

appearance of the thermal lesion, it does not provide any new information on the biological state of 

tissue. Thus, the clinical interpretation of these models can only be as useful as the underlying 

knowledge of how the appearance of the thermal lesion translates to a particular biological effect. A 

tissue viability model was investigated in specific aim 3 by integrating knowledge of the biologic 

state of tissue directly into the definition of the EOI. This approach allows the dose models to be 

interpreted in terms of a biological effect rather than simply a radiologic effect and is especially 

important when evidence for using multiple complementary EOIs for evaluating thermal lesions is 

considered. This underscores the need for continued research into the correlation of imaging with 

histopathologic endpoints.  
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Another key advantage of this methodology is the amount of data it makes available for 

training dose models. Each clinical procedure has the potential to be used for continued refinement 

of dose model parameters. As the amount of data increases the predictive value of the model 

parameters can be rigorously assessed using training and validation cohorts. This also allows 

stratification based on the tissue and procedure type that could lead to highly specific models of 

thermal damage. As these models become more refined and are correlated with clinical outcomes 

(e.g. local progression) there is an opportunity for thermal dose to assume a major role in these 

procedures that’s more akin to that used in radiation oncology. While this line of research remains 

to be investigated, the methodology in this work removes significant technical barriers.  

While the immediate clinical implications of this work are predominantly focused on post-

treatment EOIs, the methodology described here was also extended to intra-treatment EOIs. There 

is relatively little research into these types of EOIs despite them being observed for several intrinsic 

MR parameters and being associated with irreversible changes in tissue. Dynamically measuring 

quantitative parameters is theoretically the ideal monitoring strategy for investigating these EOIs 

but the results of this work highlights the fact that alterations to acquisition strategy to this end may 

not always be necessary or optimal. Changes in T1-W signal were sufficient for training an Arrhenius 

model in the protein coagulation phantom while a model using quantitative measurements of T2* 

did not converge. Further research is needed to investigate these types EOIs on case by case basis to 

help inform the optimal acquisition strategies and detection algorithms. If these EOIs can be 

characterized with consistency they may be able to complement existing post-treatment effects.  

While the hypothesis that Arrhenius models could be determined using in vivo MR data was 

confirmed, many avenues for future research remain. T1 quantification was complicated by the 

simultaneous effects slice profile and B1 inhomogeneities. Several methods for mitigating one or 
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both of these effects were mentioned in Chapter 4. Future experiments should focus on extending 

similar modifications to 3D sequence and/or controlling the RF pulse shape in the 2D sequence. 

These represent the easiest ways to achieve quantitative T1 values and would allow a rigorous 

evaluation of the utility of obtaining quantitative T1 measurements for measuring intra-treatment 

EOIs.  

The protein phantom in Chapter 5 provided a controlled setup for measuring Arrhenius 

parameters in a sample that can be easily compared to the literature. A variety of isolated proteins 

(e.g. bovine serum albumin) are available and should be studied to further establish the technique. 

Melting of agarose corrupted temperature data in these experiments which effectively reduced the 

maximum lesions size and prevented other EOIs such as magnetization transfer, T2-W, and diffusion 

from being investigated. Future experiments should implement real-time monitoring should be 

integrated into the scanner so that high temperatures can be avoided entirely. Additionally, other 

gels and/or heating methods should be considered to further reduce the probability of melting in 

the gels. With these experimental improvements future experiments should be designed to have 

both calibration and validation cohorts for both types of EOIs. 

The primary focus of future work for in vivo data should focus on streamlining imaging 

protocols to acquire additional EOIs and clinical outcomes. This includes paying close attention to 

distortion correction, additional acquisitions to facilitate image registration, and avoiding MRTI 

artifacts. Each of these were frequently encountered during data selection in Chapter 6. While it 

may not be realistic to expect significant in clinical workflow, any attempt to reduce these errors 

would expand the number of available datasets. As the number of patients is increased the 

Arrhenius models should be fit independent calibration and validation sets and stratified by the 

underlying pathology. This work also only used laser ablations using one vendor’s laser ablation 
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system. This image processing should be adapted to these additional datasets to both increase the 

number of patients and to assess any differences between vendors.  
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Appendix 1: Pulse Sequence and Exposure Parameters from Chapter 5 

 Group A Group B Group C 

Field of View (cm) 19.6 19.6 19.6 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 

Repetition Time (ms) 35 35 35 35 35 35 35 35 35 35 35 70 70 70 100 100 100 

Echo Train Length 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

Minimum Echo Time (ms) 2.1 2.1 2.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 

Echo Spacing (ms) 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

Receive Bandwidth (Hz/pixel) 195 195 195 326 326 326 326 326 326 326 326 326 326 326 326 326 326 

Flip Angle (°) 30 30 30 30 30 30 30 30 30 30 30 25 25 25 25 25 25 

Number of Slices 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 

mfa_mode 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mfa_low_flip 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Time between phases (s) 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 7.9 7.9 7.9 12.4 12.4 12.4 

Table 12: Pulse sequence parameters for phantom experiments in Chapter 5 
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Group A 

8 min@10W 

8 min@12W 

8 min@14W 

Group B 

9 min@10W 

5 min@15W; 1 min@0W; 2 min@15W 

9.5 min@11.5W 

1.5 min@15W; 7 min@11.5W 

2 min@15W;7.5min@12.5W 

2 min@15W;7.5 min@12.5W 

2 min@15W; 5 min@12.5W; 1 min@13.5W; 1.5 min@12.5W 

16 min@12.5W 

Group C 

10 min@10W 

12 min@7.5W 

11 min@8.75W 

14 min@7.5W 

12 min@8.25W 

17 min@7.5 

Table 13: Laser exposure parameters for experiments in Chapter 5. All changes to laser powers are consecutive with minimal interruption (<1 second).   
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Appendix 2: DSC, HD, and MDA for Segmentations and Models in Chapter 6 

 Inner Seg. Outer Seg. 
Inner 

 Boundary 
Outer  

Boundary 
Henriques 

CEM   
 (2 min.) 

CEM 
(10 min.) 

CEM   
  (60 min) 

CEM  
 (240 min.) 

Jacques Borelli Brown 
Viability  

10% 
Viability  

50% 

 
Viability 

90% 

Inner Seg. 1.00              
 

Outer Seg. 0.66 1.00             
 

Inner  
Boundary 

0.87 0.64 1.00            
 

Outer  
Boundary  

0.69 0.89 0.67 1.00           
 

Henriques 0.83 0.79 0.83 0.83 1.00          
 

CEM  
(2 min.) 

0.54 0.83 0.52 0.83 0.67 1.00         
 

CEM  
(10 min.) 

0.62 0.88 0.60 0.92 0.76 0.90 1.00        
 

CEM  
(60 min) 

0.71 0.89 0.69 0.98 0.85 0.80 0.90 1.00       
 

CEM  
(240 min.) 

0.77 0.86 0.75 0.91 0.92 0.74 0.83 0.93 1.00      
 

Jacques 0.87 0.61 0.96 0.63 0.79 0.49 0.57 0.65 0.71 1.00     
 

Borelli 0.68 0.90 0.66 0.99 0.82 0.83 0.93 0.97 0.90 0.63 1.00    
 

Brown 0.72 0.89 0.70 0.96 0.87 0.79 0.88 0.99 0.95 0.67 0.96 1.00   
 

Viability 10% 0.77 0.86 0.75 0.91 0.92 0.74 0.83 0.93 0.99 0.72 0.90 0.94 1.00  
 

Viability 50% 0.76 0.87 0.74 0.92 0.90 0.75 0.85 0.95 0.99 0.70 0.92 0.96 0.98 1.00 
 

Viability 90% 0.81 0.82 0.80 0.86 0.97 0.70 0.79 0.88 0.95 0.76 0.85 0.90 0.95 0.94 
 

1.00 

Table 14: DSC Values for the segmentations and models in Chapter 6 
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 Inner Seg. Outer Seg. 
Inner 

Boundary 
Outer 

Boundary 
Henriques 

CEM 
(2 min.) 

CEM 
(10 min.) 

CEM 
(60 min) 

CEM 
(240 min.) 

Jacques Borelli Brown 
Viability 

10% 
Viability 

50% 

 
Viability 

90% 

Inner Seg.               
 

Outer Seg. 5.55              
 

Inner 
Boundary 

2.92 6.25             
 

Outer 
Boundary 

5.65 3.47 6.07            
 

Henriques 3.58 4.05 3.37 3.23           
 

CEM 
(2 min.) 

8.13 4.66 8.68 4.65 6.66          
 

CEM 
(10 min.) 

6.86 4.00 7.43 2.93 5.23 3.04         
 

CEM 
(60 min) 

5.41 3.35 5.75 0.99 2.93 5.02 3.47        
 

CEM 
(240 min.) 

4.47 3.35 4.58 2.17 1.64 5.76 4.35 1.81       
 

Jacques 2.61 6.15 1.11 5.91 3.24 8.54 7.21 5.60 4.48      
 

Borelli 5.76 3.47 6.18 0.47 3.36 4.48 2.76 1.15 2.32 6.02     
 

Brown 5.23 3.31 5.54 1.22 2.71 5.19 3.65 0.60 1.58 5.42 1.40    
 

Viability 10% 4.33 3.47 4.43 2.34 1.46 5.88 4.44 2.03 0.62 4.34 2.49 1.84   
 

Viability 50% 4.64 3.39 4.82 1.97 1.91 5.62 4.21 1.67 0.56 4.72 2.14 1.42 0.81  
 

Viability 90% 3.88 3.83 3.76 2.97 0.76 6.38 5.03 2.69 1.31 3.64 3.10 2.46 1.06 1.57 
 

Table 15: HD Values for the segmentations and models in Chapter 6 
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 Inner Seg. Outer Seg. 
Inner 

Boundary 
Outer 

Boundary 
Henriques 

CEM 
(2 min.) 

CEM 
(10 min.) 

CEM 
(60 min) 

CEM 
(240 min.) 

Jacques Borelli Brown 
Viability 

10% 
Viability 

50% 

 
Viability 

90% 

Inner Seg.               
 

Outer Seg. 2.93              
 

Inner 
Boundary 

0.94 3.19             
 

Outer 
Boundary 

2.77 1.06 2.98            
 

Henriques 1.43 1.80 1.50 1.51           
 

CEM 
(2 min.) 

4.57 1.88 4.84 1.87 3.34          
 

CEM 
(10 min.) 

3.56 1.23 3.81 0.88 2.32 1.07         
 

CEM 
(60 min) 

2.57 1.04 2.79 0.24 1.32 2.06 1.06        
 

CEM 
(240 min.) 

2.02 1.30 2.18 0.84 0.75 2.65 1.64 0.66       
 

Jacques 0.95 3.38 0.29 3.19 1.70 5.04 4.01 3.00 2.39      
 

Borelli 2.85 1.05 3.07 0.12 1.59 1.79 0.79 0.33 0.93 3.27     
 

Brown 2.43 1.08 2.64 0.38 1.19 2.20 1.20 0.18 0.51 2.85 0.48    
 

Viability 10% 1.95 1.36 2.10 0.93 0.66 2.75 1.73 0.75 0.13 2.31 1.02 0.61   
 

Viability 50% 2.11 1.25 2.28 0.76 0.83 2.58 1.56 0.58 0.13 2.48 0.85 0.43 0.22  
 

Viability 90% 1.63 1.61 1.73 1.29 0.27 3.13 2.11 1.11 0.53 1.94 1.38 0.97 0.43 0.61 
 

 
Table 16: MDA Values for the segmentations and models in Chapter 6 
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