
Texas Medical Center Library
DigitalCommons@TMC

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

12-2016

INVESTIGATION OF RADIATION INJURY
IN THE ESOPHAGUS FROM DEFINITIVE
CHEMORADIATION THERAPY USING
NOVEL IMAGING BIOMARKERS
Joshua S. Niedzielski

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Other Medical Sciences Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has
been accepted for inclusion in UT GSBS Dissertations and Theses (Open
Access) by an authorized administrator of DigitalCommons@TMC. For
more information, please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Niedzielski, Joshua S., "INVESTIGATION OF RADIATION INJURY IN THE ESOPHAGUS FROM DEFINITIVE
CHEMORADIATION THERAPY USING NOVEL IMAGING BIOMARKERS" (2016). UT GSBS Dissertations and Theses (Open
Access). 713.
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/713

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/679?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/713?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


i 
 

INVESTIGATION OF RADIATION INJURY IN THE ESOPHAGUS FROM DEFINITIVE 

CHEMORADIATION THERAPY USING NOVEL IMAGING BIOMARKERS 

 

 

A 

 

DISSERTATION 

 

Presented to the Faculty of 

 

The University of Texas 

Health Science Center at Houston 

 

and 

 

The University of Texas 

MD Anderson Cancer Center 

 

Graduate School of Biomedical Sciences 

 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

by 

 

 

Joshua Scott Niedzielski, B.S. 

 

 

Houston, Texas 

September, 2016 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 Joshua Scott Niedzielski 

All rights reserved. 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my canine companion, Alexander Ovechkin (Ovie). You taught me true friendship, 

woof.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 
 

 

I must begin by thanking the individual that had the most positive impact on my work 

as well as my development as a researcher, my advisor, Dr. Laurence Court. Our countless 

discussions and brainstorming sessions about the work presented in this dissertation was the 

catalyst for my growth in the scientific process.  

 

In addition, I would like to thank Jinzhong Yang, for answering every tedious question I 

could produce about scientific computing. I also would like to thank my advisory committee 

members: Mary Martel, Tina Briere, Francisco Stingo, and Daniel Gomez. Their guidance and 

suggestions helped steered my research into the most productive of directions.   

 

I would like to thank my lab members that helped in numerous ways: Adam Yock, Joey 

Cheung, Henry Yu, Luke Hunter, Scott Ingram, Ashley Rubinstein, Xenia Fave, David Fried, Kelly 

Kisling, Rachel McCarroll. 

 

I would also like to thank my classmate Shane Krafft. Our endless discussions about 

machine learning and statistical analysis helped push this work into a fruitful direction, instead 

of spinning into dead ends.  

 

Finally, I would like to thank my friends and family that helped and encouraged me: 

Robert Niedzielski, Judy Niedzielski, Rachael Copsey, Joseph Niedzielski, and everyone else, 

which are too numerous to name.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

INVESTIGATION OF RADIATION INJURY IN THE ESOPHAGUS FROM DEFINITIVE 

CHEMORADIATION THERAPY USING NOVEL IMAGING BIOMARKERS 

 

Joshua Scott Niedzielski, B.S. 

Advisory Professor: Laurence Court, Ph.D. 

 

ABSTRACT 

 

 Radiation injury in the esophagus occurs with high frequency from the treatment of 

non-small cell lung cancer (NSCLC). Radiation esophagitis is an acute normal tissue toxicity that 

negatively affects treatment efficacy by limiting dose and potentially interrupting radiation 

therapy. Clinical quantification of this toxicity is typically achieved by utilizing physician grading 

scales, assigning complication severity on an ordinal scale of symptom presentation and/or 

physician chosen interventions. These criteria are subjective in nature, both from the physician 

assigning the grade and the patient reporting the symptom. Furthermore, radiation therapy 

planning guidelines for the esophagus are derived from toxicity prediction models utilizing 

these subjective grading scores as complication endpoints. Not only does this schema of 

toxicity analysis leads to a lack of consistency between models from different study 

populations, and thereby radiation therapy planning recommendations for the esophagus, but 

inherent patient radiosensitivity is not considered, leading to suboptimal treatment regimens. 

The purpose of this work was to investigate radiation injury in the esophagus by first 

developing in-vivo imaging biomarkers of radiation-response in the esophagus using 4-

dimensional computed tomography (4DCT) and 18fluorodeoxyglucose positron emission 

tomography (FDG-PET), separately. These imaging biomarkers were then compare with 

radiation esophagitis grade, using traditional and machine learning techniques, and shown to 

objectively quantify esophageal radiation toxicity. Metrics describing the esophageal radiation 

response from either imaging modality were strong classifiers of radiation esophagitis grade. 

Multivariate models to predict maximum esophagitis treatment grade (4DCT), and esophagitis 

symptom progression (FDG-PET) were developed and had strong performance for both 

scenarios.  

These imaging biomarkers were then used to comprehensively investigate the influence 

of dose-geometry and radiation type (photon or proton) on esophageal response. Using these 

radiation-response biomarkers in esophageal dose-response analysis, dose metrics with spatial 

information of esophageal dose coverage, (e.g. dose to a subregion of the esophagus with 

specific percent cross-sectional area coverage), as well as without spatial information, 

(traditional dose-volume histogram), was analyzed separately using machine learning methods. 

No detectable difference in response was observed when comparing dose metrics with and 
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without spatial information. Statistical analysis showed no significant difference (p<0.05) in 

biomarker value when comparing patient populations of different radiation type (intensity-

modulated photon radiation therapy versus passive-scatter proton therapy).  

Inherent patient radiation sensitivity was investigated using esophageal expansion and 

delivered dose to the corresponding esophageal subregion. Cluster analysis was used to group 

patient patients based on their maximum expansion and delivered dose to the analyzed 

subregion of the esophagus. Patients clustered with proportionally higher expansion per 

delivered dose were considered radiosensitive. These results were then applied to NTCP toxicity 

modelling by using patient radiosensitivity cluster membership as a predictor variable. Models 

with the radiosensitive predictor outperformed models not including the cluster membership 

variable for prediction of grade 3 esophagitis.    
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Chapter 1 
 

Introduction 
 

 

Radiation Esophagitis is a prevalent normal tissue toxicity with tremendous negative 

impact on quality of life for patients with non-small-cell lung cancer (NSCLC) treated with 

radiation therapy.1 Typically, radiation esophagitis presents as an acute toxicity during 

radiotherapy for NSCLC, with occurrence rates of approximately 25% for concurrent 

chemoradiation therapy.2-6 Mild esophagitis symptoms can be treated or managed with proton 

pump inhibitors, local anesthetics, oral analgesics, narcotics, and alteration of diet.7,8 If 

symptoms become severe enough, intravenous fluids, total parenteral nutrition, or 

percutaneous endoscopic gastrostomy (PEG) tube, with or without possible hospitalization may 

be prescribed. These interventions represent large financial burden for the patient and time-

consuming resources for the hospital or supporting care facility.    

In addition to the negative impact on patient quality of life, acute radiation esophagitis 

can affect treatment outcomes. Normal esophageal tissue dose, out of concern for radiation 

esophagitis complications, can limit the amount of prescribed dose to the malignant tumor 

volume. It is common that the tumor volume is located near the esophagus, and even with 

advances in treatment planning and delivery (conformation) of dose, the esophagus routinely 

receives sufficient radiation to induce toxicity. Furthermore, if radiation esophagitis becomes 

severe enough it can result in treatment interruption. On-time completion of radiation therapy 

has been identified as the most crucial factor in treatment outcome for unresectable lung 

cancer.4   
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Several strategies to prevent radiation esophagitis have been studied. One such strategy 

is the use of radioprotectors such as amifostine. While tumor control is increased by adding 

concurrent chemotherapy to radiation therapy, this also increases the risk of esophagitis. The 

concept behind utilizing radioprotectors is to ameliorate the esophagitis symptoms while 

reaping the tumor control benefit of concurrent chemoradiation therapy, thereby increasing the 

therapeutic ratio. However, the use of radioprotectors with chemoradiation therapy has had 

mixed results. Several small trials of radiation therapy combined with the use of radioprotectors, 

most commonly amifostine, have showed a reduction in radiation esophagitis incidence.9-13 

Conversely, a large randomized trial of amifostine did not show a significant reduction in the 

occurrence of severe radiation esophagitis.14    

The most directly controllable clinical factors associated with radiation esophagitis are 

the dose-constraints to the esophagus during the radiation treatment planning process. For 

example, the radiation therapy oncology group (RTOG) 0617 trial was designed with a 

recommended mean esophageal dose (MED) to be less than 34 Gy, as well as the volume of 

esophagus receiving at least 60 Gy (V60) to be recorded.2,15 These dose-constraints leave a 

wide margin of possible dose-volume configurations available for radiation treatment planning. 

Furthermore, several studies have investigated increased restriction of esophageal dose in the 

treatment planning process, while maintaining tumor coverage, showing potential optimization 

of radiotherapy plans for minimizing esophagitis incidence. However, sparing of the esophagus 

can cause increase in radiation dose to other normal tissues, such as the lung, heart and spinal 

cord, potentially exceeding the dose-constraints for these organs.16-18   
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Radiation esophagitis is commonly quantified on an ordinal scale with increasing score 

or value, corresponding to increasing esophagitis symptom severity. One frequently used 

esophagitis grading system is the Common Terminology Criteria for Adverse Events (CTCAE).19 

The esophagitis severity quantification of CTCAE 3.0 is given in Table 1.1. The most recent 

version of CTCAE, version 4.0, removed the intravenous fluid criterion for grade 

determination.20  

 

Table 1.1: CTCAE 3.0 esophagitis grading system. 

Grade Criteria 

1 
Asymptomatic pathologic, radiographic, or endoscopic 

findings only 

2 

Symptomatic; altered eating or swallowing (altered dietary 

habits, oral supplements); intravenous fluids indicated for less 

than 24 hours 

3 

Symptomatic and severely altered eating or swallowing 

(inadequate oral caloric or fluid intake); intravenous fluids, 

tube feedings, or total parenteral nutrition indicated for more 

than 24 hours 

4 Life-threatening consequences 

5 Death 

 

 

There are numerous drawbacks to this methodology of quantifying esophagitis severity. 

The subjective nature of grades themselves creates uncertainty in the scoring process; the 

grades are determined from physician chosen interventions based on patient reported 

symptoms, with variation between both the patient reporting the symptoms and the physician 

prescribing the intervention. Another drawback to grading of esophagitis severity is the lack of 
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localization of the toxic region of the esophagus. Under grading schema, the whole organ must 

be treated as toxic (e.g. grade 3) or asymptomatic (e.g. grade 0). This ignores the possibility that 

toxicity is located in a sub volume of the esophagus, which should be the primary region of 

study for esophagitis amelioration and prevention. One important drawback specifically with 

grading criteria and radiation therapy is the desire to understand cause and effect associated 

with the radiation dose. Esophagitis symptoms can be caused by conditions unrelated to 

radiation therapy such as gastroesophageal reflux or esophageal infection. Therefore, it would 

be ideal to isolate toxicity solely from radiation when investigating esophageal toxicity.     

 The primary objective of investigating esophageal toxicity is to prevent complications 

from occurring, rather than minimizing symptom severity after presentation. The development 

of toxicity prediction models, commonly referred to as normal tissue complication probability 

(NTCP) models, which are based on previous clinical experience, and then applying these 

models to future patients with the goal of reducing toxicity incidence. Common practice is to 

create multivariate logistic regression models with many clinical and dosimetric parameters as 

model predictors, and esophagitis grade as the dichotomized endpoint. In statistical learning, 

this is deemed a classification problem, with esophagitis grade being the item sought to be 

classified.   

The literature contains copious amounts of NTCP studies for the esophagus.2,3,5,6 

Comparison of many NTCP studies shows a lack of agreement between specific dosimetric 

predictors and esophagitis complication. Furthermore, a commonality exists where NTCP 

models fit the training dataset well, but lack generalizability to external datasets.2,3,21-24 This is 

a common pitfall in prediction modelling, where over fitting the training data leads to poor 
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predictive model performance on external datasets. As previously stated, the esophagitis 

endpoint itself has associated uncertainty, which will affect any toxicity model’s predictive 

performance.  

Another source of uncertainty in the NTCP modelling process includes variability of 

esophagus positioning on the planning CT, which can affect dosimetric accuracy. In one study, 

variability of esophagus position in Cartesian space was measured from different phases of 

4DCT for 29 patients. Motion of the central axis of the esophagus was as extreme as 4mm in 

the medial/lateral direction.25 Another study found esophageal motion as high as 13.8mm in 

the cranio-caudal direction.26 A study of 236 lung cancer patients showed correcting the 

esophagus dose-volume histogram (DVH) for anatomical uncertainties improved correlation of 

DVH dose metrics to esophagitis grade.27 

Another explanation for the underwhelming performance of esophagitis prediction 

models is the lack of consideration for inherent patient radiosensitivity. If we consider two 

patients receiving similar radiation therapy dose to the esophagus, it is quite possible one 

patient may develop severe radiation esophagitis, while the other patient may be 

asymptomatic. If the NTCP model does not have some means to quantify this difference in 

radiosensitivity, then model uncertainty has been increased as both patients have similar model 

predictors, but different classification endpoints. Genomic data has recently been introduced 

into the NTCP modelling process in an attempt to account for radiosensitivity.28-31 However, 

validating genetic predisposition to radiation toxicity using esophagitis grade is still beholden 

to the uncertainty of the subjective complication endpoint. 
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The inclusion of spatial dose terms, or dose-geometry, can potentially determine if 

partial sparing of the esophagus is achievable. Most studies use dose-volume metrics such as 

volume of esophagus receiving at least a particular dose, but some studies have included dose 

metrics that yield spatial information of dose conformity instead of simply using a gross 

average or threshold of dose-volume.32-35 One example of spatial dose metrics is the length of 

the esophagus receiving a particular dose with a specific percent of axial coverage across the 

cross-sectional area of the imaged slice of the esophagus.  

Previously, optimization of treatment planning for reduced esophagus dose showed 

feasibility for external beam radiation therapy of lung malignancies.17 In this study, 

retrospective analysis of patients that exhibited grade 3 esophagitis during treatment showed 

sizeable reductions in dose-volume above 50 Gy were achievable on re-planning with heavy 

constraint on the esophagus, with preservation of tumor dose coverage.  Therefore, there exists 

clinical utility and viability in optimizing dose-geometry of normal esophagus. While 

investigation of partial sparing has had some success in other normal tissues, such as the 

salivary glands or bone marrow, up to this point there is no clear influence of dose-geometry 

and esophageal toxicity.32-39 It is possible that any dose-geometry effect of toxicity in the 

esophagus, if it exists, could be undetectable with an endpoint such as esophagitis grade, and 

may require a more sensitive measure of toxicity. Moreover, if partial sparing is achievable in 

the esophagus, lack of utilizing dose-geometry could be one explanation for the variability in 

esophagitis toxicity prediction models.  

Esophageal expansion, or swelling, is an inflammatory response that is discernible on CT 

imaging.40 Another study has shown radiation esophagitis can be visualized on 4DCT as an in-
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vivo technique throughout the course of radiotherapy.41 Furthermore, this study showed that 

the change in the esophagus contour over the course of radiation therapy can be used as a 

surrogate for esophageal expansion. In addition, the average relative expansion of the 

esophagus was significantly different between patients with grade 0 and grade 3 esophagitis. 

Therefore, the esophageal expansion response may be a reliable quantification of radiation 

response in the esophagus.  

 18Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a functional imaging 

technique that uses glucose metabolism as a surrogate for tissue inflammation. Primarily used 

in the radiation oncology setting for tumor detection, delineation, and treatment assessment, 

FDG-PET has been shown to quantify radiation-induced lung toxicity.42-44 The slope of FDG 

uptake and lung dose has been shown to correlate to radiation pneumonitis grade for both 

lung and esophageal cancers in external beam radiation therapy.45-49 Another study examined 

FDG uptake correlation to esophagitis grade using FDG-PET imaging at follow up from 

radiation therapy.50 This study showed the addition of FDG uptake into a NTCP model 

increased prediction of grade 2 and higher esophagitis.   

 The purpose of this work is to comprehensively enhance understanding of radiation 

injury in the esophagus, which can thereby optimize radiation therapy treatment outcomes and 

improve patient quality of life. Esophageal expansion and inflammation, from 4DCT and FDG-

PET respectively, will be investigated as radiation response and toxicity measures. This is to 

address the uncertainty inherent in current toxicity grading systems. Any improvement in 

toxicity prediction models will be explored and then used to investigate dose-response in the 

esophagus, with the previously mentioned prediction model sources of uncertainty addressed. 
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This will be applied in both broad dose-response models, and a spatially localized response 

analysis to investigate any influence in esophageal dose-geometry and toxicity, to determine if 

partial sparing can be achieved in the esophagus. Any influence of radiation type and 

esophageal response will also be examined. Potentially, expansion and inflammation can yield 

information about patient-specific response to radiation, and therefore inherent patient 

radiosensitivity. The efficacy of the expansion mechanism to identify radiosensitive patients, and 

this information’s impact on dose-response and radiation injury in the esophagus will be 

investigated. 
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Chapter 2 
 

Central Hypothesis and Specific Aims 
 

 

2.1 Central Hypothesis 

 

The overall objective of this project is to identify objective, in-vivo biomarkers of 

esophageal radiation-response as quantifications of toxicity and to utilize these metrics to 

improve prediction modelling of radiation injury in the esophagus, as well as to determine if 

dose-response in the esophagus is dependent on dose-geometry or radiation therapy modality, 

and to investigate the use of these radiation-response measures as patient-specific biomarkers 

of radiosensitivity.   

The central hypothesis is that objective metrics quantified from 4DCT and FDG-PET 

imaging, during radiation therapy, are biomarkers of radiation-response in the esophagus, 

which can be used to improve understanding of radiation injury in the esophagus.  
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2.2 Specific Aims 

To test the central hypothesis, the following specific aims were developed and 

investigated: 

Specific Aim 1: Analysis of CT-based esophageal expansion to quantify radiation-response in 

the esophagus during radiation therapy.  

Hypothesis: CT-based esophageal expansion is a biomarker of radiation-response that can 

quantify radiation injury in the esophagus and can be used to improve outcome modelling of 

radiation-induced esophagitis.  

 

To test the hypothesis, the following projects were conducted: 

Project 1.1: Analyze whether CT-based expansion is a quantification of esophgeal radiation 

toxicity  

Project 1.2: Analyze the utility of CT-based expansion metrics in outcome modelling 

 

Specific Aim 2: Analysis of FDG-PET to quantify esophageal radiation-response in the 

esophagus during radiation therapy.  

Hypothesis: FDG-PET uptake is a biomarker of radiation-response that can quantify radiation 

injury in the esophagus and can be used to predict esophagitis symptom progression during 

radiation therapy.  
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To test the hypothesis, the following projects were conducted: 

Project 2.1: Analyze whether FDG uptake in the esophagus is a quantification of esophageal 

radiation toxicity 

Project 2.2: Analyze whether FDG uptake in the esophagus can predict esophagitis symptom 

progression during radiation therapy 

 

Specific Aim 3: Analysis of esophageal dose-response using radiation-response biomarkers. 

Hypothesis: Esophageal expansion will identify if dose-geometry or radiation type contributes 

to radiation injury in the esophagus, and that expansion can be used to quantify patient-

specific radiosensitivity.   

 

To test the hypothesis, the following projects were conducted: 

Project 3.1: Analyze whether dose-geometry influences esophageal radiation response. 

Project 3.2: Analyze whether there exists any difference in esophageal radiation response 

between photon-based intensity modulated radiation therapy (IMRT) and passive-scatter 

proton therapy (PSPT). 

Project 3.3: Analyze whether esophageal expansion can quantify patient-specific 

radiosensitivity and determine if this knowledge can improve understanding of esophageal 

dose-response. 
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The outcomes of this work show esophageal expansion and normalized FDG uptake are 

objective, in-vivo radiation response measures that can be used as surrogates for radiation 

injury in the esophagus. Moreover, when utilized as endpoints, these biomarkers improve 

toxicity prediction modelling in the esophagus. Finally, the expansion biomarker and 

corresponding dose show inherent patient-specific radiosensitivity. This work will have positive 

impact by developing and applying in-vivo toxicity biomarkers that can potentially enhance 

personalization of radiation therapy, leading to improved treatment outcomes and increase 

patient quality of life.  

 

 

2.3 Dissertation Structure 
 

 The remaining chapters of the dissertation are organized to address each specific aim in 

chronological order. Chapters 3 and 4 together address specific aim 1, by first developing a 

computational method to calculate esophageal expansion and correlating this measure of 

radiation-response to esophageal toxicity (project 1.1), and then examining predictive model 

performance with expansion as an endpoint (project 1.2). Chapter 5 addresses specific aim 2 by 

calculating normalized FDG uptake and correlating this measure of response to esophageal 

toxicity (project 2.1), and then using this biomarker to predict symptom progression (project 

2.2).  
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Chapter 6, 7, and 8 address specific aim 3. Chapter 6 presents the investigation of dose-

geometry and its relationship with esophageal expansion (project 3.1). The work in Chapter 7 

analyzes esophageal response from different therapeutic radiation types (proton or photon 

radiation, project 3.2). Chapter 8 describes the use of the objective metrics to identify patient-

specific radiosensitivity, and then apply these radiosensitivity assays to improve prediction 

modelling of radiation-induced esophagitis (project 3.3).  

Chapter 9 presents a summary and the conclusions of this work. This chapter also 

presents directions for future work based on the results of this dissertation.  
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Chapter 3 
 

Esophageal Expansion Quantified from 4-Dimensional Computed 

Tomography as a Measure of Esophageal Radiation Injury 
 

 

 

 The work in this chapter investigates esophageal expansion, as quantified from 4DCT, as 

a radiation-response and toxicity measure for radiation injury in the esophagus. Robust metrics 

of esophageal expansion are derived for classification of toxicity. These expansion metrics are 

then shown to be robust biomarkers of esophageal radiation-response and esophageal toxicity, 

by statistical analysis with physician scored radiation esophagitis grade. This chapter comprises 

project 1.1, of specific aim 1. 

 

A substantial portion of this chapter is based on the following publication:  

Niedzielski JS, Yang J, Stingo F, Martel MK, Mohan R, Gomez DR, Briere TM, Liao Z, Court LE. 

Objectively Quantifying Radiation Esophagitis with Novel Computed Tomography-based 

Metrics. Int J Radiat Oncol Biol Phys 2016 94(2):385-393. 

 

doi: 10.1016/j.ijrobp.2015.10.010  

©Elsevier 

 

Written permissions for the reuse of these materials were obtained from Elsevier publishing. 
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3.1 Methods and Materials 

3.1.1 Patient Population 

For the work in this chapter, 94 patients were selected from a prospective clinical trial of 

radiation therapy using either IMRT or passive-scatter proton therapy (PSPT) for stage III NSCLC 

at University of Texas-MD Anderson Cancer Center, treated with intensity-modulated radiation 

therapy and concurrent chemotherapy (paclitaxel and carboplatin), with tumor prescription 

doses of 60 (n=4), 66 (n=28), or 74 (n=53) Gy in 2-Gy fractions over 6-8 weeks. Due to sample 

size we utilized the patients from the IMRT arm of this trial. Of the 94 study patients, 85 patients 

had weekly 4DCT imaging, while a total of 9 patients with weekly breath hold CT (BHCT) 

imaging. Three patients were excluded from the original 97 IMRT patient cohort due to poor 

image quality. 

These patients had prospective weekly esophagitis scoring by the radiation oncologist 

according to Common Terminology Criteria for Adverse Events version (CTCAE) 3.0.19 The 

grading scale can be summarized as: grade 0, no esophagitis; grade 1, asymptomatic with only 

clinical or diagnostic observations; grade 2, symptomatic with altered eating/swallowing and 

oral supplements; grade 3, severely altered eating/swallowing with tube feeding, total 

peritoneal nutrition, or hospitalization; grade 4, life-threatening consequences; and grade 5 is 

death.20  The clinical esophagitis symptom management was: liquid narcotic medication, topical 

anesthetics, and antacid medication for grade 2, and IV fluids with possible feeding tube for 

grade 3. The distribution of maximum esophagitis grades during treatment was: 24 were grade 

0, 45 were grade 2, and 16 were grade 3. There were no grade 1 patients in this study, as 

asymptomatic diagnostic assessment of esophagitis was not conducted. This study was 
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approved by the University of Texas-MD Anderson Cancer Center Institutional Review Board 

and was compliant with HIPAA regulations. 

CT scans were acquired on General Electric Lightspeed Discovery ST or Lightspeed RT16 (GE 

Healthcare, Waukesha, WI) or Philips Brilliance 64 (Philips Healthcare, Bothell, WA) CT scanners 

operated at 120 kV. Voxel dimensions were 0.98x0.98x2.50 mm in the right-left direction, 

anterior-posterior, and superior-inferior direction, respectively, with a 512×512 pixel area. 

Treatment planning for all patients whose data were used in our study was conducted using the 

Pinnacle treatment planning system (Phillips Healthcare), including segmentation. Esophageal 

contours were segmented in Pinnacle version 9.8 in the axial plane, from the cricoid cartilage to 

the gastroesophageal junction by an experienced treatment planner and verified by the 

radiation oncologist.  

 

3.1.2 Computational Framework and Jacobian Map Algorithm 

The computational framework used to calculate esophageal expansion on the treatment 

plan for any treatment week can be summarized in 3 steps: segmentation, deformable image 

registration, and the Jacobian map algorithm. A general overview of this process is shown in 

Figure 3.1. Esophagus contours were delineated on the planning image. Next, deformable 

registration was performed between the plan and weekly CT images to obtain deformation 

vector fields, and propagate segmentation to weekly CT images. Finally, the algorithm uses the 

deformation vector fields, planning, and weekly contours to calculate the local esophageal 

volume change with correction due to anatomical variability as an average of slices of the 

esophagus along the cranio-caudal axis.  
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Figure 3.1 General overview of the computational framework to calculate esophageal 

expansion. 

 

A demons algorithm was used to perform deformable image registration from the 

planning CT to the weekly CT image set; this algorithm was validated for thoracic patients.7,8 

Let 𝒅𝒖 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) denote the deformation vector pointing from voxel 𝒖 = (𝑥, 𝑦, 𝑧) in the 

planning image to the weekly CT image voxel 𝒖′ = (𝑥′, 𝑦′, 𝑧′). The voxel mapping from the plan 

to the weekly image becomes: 

 𝒖′(𝑥′, 𝑦′, 𝑧′) =  𝒖(𝑥, 𝑦, 𝑧) + 𝒅𝒖(𝑑𝑥, 𝑑𝑦, 𝑑𝑧)                              (3.1) 

The Jacobian Map is calculated by taking the determinant of the Jacobian of the 

transformation defined in equation 3.1, using 𝒅𝒖 for every voxel in the esophagus. The Jacobian 

represents the local voxel-volume change, and thus voxel esophageal expansion, from the 

deformable registration of the plan to the weekly CT imageset.52-55 A Jacobian map of 1.0, >1.0, 
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and <1.0, represents no volume change, relative expansion, and relative shrinkage, respectively, 

for the voxel anatomy from the planning to the corresponding weekly CT.  

For each of the 85 patients, after deforming the planning exhale phase all the other plan 

phases, and all weekly 4DCT phases, the deformation vector fields were used to calculate the 

corresponding Jacobians. The Jacobians were then averaged at each axial slice of the 

esophagus and esophageal expansion metrics were calculated.  

To validate this computational framework, a digital phantom representing esophageal 

expansion was developed consisting of a pair of CT image sets containing: (1) a uniform 

cylindrical volume of tissue equivalent CT numbers, and (2) another cylindrical volume of tissue 

equivalent CT numbers, but regions of differing volume in the axial plane to represent 

expansion in the esophagus.  Figure 3.2 illustrates this phantom, in which the expansion image 

has a region of the same area as the uniform image and regions of twice and thrice the original 

uniform area (‘2A’ and ‘3A’ in Figure 3.2, respectively), as well as regions of changing cross-

sectional area (white region in ‘target image’ of Figure 3.2). The observed axial expansion is 

tested against the ground truth of relative volume change, which is known for a given slice. 



19 
 

 
Figure 3.2: Representation of the digital phantom image pair that is used to validate the 

jacobian map algorithm used to quantify esophageal expansion. The plan image of uniform 

cross-sectional area is deformed to a target image that has the axial area known for each slice 

in the esophagus, along the superior-inferior direction. The deformation vector field from the 

deformable image registration is entered into the Jacobian map algorithm and relative volume 

change for each axial slice of the phantom esophagus is calculated. Uncertainty in the Jacobian 

map calculation is then assessed using the known and measured axial volume values.  

 

3.1.3 Anatomic Volume Variability and Correction Methods 

Physiological effects that skew esophageal volume calculations are numerous, including 

motility of the esophagus, dilation, swallowing during CT acquisition, and esophageal air. The 

presence of air in the esophagus is particularly challenging. Because deformable image 

registration uses CT number as a measure of image similarity, any 2 images in which 

esophageal air is present in one image but not the other have a high chance to cause 

deformable registration error in this region, propagating into the Jacobian calculation. The 

uncertainty caused by esophageal air makes expansion quantification on the voxel-level 

unreliable. However, quantifying expansion for an axial slice is possible and a method to correct 

uncertainty associated with esophageal air can be accomplished by utilizing the axial anatomy. 
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To reduce errors caused by air content, an “air content correction factor” can be 

calculated for each axial slice as the relative ratio of tissue in the esophagus on the planning 

image to that in the weekly image: 

      𝐽𝑀𝑎𝑖𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐽𝑀𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∗ 𝜓,         𝑤ℎ𝑒𝑟𝑒 𝜓 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑒𝑘𝑙𝑦 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑒𝑎𝑙 𝑡𝑖𝑠𝑠𝑢𝑒

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑙𝑎𝑛 𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑒𝑎𝑙 𝑡𝑖𝑠𝑠𝑢𝑒
     (3.2)   

The quantity 𝐽𝑀𝑎𝑖𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  is the axial-averaged Jacobians corrected for air content in both 

planning and weekly images, and  𝐽𝑀𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑   is the originally calculated Jacobian. The quantity 

ψ is the air content correction factor, computed at each axial slice of the esophagus.  

Miscalculations of local volume change caused by intra-scan transient effects are 

minimized in 2 ways. The first method corrects transient effects on the plan image by 

deforming the exhale phase to all phases of the planning image and then computing an axial-

Jacobian-averaged from all the phase deformations, which yields the plan normalization 

correction factor: 

𝐽𝑀𝑝𝑙𝑎𝑛 𝑛𝑜𝑟𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
<𝐽𝑀𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑>

Ф
,       𝑤ℎ𝑒𝑟𝑒 Ф = < 𝐽𝑀𝑒𝑥ℎ𝑎𝑙𝑒 𝑝ℎ𝑎𝑠𝑒 𝑡𝑜 𝑝𝑙𝑎𝑛 𝑝ℎ𝑎𝑠𝑒𝑠 >                  (3.3) 

The mean axial-averaged Jacobian from the exhale phase to the planning phase deformations 

is the plan normalization correction factor, denoted Ф. Dividing the Jacobian of the planning 

exhale phase to all weekly phases, denoted < 𝐽𝑀𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 >, by Ф yields the Jacobian corrected 

for transient effects 𝐽𝑀𝑝𝑙𝑎𝑛 𝑛𝑜𝑟𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑. Random esophageal motion and swallowing during CT 

acquisition are transient anatomical effects that may reduce the accuracy of the Jacobian 

calculation. 

The second method reduces contributions to volume change from non-treatment-

related sources on the weekly CT. Similar to the first correction, we utilize all phases of the 
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weekly images to create a mean axial-averaged Jacobian. The mean of the plan exhale phase 

Jacobian to all weekly phases averaged at each axial segment of the esophagus, applying both 

anatomic variability correction factors, becomes: 

              𝐽𝑀𝐹𝑖𝑛𝑎𝑙 = < 𝐽𝑀𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 > =  
<𝐽𝑀𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑>

Ф
∗ 𝜓                           (3.4) 

where < 𝐽𝑀𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 >  is the weekly 4DCT phased-averaged axial Jacobian with all correction 

factors applied, resulting in  𝐽𝑀𝐹𝑖𝑛𝑎𝑙, which is the weekly Jacobian used to derive all metrics of 

esophageal expansion for the given treatment week.  

To test the correction methodology and quantify uncertainties, the Jacobian from 

planning to first treatment week is used to measure inter-CT scan variability without radiation-

response, because insufficient time or dose has been delivered to induce esophageal 

expansion. The effect of anatomic variability correction is quantified by 2 metrics, with and 

without anatomic corrections. The first metric is the absolute difference between the axial 

Jacobians and a value of 1.0. Jacobian calculation without any radiation-induced expansion 

should show values close to 1.0. The second metric is the full-width half-maximum (FWHM) of 

the distribution of axial Jacobian values for all phases of the first week; accurate deformations 

have normal distributions of Jacobians centered near 1.0, with small FWHM values. 
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3.1.4 Esophageal Expansion Metrics 

Various metrics were created to quantify esophageal swelling, including the following: 

 Mean axial esophageal expansion (MeanExp) 

 Maximum axial esophageal expansion (MaxExp) 

 Esophageal length ≥ specified percent of axial expansion (LenExp), ranging from 20% to 

100% in 10% increments (LenExp20% for 20% expansion) 

 Peak esophageal expansion of 3, 5, and 7 axial slices of the esophagus (PeakExp3 for 3-

slice peak expansion) 

 Percentile of esophageal expansion (PerExp), ranging from sixtieth to ninetieth in 

increments of 10, as well as ninety-eighth (PerExp60% for sixtieth percentile of 

expansion) 

 

These quantifications allowed us to examine expansion using the average (MeanExp), 

maximum (MaxExp), spatial-length dependence (LenExp), and volume dependence of the 

expansion (PerExp). The MaxExp3-MaxExp7 metrics are meant to overcome uncertainties in 

quantifying MaxExp1 (which measures only a single axial response point). LenExp represents the 

physical esophageal length that increases in volume at least a given percentage. PerExp 

represents the expansion value for which the given percentiles of all other expansion values are 

below. An axial comparison of esophagi before and during treatment is shown in Figure 3.3. 

The temporal relationship between expansion and esophagitis grade was also investigated by 

comparing the timing of maximal expansion and esophagitis grade. 
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Figure 3.3: Example of axial expansion of esophagus as relative change from planning (a,c) to 

treatment week 6 (b,d). Top patient (a,b) has maximum grade 0 esophagitis and no change in 

esophagus volume (esophagus is outlines in red). Bottom patient (c,d) has maximum grade 3 

esophagitis and considerable expansion (esophagus is outlines in blue).  

 

3.1.5 Expansion & Toxicity Analysis 

An analysis was conducted to determine any relationship between the expansion 

metrics and radiation esophagitis severity. The treatment week with maximal expansion was 

compared to the patient’s maximum esophagitis grade during treatment. Normal tissue 

complication probability (NTCP) from univariate logistic regression and Spearman rank 

correlation coefficients were calculated for expansion metrics with grade 2 and grade 3 

esophagitis endpoints, with the metric value with 50% probability of grade 2 and grade 3 

esophagitis calculated for each expansion metric. P-values were calculated using the likelihood 

ratio chi-square test. The Benjamini-Hochberg false discovery rate procedure was applied to all 



24 
 

p-values. Receiver operating characteristic (ROC) analysis was used to quantify the performance 

of each expansion metric in classifying esophagitis. For all analyses, p<0.05 after application of 

the Benjamini-Hochberg procedure was considered statistically significant. All statistical 

analyses were carried out in Matlab version 7.9 or version 8.2 (Mathworks, Natick, MA). 

 

3.1.6 Esophageal Expansion & Breath Hold CT 

To determine the suitability of this expansion calculation methodology with breath hold 

CTs (BHCT), all 9 patients from the clinical trial patient pool with weekly BHCT imaging during 

treatment were analyzed. Of these nine patients, 5 had both weekly 4DCT and BHCT imaging 

for a single treatment week, in addition to a plan 4DCT image set. This allowed a direct 

comparison of esophageal expansion calculated from either 4DCT or BHCT imagining. The 

expansion computational framework was tested on these BHCT patients in the same manner as 

the weekly 4DCT patient cohort.  

The planned BHCT was deformed to all 3 BHCTs taken during the planning process, as 

well as 3 BHCTs acquired for every treatment week. The expansion metrics were then calculated 

for every treatment week with an available serial CT. In addition, the variance of the esophageal 

volume was calculated for the plan BHCT to the other BHCTs taken on the planning date and 

the serial BHCTs.  The same methodology of correcting esophageal anatomic variability used 

for the patients with primary 4DCT imaging was applied to BHCT patients, with multiple BH 

scans used in place of the phases of the 4DCT image set.     
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3.2 Results 

3.2.1 Validation of Jacobian Map Algorithm and Anatomic Volume Variability  

The result from the digital phantom test of the Jacobian map algorithm is shown in 

Figure 3.4. The top pane of Figure 3.4 shows good agreement between calculated and known 

anatomical volume change with the pattern of volume change along the superior-inferior 

direction of the esophagus, as originally shown in Figure 3.2. Furthermore, this test shows that 

uncertainty in the Jacobian Map algorithm correctly calculating the relative volume change of 

the esophagus is below 5.0% for any given esophageal slice. 

Next, the anatomical variability correction was tested on 75 of the 85 study patients. 

Since treatment week 1 images were not available for 10 of these 85 patients, these patients 

were excluded from the anatomic correction analysis. The top panel in Figure 3.5 shows the 

axial Jacobian profile along the esophagus for the planning exhale phase deformed to the 

planning image for one patient. The volume variability of each phase-Jacobian can be observed 

on the planning image, and variability was reduced by taking the mean Jacobian of all phases 

from each axial location (dashed black line). The mean axial Jacobian was close to 1.0 for all 

points along the esophageal-length, representing an accurate calculation. A similar trend was 

observed with the Jacobian profiles for the first treatment.  
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Figure 3.4: Results of the digital phantom test to validate relative volume change clouted using 

the Jacobian map algorithm along the superior-inferior length of the phantom. The relative 

expansion calculated from the Jacobian map algorithm is shown at the top. The percent error in 

calculated versus known axial volume is shown at the bottom. 
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Figure 3.5: (Top) Axial averaged Jacobian map for all phases and mean Jacobian (black dashed 

line) of all phases for the planning 4DCT image set for one patient. T00 represents the 

inspiration phase and T50 the exhale phase. (Middle) Relative axial cross-sectional area of air 

content for the planning (solid black line) and week 1 (dashed red line) T50 phases for one 

patient. (Bottom) Axial averaged Jacobian map of the week 1 T50 phase, uncorrected (black 

line) and with full anatomic correction (blue line), for one patient.  
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 The middle panel in Figure 3.5 shows the relative air content in plan and week 1 exhale 

images for the same patient. A large difference in air content occurred around slice 25, causing 

Jacobian miscalculation at the corresponding slice, shown in the bottom panel of Figure 3.5 

(solid black line). By applying the anatomic corrections, we obtained a more accurate Jacobian 

value (solid blue line, bottom panel).  

Figure 3.6a,b shows the plan to week1 Jacobian distributions with and without anatomic 

variability correction for one patient. The distribution had a long asymmetric tail to small 

Jacobians before correction and a more symmetric distribution with smaller FWHM values and a 

peak centered closer to 1.0 after correction.  

Figure 3.6c is a boxplot showing the distribution of FWHM values for the plan to week1 

Jacobian distributions before and after anatomic correction was applied. Applying the anatomic 

correction reduced the FWHM values of the Jacobian distributions by 10.3% (±5.6%), average 

percent-difference with standard deviation in brackets. For all axial slices, the mean absolute 

percent-differences between the Jacobians and a value of 1.0 ranged from 13.3% (±5.4%) to 

9.2% (±5.6%) after the anatomic correction were applied.  

 

3.2.2 Expansion Metrics and Esophagitis Severity 

Expansion metric distributions were grouped according to esophagitis grade (Figure 

3.7a-c). This analysis illustrated a strong relationship between increased expansion values and 

increased esophagitis grades; the relationship was most pronounced for the MaxExp-based 

metrics. For most metrics, a gap was evident between the highest value for grade 0 and the 

lowest value for grade 3 esophagitis. 
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Figure 3.6: (a) Histogram showing the distribution of planning to week 1 Jacobian values for 

one patient, without anatomic corrections. Red line represents a normal fit. (b) Histogram 

showing the distribution of planning to week 1 Jacobian values for one patient, with all 

anatomic corrections applied. Red line represents a normal fit. (c) Boxplot of the planning to 

week 1 Jacobian full width half maximum (FWHM) values without and with anatomic 

corrections. (d) Boxplot of fraction of maximum expansion (MaxExp1) minus the fraction of 

maximum esophagitis grade, with a dotted line at zero. 
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Figure 3.7: (a-c) Boxplots of the esophageal expansion metrics grouped according to 

esophagitis grade (yellow is grade 0, white is grade 2, and gray is grade 3). The box edges 

represent the 75% (top edge) and 25% (bottom edge) quartile values, the middle line 

represents the median value, the whiskers represent the range of values, and the circles 

represent outliers. (d) Plot of the NTCP function for grade 2 (blue), and grade 3 (red) 

complication thresholds with individual patient result above (1.0) and below (0.0) the given 

threshold (blue +, grade 2; red o, grade 3). Expansion metrics are defined in the Methods and 

Materials section. 

 

 



31 
 

Table 3.1 summarizes the statistical relationships between expansion metrics and 

esophagitis grade. All expansion metrics were very highly significantly (p < 0.001) associated 

with esophagitis grade2 and 3 according to logistic regression. Spearman rank analysis showed 

most metrics to have correlation coefficients in the range of 0.50-0.67. While area under the 

curve (AUC) values from ROC analysis indicated metric performance varied slightly around the 

binary cutoff for grade 2 or grade 3, all MaxExp-based, PerExp95, LenExp30%, and LenExp40% 

metrics performed strong with AUC>0.88 for both esophagitis endpoints, indicating these 

metrics’ ability to classify esophagitis (Table 3.1).  

 

Table 3.1: Logistic regression analysis of the relationship between expansion metrics and 

esophagitis grade (n = 85).  

Expansion 

metric* 

Grade 2  Grade 3  

p AUC† 

Spearman 

rank 

50% 

Complication 

Value p AUC† 

Spearman 

rank 

50% 

Complication 

Value 

MeanExp 5.39E-08 0.855 0.553 1.191 3.87E-07 0.880 0.515 1.511 

MaxExp1‡ 1.51E-11 0.928 0.668 1.445 2.70E-07 0.899 0.540 2.123 

MaxExp3 1.72E-11 0.921 0.657 1.208 2.70E-07 0.893 0.532 1.880 

MaxExp5 2.44E-11 0.915 0.648 1.139 2.70E-07 0.899 0.540 2.145 

MaxExp7 5.98E-11 0.910 0.639 1.371 2.70E-07 0.900 0.542 2.039 

LenExp20% 2.08E-08 0.866 0.572 26.911 4.85E-06 0.860 0.488 127.848 

LenExp30% 5.98E-11 0.909 0.642 12.625 3.87E-07 0.901 0.546 98.625 

LenExp40% 4.10E-10 0.900 0.639 2.536 6.41E-07 0.899 0.553 80.554 

LenExp50% 1.26E-09 0.851 0.579 0.708 6.41E-07 0.894 0.564 64.979 

LenExp60% 1.56E-07 0.762 0.487 0.393 3.87E-07 0.889 0.606 49.769 

LenExp70% 8.41E-07 0.738 0.448 0.500 5.21E-06 0.831 0.530 40.571 

LenExp80% 1.93E-05 0.689 0.382 0.000 5.38E-05 0.784 0.492 31.333 

LenExp90% 1.48E-03 0.588 0.170 0.000 5.41E-05 0.783 0.475 23.571 

PerExp60 6.72E-07 0.815 0.491 1.133 1.29E-06 0.834 0.453 1.456 

PerExp70 4.66E-08 0.842 0.533 1.112 2.88E-07 0.894 0.534 1.764 

PerExp80 6.53E-09 0.864 0.568 1.083 2.70E-07 0.907 0.551 1.774 

PerExp90 4.10E-10 0.885 0.601 1.246 2.70E-07 0.902 0.545 1.910 

PerExp95 1.32E-10 0.902 0.627 1.252 2.70E-07 0.908 0.552 1.915 

*Expansion metrics as defined in section 3.1.4. 

†Area under the curve.  

‡Italic text indicates highest performing metrics for both grade 2 and grade 3 esophagitis endpoints.  
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The timing of maximum expansion and esophagitis grade showed a strong temporal 

correlation, as both esophagitis endpoints occurred on average around the same treatment 

fraction as the maximum expansion (Figure 3.7d). In addition, 8 patients had breaks in 

treatment due to esophagitis symptoms, with an average reduction of 14.3% in maximum 

expansion. 

 

3.2.3 Expansion & Breath Hold CT 

Similar to the 4DCT study cohort the anatomical correction methodology reduced the 

variance of Jacobian values. The mean FWHM for all 9 patients with weekly BHCT imaging was 

reduced from 0.27 (±0.38) to 0.23 (±0.55) after anatomical correction, yielding a 17.69% (±4.84) 

absolute percent difference. 

The comparative analysis of expansion calculated from BHCTs and 4DCTs for a single 

treatment week for 5 patients using the absolute difference between the expansion metric 

values is shown at the top of Table 3.2. For these five patients, the amount of expansion is 

consistent between both CT types for the given patient. The metrics values of the treatment 

week with largest expansion are consistent with the 4DCT cohort of the same esophagitis 

grade, as shown in the bottom of Table 3.2.   
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Table 3.2: Comparison of the absolute difference in expansion metric values calculated from 

either BHCT or 4DCT for 5 patients in relative units (top), and the expansion metrics values 

grouped according to maximum treatment esophagitis grade for 9 patients with weekly BHCT. 

The values in parentheses in the lower portion of the table represent the range of expansion 

metric values observed.    

 MaxExp1 MaxExp3 MaxExp5 LenExp30% LenExp40% PerExp98 

Mean Abs 

Difference 
0.098 0.104 0.102 15.5 11.0 0.09 

Max Abs 

Difference 
0.160 0.160 0.150 70.0 55.0 0.14 

Min Abs 

Difference 
0.061 0.061 0.040 0.0 0.0 0.07 

       

Grade MaxExp1 MaxExp3 MaxExp5 LenExp30% LenExp40% PerExp98 

G0 (N=4) 
1.17  

(1.13-1.27) 

1.15  

(1.10-1.24) 

1.12  

(1.05-1.21) 

0.00  

(0.00-0.00) 

0.00  

(0.00-0.00) 

1.07  

(0.94-1.17) 

G2 (N=2) 
1.55  

(1.43-1.67) 

1.51  

(1.36-1.65) 

1.49  

(1.35-1.62) 

56.25  

(27.50-85.00) 

28.75  

(2.50-55.00) 

1.44  

(1.35-1.52) 

G3 (N=2) 
1.98  

(1.93-2.03) 

1.95  

(1.89-2.01) 

1.91  

(1.83-1.98) 

121.25 

(85.00-157.50) 

98.75  

(77.50-125.00) 

1.77  

(1.71-1.83) 

 

 

 

3.3 Chapter Discussion 

To the best of our knowledge, this study was the first to propose an alternative measure 

of radiation esophagitis using objective, imaging biomarkers. In addition, we developed a 

method to reduce uncertainty in Jacobian calculations caused by esophageal anatomic 

variability. This study’s findings can be summarized as: first, the localized esophageal volume 

change, from planning to any weekly-treatment time point, can be calculated using the 

Jacobian; second, this correction methodology improves Jacobian calculation accuracy; third, 

the expansion metrics examined were significantly correlated to radiation esophagitis, with 

maximum esophagitis occurring near week of maximum expansion.  
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 Although transient effects can lead to erroneous Jacobian calculations, we found our 

correction methodology reduced these uncertainties. Using our correction methodology, we 

were able to reduce uncertainty by 10.0%, with air content producing the most error. Air in the 

esophagus is common, making censoring patients or sections of the esophagus with air not 

feasible.56 By utilizing the air content correction, we can obtain a more accurate Jacobian 

calculation in air-containing esophageal regions.  

We quantified esophageal expansion to measure esophagitis severity in a novel way. 

Previous studies observed expansion of the esophageal wall in many forms of esophagitis, 

including radiation esophagitis.12,51 However, these studies were presented as clinical 

observations, not thorough radiation-response analyses. In addition, these studies did not 

assess esophagitis severity. Previously, the relationship between esophagitis grade and the ratio 

of esophageal cross-sectional areas of weekly to planning CT images during treatment were 

studied and found that this ratio increased with grade, and these increases occurred in regions 

receiving the highest radiation doses.41 On the basis of this work, we improved our analysis by 

using a 3-dimensional measure of expansion. We developed localized measures of expansion 

and identified the highest correlated metrics to esophagitis grade. Furthermore, the timing 

relationship of maximum expansion and esophagitis grade was investigated. In addition, we 

corrected for anatomic variation to reduce the associated uncertainties. 

 Of the various esophageal expansion metrics we tested, most performed well and were 

highly correlated to esophagitis grade, as shown in Table 3.1. The highest performing metrics 

were maximum axial expansion (MaxExp1) and esophageal length ≥30% axial expansion 

(LenExp30%). The maximum axial expansion metrics seem intuitive as measures of high-grade 
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esophagitis, if the functional subunit of the esophagus is considered a cross-sectional segment, 

and the organ is serial. In addition, MaxExp1 and LenExp30% were combined into a multivariate 

logistic model for both endpoints and computed AUC.  An improvement in classification was 

observed for the grade 3 esophagitis endpoint, with AUC of 0.93 for grade 2 and AUC of 0.91 

for grade 3.  

 The timing of maximum expansion is correlated to esophagitis grade. On average, 

patients with maximum grade 2 esophagitis had maximum expansion occur at the same 

treatment fraction (Figure 3.7d). In addition, 15 of the 16 grade 3 max patients had expansion 

occur before grade 3 esophagitis. Whether expansion precedes grade 3 symptoms is not 

currently discernible as expansion and esophagitis scores are quantified weekly. The 

relationship with grade 2 esophagitis had more variance, but both this could be a product of 

subjectivity within grade 2 assessment. 

 The breath hold patient cohort of this study reflected the results of the 4DCT cohort. 

The anatomical corrections had a similar reduction in uncertainty. The extent of expansion 

metrics for patient esophagitis grade was consistent with observed values in the 4DCT cohort. 

The analysis of weekly 4DCT expansion metrics to those quantified on BHCT were consistent for 

most of the patients when weekly treatment CT time and patient grade were considered. Two 

of the five patients, however had discrepancies in expansion metric values.  

Our study had some limitations. First, a local error in deformable registration may cause 

miscalculation of the Jacobian. We reduced the potential impact of this miscalculation by 

implementing our correction methodology. In addition, there is no direct method to validate 

anatomic uncertainty late in treatment, and we assumed that the plan-to-week 1 variance is 
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representative of variance later in treatment. Nevertheless, patients with grade 0 esophagitis 

did not show any appreciable radiation-response, and even in extreme cases these patients 

exhibited little esophageal expansion. For every patient, expansion is a localized effect, with the 

expanding region only existing within the irradiated esophagus. Although dose-response may 

be considered a paradigm of radiation therapy, the goal of the current work was to show that 

esophageal expansion can quantify esophagitis, and dose was not a focus in our study. How 

dose induces esophageal expansion will be presented soon in a future study. We also did not 

conduct pre-treatment esophageal contrast studies, which allows for identification of pre-

existing thickening of the esophageal wall. In addition, chemotherapy does increase occurrence 

of high-grade esophagitis. How chemotherapy contributes to expansion is not thoroughly 

investigated. However, every patient in this study had the same course on concurrent 

chemotherapy, and no appreciable expansion was observed outside the irradiated esophagus. 

Due to small sample size, the results from the analysis of expansion calculated from BHCT only 

shows feasibility and needs to be verified with a larger data set. 

Quantifying esophagitis with expansion is an attractive method of quantifying 

esophagitis severity. The continuous nature of the expansion metrics may allow esophagitis 

severity to be described in mathematical rather than qualitative terms. The spatial localization 

of expansion allows geometric dose-response information, allowing for a deeper understanding 

of radiation injury in the esophagus, which was previously unavailable. Because esophagitis is 

an endpoint in most thoracic radiation therapy trials, expansion may potentially provide an 

objective measure for comparison of treatment modalities, as well as in-vivo measures of the 

effectiveness of radioprotectors.  
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This provides new options for toxicity prediction modeling. The binary endpoint of 

logistic regression can be chosen with flexibility. As shown in Figure 3.7, most expansion metrics 

had a gap between the minimal metric value for grade 3 esophagitis and the maximal metric 

value for grade 0. This gap as well as the expansion values of 50% probability of complication 

(Table 3.1) represents candidates for dichotomy. NTCP modeling is common practice to predict 

radiation esophagitis at treatment planning.2,3,5,57,58 In previous studies, variation in outcome 

reporting and differing grading scales presented challenges for obtaining effective NTCP 

models.2,21,24 Review studies by Werner-Wasik et al and Rose et al showed that although many 

NTCP-based studies have been performed with collectively thousands of patients, no common 

model can predict esophagitis with high accuracy in external data sets.2,3 The continuous 

nature of expansion metrics may  improve prediction model performance In addition, modeling 

techniques other than logistic regression may be studied. 

In conclusion, esophageal expansion is an imaging biomarker of radiation-response that 

is a suitable surrogate for toxicity. The highest performing expansion metrics were maximum 

axial esophageal expansion and axial length with at least 30% expansion. Expansion metrics 

may be useful to quantify response associated with new treatment techniques and clinical trials. 

The uncertainty in esophageal Jacobian calculations can be reduced by using anatomic 

correction methods. Use of breath-hold CT to calculate esophageal expansion is feasible. Breath 

hold CT would require multiple serial acquisitions to derive the anatomical variability correction 

factors, but these may be less impactful on the Jacobian calculation. However, more studies 

would be required using breath hold CT. 
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Chapter 4 
 

Prediction Modelling of Toxicity Using Esophageal Expansion 
 

 

In the previous chapter, the viability of using the esophageal expansion as a radiation-

response biomarker to quantify toxicity was shown. A natural application of a toxicity surrogate 

metric is its performance in toxicity prediction modelling. The work in this chapter investigates 

the use of esophageal expansion as an endpoint in the toxicity prediction modelling process 

with the goal of increasing model predictive performance. To accomplish this, toxicity 

prediction models were constructed with esophageal expansion endpoints and were then 

compared to toxicity prediction models constructed with traditional grade-based endpoints for 

severe radiation esophagitis. Multiple methods of toxicity prediction model construction were 

implemented within a cross-validation procedure. 
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4.1 Methods and Materials 

4.1.1 Patient Population 

The patients utilized for analysis in this chapter comprise of the same 85 patients from 

the IMRT arm of the prospective clinical trial at University of Texas-MD Anderson Cancer Center 

that had weekly 4DCT imaging, which were described in chapter 3. Patients had weekly 4DCT 

imaging which allows for the computation of esophageal expansion at each week during 

treatment. Esophagitis was graded according to Common Terminology Criteria for Adverse 

Events version (CTCAE) 3.0.19 The distribution of maximum esophagitis grades during treatment 

was: 24 were grade 0, 45 were grade 2, and 16 were grade 3. Out of a pool of 88 patients with 

weekly 4DCT and IMRT treatment from this clinical trial, the same 3 patients excluded in 

chapter 3’s analysis were excluded in this work due to poor image quality. The work in this 

chapter was approved by the University of Texas-MD Anderson Cancer Center Institutional 

Review Board and was HIPAA compliant. 

As previously described in chapter 3, 4DCT scans were acquired on CT scanners 

operated at 120 kV. Voxel dimensions were 0.98x0.98x2.50 mm in the right-left direction, 

anterior-posterior, and superior-inferior direction, respectively, with a 512×512 pixel area. 

Patient treatment planning and segmentation was conducted using the Pinnacle treatment 

planning system (Phillips Healthcare), with esophageal contours segmented from the cricoid 

cartilage to the gastroesophageal junction, in the axial plane, with Pinnacle version 9.8.  
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4.1.2 Logistic Regression  

Since NTCP models use dichotomization for outcome quantification, with 1 representing 

complication occurrence, and 0 representing no complication occurrence, logistic regression 

with is a natural choice for statistical analysis. We define the logistic model as: 

 

 𝑁𝑇𝐶𝑃 =  
1

1+𝑒−(𝛼0+𝛼1 ∗𝑥1+…+𝛼𝑛 ∗𝑥𝑛)      (4.1) 

 

for a model with n predictor variables, denoted 𝑥𝑖 , where 𝛼𝑖 are the regression coefficients. 

 

4.1.3 Forward, Stepwise Model Selection 

While there are many ways to select model predictor variables, one of the most 

traditional is the forward, stepwise selection method.6,33,34 Starting with a null model, each 

predictor variable is added and the ratio likelihood test is used to identify which individual 

predictor performs best for the given model order. In addition, Bayesian information criterion 

(BIC) is calculated for each model order; when BIC is minimized, this is selected as the optimal 

model order to prevent overfitting.  

 

4.1.4 Least Absolute Shrinkage and Selection Operator (LASSO) 

While stepwise selection is common for NTCP model creation, the LASSO has been 

shown to have improved prediction ability.64-66 The predictor variable selection methodology in 

LASSO identifies the subset of the regression coefficients, 𝛼𝑖 , equal to zero, using the penalty 

term, λ, by minimizing the following equation: 
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 ∑ (𝑌𝑖 −
1

1+𝑒−(𝛼0+𝛼1 ∗𝑥1+…+𝛼𝑛 ∗𝑥𝑛))
2𝑛

𝑖=1 +  λ ∑ |𝛼𝑖|
𝑛
𝑖=1      (4.2) 

 

for n number of predictors, where 𝑌𝑖 is the complication outcome. For a larger λ, less variables 

will be utilized in the model.62  

 

4.1.5 Random Forest Classification 

Random Forests classification is a wholly different modelling approach than stepwise or 

LASSO logistic regression, since there is no longer an attempt to fit a logit analytical function.62 

Random Forests is an ensemble decision tree approach with an implementation of bootstrap 

aggregation, or bagging, and a random draw of a set-sized subset of model predictors at each 

tree node.69 The result of this procedure is an ensemble of de-correlated trees that should 

increase generalizability of the model. In our implementation of Random Forests, the number of 

randomly drawn predictors from the training data was 7 for each node (the square root of the 

number of predictors). The number of trees in the ensemble was 300, to allow for sufficient 

stabilization, and the minimum leaf observation size was 1 for all trees. 
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4.1.6 Objective Esophagitis Endpoints 

As shown in chapter 3, esophageal expansion calculated from the radiation therapy 

treatment planning CT to weekly treatment 4DCTs is a surrogate quantification of radiation 

toxicity in the esophagus. In addition, the analysis in chapter 3 showed that the maximum axial 

expansion of one slice (MaxExp1), and the axial esophageal length with at least 30% expansion 

(LenExp30%), were the highest performing endpoints for quantifying grade 3 esophagitis. In 

this chapter’s analysis, these two expansion biomarkers are examined separately as endpoint in 

the toxicity prediction modelling process. The scientific question of this analysis is: can these 

surrogate endpoints produce better performing prediction models, in terms of prediction 

performance, than using an esophagitis grade input. 

 While the objective expansion metrics are continuous, to get a direct comparison of 

NTCP performance with traditional grade-based endpoint models, the patients had their 

MaxExp1 and LenExp30% biomarker values dichotomized according to a threshold value for the 

given metric. This threshold value was chosen to be the intersection value of the grade 0 and 

grade 3 distributions for the particular metric: 50% for MaxExp1, and 45mm for LenExp30%. An 

example for the determination of this intersection metric value is given by the dotted red line 

for MaxExp1 in Figure 4.1.  
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Figure 4.1: Determination of the threshold value for endpoint dichotomization of patients as 

either having the complication or not having the complication for the MaxExp1 expansion 

biomarker. The dotted red line represents the intersection of grade 0 and grade 3 MaxExp1 

metric values and is the threshold metric value (MaxExp1 of 1.5 in relative units and 50% in 

units of percent expansion).  

 

 

4.1.7 NTCP Model Assessment: Repeated Holdout Cross-Validation 

For all model construction methods, repeated holdout cross-validation, also known as 

Monte Carlo cross-validation was utilized to randomly partition patient data in the model 

construction process.62,70 The patient data are comprised of the clinical factors and DVH dose 

metrics that are used as model predictors, as well as the individual patients’ endpoints, 

specifically esophagitis grade, MaxExp1, and LenExp30% objective values. The toxicity predictor 

variables were clinical factors consisting of: age, gender, tumor prescription dose, tumor 

location, tumor stage, tumor histology, gross tumor volume, nodal involvement, if the patient 

had induction chemotherapy, and smoking status (former smoker, current smoker, never 

smoked).  Esophagus DVH dose metrics included: maximum (Dmax) and mean esophagus dose 

(MED), absolute volume of dose from 10Gy to 70Gy in 5Gy increments, esophageal length 
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receiving ≥ 10Gy to 50Gy in 10Gy increments for both 25% and 100% circumference coverages 

of the esophagus.  

Approximately 75% of the data (64 patients) are partitioned into the training data set for 

model construction and fit assessment. The remaining 25% of the original patient data set is 

held out for assessing model prediction performance. This process starts by randomly splitting 

the dataset into the aforementioned training and test data sets. A toxicity prediction model is 

constructed on the training data set for all three model types simultaneously (stepwise, LASSO, 

and Random Forests). There is a unique step in the LASSO model methodology, whereby the 

optimal penalization parameter, λ, is calculated by 5-fold cross-validation with deviance as the 

optimization measure on the training data set. 

The fit performance of the model is assessed by predicting the known outcomes of 

patients in the training set by using each patient’s respective predictor variables and 

corresponding outcome, in the derived model. The model order of the fitted models, as well as 

the predictors present in the models are all cataloged. Model predictive performance is then 

assessed by applying the developed model to each patient in the test data set. In both the fit 

and predictive model assessments, area under the curve (AUC) from receiver operating 

characteristics analysis is used to quantify performance. This process is repeated for 100 

iterations to account the randomness of partitioning the full data into training and test sets. 

This model construction methodology is performed for all 3 endpoint types (Grade, MaxExp1, 

and LenExp30%), separately. The distribution of AUCPrediction values are tested for significant 

differences between all model methods and endpoint types with a paired T-test (p<0.05 for 

significance).  
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Figure 4.2 illustrates the iterative process of the model construction methodology. The 

model order and predictor variables present in the model are recorded. Since Random Forests 

is an ensemble approach, recording model order and predictor variable occurrence in the 

model is not informative. Therefore, predictor importance is quantified with the out-of-bag 

permutation error, which is the average increase in prediction error is as variables are permuted 

on observations that are out-of-bag for the entire ensemble. 

 
 

Figure 4.2: Schematic of the model construction and assessment process. This represents a 

single iteration of 1000 total iterations of the repeated cross-validation process. For each 

iteration, a model is trained on the training set from 75% of the full patient data, based on a 

random partition. The trained model is assessed on the test set consisting of the remaining 25% 

of full patient data, to simulate external validation and prediction performance. This process is 

executed 1000 times with a different random partition of test and training data.  
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4.1.8 Computational Implementation 

All predictor variables were standardized by subtracting the mean variable value of all 

patients from each individual patient value, and then dividing the result by the standard 

deviation.70 All computations were conducted in MATLAB (Mathworks, Natick, MA) version 8.2. 

Forward stepwise logistic regression and Random Forests classification models were 

constructed with MATLAB’s machine learning and statistics toolbox. LASSO models were 

constructed using the open source glmnet package implemented in MATLAB.72 It should be 

noted that for each model construction method using different endpoints, the same random 

number seed is initialized before any computations.  

 

 

4.2 Results 

4.2.1 Patient Population 

Clinical factors, Radiotherapy Prescription dose, and maximal esophagitis grade during 

treatment for the 85 study patients are summarized Table 4.1. The median week of maximal 

esophageal expansion was week 6 (range, 4-8).  A summary of DVH dose metrics for this 

population is shown in Table 4.2. 
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Table 4.1: Demographic characteristics of the 85 study patients. 

    Characteristic Datum 

Median age (range) 
 

All 65 years (43-85 years) 

Male 65 years (47-80 years) 

Female 66 years (43-85 years) 

Sex 
 

No. of Males 45 

No. of Females 40 

Histologic findings 
 

Squamous cell    

    carcinoma 

29 

Adenocarcinoma 50 

Large cell  

    carcinoma 

3 

Other 3 

Smoking history 
 

Current smoker 18 

Former smoker 58 

Never smoked 9 

Stage 
 

IIa 3 

IIb 3 

IIIa 39 

IIIb 36 

IV 4 

Treatment dose, Gy 
 

74 53 

66 28 

60 4 

Max Esophagitis Grade  

Grade 0 24 

Grade 2 45 

Grade 3 16 
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Table 4.2: Summary statistics for dose-volume histogram metrics for the 85 study patients, 

including mean, standard deviation, maximum, and minimum metric values. The units are Gy for 

MED and Dmax, cm3 for V10-V70, and esophgeal length in cm for LE metrics. 

DVH Metrics Mean S.D. Max Min 

MED 71.53 11.11 83.06 20.64 

Dmax 30.02 10.50 53.17 3.99 

V10 20.11 8.37 51.72 3.24 

V15 18.66 8.43 49.81 0.25 

V20 17.31 8.39 47.86 0.01 

V25 16.04 8.23 44.57 0.00 

V30 14.97 8.00 43.71 0.00 

V35 13.92 7.67 42.67 0.00 

V40 12.85 7.41 41.19 0.00 

V45 11.73 7.10 38.57 0.00 

V50 10.47 6.74 35.06 0.00 

V55 9.09 6.14 30.24 0.00 

V60 7.10 5.02 21.21 0.00 

V65 4.61 3.98 18.86 0.00 

V70 2.46 3.39 16.09 0.00 

LE1025% 13.39 3.33 20.00 4.75 

LE2025% 12.05 3.36 19.00 2.75 

LE3025% 10.52 3.68 18.50 0.00 

LE4025% 9.23 3.85 18.00 0.00 

LE5025% 8.10 3.72 17.50 0.00 

LE6025% 6.23 3.13 14.75 0.00 

LE10100% 12.06 3.73 19.00 0.50 

LE20100% 9.48 3.86 18.00 0.50 

LE30100% 7.63 3.68 17.50 0.25 

LE40100% 6.18 3.15 15.00 0.25 

LE50100% 4.93 2.68 12.75 0.25 

LE60100% 3.43 1.84 7.00 0.25 

Abbreviations:  MED = mean esophagus dose; Dmax = maximum esophagus dose; V10 = 

volume of esophagus receiving at least 10 Gy; LE1025% = esophageal length with at least 10 Gy 

to at least 25% of the cross-sectional area to axial slice of the esophagus; LE10100% = 

esophageal length with at least 10 Gy to at least 100% of the cross-sectional area to axial slice 

of the esophagus. 
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4.2.2 Model Construction 

A total of 49 predictor variables were inputs to the toxicity prediction model 

construction process, as summarized in Table 4.3. For model construction with the grade 3 

endpoint, the most common model order was 7 terms for the forward stepwise, and 9 for the 

LASSO implementation. Models using the objective MaxExp1 ≥ 50% endpoint had most 

common model orders of 6 for stepwise, and 11 for LASSO. LenExp30% ≥ 45mm endpoint-

based models had an average model order of 6 for stepwise and 7 for LASSO. 

The most common predictor variables in all models are recorded in Table 4.3. For grade-

based endpoint models, clinical factors were the highest recurring predictor type with LE60100% 

being the sole DVH metric in the top-five recurring model predictors. This was a similar result in 

the grade-based endpoint LASSO models, where LE60100% and V70 were the second and fifth 

most recurring predictors in the fitted models, respectively. This was not the case for the 

Random Forests grade endpoint models, where no clinical factors were in the top-five of most 

recurring model predictors. For both LenExp30% and MaxExp1 objective endpoint-based 

models, dosimetric predictors were the most recurring, specifically LE40100% which was the first 

or second highest recurring predictor in all model types. Mean esophageal dose was also 

present in all model types. 

The fit performance of each model type for each endpoint is also displayed in Table 4.3. 

All scenarios except one had average AUCFit >0.90, showing strong calibration of each model. 

Stepwise model type showed the highest average AUCFit.   
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Table 4.3: Results of toxicity prediction model construction for 85 patients using stepwise 

logistic regression, LASSO logistic regression, and Random Forest classification. Each model 

type was constructed with complication endpoints of: esophagitis ≥ grade 3, maximum axial 

expansion of one slice (MaxExp1) ≥ 50%, and esophageal length with expansion of at least 30% 

(LenExp30%) ≥ 45mm, separately. The area under the curve from model fitting on training data 

and model prediction on test data is denoted AUCFit and AUCPrediction, respectively. Highest 

recurring predictors are listed in order of most to least recurring, for all model predictors 

occurring in at least 500 out of 1000 iterations of the cross-validation procedure. 

Model 

Type 
Endpoint 

AUCFit 

(S.D.) 

AUCPrediction 

(S.D.) 
Highest Recurring Predictors 

     

Stepwise 

Esophagitis≥ 

Grade 3 

0.99 (±0.01) 0.58 (±0.15) 
Age, Tumor Location, Induction 

Chemo, LE60100%, Smoking Status 

LASSO 0.91 (±0.10) 0.64 (±0.12) 
Tumor Location, LE60100%, Age, 

Smoking Status, V70 

Random 

Forest 
0.97 (±0.05) 0.55 (±0.07) V55, LE50100%, LE40100%, MED, V40 

     

Stepwise 

MaxExp1 ≥ 

50% 

0.96 (±0.02) 0.66 (±0.18) LE40100%, V50, Stage, MED, Dmax 

LASSO 0.90 (±0.06) 0.75 (±0.10) LE40100%, V70, Stage, MED, Dmax 

Random 

Forest 
0.99 (±0.02) 0.76 (±0.10) 

LE40100%, LE50100%, LE30100%, V70, 

MED 

     

Stepwise 

LenExp30% 

≥ 45mm 

0.96 (±0.02) 0.69 (±0.13) 
Stage, LE40100%, MED, Tumor 

Location, Dmax 

LASSO 0.84 (±0.08) 0.73 (±0.10) 
LE40100%, MED, Stage, LE3025%, 

LE50100% 

Random 

Forest 
0.99 (±0.03) 0.73 (±0.10) 

LE50100%, LE40100%, V55, MED, 

LE30100% 

Abbreviations:  MED = mean esophagus dose; Dmax = maximum esophagus dose; V10 = 

volume of esophagus receiving at least 10 Gy; LE1025% = esophageal length with at least 10 Gy 

to at least 25% of the cross-sectional area to axial slice of the esophagus; LE10100% = 

esophageal length with at least 10 Gy to at least 100% of the cross-sectional area to axial slice 

of the esophagus. 
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4.2.3 Model Prediction 

The prediction performance of the different model types with the three endpoints is 

quantified with AUCPrediction and is displayed in Table 4.3. The mean AUCPrediction value for 

models using the grade 3 endpoint is 0.58, 0.64, and 0.55 for the stepwise, LASSO, and Random 

Forests, respectively.  The mean AUCPrediction value for models using the objective 

MaxExp1≥50% endpoint is: 0.66, 0.75 and 0.76 for the stepwise regression, LASSO, and Random 

Forests, respectively. The mean AUCPrediction value for models using the objective 

LenExp30%≥45mm endpoint is: 0.69, 0.73 and 0.73 for the stepwise regression, LASSO, and 

Random Forests, respectively. Standard deviation of AUCPrediction values are generally lower for 

LASSO and Random Forests models using either objective endpoint than either the grade-

based endpoint models, or the stepwise model type. A boxplot of AUCPrediction values from all 

iterations of the model construction and assessment methodology is shown in Figure 4.3. The 

AUCPrediction values for the Random Forests and LASSO methods using either objective endpoint 

were significantly higher than AUCPrediction values from all methods using the grade endpoint. 

Additionally, AUCPrediction values from LASSO and Random Forests methods were significantly 

higher than the stepwise method when using either objective endpoint. 



52 
 

 

Figure 4.3: Boxplot of AUC values of model prediction using holdout test data for all 100 

iterations of the repeated cross-validation procedure. Endpoints were grade 3 esophagitis (light 

blue), and the objective endpoint MaxExp1≥50% (medium blue), and LenExp30%≥45mm (dark 

blue). The first group of three individual boxplots are models constructed with stepwise logistic 

regression, the second grouping is LASSO, and the final group is Random Forests. The 

individual boxes represent the respective quartiles, with the solid black line in the box 

representing the median AUC value, as well as the solid black circle representing the mean AUC 

value. Outliers are denoted with gray ‘+’ symbols. 
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4.3 Chapter Discussion 

The work in this chapter represents a novel investigation of the use of objective 

measures of esophageal toxicity in the prediction modelling process. Several comprehensive 

review publications in the literature identified the need for objective imaging biomarkers with 

application in toxicity prediction modelling.67,68 The work in this chapter specifically addresses 

this issue. Prediction models were constructed with two different logistic regression methods 

and a Random Forests classifier, all using the traditional grade 3 endpoint, and directly 

comparing the modelling process with objective esophagitis measures as endpoints in the form 

of the MaxExp1 ≥ 50% and LenExp30% ≥ 45mm. 

 There was consistency in predictor variables chosen for model selection, regardless of 

model construction method or model endpoint. Mean esophageal dose (MED) and length of 

esophagus receiving at least 40Gy to 100% of the esophageal circumference (LE40100%), were 

consistently selected as variables for the prediction models. This is consistent with previous 

esophagitis toxicity studies.2,3 Mean esophageal dose and length of esophagus receiving at 

least 40Gy to the entire esophageal circumference were commonly selected in all objective 

endpoint-based scenarios, which showed higher prediction performance then the grade-based 

endpoint models. Interestingly, irradiated length of the esophagus was shown to be correlated 

to toxicity and may infer an ability to partially spare the esophagus. A strong fit was obtained 

on the training data for all model types and endpoints, as shown in Table 4.3. 

It is important to note that true prediction ability must be tested on data not used in the 

NTCP model process. As an example, the stepwise method with the grade endpoint has a mean 

AUCFit of 0.99. Without cross-validation one may conclude this is a robust prediction modelling 
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method. However, the mean AUCPrediction value is only 0.58 for this model, indicating severe 

overfitting. 

The prediction ability, as quantified by AUC on the test sets of data, is illustrated in 

figure 2 for all 9 modelling scenarios (3 model construction methods, 3 endpoints). From this 

figure, a general trend of increase AUCPrediction with a smaller variance can be seen with Random 

Forests and LASSO models using objective endpoints compared to the grade endpoint. In 

addition, the prediction performance is increased by using LASSO or Random Forests compared 

to stepwise logistic regression, with the exception of the Random Forests method using the 

grade 3 endpoint. 

Comparing the AUCFit to AUCPrediction for respective model method and endpoint type 

shows a smaller difference between model training and testing performance for the LASSO and 

Random Forests methods using the objective endpoints, when compared to the stepwise 

method and grade endpoints. This indicates the LASSO and Random Forests models, as well as 

the objective biomarker endpoints are more generalizable model construction methods than 

stepwise regression or the grade 3 endpoint. The observed superiority of LASSO to stepwise 

regression for NTCP modelling is consistent with previous studies.64-66   

There were several limitations with this analysis. Generally, a larger sample size is 

desired in prediction modelling, and the 85 patient sample in this study is on the lower end of 

common experience.2,3 However, the need for weekly 4DCT acquisition during treatment to 

calculate esophageal expansion limits the amount of patients currently available for analysis. 

Another limitation was the inability of our study to report a single ‘superior’ model. Typically, 

NTCP modelling studies report a full logistic regression equation with predictor variables and 
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coefficients for comparison with existing and future models. However, our goal was not to find 

a single ‘superior’ model, but to analyze the performance of objective esophagitis endpoints in 

the NTCP modelling process, with comparison to traditional grade based endpoints. In addition, 

we wanted to compare the performance of a common predictor selection method (stepwise 

regression) with two promising techniques, LASSO and Random Forests.  

The results from this chapter show the utility of esophageal expansion as objective 

biomarker endpoints for toxicity prediction modelling. In addition, we have shown the superior 

predictive performance of LASSO and Random Forests compared to stepwise models in the 

toxicity prediction modelling process for esophagitis. Further investigations into using objective 

esophagitis endpoints for more robust prediction models may now be explored. 

 In conclusion, objective, localized measures of esophageal toxicity in the form the 

expansion biomarkers maximum axial expansion of one slice of the esophagus (MaxExp1) and 

esophageal length with at least 30% expansion (LenExp30%), with respective complication 

thresholds of 50% and 45mm, have higher predictive performance than CTCAE grade for 

prediction models of severe esophagitis. All model types showed irradiated length of the 

esophagus as a common predictor of toxicity. LASSO and Random Forests model types 

outperform forward, stepwise model selection for predicting severe esophagitis. 
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Chapter 5 
 

Normalized Uptake from 18Fluorodeoxyglucose Positron Emission 

Tomography as a Measure of Esophageal Radiation Injury 
 

  

This chapter investigates normalized FDG uptake, as quantified from mid-treatment 

FDG-PET/CT imaging, as a radiation-response and toxicity measure for esophageal radiation 

injury. Robust metrics of normalized FDG uptake are derived for classification of toxicity. A 

methodology to normalize FDG uptake as a radiation-response metrics is tested. These 

normalized FDG uptake metrics are then shown to be robust biomarkers of esophageal 

radiation-response and esophageal toxicity, by statistical analysis with physician scored 

radiation esophagitis grade. The highest performing normalized uptake metrics are then 

analyzed as predictors of esophagitis symptom development from patients who are 

asymptomatic at the time of the FDG-PET study. In addition, the relationship between FDG 

uptake and esophageal expansion was examined. This chapter comprises specific aim 2.  

 

A substantial portion of this chapter is based on the following publication:  

Niedzielski JS, Yang J, Liao Z, Gomez DR, Stingo F, Mohan R, Martel MK, Briere TM, Court LE. 
18F-fluorodeoxyglucose-positron emission tomography can quantify and predict esophageal 

injury during radiation therapy. Int J Radiat Oncol Biol and Phys 2016 96(3):670-678. 

 

doi: 10.1016/j.ijrobp.2016.07.012 

©Elsevier 

 

Written permission for reuse of these materials was obtained from Elsevier Publishing. 
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5.1 Methods and Materials 

5.1.1 Patient Population 

The patient population studied in this chapter was from the same pool of patients from 

a prospective clinical trial for treatment of NSCLC. We identified 79 patients for this 

retrospective analysis that had a single FDG-PET/CT scan acquired during treatment. As 

mentioned in previous chapters, all patients in this clinical trial were treated with concurrent 

chemotherapy (paclitaxel and carboplatin) and either intensity-modulated photon radiation 

therapy or passive-scatter proton radiation therapy, with a tumor prescription dose of 60-74 Gy 

in 2-Gy fractions over 6-8 weeks. Of these 79 patients for this FDG-based study, 67 patients 

were included that also had expansion calculated during treatment. Of these 67 patients, 36 

were included in the analyses from chapters 3 and 4. 

Esophagus contours were segmented in the axial plane from the cricoid cartilage to the 

gastroesophageal junction. Esophagitis was prospectively scored weekly throughout treatment 

using the Common Terminology Criteria for Adverse Events 4.0. The distribution of esophagitis 

grades was as follows: 43 grade 0, 30 grade 2, and 6 grade 3 at the time of the PET studies, and 

progressed to maximum esophagitis of 17 grade 0, 40 grade 2, and 22 grade 3, by treatment 

completion. For the 43 grade 0 patients at time of the PET study, 26 would progress to have 

esophagitis (23 grade 2, 3 grade 3).  

All PET/CT scans were acquired with a General Electric Discovery ST PET/CT scanner (GE 

Medical Systems, Waukesha, WI) with 3.9×3.9×3.3mm3 voxels. PET/CT studies were acquired in 

the treatment position with standard patient immobilization used for radiation therapy 

planning CT scans. All PET studies were attenuation-corrected with an accompanying CT scan. 
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PET scans were conducted at a median of 100.1 minutes (range, 58.1-159.2 minutes) after 

injection of a median of 377.0 MBq (range, 241.4-507.2 MBq) of FDG. The PET/CT scans were 

deformed using a B-splines image registration algorithm in the planning CT frame of reference 

and resampled into 0.98×0.98×2.50mm3 voxels using Velocity AI 3.0.1 (Velocity Medical 

Solutions, Atlanta, GA). The timing of the PET studies during treatment was not uniform. On 

average, the PET scan was acquired at fraction 23 (±2.4 standard deviation, 18-28 range).  

 

5.1.3 Normalized FDG Radiation-Response 

We developed in-house code for data extraction, uptake calculation, and analysis using 

MATLAB (Mathworks, Natick, MA). This software converted the planning CT esophagus 

segmentations into binary masks for identification of esophageal voxels in image space. Using 

spatial reference points from the corresponding digital imaging and communications in 

medicine (DICOM) header file, spatial positioning in Cartesian coordinate space of each voxel 

can be identified for both the FDG-PET and radiation dose arrays. From this information, the 

FDG-uptake and radiation dose for each voxel in the esophagus can be identified. FDG uptake 

was quantified as the standard uptake value (SUV) according to the bodyweight calculated SUV 

equation, with voxel SUVMean and SUVMax calculated.73,74 

To control intra-patient FDG uptake variability, uptake was normalized as a patient-

specific radiation-response quantification. For each patient, we calculated a normalization factor 

of the mean SUV value for esophageal voxels irradiated up to a X Gy low-dose threshold, for 

delivered dose at the time of the PET study, and then divided the remaining esophageal PET 

voxels above the low-dose threshold by this normalization factor.   
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The normalized SUV equation is: 

  𝑛𝑆𝑈𝑉(𝑥, 𝑦, 𝑧) = (
𝑆𝑈𝑉(𝑥,𝑦,𝑧)>𝑋 𝐺𝑦

𝑆𝑈𝑉𝑀𝑒𝑎𝑛<𝑋 𝐺𝑦
− 1) ∗ 100     (1) 

Where SUVMean < X Gy is the average FDG uptake in the low-dose region (less than X Gy) of the 

esophagus and uptake value. Normalization low-dose cutoff value was analyzed for threshold 

values of X = 1, 2, 5, 8, and 10-Gy. The multiple choices of the low-dose threshold were 

examined to test the sensitivity of the choice of the threshold value. The normalized SUV 

(nSUV) represents the percent uptake increase from the low-dose esophageal region due to the 

corresponding radiation dose. SUV(x,y,z)>X Gy is the given voxel FDG uptake.  

 Localized uptake metrics were derived by averaging nSUV at each axial segment of the 

esophagus in two ways: axial-averaged maximum nSUV for 1, 3, 5, and 7-slices (e.g., nSUVAxMax7 

for the 7-slice average) and axial length of esophagus with at least a given percentage of axial-

averaged nSUV response (e.g., nSUVLen40 for esophageal length with nSUV ≥ 40% axial-

averaged normalized response), with an nSUV increase ranging from 20% to 60% in 10% 

increments. Voxel nSUV mean (nSUVMean), maximum (nSUVMax), and percentile nSUV values 

from sixty-fifth to ninety-fifth percentile (e.g., nSUVPerc65 for the sixty-fifth percentile) were also 

calculated. Standard SUV values of SUVMax and SUVMean were also reported.  
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5.1.4 Esophagitis Timing and Progression  

The relationship between esophagitis grade (both maximum grade and grade at the 

time of the PET study) and normalized uptake was examined. The timing of esophagitis severity 

and progression to maximum grade was analyzed in terms of treatment fractions between the 

PET scan and the escalation of grade, and then compared with nSUV.  

The ability of mid-treatment nSUV to predict maximum esophagitis grade was also 

investigated for patients who were asymptomatic during the PET study. These patients were 

grouped as: grade 0 at the time of the PET study that remained grade 0 throughout treatment 

(G0-0), grade 0 that became grade 2 or 3 (G0-2/3), grade 2 that stayed grade 2 (G2-2), grade 2 

that became grade 3 (G2-3), and grade 3 that stayed grade 3 (G3-3). Progression for G2-3 

patients was not analyzed due to low sample size. No patients had esophagitis grade escalate 

after completion of radiation therapy. Prediction of symptom progression from asymptomatic 

patients during the PET study (n = 43) was created using LASSO logistic regression and nSUV 

metric values. Model construction is described in section 5.1.6.  

 

5.1.5 Normalized FDG Uptake & Esophageal Expansion  

 A natural question arises of how FDG uptake and esophageal expansion relate for a 

given patient. A total of 67 out of the 79 patients in this analysis had esophageal expansion 

quantified calculated from 4DCTs for the same week of FDG-PET acquisitions. This allowed the 

FDG uptake and expansion to be compared at the same time point during treatment for a given 

patient.  
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5.1.6 Statistical Considerations 

FDG uptake and dose metrics were compared with esophagitis grade, both at the time 

of the PET study and maximum treatment grade, for ≥ grade 2 esophagitis complication using 

univariate logistic regression and Spearman rank analysis. Model fit was assessed using area 

under the curve (AUC) from receiver operating characteristics (ROC) analysis. Reported Logistic 

regression p-values were calculated using the likelihood ratio chi-square test. Prediction of 

maximum esophagitis grade from mid-treatment nSUV was tested using the Mann-Whitney U 

test. All p-values were reported after applying the Benjamini-Hochberg false discovery 

procedure. A p-value of ≤0.05 was considered statistically significant.  

To test the relationship of nSUV and esophagitis grade in a multivariate analysis, least 

absolute shrinkage selection operator (LASSO) penalized logistic regression was utilized. LASSO 

has the ability to ignore redundant features and improve predictive ability when compared to 

stepwise logistic regression.62,64,65,66 Model features in the form of nSUV were used to predict 

≥ grade 2 esophagitis at time of PET study, and ≥ grade 2 maximum treatment grade. A 3-fold 

cross-validation procedure (folds of 1 training, 1 validation, and 1 test) was repeated for 100 

iterations, with AUC calculated from NTCP predictions (probability of ≥grade 2 esophagitis 

incidence) on the test fold for every iteration. The AUCMean and standard deviation of AUC 

values quantifies the robustness of the trained nSUV model to classify esophagitis on the test 

set. LASSO model parameters were derived from the validation set and the tested model was 

constructed from the training set.  

To investigate the added value of nSUV in classifying esophagitis, dosimetric features 

were examined as separate model features and then repeated with nSUV features to predict 
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≥grade 2 esophagitis in the model construction method previously described. Dosimetric 

features were quantified using dose-volume histogram (DVH) metrics in the form of esophagus 

volume receiving at least X dose (VX), length of esophagus irradiated to at least X dose with 

complete esophageal axial coverage (LEX), and mean (MED) and max (Dmax) esophageal dose. 

Dose metrics were also quantified and separately tested in model construction in the form of 

fractional DVH metrics, for each patient’s fraction at time of the PET study. 

The previously described model construction method was implemented with 

asymptomatic patients at time of the PET study (n=43), to predict symptom progression by 

completion of treatment (≥ grade 2). Model construction of nSUV-only, dose-only, and nSUV 

and dose features were conducted.  

 

5.2 Results 

5.2.1 Patient Characteristics 

Clinical factors of the 79 patients studied are summarized in Table 5.1. No clinical factors 

were associated with esophagitis grade, either maximum grade or grade during the PET study. 

Neither injected FDG dose nor PET scan times were correlated to nSUV metrics. In addition, the 

timing of the PET study was not associated with esophagitis or nSUV metrics’ value. 
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5.2.2 Normalization of FDG Uptake 

The normalization factor was calculated for threshold values of 1, 2, 5, 8, and 10 Gy for 

50 of the 79 patients studied. The 5Gy threshold was selected. The average percent difference 

between using 5Gy normalization factor versus other examined threshold values was 2.36% 

(±2.00% standard deviation), with four patients more than 6.00% (10.48% maximum). In 

addition, nSUV metrics were calculated for these 50 patients and the effect of different 

threshold values was analyzed. None of the metrics had an average difference of more than 

4.8% for an individual patient. Since effect of threshold choice was minimal, two patients had 

nSUV metrics calculated with different normalization factor thresholds (1Gy, 8Gy) to acquire an 

adequate amount of normalization voxels for analysis. The necessity of normalizing the SUV 

value can be illustrated by comparing Figure 5.2 (no normalization) to Figure 5.3a,b (with 

normalization). The stratification of esophagitis grade by SUV magnitude is stronger with 

normalization (Figure 5.3) than without (Figure 5.2). In addition, the meaning of the SUV metric 

is stronger and more appropriate for analyzing dose-response, as the metric has been 

normalized according to a patient’s radiation response characteristics. 

 

5.2.3 Normalized FDG Uptake and Esophagitis Severity 

Normalized uptake generally increased along with esophagitis severity. This was true of 

both esophagitis grade measured during the PET study, and treatment maximum. For each 

patient, increased normalized uptake was confined to the region of highest radiation dose 

along the length of the esophagus (Figure 5.1).  
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Table 5.1: Demographic characteristics of the 79 study patients. 

Characteristic Datum 

Median age (range) 
 

All 66 years (38-80 years) 

Male 65 years (51-79 years) 

Female 66 years (38-80 years) 

Sex 
 

No. of Males 46 

No. of Females 33 

Histologic findings 
 

Squamous cell carcinoma 31 

Adenocarcinoma 41 

Large cell carcinoma 3 

Other 4 

Smoking history 
 

Current smoker 27 

Former smoker 46 

Never smoked 6 

Stage 
 

IIa 3 

IIb 5 

IIIa 29 

IIIb 38 

IV 4 

Treatment dose, Gy 
 

74 46 

66 28 

60 5 
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Figure 5.1: Sagittal view of esophageal anatomy as measured by computed tomography (CT; 

left panels) with radiation dose and normalized uptake in the sagittal plane (right panels) for an 

asymptomatic patient (68 year old male), a,b, and a patient (73 year old male) with grade 3 

esophagitis at the time of the positron emission tomography (PET) study, c,d. The esophagus is 

outlined in blue on the CT scans, with radiation planning isodose lines of 20 Gy (light blue), 30 

Gy (orange), 40 Gy (red), 50 Gy (yellow), 60 Gy (purple), and 70 Gy (dark green) . The region of 

high esophageal dose and corresponding normalized standard uptake value (nSUV) is 

highlighted with the black arrows. 
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Figure 5.2: Esophagus FDG standard uptake values without normalization for voxel mean 

uptake (SUVMean) in (A) and voxel max uptake (SUVMax) in (B)  for patients with grade 0, 2, or 3 

maximum esophagitis grades,. Boxplot corners represent 25th and 75th percentiles and middle 

line the median value. Outliers are denoted as ‘+’. 

 

The ability of nSUV to stratify patients on the basis of esophagitis grade at the time of 

the PET study, as well as the maximum esophagitis grade, is shown for nSUVAxMax1 in Figure 

5.3a,b. A strong trend of increasing nSUV with increasing esophagitis severity is observed. 

Grouping patients’ esophagitis grade during the PET study and the maximum grade showed a 

trend of increasing normalized uptake with increasing esophagitis severity (Figure 5.3c). Figure 

5.3 shows the ability of nSUV to stratify esophagitis severity, as well as esophagitis progression, 

from the time of the FDG-PET study to treatment completion; for comparison, boxplots of the 

mean and maximum esophageal dose grouped according to esophagitis grade are presented in 

the supplemental materials. 
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Figure 5.3: Esophagus FDG axial-averaged maximum normalized standard uptake values for 1 

slice (nSUVAxMax1) for patients with grade 0, 2, or 3 esophagitis at the time of the PET study, A, 

grade 0, 2, or 3 maximum esophagitis grades, B, and nSUVAxMax1 grouped by patient 

progression of esophagitis grade at the time of the PET study to maximum grade, C. Boxplot 

corners represent 25th and 75th percentiles and middle line the median value. Outliers are 

denoted as ‘+’. 
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In the univariate analysis, most nSUV metrics were significantly correlated with 

esophagitis grade (p < 0.05) for the endpoints investigated (Table 5.2). The highest performing 

metrics for both endpoints were nSUVAxMax1 and nSUVLen40, with AUC values ≥ 0.85 for ≥ grade 

2 esophagitis at the time of the PET study and AUC values ≥ 0.91 for maximum esophagitis 

≥grade 2. SUVMean was associated only with ≥grade 2 esophagitis at the time of the PET study. 

SUVMax was significantly correlated (p < 0.05) with both endpoints, but performance was much 

lower than any significant normalized uptake metric (Table 5.2). 

The results of the multivariate analysis are listed in Table 5.3. Inclusion of only nSUV 

metrics for model features outperformed dose-only models for both ≥ grade 2 esophagitis 

endpoint scenarios (AUC 0.83 and 0.88 vs. 0.52 and 0.76, for grade at time of PET scan and 

treatment completion, respectively). The difference in AUC between model types was significant 

for both grade at time of PET scan (p<0.05) and treatment completion (p<0.001), respectively. 

Models that combined nSUV and dose metrics showed slight improvement in AUC, albeit with 

higher model complexity. In addition, nSUV metrics had higher model occurrence and lower 

penalization on average than dose metrics. 
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Table 5.2: Statistical analysis of the relationship between 18F-fluorodeoxyglucose (FDG) uptake 

metrics and esophagitis grade at the time of the FDG-positron emission tomography (PET) 

scan, and maximum treatment esophagitis grade (n = 79). Univariate logistic regression p-

values reported have been corrected with the Benjamini-Hochberg false discovery rate 

procedure. 

FDG uptake metric 

≥Grade 2 during PET scan ≥Grade 2 Treatment Maximum 

P Value  AUC* P Value  AUC* 

SUVmean 2.04E-02  0.67 2.35E-01  0.61 

SUVmax 5.23E-03  0.73 1.88E-03  0.75 

nSUVmean† 8.16E-05  0.84 4.09E-05  0.87 

nSUVmax 1.55E-04  0.82 1.26E-06  0.91 

nSUVaxMax1‡ 8.16E-05  0.85 1.17E-06  0.91 

nSUVaxMax3 5.32E-05  0.85 9.53E-06  0.87 

nSUVaxMax5 5.75E-05  0.84 1.52E-05  0.86 

nSUVaxMax7 8.16E-05  0.81 3.65E-05  0.84 

nSUVlen20** 5.32E-05  0.80 7.37E-06  0.89 

nSUVlen30 5.32E-05  0.84 1.17E-06  0.91 

nSUVlen40 8.16E-05  0.85 6.52E-08  0.92 

nSUVlen50 7.15E-04  0.81 1.26E-06  0.87 

nSUVlen60 1.32E-02  0.74 4.23E-05  0.80 

nSUVperc65†† 8.31E-05  0.83 1.12E-05  0.89 

nSUVperc75 8.31E-05  0.83 2.48E-06  0.90 

nSUVperc85 8.16E-05  0.84 2.48E-06  0.90 

nSUVperc95 4.69E-04  0.83 1.26E-06  0.91 

*Area under the curve. 

†Voxel mean normalized standard uptake value. 

‡Axial-averaged maximum nSUV for 1, 3, 5, and 7 slices (e.g., nSUVaxMax1 for the 1-slice average). 

**Axial length of esophageal tissue with at least a given percentage of axial-averaged nSUV response 

(e.g., nSUVlen20 for a length of esophagus with nSUV ≥ 20% axial-averaged response over the baseline 

SUV value). 

††Voxel percentile nSUV values from the sixty-fifth to the ninety-fifth percentiles (e.g., nSUVperc65 for the 

sixty-fifth percentile). 
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Table 5.3: Statistical analysis of the relationship between 18F-fluorodeoxyglucose (FDG) uptake 

metrics and maximum esophagitis grade (n = 79). P values reported have been corrected with 

the Benjamini-Hochberg false discovery rate procedure. 

FDG uptake metric 

Grade 2 Grade 3 

P Value 

Spearman 

coefficient AUC* P Value 

Spearman 

coefficient AUC* 

SUVmean 2.35E-01 0.17 0.62 3.13E-01 0.15 0.60 

SUVmax 1.88E-03 0.38 0.78 3.02E-02 0.33 0.71 

nSUVmean† 4.09E-05 0.50 0.86 1.44E-02 0.39 0.75 

nSUVmax 1.26E-06 0.56 0.91 1.41E-02 0.40 0.75 

nSUVAxMax1‡ 1.26E-06 0.56 0.90 4.43E-03 0.40 0.75 

nSUVAxMax3 9.53E-06 0.50 0.86 4.43E-03 0.45 0.78 

nSUVAxMax5 1.52E-05 0.50 0.86 4.43E-03 0.43 0.77 

nSUVAxMax7 3.65E-05 0.48 0.85 4.43E-03 0.41 0.76 

nSUVLen20**  7.37E-06 0.53 0.89 7.15E-03 0.37 0.73 

nSUVLen30 1.17E-06 0.56 0.90 4.43E-03 0.41 0.76 

nSUVLen40 6.52E-08 0.67 0.91 4.43E-03 0.43 0.77 

nSUVLen50 1.26E-06 0.57 0.86 7.15E-03 0.42 0.76 

nSUVLen60 4.23E-05 0.46 0.79 1.98E-02 0.38 0.72 

nSUVperc65†† 1.12E-05 0.53 0.89 3.57E-02 0.35 0.72 

nSUVperc75 2.48E-06 0.55 0.90 1.47E-02 0.37 0.74 

nSUVperc85 1.17E-06 0.56 0.91 4.43E-03 0.41 0.76 

nSUVperc95 1.26E-06 0.56 0.91 4.43E-03 0.45 0.79 

*Area under the curve. 

†Voxel mean normalized standard uptake value. 

‡Axial-averaged maximum nSUV for 1, 3, 5, and 7 slices (e.g., nSUVaxMax1 for the 1-slice average). 

**Axial length of esophageal tissue with at least a given percentage of axial-averaged nSUV response 

(e.g., nSUVlen20 for a length of esophagus with nSUV ≥ 20% axial-averaged response over the baseline 

SUV value). 

††Voxel percentile nSUV values from the sixty-fifth to the ninety-fifth percentiles (e.g., nSUVperc65 for the 

sixty-fifth percentile). 
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5.2.4 Normalized Uptake and Esophagitis Timing 

On average, symptoms were clinically reported after nSUV quantification. For all 26 

asymptomatic patients during the PET study that would develop ≥grade 2 esophagitis by 

treatment end (G0-2/3), esophagitis occurred a median of 6 fractions after the PET scan. For 

patients who had grade 2 esophagitis during the PET scan that became grade 3 esophagitis by 

the end of the treatment, the median time to onset was 7 fractions. 

 

5.2.5 Normalized Uptake to Predict Esophagitis Progression 

Figure 5.1C shows the difference in nSUV for the 2 asymptomatic patient groups during 

the PET study. Patients who eventually developed grade ≥2 esophagitis had markedly higher 

nSUV values during the PET study than those who did not develop esophagitis. The Mann-

Whitney U test showed differences in nSUV metric distributions between these 2 groups were 

significantly different (p < 0.05) for all nSUV metrics examined; differences in SUVMax or 

SUVMean were not significant. The performance of symptom progression models was AUCMean = 

0.67 and 0.75 for the dosimetric and nSUV-based models, respectively (Table 5.3). The 

combined features of dose and nSUV did not improve model AUCMean over nSUV-only models 

(0.72). The top recurring features were: nSUVLen30, nSUVLen40, and nSUVAxMax1 in both model 

types. 
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Table 5.3: LASSO regression multivariate analysis of nSUV metrics and ≥esophagitis grade 2 

(N=79), and the symptom progression prediction model construction from grade 0 esophagitis 

patients at time of the PET study (N=43) Using 3-fold cross-validation repeated for 100 

iterations. The median model order, mean AUC value with standard deviation, and the most 

prevalent recurring model features in the cross-validation process are listed. 

Feature 

Class 
Endpoint 

Model 

Order 

AUCmean* 

(S.D.) 
Top Recurring Predictors† 

nSUV** 

Mid-treatment ≥Grade 

2 
5 

0.83 

(±0.07) 

nSUVMean,nSUVLen30, nSUVAxMax3, 

nSUVLen20, nSUVAxMax1 

Treatment Max  

≥Grade 2 
4 

0.88 

(±0.05) 

nSUVLen40, nSUVMean, nSUVLen30, 

nSUVAxMax1 

DVH†† 

Mid-treatment ≥Grade 

2 
3 

0.52 

(±0.07) 
LE10100%, LE50100%, MED 

Treatment Max  

≥Grade 2 
3 

0.76 

(±0.12) 
Dmax, LE40100%, V50 

nSUV** & 

DVH†† 

Mid-treatment ≥Grade 

2 
6 

0.81 

(±0.07) 

nSUVMean, nSUVAxMax5, nSUVLen40, 

LE50100%, nSUVAxMax1 

Treatment Max  

≥Grade 2 
5 

0.91 

(±0.06) 

nSUVMean, LE50100%, nSUVLen40, 

LE30100%, nSUVLen30 

DVH†† 
Symptom Progression 

≥Grade 2 
3 

0.67 

(±0.13) 
Dmax, V30, LE30100% 

nSUV** 
Symptom Progression 

≥Grade 2 
3 

0.75 

(±0.10) 
nSUVLen30, nSUVLen40, nSUVAxMax1 

nSUV** & 

DVH†† 

Symptom Progression 

≥Grade 2 
4 

0.72 

(±0.12) 

nSUVLen30, nSUVLen40, nSUVAxMax1, 

LE40100% 

*Mean area under the curve from repeated cross-validation. 

†Dose and normalized uptake abbreviations defined in the methods section. 

**Normalized FDG uptake 

††Dose-volume histogram 
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5.2.6 Normalized Uptake & Esophageal Expansion  

 The relationship between normalized FDG uptake and esophageal expansion both 

quantified at the same time during radiation therapy is shown for 67 patients in Figure 5.4. 

Patients have are identified by esophagitis grade for both esophagitis at time of quantification 

(Figure 5.4a), and esophagitis maximum treatment grade (Figure 5.4b). MaxExp1 and 

nSUVAxMax1 expansion and FDG metrics were statistically correlated with a Pearson 

coefficient of 0.66. An approximately linear correlation between MaxExp1 and nSUVAxMax1 is 

observed. Additionally, for both timings of esophagitis grade a strong stratification of toxicity 

and both metrics values is observed. 

 

 

Figure 5.4: Esophgeal expansion (MaxExp1) and FDG uptake (nSUVAxMax1) values for 67 

patients with grade 0, 2, or 3 esophagitis at the time of the PET study (A), and maximum 

esophagitis grades (B). 
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5.3 Chapter Discussion 

In this chapter, we demonstrate that FDG uptake is a radiation-response imaging 

biomarker that can be used as an objective quantification of esophagitis during radiation 

therapy for NSCLC. In addition, it is shown that FDG uptake can predict symptom progression 

for asymptomatic patients at the time of the PET study. The goal of this chapter was to develop 

an in-vivo method of quantifying esophagitis that provides spatial information about the 

specific location and extent of injury. We accomplished this by deriving localized metrics of 

normalized uptake from PET studies performed during radiation treatment and establishing the 

relationship between these metrics and esophagitis grade. 

Previous studies have shown that FDG uptake can quantify normal tissue response in 

lung for patients with NSCLC and esophageal cancer.44-49 Nijkamp et al also examined the use 

of post-treatment FDG-PET studies to quantify esophageal injury from radiation therapy.50 

Lyman-Kutcher-Burman models were created with and without FDG uptake to predict 

esophageal injury, and these models showed that prediction was improved by adding PET 

information to the dose-response model.58 Another study showed an increase in FDG uptake at 

6 discrete points along the length of the esophagus, with uptake normalized to the aortic 

arch.75 In another study, it was shown that the change in the 95th percentile of SUV of the 

esophagus from pre-treatment to weeks 2,4, and 7 of chemoradiotherapy is correlated to 

esophagitis using rigid PET image alignment, for 27 patients.76 However, these previous studies 

did not describe uptake in terms of esophagus geometry or conduct prediction modeling for 

symptom progression. In addition, various metrics with localization of response were not 

derived and tested in a multivariate analysis.  
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FDG uptake was normalized to the < 5Gy region of irradiated esophagus to reduce 

inter-patient variability of SUV. Standard SUVMean and SUVMax were not able to stratify or predict 

the progression of esophagitis. The choice of normalization has been utilized in studies of 

radiation-induced lung toxicity using FDG-PET.44-49 Another study used change in FDG-PET 

SUV during radiation therapy relative to pre-treatment status.76 Since pre-treatment FDG-PET 

studies acquired in the treatment position were not available for our patient cohort, this 

normalization method was not feasible.  

Normalized uptake metrics performed well in classifying not only esophagitis grade at 

the time of the PET scan, but also maximum esophagitis grade. Combining multiple nSUV 

metrics in logistic regression models to classify esophagitis did not substantially improve AUC 

value over using a single nSUV metric. DVH metrics alone performed poorly in classifying 

esophagitis grade. When DVH metrics were combined with nSUV metrics, AUC improved 

slightly for only the ≥grade 2 treatment maximum endpoint. In addition, nSUV metrics were 

chosen with higher frequency than DVH metrics in the nSUV/Dose-combined model 

construction. This shows the robustness of a single nSUV metric to quantify esophagitis. 

In addition to classifying esophagitis, the normalized uptake has the ability to predict 

symptom progression from patients that have grade 0 esophagitis at the time of the PET study. 

The ability of the LASSO models to predict if a patient will become ≥ grade 2 esophagitis by 

treatment completion was greater for nSUV-only models than DVH-only models, or the 

combined nSUV and DVH metric models, as quantified by the cross-validated AUCMean. The 

combined nSUV and DVH metric models outperformed the DVH-only models, with nSUV 

metrics chosen with higher frequency. The cross-validated AUCMean of 0.75 could potentially be 
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improved with a larger sample size and increase standardization of CT/PET scan acquisition and 

processing. In the realm of radiation oncology, preemptively identifying patients that will 

become symptomatic may allow for preemptive interventions (e.g. change in diet, anti-

inflammatory medicine, radioprotectors), that may help reduce adverse effects from therapy, 

thereby improving patient quality of life and preventing costly interventions (e.g., feeding tube, 

hospitalization). In addition, the comparison of nSUV and DVH models shows normalized 

uptake is providing unique response information we cannot obtain from the DVH. 

The timing of esophagitis symptoms and normalized uptake magnitude showed that 

increased uptake occurs before presentation of clinical symptoms. This supports the use of FDG 

uptake as a preemptive diagnostic tool for esophagitis development. Although the current 

study was conducted in patients with radiation-induced esophagitis, it may be possible to 

extend this methodology to other types of esophagitis. 

In chapter 3, the esophageal swelling on CT scans were shown to be a robust, objective 

measure of radiation esophagitis. Interestingly, the highest performing CT-based expansion 

biomarkers were based on axial maximum expansion (MaxExp1) and esophageal length with 

expansion greater than 30% (LenExp30%), which is consistent with the results of the nSUV 

metrics. The performance of normalized uptake and esophageal expansion metrics most 

correlated to the ≥grade 2 treatment maximum esophagitis endpoint were similar with AUC 

values above 0.90. Furthermore, this chapter showed there is a strong correlation between 

expansion and FDG biomarkers. One difference in the analyses of chapter 3 and the work in this 

chapter was the metric sampling frequency; weekly for expansion and once during treatment 

for normalized uptake. Normalized uptake’s classification performance could potentially be 
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increased by sampling multiple times during treatment. Because swelling is an inflammatory 

response, it is feasible that this method could be applied to other forms of esophagitis for 

detection and quantification of injury.  

Our study had limitations. Because only 1 PET scan was acquired during radiation 

treatment, the change of normalized uptake throughout treatment, including normalization 

value, could not be quantified for individual patients. Therefore, it is uncertain how early in 

radiation treatment quantification of esophagitis may be achievable using FDG uptake. 

However, several symptomatic patients did have large responses at fraction 18 (36 Gy delivered 

prescription dose). In addition, specification of normalized uptake magnitude and the onset of 

symptoms were skewed for patients who already had esophagitis symptoms at the time of the 

PET study. Another limitation is the frequency of esophagitis scoring. Esophagitis was scored at 

the weekly radiation oncology symptom clinic, which introduces uncertainty when trying to 

establish time differences between uptake magnitude and esophagitis severity. In addition, 

esophagitis scoring is a subjective process and other endpoints may be examined as well (e.g. 

weight loss, patient reported outcomes, etc.).   

 In conclusion, FDG-PET can be used to quantify esophagitis during radiation therapy. 

This quantification is noninvasive and objective, and also provides spatial information about the 

location and extent of esophageal injury which may be useful for studying esophageal dose-

response, specifically with the inclusion of spatial information. Normalized uptake is a patient-

specific radiation response that can predict whether patients who are asymptomatic at the time 

of the PET study may develop symptoms by the end of radiation treatment.   
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Chapter 6 
 

Influence of Dose-Geometry on Esophageal Expansion 
 

 

In previous chapters, esophageal expansion was established as a radiation-response 

biomarker and a surrogate endpoint of esophageal toxicity. This chapter uses the expansion 

biomarker to probe if dose-geometry influences esophageal-response. Esophageal regions with 

the highest radiation therapy plan dose were analyzed by examining the standard deviation of 

voxel dose across each cross-sectional slice of the sub volume, for each patient. Any correlation 

between the expansion biomarker and the spatial distribution of voxel dose across the 

esophageal slices is examined. This analysis is executed by examining the esophageal sub 

volume near the maximum axial esophagus dose, for any one slice, for a region of 9 esophageal 

slices (constant region volume) and the region with slices receiving at least 90% of the single 

maximum axial esophagus slice dose (region with similar axial esophagus dose).   
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6.1 Methods and Materials 

6.1.1 Patient Population 

The patient population for project 3.1 is the same cohort as those in chapters 3 and 4 

(projects 1.1 and 1.2). Eighty-five patients were selected from a prospective clinical trial at 

University of Texas-MD Anderson Cancer Center for stage III NSCLC, treated with concurrent 

intensity-modulated radiation therapy and chemotherapy (paclitaxel and carboplatin), with 

tumor prescription doses of 60 (n=4), 66 (n=28), or 74 (n=53) Gy in 2-Gy fractions over 6-8 

weeks. Patients had weekly 4DCT imaging and esophagitis scoring according to Common 

Terminology Criteria for Adverse Events version (CTCAE) 3.0. The distribution of maximum 

esophagitis grades during treatment was: 24 were grade 0, 45 were grade 2, and 16 were 

grade3. Since asymptomatic diagnostic assessment of esophagitis was not conducted, there 

were no grade1 patients in this study.  We selected 85 of 97 possible patients from this clinical 

trial for the present study, excluding 3 patients due to image quality and 9 for not having 4DCT 

imaging. Our study was approved by the University of Texas-MD Anderson Cancer Center 

Institutional Review Board and we complied with HIPAA regulations. 

CT scans were acquired on the same scanners using identical protocols as described in 

previous chapters. Patient treatment planning and segmentation was conducted using the 

Pinnacle treatment planning system (Phillips Healthcare), with esophageal contours segmented 

from the cricoid cartilage to the gastroesophageal junction, in the axial plane, with Pinnacle 

version 9.8.  
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6.1.2 Dose-Geometry Quantification 

 The scientific question investigated in this chapter is: what influence, if any, does dose-

geometry have on the expansion-response mechanism. Dose-geometry in this context is 

considered the conformity of the dose distribution across the cross-sectional area of a given 

axial slice of the esophagus. A comparison of differing dose-geometries for a single axial slice 

of the esophagus is illustrated in Figure 6.1. In this figure, the deviation of dose across the 

esophgeal slice is markedly different between the two representations. Figure 6.1B shows a 

partial sparing of dose for the given slice. This work examines if these differences in dose 

conformity yields significantly different observed esophageal expansion. The expansion-

response allows a precise quantification to test if differing dose-geometries can spare the 

esophagus.  

 

  
 

Figure 6.1: Plot of voxel dose within the esophagus in the axial plane for two different example 

dose conformities. The dose-geometry in (A) is more uniform, when compared to (B), which has 

a partial-sparing of dose towards the lateral end of the esophagus. 
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To examine any influence of dose-geometry on expansion-response, a robust measure 

of dose-geometry needs to be utilized. We summarize dose-geometry based on two principal 

quantities: the mean dose to the slice and the variation of dose across the slice. Dose-geometry 

was quantified by first calculating mean axial dose to each slice, for every slice, within the 

analyzed sub volume of the esophagus, individually for each patient. Next, the standard 

deviation of voxel dose across the cross-sectional area of the esophgeal slice was quantified for 

all slices in the analysis region. The standard deviation of dose is used as the representation of 

dose variation across a given slice of the esophagus. These two dose quantities are also 

examined in proportion to each other as the ratio of mean slice dose to standard deviation of 

dose across the given slice throughout this chapter. This arises from the fact that the 

expansion-response depends on the mean dose to the axial slice, yet the influence of dose 

deviation across the slice is being studied in this chapter. To put this into context, what if two 

slices had the same deviation of dose across each slice (dose-geometry), yet the mean doses 

were greatly different? It would follow that the slice with a larger mean dose would have a 

larger expansion-response, but this would not be a consequence of the dose-geometry. 

Additionally, this allows for analysis using a single metric instead of a combination of metrics.  

Dose-geometry is analyzed with two different types of analysis regions for this work. 

The attractiveness of using expansion as a response quantification, is its ability to localize the 

response. Therefore, we can discard much of the study patient’s esophagus from the analysis, 

only considering regions were response physically occurs. A question of how to choose the 

subregion of analysis naturally arises: should the region be dose dependent, or should the 

region be volume dependent, as both region types may effectively be different size and could 
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yield different results. Therefore, the esophageal subregion of analysis can either be volume 

constant, or dose constant. This work considers both subregion types in separate analyses, 

which are described in-depth in the following sections.  

  

6.1.3 Analysis of Constant Volume of Esophagus 

 To hold the volume of the region of analysis approximately constant, the response from 

a given patient’s dose-geometry was analyzed in a 9 slice region of the esophagus, centered on 

the axial slice with the highest axial dose. Dose-geometry, as quantified according to the 

previous section, was compared to the axially-averaged expansion in this 9 slice region of the 

esophagus. Each patient’s axial expansion was quantified at the given treatment week with 

maximal expansion. Variation of voxel dose across each slice in the analysis region is compared 

to the corresponding slices’ axial-average expansion. This expansion metric is the MaxExp9, as 

defined in chapter 3. While the MaxExp1 was shown to be the most robust measure of 

esophageal radiation response compared to toxicity, using MaxExp9 provides multiple data 

points of expansion and dose-geometry for a given patient, while not sacrificing the expansion 

and toxicity relationship, since MaxExp9 was highly correlated to esophagitis grade. In addition, 

using the 9 slice region allows for uncertainties associated with expansion and dose to be 

quantified in the superior-inferior direction along the esophagus, not just the axial plane, to be 

considered in the analysis.  
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6.1.4 Analysis of High-Dose Region of Esophagus  

 While the previous analysis holds the volume of analysis approximately constant, 

the expansion-response from a region with similar axial-averaged dose should also be 

examined. Potentially, a partial-sparing may be affected from regions with significantly 

different mean axial doses, and this must be held constant in a thorough analysis. 

Therefore, the high-dose analysis region of the esophagus was defined as all slices with 

a mean axial dose of at least 90% of the single maximum axial slice for a given patient.  

An example of the high-dose region of analysis is illustrated for an example patient in 

Figure 6.2. From this figure, the difference in response within slices receiving similar 

mean doses is shown in the red circled area. This analysis examines if variation in dose 

across the esophageal slices can explain the differences in slice expansion. 

All slices considered in the analysis must form a connected region with the axial 

slice that has the maximum mean slice dose. The axially-averaged expansion from each 

of these slices from the high-dose region is then compared to the corresponding 

standard deviation of dose across each slice within the analysis region. Each patient’s 

axial expansion was quantified at the given treatment week with maximal expansion. 
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Figure 6.2: Plot of axial expansion and corresponding axial dose for all slices of the esophagus 

at the week of maximal expansion for a single patient (gray circles). The red circled region 

represents the slices that comprise the high-dose region in the constant dose analysis of dose-

geometry. 

 

6.1.5 Statistical Analysis 

 Individual patient’s slice-based dose-geometry and corresponding slice expansion was 

examined using Spearman rank analysis. For each patient, the individual esophageal slice’s dose 

deviation, as quantified by the slice’s mean axial dose divided by the standard deviation of 

voxel dose, and the corresponding esophageal slice’s axially-averaged expansion value were 

paired together for every slice in the analysis region and compared with the Spearman rank 

correlation coefficient. This test was carried out for both the constant volume region of the 

esophagus and the high-dose region analyses, independently for each patient. Any 

dependence of expansion on dose-geometry would therefore be analyzed on an individual 

patient basis. 
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 The patient population was then analyzed collectively for correlation of the esophageal 

region mean expansion and the region’s dose-geometry. This analysis was conducted for both 

the high-dose region and the constant volume region, independently. Spearman correlation 

coefficients were calculated between mean regional dose, standard deviation of regional dose, 

the ratio of regional mean dose to the regional standard deviation of dose, the region mean 

expansion value, and the maximum esophagitis grade. The ratio of regional mean dose to the 

regional standard deviation of dose is analogous to the ratio of mean slice dose to standard 

deviation of dose across the slice, except in this metric dose and standard deviation of dose is 

quantified for the analyzed volume of esophagus. Linear models of dose-geometry using mean 

regional dose, standard deviation of regional dose, and the ratio of mean slice dose metrics, 

were covariates to fit regional mean expansion value. The goodness-of-fit metric was used to 

assess model fit. Statistical significance of linear model variables was test with a t-test at the 

p<0.05 significance level. 

 

6.2 Results 

6.2.1 Patient-Specific Slice-based Dose-Geometry  

 Spearman correlation coefficients of axial-averaged expansion and 

corresponding dose deviation for each esophageal slice within a specific patient’s 

analysis region is shown in Figure 6.3 for the analysis region of constant volume and 

analysis region of similar slice dose, respectively. The Spearman rank coefficients show 

a correlation between slice-based expansion and corresponding dose deviation for 

some patients. However, this effect is inversely proportional in many patients. 
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Moreover, the majority of patients had correlation coefficients in the range of (-0.5, 0.5), 

shown by the gray shaded region in the figure, and indicates poor correlation of dose-

geometry and slice expansion. This trend is observed for both analysis region types. 

 

Figure 6.3: Plot of Spearman correlation coefficient of axially-averaged expansion and the ratio 

of mean slice dose to standard deviation of dose across a given slice, for all slices in the high-

dose region of analysis (A), and the 9 esophageal slice region of analysis (B), for every individual 

patient grouped according to maximum esophagitis grade. The gray shaded region represents 

coefficients in the range of (-0.5,0.5). 

 

 

6.2.2 Population-based Dose-Geometry  

 Figure 6.4 shows the relationship of dose-geometry to expansion for the constant 

volume region analysis, for patients that had either maximum grade 0 or grade 3 esophagitis 

during radiation therapy and mean region dose of at least 25 Gy. From this figure, an overlap of 

grade 0 and grade 3 patients with similar mean regional doses can be observed. A similar trend 

exists with constant dose region analysis. The Spearman correlation analysis is summarized in 

Figure 6.5 for both region types analyzed. The highest Spearman coefficient of any dose 

variable to any outcome was 0.495 for mean regional dose and ≥ grade 2 esophagitis, for the 
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constant-dose region.  The highest Spearman coefficient of any dose variable to any outcome 

was 0.496 for mean regional dose and mean regional expansion, for the constant-volume 

region. In both analysis region types, the ratio of mean regional dose to standard deviate 

on of dose had Spearman coefficients of less than 0.400 for any of the three outcomes.  

 

 

Figure 6.4: Plot of mean regional dose and mean regional expansion for the 9 slice analysis 

region for 11 grade 0 patients (black squares) and 16 grade 3 patients (red squares). The 

vertical bars represent each patient’s standard deviation of axial expansion. The horizontal bars 

represent the standard deviation of dose in the analysis region. 
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Figure 6.5: Plot of self-correlation matrix of Spearman correlation coefficients for ≥grade 2 and 

grade 3 esophagitis, region mean expansion value, region mean dose value, the mean standard 

deviation of axial dose, and the ratio of region mean axial dose to the corresponding standard 

deviation of dose, for the high-dose region of analysis (A), and the 9 esophageal slice region of 

analysis (B). Color shade represents the Spearman correlation coefficient value, as given by the 

corresponding color bar, between the corresponding variables for the row/column 

combination.  
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 Results of the linear model of expansion and dose-geometry are displayed in Table 6.1. 

The goodness-of-fit metric was 0.107 and 0.153 for the constant dose and constant volume 

regions of analysis, respectively.  Neither standard deviation of regional dose nor the ratio of 

mean regional dose to the standard deviation of dose was significant in either linear model. The 

only significant coefficient in either region type linear model was the mean regional dose for 

the constant volume region of analysis.   

 

Table 6.1: Linear model of expansion in the analysis region, with mean regional dose, standard 

deviation of regional dose, and the ratio of mean regional dose to standard deviation of dose, 

as the respective covariates, from all 85 patients. The upper table represents the region of near 

constant dose and the lower table represents the 9 slice volume region of analysis. 

High-Dose Region Coefficient SE tStat p-value 

Intercept 33.05 20.28 1.63 0.107 

Mean Dose 0.50 0.27 1.85 0.068 

Stdev Dose -1.07 1.29 -0.83 0.410 

Dose/Stdev 0.14 0.26 0.54 0.589 

Constant-Volume Region Coefficient SE tStat p-value 

Intercept 9.32 12.40 0.75 0.455 

Mean Dose 0.73 0.21 3.38 0.001 

Stdev Dose -0.66 0.90 -0.73 0.465 

Dose/Stdev -0.10 0.27 -0.36 0.717 
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6.2 Chapter Discussion 

 This project was designed to elucidate any dependence of expansion on dose-geometry 

with the hypothesis that a higher standard deviation of dose across the cross-sectional area of 

a given slice of the esophagus will provide a partial sparing effect, thereby reducing expansion 

for an increasing standard deviation of dose.  

 The effect of varying dose across a given axial slice of the esophagus did show a 

decrease in expansion for some patients, for slices examined in the volume with all slices of at 

least 90% of the maximum axial-averaged dose (constant dose analysis region). This was also 

observed for some patients in the 9 slice volume centered on the slice with the maximum axial-

averaged dose (constant volume analysis region). However, most patients did not show a 

correlation of decreasing expansion for a corresponding increase in dose deviation. 

Additionally, some patients observed the opposite effect where dose deviation across 

esophageal slices had an accompanying increase in the slice expansion.  

 The population-based analysis averaged the expansion and dose, as well as dose 

deviation across the axial slices, from all slices in the analysis region (for both analysis region 

types). This summarized the expansion and dose-geometry for individual patients and then 

combined them into a single cohort to examine the entire population. In this analysis, 

Spearman rank correlation did not show a strong influence of dose-geometry on expansion. In 

addition to expansion, esophagitis grade was also examined as a response. Similar to 

expansion-response, dose-geometry did not show a strong correlation to esophagitis grade. 

This should be expected given the strong relationship to maximum expansion of one axial slice 

of the esophagus (MaxExp1) and esophagitis grade, as shown in Chapter 3. The linear models 
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of dose-geometry with expansion had poor goodness-of-fit metrics, with both region types 

having R2 of less than 0.160 in either case. Furthermore, as illustrated in Figure 6.4, there is no 

clear partial sparing effect of increasing axial dose-deviation in either grade 0 or grade 3 

patients. The expectation would be that if dose-geometry can reduce expansion, there should 

be an observed trend of grade 0 patients with large dose-deviation compared to grade 3 

patients with small dose-deviations, for similar mean doses for the analysis region. However, we 

see an opposite effect; many grade 3 patients have larger dose-deviations than grade 0 

patients of similar mean region dose.  

 This study was not without limitations. Dosimetric accuracy is of primary concern when 

examining voxel dose in an organ that has a small cross-sectional area, such as the esophagus. 

This is especially true in our study as axial slices of the esophagus and the corresponding 

deviation of dose across the slice was this study’s focus. To reduce uncertainty associated with 

dose calculation, we accumulated dose on weekly 4DCT study’s and then deformed the 

calculated weekly dose back into the plan 4DCT frame of reference and summed all weekly 

doses. Another limitation is the uncertainty in expansion. While expansion allows study of sub 

volumes of the esophagus to localize radiation response, it does have uncertainty associated 

with its calculation. It is possible that the individual patient-specific analysis of dose-geometry 

may require a level of precision not attainable presently. However, the population-based 

analysis showed no influence of dose-geometry on expansion that is clinically useful.  
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 In conclusion, dose-geometry does not have a clinically detectable influence on 

radiation response in the esophagus. The amount of variability in dose-deviation, mean 

regional dose, and corresponding expansion shows dose-geometry is not influential for 

esophageal response. 
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Chapter 7 
 

Influence of Modality on Esophageal Expansion and FDG Uptake: 

IMRT versus Proton Therapy  
 

 

In the previous chapter, the esophageal expansion biomarker was utilized to examine if 

radiation dose-geometry was influential on radiation response. In this chapter, the question of 

radiation treatment modality having an influence on radiation-response and toxicity in the 

esophagus is addressed. First, the most robust expansion and normalized uptake biomarkers 

are identified for patients receiving passive scatter proton therapy (PSPT), using the same 

methodology as in chapters 3 and 5. Next, the dose was compared between IMRT and PSPT 

patients for the study population. Additionally, dynamics of biomarker and toxicity response 

were examined throughout treatment between the two modalities. Any influence of modality 

on expansion was investigated with a cross-validated Random Forests regression model. Finally, 

modality’s impact on toxicity prediction modelling was examined with LASSO logistic 

regression. 
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7.1 Methods and Materials 

7.1.1 Patient Population 

It is important to note that two separate cohorts are being analyzed in this chapter. One 

cohort consists of patients analyzed using the FDG-based biomarker response (n=79), and the 

other cohort being patients analyzed using esophageal expansion-based biomarker response 

(n=134). A total of 68 patients were in both the FDG and expansion cohorts. The FDG-based 

cohort is identical to the cohort studied in chapter 5. The expansion-based patient cohort for 

this chapter (project 3.2) contains the same cohort as those in chapters 3 and 4 (projects 1.1, 

1.2, 2.1 and 2.2), but 49 additional patients treated with passive-scatter proton therapy (PSPT) 

are also included in this project’s study cohort.  

All patients were selected from the prospective clinical trial at University of Texas-MD 

Anderson Cancer Center for stage III NSCLC, described in previous chapters. Esophagitis scoring 

was conducted in accordance to Common Terminology Criteria for Adverse Events version 

(CTCAE) 3.0. The demographics and distribution of maximum esophagitis grades during 

treatment for patients in the expansion and FDG-PET analyses are listed in Tables 7.1 and 7.2, 

respectively. Our study was approved by the University of Texas-MD Anderson Cancer Center 

Institutional Review Board and was compliant with HIPAA regulations. 

As described in previous chapters, CT scans were acquired on General Electric 

Lightspeed Discovery ST or Lightspeed RT16 (GE Healthcare, Waukesha, WI) or Philips Brilliance 

64 (Philips Healthcare, Bothell, WA) CT scanners operated at 120 kV. Voxel dimensions were 

0.98x0.98x2.50 mm in the right-left direction, anterior-posterior, and superior-inferior direction, 

respectively, with a 512×512-pixel area. Patient treatment planning and segmentation was 
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conducted using the Pinnacle treatment planning system (Phillips Healthcare), with esophageal 

contours segmented from the cricoid cartilage to the gastroesophageal junction, in the axial 

plane, with Pinnacle version 9.8.  

 

Table 7.1: Demographics of patients from the expansion analyses (n=134). 

Characteristic Datum Proton IMRT 

Median age (range)    

All 66 (38-85) 67 (38-76) 65 (43-85) 

Male 66 (43-85) 68 (57-76) 65 (47-80) 

Female 65 (38-80) 65 (38-75) 66 (43-85)  

Sex    

No. of Males 75 30 45 

No. of Females 59 19 40 

Histologic findings    

Squamous cell carcinoma 47 18 29 

Adenocarcinoma 75 25 50 

Large cell carcinoma 5 2 3 

Other 7 4 3 

Smoking history    

Current smoker 44 26 18 

Former smoker 79 21 58 

Never smoked 11 2 9 

Stage    

IIa 5 2 3 

IIb 9 6 3 

IIIa 59 20 39 

IIIb 56 20 36 

IV 5 1 4 

Treatment dose, Gy    

74 88 35 53 

66 38 10 28 

60 8 4 4 

Maximum Esophagitis  

    Grade 
   

Grade 0 33 9 24 

Grade 2 95 49 46 

Grade 3 26 11 15 
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Table 7.2: Demographics of patients from the FDG-PET normalized uptake analyses (n=79). 

Characteristic Datum Proton IMRT 

Median age (range)    

All 66 years (38-80 years) 66 66 

Male 65 years (51-79 years) 68 65 

Female 66 years (38-80 years) 62 68 

Sex    

No. of Males 46 20 26 

No. of Females 33 11 22 

Histologic findings    

Squamous cell 

carcinoma 
31 10 21 

Adenocarcinoma 41 15 26 

Large cell carcinoma 3 1 2 

Other 4 3 1 

Smoking history    

Current smoker 27 15 12 

Former smoker 46 15 31 

Never smoked 6 2 4 

Stage    

IIa 3 2 1 

IIb 5 3 2 

IIIa 29 11 18 

IIIb 38 14 24 

IV 4 1 3 

Treatment dose, Gy    

74 46 19 27 

66 28 9 19 

60   4 

Maximum Esophagitis  

    Grade 
   

Grade 0 14 6 8 

Grade 2 36 16 20 

Grade 3 21 9 12 
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7.1.2 Proton Treatment Radiation Response and Toxicity 

 This chapter seeks to determine if response, whether quantified with expansion or FDG-

uptake, differs based on the type radiation therapy modality used for treatment (IMRT or 

Proton therapy). Therefore, the differences in radiation dose must be analyzed between the 

treatment modality subgroups. This is to ensure that if there exists a difference in response, it 

can be elucidated whether the variation in response is caused by discrepancy in treatment dose 

or because there is an inherent difference in esophageal response of radiation treatment from 

protons or photons.  

The dosimetric differences were analyzed between patients treated with PSPT or IMRT. 

The Kruskal-Wallis analysis of variance (ANOVA) was utilized to test any significant difference 

(p<0.05) between dose metrics in the form of: equivalent uniform dose (EUD), maximum 

esophagus dose (Dmax), mean esophageal dose (MED), and V20 to V70, in 10 Gy increments. 

This was carried out separately for both expansion and FDG analyses cohorts. To determine the 

appropriate scaling parameter to calculate EUD, Lyman-Kutcher-Burman (LKB) models were fit 

to the expansion and FDG-PET cohorts for a grade 3 complication endpoint, in separate 

models, to determine the slope of the sigmoid curve, the dose of 50% complication, and the 

volume parameter of the corresponding LKB model. These derived parameters were then used 

to calculate equivalent uniform dose for the corresponding study cohort. 

For the expansion cohort, the correlation of radiation-response biomarkers and 

esophagitis grade was analyzed for the 49 proton patients. This is a repeat of the analysis 

conducted in chapter 3, where univariate logistic regression and AUC were calculated to 

identify the highest performing expansion metrics for patients receiving IMRT. Spearman rank 
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coefficients and p-values (p<0.05 for significance after applying the Benjamini-Hochberg false 

discovery rate procedure) from univariate logistic regression were also calculated.  

The highest performing expansion and FDG-based biomarkers for both modality 

cohorts were compared. The Kruskal-Wallis ANOVA was used to test any significant difference 

in biomarker values between all patients grouped according to treatment modality. This was 

repeated for only patients that had ≥ grade 2 maximum esophagitis, and then again ≥ grade 3 

maximum esophagitis, in separate tests. The temporal dynamics of esophagitis and expansion 

biomarker value throughout treatment were also examined. 

 

7.1.3 Modality and Expansion Regression Modelling   

 To probe if modality influences expansion biomarker response in a multivariable 

analysis, Random Forests regression was utilized.  Repeated cross-validation was utilized to 

reduce bias and obtain a more generalizable modelling process for 1000 iterations of randomly 

drawn data folds consisting of training and test sets in a respective 70%/30% split of the patient 

cohort. This model construction process is identical to that utilized in chapter 4, with the 

exception of solving a regression and not a classification problem. Additionally, the minimum 

observation per leaf was set to 5 and the number of randomly drawn predictors at each node is 

16 (the number of predictors divided by 3).  Model predictors consisted of clinical (tumor stage, 

tumor location, histology, gender, age, and smoking status) and dosimetric factors (Dmax, MED, 

esophagus EUD, V10-V70 in 5Gy increments, LE10-LE60, in 10 Gy increments for 25% and 100% 

axial esophagus coverage). These are the same model predictors described with more detail in 

chapter 4.    
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Model calibration is assessed with the goodness-of-fit metric on the training set 

between model-calculated and known expansion values. To assess model predictive 

performance, the root mean squared error (RMSE) was calculated on the test sets from model-

computed and known expansion values. The model construction process was first executed 

without modality as a predictor and model performance was assessed. Next, modality 

information was included as a model predictor; the performance was assessed, and then 

compared to the models constructed without modality information as a model predictor. 

Modality predictor influence in the constructed models was computed with the out-of-bag 

permutation error. This allows predictors to be ranked in terms of importance in the model.  

 

7.1.4 LASSO NTCP Modelling and Modality 

 In chapter 4, multiple machine learning methods were utilized to create NTCP models 

for esophageal toxicity. This section uses the same LASSO logistic regression implementation as 

found in chapter 4, with prediction models created with and without modality as a predictor 

(dichotomous 1 or 0 indicating PSPT or IMRT modality, respectively). The same repeated cross-

validation procedure is utilized for 1000 iterations of randomly drawn training and test data 

folds, with stratification. The models are constructed to classify the ≥ grade 3 esophagitis 

endpoint in both model types. Model calibration and predictive performance is assessed with 

AUC on the training and test sets, respectively. To quantify predictor importance, the most 

common recurring predictors in individual models were cataloged for each iteration of model 

construction. 
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7.2 Results 

7.2.1 Modality, Radiation Response, and Toxicity  

 Overall, DVH dose metrics were similar between modality for both expansion and 

normalized uptake cohorts. Figure 7.1 illustrates the distribution of patient DVH metrics 

between modality for both biomarker type. For both analyses, the distributions of DVH metrics 

for patients that develop grade 3 esophagitis are displayed in Figure 7.2. 

 The equivalent uniform dose calculation parameters derived from the LKB models were 

consistent for both the expansion and FDG-PET cohorts. The volume parameter was determined 

to be 0.33 for both cohorts, which is consistent with other LKB models of esophagitis in the 

literature.32, 50, 77,78 

 For patients treated with PSPT, we observe higher dose-volume in the expansion cohort, 

with similar mean and max doses. The difference between dose-volume was greatest among 

patients that develop grade 3 esophagitis (Figure 7.2). This difference was shown to be 

statistically significant for V20 to V60, for the grade 3 patient group. Neither EUD, Dmax, nor 

MED showed significant differences in any patient complication group from the expansion 

analysis. Results of the statistical tests are shown in Table 7.3.  
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Figure 7.1: Boxplots of the distribution of esophageal equivalent uniform dose and DVH 

metrics for the expansion analyses (A,B) and the normalized uptake analyses (C,D). The gray ‘+’ 

represent outliers, the box vertical edges represent the 25th and 75th quartiles, the solid line in 

each box represents the corresponding median value, the black circles within each box 

represents the corresponding mean metric value, and the whiskers represent the metric value 

ranges.  
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Figure 7.2: Boxplots of the distribution of esophageal equivalent uniform dose and DVH 

metrics for the expansion analyses (A,B) and the normalized uptake analyses (C,D) for patients 

that develop grade 3 esophagitis. The gray ‘+’ represent outliers, the box vertical edges 

represent the 25th and 75th quartiles, the solid line in each box represents the corresponding 

median value, the black circles within each box represents the corresponding mean metric 

value, and the whiskers represent the metric value ranges.  
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Table 7.3: p-values of Kruskal-Wallis ANOVA tests for DVH metrics between patients treated 

with PSPT and IMRT for the expansion biomarker cohort. Significance level is p<0.05, n=134. 

Kruskal-Wallis ANOVA (Dose-Expansion Patients) 

Endpoint 
EUD 
(Gy) 

Dmax 
(Gy) 

MED 
(Gy) 

V20 
(cc) 

V30 V40 V50 V60 V70 

All 0.085 0.928 0.224 0.315 0.125 0.130 0.180 0.197 0.639 

≥Grade 2 0.378 0.899 0.092 0.338 0.147 0.136 0.468 0.401 0.917 

≥Grade 3 0.844 0.693 0.076 0.026 0.030 0.016 0.002 0.030 0.960 

 

 

For the normalized uptake cohort analysis, DVH metrics were not significantly different 

for either the entire study group of patients or patients with grade 2 or grade 3 esophagitis 

complication. The results of the statistical tests are shown in Table 7.4. 

 

Table 7.4: p-values of Kruskal-Wallis ANOVA tests for DVH metrics between patients treated 

with PSPT and IMRT for the FDG-PET biomarker cohort. Significance level is p<0.05, n=79. 

Kruskal-Wallis ANOVA (Dose-FDG Patients) 

Endpoint 
EUD 
(Gy) 

Dmax 
(Gy) 

MED 
(Gy) 

V20 
(cc) 

V30 V40 V50 V60 V70 

All 0.240 0.783 0.633 0.900 0.928 0.759 0.222 0.716 0.175 

≥Grade 2 0.5491 0.983 0.526 0.780 0.672 0.983 0.175 0.865 0.119 

≥Grade 3 0.1166 0.764 0.570 0.483 0.243 0.483 0.241 0.780 0.151 
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 The dynamics of patient toxicity throughout treatment, separated by treatment 

modality, is presented for patients in the expansion biomarker analysis in Figure 7.3. The onset 

and proportionality of toxicity throughout treatment is similar for both treatment types. 

 

 

 

Figure 7.3: Stacked bar chart of distribution of esophagitis grade in 5 fraction time intervals 

throughout treatment for patients receiving IMRT (left) and PSPT (right), in the expansion 

biomarker analysis. Blue represents grade 0, green grade 2, and red represents grade 3 

maximum esophagitis grades.   
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 Similar to toxicity onset, expansion dynamics peak at the end of treatment and in a 

similar fashion. The patient MaxExp1 in 5 fraction time intervals is illustrated in Figure 7.4. 

 

 

 

 

Figure 7.4: Stacked bar chart of distribution of esophagitis MaxExp1 in 5 fraction time intervals 

throughout treatment for patients receiving IMRT (left) and PSPT (right), in the expansion 

biomarker analysis, with threshold expansion levels of 30%, and 50%. Blue represents ≤ 30%, 

green > 30%, and red represents > 50% MaxExp1.   

 

The results of the statistical analysis of the expansion biomarker and toxicity for the 49 PSPT 

patients are shown in Table 7.5. Similar to the IMRT patients, MaxExp1 and LenExp30% are the 

highest performing biomarkers. The Kruskal-Wallis test between expansion biomarker was then 

utilized on MaxExp1 and LenExp30%. There was significant difference in MaxExp1 for the ≥ 

grade 2 and ≥ grade 3 complication groups, for different treatment modality. This is illustrated 

in Figure 7.5.  LenExp30% showed significant difference in biomarker value between treatment 

modality in the ≥ grade 3 complication group. For normalized uptake, nSUVAxMax1 and 

nSUVLen40% were the highest performing FDG-based biomarkers. The Kruskal-Wallis test was 
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utilized for nSUVAxMax1 and nSUVLen40% and did not yield any significant difference between 

values in the IMRT and PSPT cohorts. The results of the Kruskal-Wallis tests for biomarker value 

between modality are shown in Table 7.6. 

 

Table 7.5: Statistical analysis of esophageal expansion biomarkers and esophagitis 

grade, for patients receiving PSPT (n=49). Rs is the Spearman rank correlation 

coefficient, P is the p-value, and AUC is the area under the curve from ROC analysis. 

Expansion 

Metrics 

≥Grade 2 ≥Grade 3 

AUC P Rs AUC P Rs 

MeanExp 0.831 0.002 0.444 0.819 0.004 0.429 

MaxExp1 0.869 <0.001 0.496 0.828 0.003 0.414 

MaxExp3 0.817 0.006 0.425 0.700 0.066 0.268 

MaxExp5 0.822 0.006 0.432 0.694 0.066 0.261 

MaxExp7 0.825 0.005 0.436 0.708 0.066 0.280 

MaxExp9 0.831 0.005 0.444 0.708 0.072 0.280 

MaxExp11 0.828 0.004 0.440 0.706 0.072 0.276 

LenExp20% 0.858 0.001 0.482 0.840 0.003 0.457 

LenExp30% 0.892 <0.001 0.565 0.863 0.003 0.469 

LenExp40% 0.875 <0.001 0.530 0.839 0.003 0.490 

LenExp50% 0.775 0.001 0.428 0.797 0.028 0.437 

LenExp60% 0.750 0.002 0.394 0.806 0.072 0.461 

LenExp70% 0.613 0.049 0.225 0.536 0.139 0.072 

LenExp80% 0.563 0.155 0.160 0.576 0.072 0.195 

LenExp90% 0.513 0.522 0.068 0.556 0.072 0.304 

LenExp100% 0.513 0.522 0.068 0.556 0.072 0.304 

PercExp60 0.800 0.002 0.403 0.847 0.003 0.466 

PercExp65 0.828 0.002 0.440 0.858 0.003 0.481 

PercExp70 0.839 0.001 0.455 0.844 0.004 0.462 

PercExp75 0.850 0.001 0.470 0.833 0.003 0.447 

PercExp80 0.856 0.001 0.477 0.814 0.003 0.421 

PercExp85 0.856 0.001 0.477 0.792 0.005 0.391 

PercExp90 0.861 0.001 0.485 0.797 0.005 0.399 

PercExp95 0.867 0.001 0.492 0.806 0.004 0.410 
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Figure 7.5: Boxplots of MaxExp1 for either IMRT (A) or PSPT (B) treatment modalities, grouped 

according to patient maximum esophagitis grade during treatment. Red ‘+’ indicate outliers, 

and box edges are the 25th and 75th quartiles. Whiskers represent range and the red line within 

the box represents the median value. 
 

 

 

Table 7.6: p-values of Kruskal-Wallis ANOVA tests for biomarker values between patients 

treated with PSPT and IMRT for the expansion (n=134) and FDG-PET (n=79) cohorts. 

Significance level is p<0.05. 

Kruskal-Wallis ANOVA 

 Expansion Normalized Uptake 

Endpoint MaxExp1 LenExp30 nSUVAxMax1 nSUVLen40% 

All 0.392 0.483 0.182 0.100 

≥Grade 2 0.049 0.093 0.182 0.100 

≥Grade 3 0.016 0.036 0.815 0.616 

EUD ≥ 32 Gy 0.131 0.455 0.828 0.713 
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The relationship between MaxExp1 biomarker value and esophageal equivalent uniform 

dose for the given treatment modality and esophagitis severity is shown in Figure 7.6. The 

relationship between expansion and dose in a 9 slice subvolume centered at the slice of 

maximal expansion for the given treatment modality and esophagitis severity is shown in Figure 

7.7. In either case, there exists no clear difference in dose-response between PSPT and IMRT. 

EUD does not show a strong delineation of toxicity severity for increasing EUD above 32 Gy. 

Below approximately 32 Gy, grade 3 esophagitis does not occur for either treatment cohort. 

However, after this dose level severity does increase but several grade 0 patients have similar 

EUD to grade 3 patients. We do see a strong separation of grade 0 and grade 3 patients around 

MaxExp1 equal to 50%. A similar dose and expansion-response trend is observed for the 

subvolume analysis. There is no severe toxicity until about 35 Gy and expansion discriminates 

between severe toxicity and patients that are asymptomatic, at around 40% mean subvolume 

expansion. Additionally, many patients that are asymptomatic have similar subvolume mean 

doses as patients who experience grade 3 esophagitis.  

The distribution of MaxExp1 for patients with esophagus equivalent uniform dose above 

32 Gy, grouped according to treatment modality, is shown in Figure 7.8. It is evident that the 

values of MaxExp1 have similar values near the median, regardless of treatment modality. 

Additionally, there was no significant different between treatment modality for either expansion 

or FDG-based biomarker values for patients within this dose range, according to the Kruskal-

Wallis ANOVA test. The results of the statistical tests are shown in the last row of Table 7.6. 
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Figure 7.6: Plot of MaxExp1 for a given esophageal EUD, with data points grouped according 

to treatment modality (‘O’ for IMRT and ‘X’ for PSPT), as well as maximum esophagitis grade 

during treatment (blue = grade 0, black = grade 2, and red = grade 3). 
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Figure 7.7: Plot of 9 slice subvolume mean expansion and mean dose for 134 study patients, 

with data points grouped according to treatment modality (‘O’ for IMRT and ‘X’ for PSPT), as 

well as maximum esophagitis grade during treatment (blue = grade 0, black = grade 2, and red 

= grade 3). 
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Figure 7.8: Boxplot of the distribution of MaxExp1 values for patients with esophageal EUD ≥ 

32 Gy, grouped according to treatment modality. The edges of the box represent the quartile 

values of expansion, with the red line within each box representing that groups median 

expansion value. The range of values is represented by the black whiskers and the red ‘+’ 

denotes outliers (values beyond 1.5 times the interquartile range from the edge of the box). 
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7.2.2 Expansion Random Forests Regression Modelling 

 The results of the calibration of Random Forests regression models, both with and 

without modality as a predictor variable, are shown in Figure 7.9A. A reasonable fit of the 

training is obtained with goodness-of-fit around 0.64 on average, for both model types. The 

predictive regression model performance is similar for both model types with and without 

modality as a predictor variable. This is shown in Figure 7.9B. The RMSE is similar for both 

model types with RMSE approximately 43% on average. The out-of-bag-permutation error 

ranked modality as 32nd out of 50 predictors in the modality predictor model types. This 

indicated modality is not influential in the response model.  

Figure 7.9: Boxplot of Random Forests regression models goodness-of-fit (A) and RMSE (B) of 

MaxExp1 for 134 patients. Modality indicates models were constructed with modality 

information as predictor variable. Red ‘+’ indicate outliers, and box edges are the 25th and 75th 

quartiles. Whiskers represent range and the red line within the box represents the median 

value. 
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7.2.3 LASSO NTCP Modelling and Modality 

 Results for the LASSO NTCP model construction procedure is listed in Table 7.7. For 

both model types with and without modality as a predictor the model fit and predictive 

performance were similar, as indicated by AUCTraining and AUCTest, respectively. The distribution 

of both metrics between either model types had similar standard deviations. Additionally, the 

highest recurring model predictors were nearly identical, with mean esophageal dose being the 

highest recurring predictor regardless of model type.  

 

 

Table 7.7: Results of the LASSO logistic regression NTCP model construction process for 49 

PSPT and 85 IMRT patients, for 1000 iterations of cross-validation. Models constructed with 

treatment modality as a predictor for ≥ grade 3 esophagitis are listed on the row titled 

‘modality’. The 5 highest recurring predictors from all iterations of the model construction 

procedure are listed from highest to lowest recurring. Standard deviation of AUC values are 

listed in parentheses. 

Lasso Classification of ≥ Grade 3 Esophagitis (n=134) 

Model Type AUCTraining (S.D.) AUCTest (S.D.) Recurring Predictors 

No modality 0.845 (±0.053) 0.727 (±0.087) 
MED, LE60100%, Tumor location, 

V60, Smoking Status 

Modality 0.843 (±0.051) 0.725 (±0.088) 
MED, LE60100%, V65, Smoking 

Status, Tumor Location 
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7.2 Chapter Discussion 

 In this chapter, the influence of treatment modality, whether from passive scatter proton 

therapy or photon-based IMRT, was addressed using the objective esophageal radiation 

response biomarkers. One of the purported benefits of proton-based radiotherapy over 

photon-based treatments is a reduction in normal tissue dose and thereby a reduction in 

normal tissue toxicity.79-87 This work utilizes the FDG and expansion biomarkers to probe what 

difference, if any, exists in observed response with photon or proton treatment. For the repeat 

analysis of expansion biomarkers and toxicity with the patients treated with proton therapy, the 

results were consistent with the analysis of the IMRT patients in chapter 3. Both MaxExp1 and 

LenExp30% were the highest performing biomarkers in terms of classifying esophagitis severity 

between either treatment modality.   

The FDG-based biomarkers first investigated in chapter 5 were reanalyzed by separating 

patients based on IMRT or PSPT treatment, to determine if there is any difference in FDG-

response for patients based on treatment modality. No significant difference was found for in 

the distribution of FDG-response for either the nSUVAxMax1 or nSUVLen40% biomarkers between 

patients treated with IMRT or PSPT. For both expansion and FDG-uptake response, this shows 

robustness between either imaging biomarker types and also verifies the initial analysis of the 

relationship between the biomarkers and toxicity found in chapters 3 and 5, respectively. 

 Comparison of dosimetric differences between modality cohorts showed some 

differences in the expansion biomarker patient group, with PSPT patients having higher dose-

volumes. While this was shown to have statistical significance, this did not show a difference in 

the timing of response or toxicity. The distribution of MaxExp1 for grade 3 patients showed a 
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smaller standard deviation and less extreme maximum values, while having similar population 

mean and median biomarker values. This difference in MaxExp1 response can be explained by 

the smaller sample size of the PSPT cohort compared to IMRT. Removing the three IMRT 

patients that had the most extreme MaxExp1 values within the grade 3 maximum esophagitis 

group made the distribution of MaxExp1 statistically similar to that of the PSPT patients (for 

Kruskal-Wallis test, the p-value becomes > 0.05). Furthermore, the previously identified 

MaxExp1 > 50% threshold as a surrogate for severe esophagitis is consistent between both 

modality cohorts. There was no significant difference in dose between modality cohorts in the 

FDG-based biomarker analyses.  

 The Random Forests regression modelling showed quite similar model fits regardless of 

whether or not patient modality information was included in the model construction process. 

The results of the goodness-of-fit show reasonable calibration for both model types. The 

similarity of the root mean squared errors from the independent test sets are similar for both 

model types. The RMSE values were approximately 43% on average in both modelling 

scenarios, indicating respectable model performance for a multivariate regression model.  

Furthermore, the regression models that included modality information did not benefit from 

treatment type as a predictor. The out-of-bag permutation error showed a low ranking of 

importance for modality as a predictor. These results indicate there is no strong influence of 

modality on expansion response in the esophagus.     

 The influence of modality on esophagitis grade was examined with the LASSO NTCP 

modelling analysis. These had similar results as the Random Forests regression modelling 

process, where modality did not show a strong influence as a model predictor for the grade 3 
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esophagitis complication. With the strong correlation of expansion biomarker and toxicity, this 

result should be expected. Both model types were quite similar in performance, as well as the 

most recurring predictors in the iterative model construction process.  

 This work was not without limitations. The dosimetry of proton-based radiation therapy 

is still an active area of research.88-94 For this study we used proton dose calculated from the 

treatment planning system, which can differ from more robust dose calculation methods such 

as Monte Carlo.95-98 This is of particular interest in the normal esophagus and NSCLC treatment 

as the distal end of the proton beam is typically proximal to the esophagus. Further studies 

examining the impact of miscalculation of proton dose and any resultant effect on the 

esophagus would be of interest. Another limitation is that the study patients were treated with 

PSPT. Newer proton radiation treatment techniques, specifically spot-scanning are replacing the 

passively-scattering technique, as the standard treatment where protons are utilized.99-100 

While spot-scanning shows reduced normal tissue dose, it is unknown if this would have any 

effect on response in the normal esophagus. 

 In conclusion, the previously identified highest performing radiation response 

biomarkers were verified with the patient cohort receiving proton therapy. This strengthens the 

conclusions from chapters 3 and 5 on which biomarkers were the most robust. Additionally, 

there is not any significant difference in biomarker response for patients treated with either 

PSPT or IMRT, despite higher dose-volume for the PSPT patients in the expansion analysis. 

Inclusion of modality information did not have an effect on toxicity prediction modelling.   
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Chapter 8 
 

Esophageal Expansion to Identify Patient Radiosensitivity 
 

 

In previous chapters, esophageal expansion was shown to be a robust measure of 

patient-specific radiation-response in the esophagus. It was also shown that the expansion-

response varied patient to patient, even for patients with similar delivered doses. These 

previous results hinted at the possibility of expansion-response as an in-vivo quantification of 

individualized radiosensitivity in the esophagus.  

In this chapter, the utility of the esophageal expansion-response as a patient-specific 

quantification of inherent radiosensitivity was assessed. Study patients were clustered according 

to expansion and corresponding delivered dose to the esophagus to identify subpopulations of 

inherent radiation sensitivity, using Gaussian mixture modelling. This clustering was calculated 

for expansion-response at the week of maximal expansion for a given patient, as well as 

expansion-response toward the end of treatment at approximately fraction 30. Radiosensitive 

patients were classified for the clusters with high expansion and a corresponding lower dose. 

This radiosensitivity tag was used in the toxicity prediction modelling process to improve model 

performance.  
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8.1 Methods and Materials 

8.1.1 Patient Population 

The patient population for this chapter (project 3.3) contains the same patient cohort 

used for the expansion-based analyses from chapter 7 (project 3.2). This was a combination of 

patients treated with IMRT (n=85), and PSPT (n=49), for a total of 134 study patients.  

All patients were selected from the prospective clinical trial at University of Texas-MD Anderson 

Cancer Center for stage III NSCLC, described in previous chapters. Esophagitis scoring was 

conducted in accordance to Common Terminology Criteria for Adverse Events version (CTCAE) 

3.0. Table 8.1 lists the demographics and distribution of maximum esophagitis grades during 

treatment for patients used for the analysis in this chapter. Our study was approved by the 

University of Texas-MD Anderson Cancer Center Institutional Review Board and was compliant 

with HIPAA regulations. 

CT scans were acquired on General Electric Lightspeed Discovery ST or Lightspeed RT16 

(GE Healthcare, Waukesha, WI) or Philips Brilliance 64 (Philips Healthcare, Bothell, WA) CT 

scanners operated at 120 kV. Voxel dimensions were 0.98x0.98x2.50 mm3 in the right-left 

direction, anterior-posterior, and superior-inferior direction, respectively, with a 512×512-pixel 

area. Patient treatment planning and segmentation was conducted using the Pinnacle 

treatment planning system (Phillips Healthcare), with esophageal contours segmented from the 

cricoid cartilage to the gastroesophageal junction, in the axial plane, with Pinnacle version 9.8.  
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Table 8.1: Demographics of study patients (n=134). 

Characteristic Datum 

Median age (range)  

All 66 (38-85) 

Male 66 (43-85) 

Female 65 (38-80) 

Sex  

No. of Males 75 

No. of Females 59 

Histologic findings  

Squamous cell carcinoma 47 

Adenocarcinoma 75 

Large cell carcinoma 5 

Other 7 

Smoking history  

Current smoker 44 

Former smoker 79 

Never smoked 11 

Stage  

IIa 5 

IIb 9 

IIIa 59 

IIIb 56 

IV 5 

Treatment dose, Gy  

74 88 

66 38 

60 8 

Maximum Esophagitis  

    Grade 
 

Grade 0 33 

Grade 2 95 

Grade 3 26 
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8.1.2 Quantification of Expansion-Response  

 The expansion-response for a given patient was quantified as the mean expansion and 

corresponding mean delivered dose, to the subvolume of the esophagus comprised of 9 axial 

slices of the esophagus, centered at the slice location of MaxExp1. Expansion is quantified at 

the week of maximal expansion as well as at the end of treatment, around fraction 30. This 

region of analysis was chosen for two reasons. First, the 9 axial slice region is consistent in size 

for all study patients. Second, the size of analysis region must be large enough to quantify 

uncertainty in dose, yet sufficiently small enough to localize response.  

 Delivered dose was quantified as voxel dose at the time of expansion quantification. 

This can be less than planning dose, especially for analysis examining time of maximum 

expansion, as maximal expansion occurs many fractions before treatment completion for most 

patients, and incorporates a temporal element in the response quantification. The combination 

of expansion value and corresponding delivered dose at the time of maximum expansion is the 

expansion-response for a given patient.  

 

8.1.3 Radiosensitivity Clustering of Patients  

The expansion dose-response quantified at the week of maximal expansion as well as at 

the end of treatment around fraction 30, were clustered separately using multiple clustering 

methods including: Gaussian mixture model using expectation-maximization (GMM-EM), 

Bayesian Gaussian mixture model (Bayesian GMM), and K-Means mixture model (K-Means).  All 

three methods are variations of clustering using Gaussian mixture modelling, which is a process 

of identifying membership of the data to a finite number of unique clusters, based on the 
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assumption that the observed data distribution is a collection of multiple Gaussian distributions. 

These unique underlying Gaussian distributions are representative of the data clusters we seek 

to identify as indicative of patient radiosensitivity.  

The method by which each of the three clustering algorithms derives the Gaussian 

distributions, and thereby data clusters, are different. K-Means clustering is commonly used 

technique where squared Euclidean distance is used as a dissimilarity measure.62,101,102  

Minimization of dissimilarity for data points in a given number of clusters is used to find the 

solution. Gaussian mixture modeling with expectation-maximization is a similar procedure to K-

Means clustering.62 One notable difference between these two methods is that covariance of 

data and probability of a data point belonging to a particular cluster is used to find a solution 

(Expectation). After expectation of a given data point is calculated, maximization calculates 

model parameters based on the means of membership for data in the clusters. This is an 

iterative process that is repeated until convergence is achieved. Bayesian GMM is similar to the 

GMM-EM, with the critical difference that in this method, all parameters are considered random 

variables where the priors are used in the calculation.103   

The underlying premise in utilizing clustering to identify patient sub groups that are 

radiosensitive is that a particular cluster must have a proportionally higher expansion per 

delivered dose than other clusters. Based on the previous assumption, we assume that the 3 

following clusters should be observed based on radiosensitivity: the radiosensitive cluster, 

which has the highest expansion per delivered dose; the radio-insensitive cluster, which has 

high delivered dose, but proportionally lower expansion than the radiosensitive group; and 
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third the radio-normal cluster, which has lower expansion and delivered dose than the two 

other clusters.  

Before clustering was calculated, patients with esophageal subvolume doses of less than 

20 Gy were excluded from the analysis (n=8). This is because there was insufficient dose to 

determine what group of radiation sensitivity these patients would belong. All 8 of these 

excluded patients had grade 0 maximum esophagitis. After clustering the 126 remaining 

patients using the three different techniques, the radiosensitive patient cluster was identified 

and then used in the NTCP modelling process. 

    

8.1.4 LASSO NTCP Modelling and Radiosensitivity 

 In chapters 4 and 7, LASSO penalized logistic regression was utilized as a multivariate 

analysis method. In this chapter, we similarly used LASSO logistic regression to examine if the 

radiosensitivity cluster membership substantially improves esophagitis prediction modelling. 

First, LASSO NTCP models were constructed with the 126 patients that were clustered in a 

repeated cross-validation procedure, for 1000 iterations, which was previously described in 

chapters 4 and 7. To reiterate, predictor variables in the form of dosimetric and clinical factors 

were used as covariates to create NTCP models for ≥ grade 3 esophagitis, according to CTCAE 

version 3.0.  

The same dosimetric and clinical factors described in chapters 4 and 7 were utilized as 

covariates in the models reported in this chapter (Table 8.2). Models were trained and tested on 

separate data in each iteration of the cross-validation procedure. Each iteration used randomly 

drawn training and test sets comprised of 75% and 25% of the study patient population, 
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respectively. Model performance was quantified with Brier scores and AUC from ROC analysis 

on both the training (fit performance) and test (prediction performance) data sets. The 

recurrence of model features was quantified by recording variables in each model, for every 

iteration of the cross-validation procedure.  

 

Table 8.2: Predictor variables used in the NTCP model construction process. 

    Predictor Index Predictor Predictor Index Predictor 

1 Smoking Status 28 LE6025% 

2 Induction Chemotherapy 29 LE5025% 

3 GTV 30 LE4025% 

4 Histology-other 31 LE3025% 

5 Histology-Large Cell 32 LE2025% 

6 Histology-Adenocarcinoma 33 LE1025% 

7 Histology-Squamous Cell 34 V70 

8 Nodal Involvement 35 V65 

9 Stage-IV 36 V60 

10 Stage-IIIB 37 V55 

11 Stage-IIIA 38 V50 

12 Stage-IIB 39 V45 

13 Stage-IIA 40 V40 

14 Tumor Location-Left Lateral 41 V35 

15 

Tumor Location-Right 

Lateral 42 V30 

16 Tumor Location-Left Medial 43 V25 

17 

Tumor Location-Right 

Medial 44 V20 

18 Tumor Location-Left Upper 45 V15 

19 Tumor Location-Right Upper 46 V10 

20 Gender 47 Mean Esophagus Dose 

21 Age 48 Max Esophagus Dose 

22 LE60100% 49 Prescription Dose 

23 LE50100% 50 Radiosensitivity Tag 

24 LE40100%  

25 LE30100%  

26 LE20100%  

27 LE10100%  
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 The model construction procedure was then repeated with radiosensitivity as an 

additional covariate. The previously described clustering technique was used to identify patients 

that had proportionally higher expansion-response then other study patients, and this 

information was quantified as a dichotomous variable (1 for radiosensitive patient, 0 otherwise), 

in the LASSO NTCP model construction process. Model performance was assessed and 

recurring model predictors were cataloged for every iteration of the model construction 

process. The results of both model construction scenarios (with and without the radiosensitivity 

predictor) were compared. 

 

8.1.5 Analysis of IMRT versus Protons for Radiosensitive Patients 

 As will be shown in the results section, clustering of expansion-response can identify 

radiosensitive patients. This information was used to reanalyze patients that were radiosensitive 

to determine if radiation modality affects expansion-response for this subset of patients. As will 

be shown later in the result section, Bayesian GMM based clustering leads to the highest 

predictive performance in multivariate modelling, and thus will be the cluster method utilized 

for this modality analysis. Expansion-response was analyzed at the end of treatment, to keep 

time of analysis approximately constant. 
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8.2 Results 

8.2.1 Expansion-Response  

The expansion-response for a given patient’s week of maximal expansion, for all 134 

study patients, is shown in Figure 8.1. The expansion-response towards the end of treatment is 

shown in Figure 8.2. For both time points, an overall trend of increasing dose and toxicity 

severity is observed, but this has high patient-to-patient variability. Additionally, the expansion 

per delivered dose is quite variable. The distribution of expansion in 10 Gy dose partitions, from 

20 Gy up to 70 Gy, is shown in Figure 8.3, for both time points of expansion-response. Here a 

high variance of expansion is observed for patients with similar doses. The standard deviation 

of expansion in a given dose partition is also shown, with a standard deviation of expansion 

value of 30% being typical.  

The 8 pateints excluded from the clustering and NTCP analyses can be observed in 

Figures 8.1 and 8.2 as the patients with mean subvolume doses under 20 Gy. The resultant 

clustering from each of the three methods at the two different expansion-response time points  

is shown in Figure 8.4. The radiosensitive cluster is red, the radio-normal cluster is blue, and the 

radio-insensitive cluster is black, in each of the three clustering methods. For all three methods, 

the assigned clusters’ radiation sensitivity met the necessary assumptions of expansion-reponse 

described in the methods section. 
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Figure 8.1: Plot of expansion-response at patient’s week of maximal expansion in the analyzed 

subvolume of the esophagus for 134 study patients. Patient markers denoted maximum 

esophagitis grade during treatment. 
 

 

Figure 8.2: Plot of expansion-response at the end of radiation therapy (approximately fraction 

30) in the analyzed subvolume of the esophagus for 134 study patients. Patient markers 

denoted maximum esophagitis grade during treatment. 
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Figure 8.3: Boxplot of the distribution of mean subvolume esophageal expansion grouped 

according to mean subvolume doses of 20 to 30 Gy, 30 to 40 Gy, 50 to 60 Gy, and 60 to 70 Gy, 

for 126 study patients, for expansion-response quantified at the patient’s week of maximal 

expansion (A) and at treatment fraction 30 (B). The standard deviation of expansion in each 

dose group is shown above each box. The edges of the box represent the quartile values of 

expansion, with the red line within each box representing that groups median expansion value. 

The range of values is represented by the black whiskers and the red ‘+’ denotes outliers 

(values beyond 1.5 times the interquartile range from the edge of the box).  

 

 

 8.2.1 Radiosensitivity Clustering  

 Distributions of cluster membership, as well as esophagitis grade within each cluster is 

given in Table 8.3 for expansion-response quantified for the week of maximal expansion, and in 

Table 8.4 for expansion-response quantified at the end of radiation therapy. For all three 

clustering methods, no grade 0 patients were found in the radiosensitive cluster, but most 

grade 3 patients were. However, many grade 2 patients were also found in the radiosensitive 

cluster. GMM-EM and K-Means showed the most similarity in patient cluster membership, with 

Bayesian GMM showing consistency with the other two methods. The radio-insensitive (black) 

cluster contained the most patients regardless of clustering method, and all 3 esophagitis grade 

endpoints were observed within this cluster. 
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Figure 8.4: Plots of patient clustering of expansion-response measured at the week of a 

patient’s maximal expansion by Bayesian Gaussian mixture model (A), for cluster size of 3, K-

Means clustering (B) for cluster size of 3, and Gaussian mixture model using expectation-

maximization clustering (C) for cluster size of 3, and expansion-response measured near 

treatment fraction 30 by Bayesian Gaussian mixture model (D), for cluster size of 3, K-Means 

clustering (E) for cluster size of 3, and Gaussian mixture model using expectation-maximization 

clustering (F) for cluster size of 3, for 126 patients in all scenarios. Cluster membership is 

denoted by color of expansion-response data point for a given patient. 



129 
 

Table 8.3: Characteristics of clustering membership for Bayesian GMM, K-Means, and GMM-EM 

clustering methods for expansion-response at the week of maximal expansion for the 126 

patients analyzed in the cluster analysis. 

Bayesian GMM 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 14 14 28 22.2 

Blue 11 20 0 31 24.6 

Black 14 41 12 67 53.2 

n = 25 75 26 126 100.0       

K-Means 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 16 13 29 23.0 

Blue 11 25 6 42 33.3 

Black 14 34 7 55 43.7 

n = 25 75 26 126 100.0       

GMM-EM 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 18 14 32 25.4 

Blue 6 22 4 32 25.4 

Black 19 35 8 62 49.2 

n = 25 75 26 126 100.0 

 

8.2.3 LASSO NTCP Modelling and Modality 

 The LASSO NTCP model construction procedure had similar distributions of recurring 

model predictors, even for NTCP models not using radiosensitivity as a predictor variable. These 

results are shown in Figures 8.5 and 8.6, for expansion-response at the week of maximal 

expansion, and in Figures 8.7 and 8.8, for expansion-response calculated at the end of radiation 

therapy. For models constructed with the radiosensitivity variable, this predictor was the most 

recurring variable and was chosen in over 99% of the 1000 iterations of model construction. 

Mean esophageal dose was the second most recurring predictor in the radiosensitivity 

information inclusive models, as well as the most recurring predictor in the models not 

including the radiosensitivity information.  
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Table 8.4: Characteristics of clustering membership for Bayesian GMM, K-Means, and GMM-EM 

clustering methods for expansion-response at the end of radiation therapy for the 126 patients 

analyzed in the cluster analysis. 

Bayesian GMM 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 29 21 50 39.7 

Blue 7 8 0 15 11.9 

Black 18 38 5 61 48.4 

n = 25 75 26 126 100.0 
      

K-Means 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 19 20 39 31.0 

Blue 8 7 0 18 14.3 

Black 17 46 6 69 53.8 

n = 25 75 26 126 100.0 
      

GMM-EM 

Cluster Grade 0 Grade 2 Grade 3 n = % of Cluster 

Red 0 37 23 60 47.6 

Blue 7 8 0 15 11.9 

Black 18 30 3 51 40.5 

n = 25 75 26 126 100.0 

 

 

 

 

 

 



131 
 

Figure 8.5: Bar charts of the occurrence of predictors for all 1000 iterations of the LASSO 

logistic regression NTCP modelling construction process. Models using the radiosensitive tag 

variable from Bayesian GMM clustering of expansion-response at the week of maximal 

expansion are shown in the left bar chart, and models created without the radiosensitivity 

predictor is shown in the right bar chart. The predictor index number identifies the specific 

predictor variable from Table 8.2.  
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Figure 8.6: Bar charts of the occurrence of predictors for all 1000 iterations of the LASSO 

logistic regression NTCP modelling construction process. Models using the radiosensitive tag 

variable calculated using expansion-response at the week of maximal expansion and from 

GMM-EM clustering are shown in the left bar chart, and from K-Means clustering are shown in 

the right bar chart, respectively. The predictor index number identifies the specific predictor 

variable from Table 8.2. 
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Figure 8.7: Bar charts of the occurrence of predictors for all 1000 iterations of the LASSO 

logistic regression NTCP modelling construction process. Models using the radiosensitive tag 

variable from Bayesian GMM clustering of expansion-response at the end of radiation therapy 

are shown in the left bar chart. The predictor index number identifies the specific predictor 

variable from Table 8.2. 
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Figure 8.8: Bar charts of the occurrence of predictors for all 1000 iterations of the LASSO 

logistic regression NTCP modelling construction process. Models using the radiosensitive tag 

variable calculated using expansion-response at the end of radiation therapy and from GMM-

EM clustering are shown in the left bar chart, and from K-Means clustering are shown in the 

right bar chart, respectively. The predictor index number identifies the specific predictor 

variable from Table 8.2. 
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The NTCP model performance for all four investigated scenarios is summarized for 

expansion-response at the week of maximal expansion in Table 8.5, as well as the expansion-

response at the end of radiation therapy in Table 8.6. All three model types using clustering to 

identify radiosensitive patients outperform modelling without radiosensitivity information (first 

row of Table 8.5). The training and predictive performance of models using clustering have 

significantly higher AUCTraining and AUCTest (according to a paired T-test on AUC values for each 

corresponding iteration of cross-validation, p<0.05). Both types of Brier scores were optimal 

(lower value) for the three clustering/radiosensitivity model types compared to no 

radiosensitivity information models. The models using the Bayesian GMM clustering had the 

highest performance of any of the four model types.  

 

Table 8.5: Results of the LASSO logistic regression NTCP model construction process using 

multiple clustering methods to identify radiosensitive patients, from expansion-response 

quantified at the week of maximal expansion, for a total of 126 study patients. The highest 

recurring predictors from all 1000 iterations of the model construction process are listed from 

highest to lowest recurring. Standard deviation of AUC values are listed in parentheses. 

Model AUCTraining (S.D.) AUCTest (S.D.) Brier Score Scaled Brier (%) 

No Clustering 0.842 (±0.065) 0.693 (±0.099) 0.175 (±0.020) 18.2 (±12.0) 

Bayes Clustering 0.903 (±0.043) 0.790 (±0.090) 0.141 (±0.021) 7.8 (±11.2) 

GMM-EM Clustering 0.893 (±0.051) 0.756 (±0.092) 0.150 (±0.021) 13.0 (±12.4) 

K-Means Clustering 0.907 (±0.055) 0.763 (±0.094) 0.148 (±0.022) 14.3 (±12.9) 

Model Top Recurring Predictors 

No Clustering MED, LE50Gy100%, Left Medial, LE60Gy100%, Smoking Status  

Bayes Clustering 
RS Tag, MED, LE60Gy100%, Left Medial, Smoking Status  

GMM-EM Clustering RS Tag, MED, LE60Gy100%, Smoking Status, Left Medial, Age 

K-Means Clustering RS Tag, MED, LE60Gy100%, Smoking Status, Left Medial, Age 
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Table 8.6: Results of the LASSO logistic regression NTCP model construction process using 

multiple clustering methods to identify radiosensitive patients, from expansion-response 

quantified at the end of radiation therapy, for a total of 126 study patients. The highest 

recurring predictors from all 1000 iterations of the model construction process are listed from 

highest to lowest recurring. Standard deviation of AUC values are listed in parentheses. 

Model AUCTraining (S.D.) AUCPrediction (S.D.) Brier Score Scaled Brier (%) 

Bayes Clustering 
0.906 (±0.046) 0.792 (±0.090) 0.140 (±0.020) 14.6 (±11.9) 

GMM-EM Clustering 
0.900 (±0.048) 0.773 (±0.089) 0.144 (±0.020) 15.3 (±11.7) 

K-Means Clustering 
0.885 (±0.053) 0.753 (±0.094) 0.151 (±0.019) 12.1 (±11.2) 

Model Top Recurring Predictors 

Bayes Clustering RS Tag, MED, LE60Gy100%, Left Medial, Smoking Status  

GMM-EM Clustering RS Tag, MED, LE60Gy100%, Smoking Status, Left Medial, Age 

K-Means Clustering RS Tag, MED, LE60Gy100%, Smoking Status, Left Medial, Age 

 

 

8.2.4 Modality and Radiosensitivity 

 Patients clustered into the radiosensitive group using the Bayesian GMM did not show a 

significant difference in expansion-response.  Figure 8.9a shows the expansion-response of 

these patients and their corresponding modality. A boxplot of the distribution of subvolume 

expansion is shown in Figure 8.9b. Kruskal-Wallis ANOVA determined a p-value of 0.09, which is 

not statistically significant (p<0.05). 
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Figure 8.9: (A) Expansion-response at the end of radiation therapy for radiosensitive clustered 

patients according to Bayesian GMM and grouped according to modality. (B) Boxplot of 

subvolume expansion for patients in (A). 
 

 

8.3 Chapter Discussion 

 In this chapter, three different clustering methods (K-Means, Gaussian mixture model 

using expectation-maximization, and Gaussian mixture model using Bayesian methods) were 

utilized to identify patients’ inherent radiosensitivity from their respective expansion-response. 

The full expansion patient dataset which was utilized in chapter 7 is used in this chapter. 

Clustering was carried out for expansion-response at the week of a given patient’s maximal 

expansion, as well as expansion-response towards the end of treatment with the expansion 

quantification closest to fraction 30. This information was then used to label patients as either 

radiosensitive or not radiosensitive. This label was then converted to a dichotomous variable 

and used in the NTCP modelling process in an attempt to improve esophagitis prediction 

models. In a similar analysis to chapter 4 and chapter 7, LASSO logistic regression was utilized 
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in a repeated cross-validation procedure to test model performance when including this 

radiosensitive variable in the model construction process. 

 The expansion-response of these patients was highly variable for both time points of 

expansion-response quantification. For similar subvolume doses, many patients had vastly 

different amounts of expansion, as well as esophagitis grade.  This shows the pitfall of toxicity 

prediction modelling without accounting for inherent radiation sensitivity, where variability of 

patients’ response outweighs the study population’s average observed response. Additionally, 

in chapters 6 and 7 we did not observe expansion being influenced from either dose-geometry 

or modality, respectively. The variability of response for patients with similar delivered dose 

may render detecting such effects arduous if patient radiosensitivity is not considered. A 

reanalysis of the question of modality influencing expansion was carried out for the patients 

within the radiosensitive cluster. This analysis confirmed our previous findings that radiation 

modality, in the form of IMRT and proton therapy, does not influence expansion response. 

 The results of the different clustering methods were consistent between the three 

techniques. Radiosensitive clusters were observed in all three methods that met the assumed 

trend of proportionally higher response for a lower delivered dose, compared to the other two 

cluster types.  The other two clusters met their assumed trends, with a low response with a 

corresponding low delivered dose for the radio-normal cluster type, and a lower response with 

a corresponding higher dose, compared to the radiosensitive cluster, for the radio-insensitive 

cluster type. These were consistent regardless of clustering method or for time points of 

expansion-response quantification.  
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 NTCP models using any of the three clustering methods to create radiosensitivity 

predictor variables outperformed NTCP models not utilizing radiosensitivity information, for a 

grade 3 maximum esophagitis endpoint. The Bayesian GMM-based radiosensitivity models had 

the highest overall performance out of the four modelling scenarios. GMM-EM and K-Means 

radiosensitivity derived models still outperformed models without radiosensitivity information. 

The performance metrics are even more impressive, as 8 low-dose, low-response, and 

asymptomatic patients were excluded from the model construction process. In typical 

modelling situations, these types of patients are easily classified by the model and contribute to 

higher model performance, which would be reflected in any quantification of predictive ability. 

By not including these patients, the modelling situation is more difficult to classify esophagitis, 

and this translates into a more robust model. 

 Model performance for the expansion-response at the end of radiation therapy was 

similar to modelling using the expansion-response at the week of maximal expansion. This is a 

very impactful result, as simply quantifying expansion-response towards the end of treatment 

allows for direct application in outcome assessment. This lends to the potential for expansion-

response quantification at the end of therapy, in conjunction with the clustering methodology, 

to be used as a framework to objectively assess outcomes and quantify variability of inherent 

radiation-response within a study cohort. More on this will be described in the project 

discussion in chapter 9. 

 This work was not without limitations. The clustering process is unsupervised in terms of 

esophagitis outcome, and therefore requires some assumptions for interpretation. As described 

in the methods section, the cluster assignment of radiosensitivity was determined based on the 
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assumptions of relative expansion-response within the study population. It is vital to validate 

these findings on an external dataset, as it would be interesting to see if cluster assignment and 

shape would change with new patient data. Another limitation was that the radiosensitivity 

information was only used dichotomously (radiosensitive or not radiosensitive). It would be of 

interest to analyze the utility of not just the radiosensitive clusters, but also patients labelled as 

radio-normal and radio-insensitive. The radio-insensitive cluster in particular would be of 

interest in dose-escalation studies. 

 In conclusion, clustering techniques can be applied to the expansion-response 

mechanism to determine patient radiosensitivity in the esophagus. This radiosensitivity 

information can be used in the NTCP modelling process to improve toxicity prediction 

performance. Patient inherent radiosensitivity can be assessed towards the end of radiation 

therapy. These results should be verified on an external dataset. 
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Chapter 9 
 

Discussion 
 

 

9.1 Summary of Findings 

In this dissertation, novel imaging biomarkers of physiological radiation-response were 

derived, validated, and applied to advance the knowledge of dose-response and radiation 

injury in the esophagus. The previous paradigm for understanding dose-response in the 

esophagus, in our context of a side effect from the treatment of lung malignancy, can be 

summarized as delivering radiation for the treatment of non-small-cell lung cancer, which 

induces normal tissue toxicity quantified by subjective physician grading criteria. The 

subjectivity in quantifying response, together with the lack of ability to localize response to 

precise sub-regions of the esophagus, served as the impetus for this PhD work. A summary of 

the specific aims, hypotheses, projects, and results, can be found in Table 9.1. 

The work in chapter 3 showed that esophageal expansion can be calculated from 

planning and corresponding intra-treatment 4DCT scans to quantify relative, localized volume 

change in the esophagus. Metrics of esophageal expansion were derived as objective imaging 

biomarkers of radiation-response in the esophagus. We then showed these imaging biomarkers 

were highly correlated to esophageal toxicity. It was also shown in this chapter that expansion 

peaks in the last few weeks of treatment, indicating optimal assessment of the expansion 

radiation-response towards the conclusion of radiation therapy.   
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Table 9.1: Summary of dissertation specific aims, hypotheses, and results from individual 

projects. 

Specific Aim Hypothesis Projects Results 

SA1: Analysis of CT-based 

Esophageal Expansion to 

Quantify Radiation Response 

in the esophagus during 

radiation therapy 

CT-based esophageal 

expansion is a biomarker of 

radiation response in the 

esophagus and can be used to 

improve outcome modelling of 

radiation-induced esophagitis 

Project 1.1 

Expansion is a radiation 

response biomarker and highly 

correlated to toxicity 

Project 1.2 

NTCP models with expansion 

biomarker as endpoint 

outperform traditional grade 

endpoint NTCP models 

SA2: Analysis of FDG-PET to 

Quantify Esophageal 

Radiation Response in the 

esophagus during radiation 

therapy 

FDG-PET uptake is a 

biomarker of radiation response 

in the esophagus and can be 

used to predict symptom 

progression during radiation 

therapy 

Project 2.1 

Normalized uptake is a 

radiation response biomarker 

and highly correlated to 

toxicity 

Project 2.2 

Normalized uptake can predict 

toxicity progression during 

radiation therapy 

SA3: Analysis of Esophageal 

Dose-Response Using 

Radiation Response 

Biomarkers 

Esophageal expansion will 

identify if dose-geometry or 

radiation type contribute to 

radiation injury in the 

esophagus, and that expansion 

can be used to quantify patient-

specific radiosensitivity 

Project 3.3 

Dose-geometry does not have 

a detectable influence on 

expansion  

Project 3.2 

IMRT and Proton therapy do 

not have substantial 

differences in expansion 

Project 3.3 

Expansion can identify 

radiosensitive patients and this 

knowledge can improve 

toxicity prediction models 

 

Next, the two expansion-based biomarkers most highly correlated to maximum 

treatment toxicity, MaxExp1 and LenExp30%, were shown to be robust endpoints in the toxicity 

prediction modelling process (chapter 4). Three different modelling construction techniques 

(forward, stepwise logistic regression; LASSO penalized logistic regression; and Random Forests 

classification) all showed a higher predictive performance for models created with either of the 

two expansion-based biomarker endpoints, compared to models created with esophagitis 

grade as the model endpoint. Furthermore, the repeated cross-validation procedure effectively 

created 1000 individual prediction models, though created from a similar distribution of 
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samples, and showed the robustness of this result was not due to random partition of the 

model training data.  

The other biomarker type, based on normalized FDG uptake, was studied in chapter 5. 

FDG uptake from a single mid-treatment scan was normalized to the low dose region of an 

individual patient’s esophagus, providing a patient-specific, radiation-response quantification. 

Metrics of normalized uptake were derived in a similar fashion as the expansion-based metrics, 

with many shown to be highly correlated to esophageal toxicity. Interestingly, the two highest 

toxicity-correlated FDG-based biomarkers, nSUVAxMax1 and nSUVLen40%, were similar in form to 

the highest performing expansion-based biomarkers (MaxExp1 and LenExp30%). This is an 

intuitive finding, as swelling and inflammation are related physiological processes.  

FDG uptake was also shown to be predictive of toxicity progression for patients 

asymptomatic at the time of the FDG-PET scan. The magnitude of the FDG-based biomarker 

could predict which patients would develop esophagitis. This was not information obtainable 

from the radiation dose, indicating unique and clinically beneficial information in the FDG-PET 

study for the purpose of understanding radiation-response in the esophagus.   

 Chapter 6 was the first of three chapters addressing specific aim 3, and examined 

whether or not dose-geometry influences expansion radiation-response. The primary interest of 

this project was to investigate if particular dose-geometries, particularly reducing cross-

sectional coverage of dose across the axial plane of the esophagus, allows for partial sparing 

and a reduction in response of the esophagus. Utilizing the expansion biomarker allowed 

precise quantification of localized dose-response, not previously possible. It was shown that 
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there was no clear trend between the coverage of dose across the cross-sectional area of a 

given slice of the esophagus and expansion-response. 

 Next, patients treated with either IMRT or Proton therapy were analyzed to determine if 

modality had a strong influence on esophageal radiation-response (chapter 7). FDG-based 

biomarkers did not show any significant difference in biomarker value when grouped by 

treatment modality and toxicity outcome.  Analysis of biomarker magnitude for comparable 

equivalent uniform dose did not show a dependence on radiation therapy modality. Analysis of 

expansion-based biomarker grouped according to treatment modality and esophagitis grade 

outcome did show a lower response for patients treated with proton therapy compared to 

IMRT, for patients who had grade 3 esophagitis. However, removing the outliers in the IMRT 

group then showed no significant difference between response and modality. Furthermore, the 

proton patients that become grade 3 esophagitis during treatment would still be classified as 

high-response patients when using the MaxExp1 ≥ 50% threshold criterion. Analysis of 

expansion biomarker value as a function of equivalent uniform dose did not show a difference 

between treatment modalities. When examined using multivariate modelling, modality was not 

influential in either Random Forests regression of MaxExp1 value, or LASSO logistic regression 

classification of the ≥ grade 3 esophagitis outcome, despite strong prediction performance for 

models in both scenarios.  

 In chapter 8, it was shown that esophageal expansion can quantify patient 

radiosensitivity, and this result improved esophagitis prediction modelling. Clustering patients 

based on either their maximum expansion and corresponding delivered dose to the sub-

volume of the esophagus with the highest response (expansion), or expansion-response and 
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corresponding dose quantified at the end of radiation therapy, showed patients with similar 

doses can have markedly different response, as well as toxicity. This highlights a paramount 

concern that previous dose-response studies could not overcome: the inherent variability of an 

individual patient’s radiosensitivity. By identifying the patients in the radiosensitive cluster, we 

were able to substantially improve esophagitis prediction modelling by including this 

radiosensitivity information in the model. By being able to quantify the radiosensitivity at a 

single time point towards the completion of therapy lends itself to be an impactful tool for 

outcome assessment. When put into context with projects 3.1 and 3.2, the results of the 

radiosensitivity analysis in chapter 8, shows that patient radiosensitivity is a dominant variable 

in esophagus dose-response. Furthermore, future studies of dose-response in the esophagus 

need to consider patient variation in radiosensitivity. Otherwise, any resulting trend, association, 

or lack of either, can be overshadowed by the distribution of patient radiosensitivity within the 

study population. Additionally, this result of the degree of variability in radiosensitivity leads to 

many future directions, which will be discussed in the following sections. 

 

9.2 Limitations and Future Work 

 While overall there are many impactful findings from this work, there exists some 

limitations. This patient cohort was unique in that patients had weekly 4DCT acquisitions during 

treatment, which is required to quantify esophageal expansion. Similarly, many patients also 

had a single mid-treatment FDG-PET/CT scan in the treatment position with immobilization, 

which is necessary to calculate the FDG-based biomarkers. In both types of imaging, this is not 

commonplace in radiation oncology clinics.  
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While this work suggests clinical benefit to acquire either type of scan to quantify 

expansion or FDG uptake, the logistics and cost are prohibitive in the typical clinical setting. 

This reality restricts the clinical application of imaging biomarker application to 

academic/research hospitals until either the additional benefit of these imaging acquisitions is 

increased or the cost of imaging is reduced. However, image guidance is being utilized at an 

increasing pace in radiation oncology. In the case of FDG-PET, the imaging dose and cost are 

even more prohibitive than 4DCT. 

  Another limitation in this work is the dosimetry, particularly for patients treated with 

proton therapy. Dose calculations for proton treatments are still an active area of research, with 

uncertainty in dose at the distal end of the proton beam. This is of particular concern in dose to 

the normal esophagus, as NSCLC tumor location is typically such that the distal end of the 

proton beam lies near the esophagus. It would be interesting to note any difference in proton 

dose calculated using more robust methods, such as Monte Carlo simulations, to the treatment 

planning software calculated dose in this work. Furthermore, it would be of interest if any 

presumed differences in dose have an impact on dose-response in the esophagus. 

Toxicity prediction modelling was a common application in many stages of this work. 

However, one limitation is the fact we did not have an external dataset to validate the 

modelling results. Unfortunately, the lack of suitable external validation datasets is more often 

than not the reality in many novel toxicity prediction studies. However, cross-validation is a 

suitable technique to approximate model performance in lieu of an external validation dataset. 

It would of interest to validate these results as image guidance is utilized in radiation oncology 

at an ever increasing pace.  
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 Another limitation that is inherent in outcome assessment studies is the fact that we are 

using retrospective data from patients already affected by the toxicity of interest. However, one 

very impactful result from this could seek to shift this paradigm, which we describe in the next 

section. 

 

9.3 Application to Clinical Trials 

In the age of personalized medicine, the uniqueness of patients is being quantified to 

tailor treatment. Furthermore, radiogenomics and radiomics are playing their part in this 

schema by attempting to identify pre-treatment biomarkers. This is certainly the case with 

radiosensitivity and its relationship with normal tissue toxicity. Validating pre-treatment 

biomarkers can be arduous when toxicity grade is the endpoint used for validation. As 

mentioned throughout this work, esophagitis grade is subjective. 

As we have shown in chapter 8, radiosensitivity has a profound impact on radiation-

response and toxicity, such that patients of similar dose can have markedly different response. 

From these facts raises an important question: how can we validate pre-treatment biomarkers, 

particularly in the case of toxicity given the subjective outcomes associated with grading 

criteria? The use of either of the in-vivo imaging biomarkers investigated in this work can serve 

this crucial purpose. 

By using expansion and/or FDG-based imaging biomarkers we can potentially validate 

(or invalidate) pre-treatment biomarkers of interest in a prospective clinical trial. By quantifying 

expansion and/or FDG-uptake in the esophagus towards completion of radiation therapy, along 
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with the corresponding esophagus dose, any pre-treatment biomarker of radiosensitivity in the 

esophagus can potentially be validated, as illustrated in Figure 9.1. 

 

 

Figure 9.1: Application of expansion or FDG-based imaging biomarker to validate pre-

treatment biomarker. 

 

While the most logical application of expansion or FDG-based imaging biomarkers is for 

the validation of pre-treatment radiosensitivity and toxicity biomarkers, this framework could 

potentially be applied to other scenarios. For example, radioprotectors could also be validated 

in a similar manner for protection of the esophagus. Another example would be escalation/de-

escalation of radiation dose and its potential impact on toxicity. This framework could identify 

patient-specific response, with consideration to inherent radiation sensitivity. Furthermore, this 

validation framework could be applied in any scenario that involves comparison of two 

treatment modalities or techniques, where esophageal response is a concern. 
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9.4 Conclusions 

In conclusion, the individual projects in this work collectively addressed and supported 

the central hypothesis that esophageal expansion as quantified from 4DCT, and normalized 

uptake quantified from FDG-PET imaging, are imaging biomarkers of radiation-response in the 

esophagus that improve the understanding of esophageal radiation injury. The overall objective 

of this work was to obtain a deeper understanding of dose-response in the esophagus, with the 

long term goal of increasing treatment outcome and improving patient quality of life. This 

further understanding of esophageal dose-response included knowing what role, if any, dose-

geometry, radiation type, and inherent patient radiosensitivity, can have on response. Probing 

these specific potential influences on radiation-response was not possible without the use of 

esophageal expansion or FDG-based biomarkers. The utilization of two different imaging 

biomarker types as radiation-response metrics, sought to reduce the uncertainty in quantifying 

response as a symptom grade, as well as provide spatial information of the extent of response 

in the esophagus.    

 Chapters 3 and 4 showed expansion is a radiation-response biomarker that can quantify 

toxicity and improve esophagitis prediction modelling, confirming the hypothesis of Specific 

Aim 1. Chapter 5 showed FDG-uptake to be an esophageal radiation-response biomarker as 

well, that can predict symptom progression during radiation therapy, thereby confirming the 

hypothesis of Specific Aim 2. The influences of dose-geometry and modality on expansion were 

shown to be non-existent in chapters 6 and 7, respectively. Chapter 8 showed expansion and 

corresponding dose can quantify patient radiosensitivity, and together with the findings from 
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chapter 6 and 7 confirm the hypothesis of Specific Aim 3 that expansion can identify what 

contributes to radiation injury in the esophagus. 

Collectively, these findings show the benefit of expansion and FDG-uptake as in-vivo 

radiation-response imaging biomarkers that can be utilized to understand and thereby prevent 

radiation injury in the esophagus.  
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