
Texas Medical Center Library
DigitalCommons@TMC

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

12-2016

Novel Simulation to Avoid Bias in Measurement of
Hyperpolarized Pyruvate: Demonstrated in
Phantom and In Vivo
Christopher M. Walker

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, and
the Other Physics Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has
been accepted for inclusion in UT GSBS Dissertations and Theses (Open
Access) by an authorized administrator of DigitalCommons@TMC. For
more information, please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Walker, Christopher M., "Novel Simulation to Avoid Bias in Measurement of Hyperpolarized Pyruvate: Demonstrated in Phantom
and In Vivo" (2016). UT GSBS Dissertations and Theses (Open Access). 712.
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/712

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/899?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/712?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu

Novel Simulation to Avoid Bias in Measurement of Hyperpolarized
Pyruvate: Demonstrated in Phantom and In Vivo

by
Christopher Michael Walker

APPROVED:

__
James A. Bankson, Ph.D. (Advisory Professor)

__
John Hazle Ph.D.

__
Dawid Schellingerhout M.D.

__
Richard Wendt Ph.D.

__
Steven Millward Ph.D.

__
Arvind Rao Ph. D.

APPROVED:

__
Dean, The University of Texas
Graduate School of Biomedical Sciences at Houston

NOVEL SIMULATION TO AVOID BIAS IN MEASUREMENT OF HYPERPOLARIZED PYRUVATE:
DEMONSTRATED IN PHANTOM AND IN VIVO

A

DISSERTATION

Presented to the Faculty of
The University of Texas

Health Science Center at Houston
And

The University of Texas M.D. Anderson Cancer Center
Graduate School of Biomedical Sciences

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by

Christopher M. Walker
B.Sc. Trinity University, 2010

Houston, Texas

December 2016

iii

Copyright

iv

Dedication

To my mother and father, Cheryl and Mike Walker, and my sister, Ashley Walker, for their ceaseless

support and encouragement.

v

 Acknowledgment

 I would like to thank my adviser, Dr. James A. Bankson, for his patience and dedication to my

development as an academician. Under his tutelage I have grown tremendously in the way I think about

problems and how I present my thoughts, especially using the written word. No one would have

predicted that the dyslexic 4th grader would one day write a dissertation, and my thanks to Dr. Bankson

is paramount in the achievement of that goal.

 I would also like to thank my committee members for their time and dedication to my project

and my development throughout all stages of my post-graduate education. Dr. Hazle, who first

encouraged me to continue to explore magnetic resonance imaging as a summer student who could

barely wrap his head around frequency encoding gradients. I would not be here today if not for his initial

support which, much to my benefit, has followed me throughout my graduate training. Dr. Wendt, to

whom I owe the bulk of my understanding of the phenomenon of magnetic resonance, thanks to his

unflagging didactic efforts. If Haacke is the magnetic resonance bible, then Dr. Wendt’s tie lecture is the

MRI sermon on the mount. Statistical analysis is fraught with pitfalls and I have my many meetings with

Dr. Rao to thank that this project never found itself hopelessly lost in a statistical quagmire. The extent

to which I understand biochemical processes an enzyme kinetics is owed to the instruction of Dr.

Milward. Finally, Dr. Schellingerhout, if I am able to achieve any semblance of the enthusiasm you

possess for investigative pursuits, while maintaining your grasp of the difficulty inherent in them, I will

be truly blessed as an academician.

 I have been fortunate to be involved in the Julia Jones Matthews and M.D. Anderson CPRIT

scholar program for four years. Not only has this program supported my work and allowed me to

present said work at multiple meetings, it has also given me exposure to aspects of cancer biology I

simply would not have seen outside of the program. Dr. Watowich, thank you for all your help and effort

with the CPRIT program. I hope I am far from the last student to glean such tremendous benefit from it.

vi

 I would also like to thank all of those who stewarded me into post-graduate academic pursuits.

The faculty at Trinity University began the extensive molding necessary for me to succeed after

graduation. I especially thank Dr. Hough and Dr. Ugolini who opened my research career and taught me

the foundational understanding of physics I needed to be able to approach the phenomenon of

magnetic resonance. To Dr. Lewis, I am ever indebted. To whatever extent I possess the ability to write

good software I owe it to him, and it has paid dividends in this project and my life as a whole.

vii

NOVEL SIMULATION TO AVOID BIAS IN MEASUREMENT OF HYPERPOLARIZED PYRUVATE:
DEMONSTRATED IN PHANTOM AND IN VIVO

Christopher M. Walker B.Sc

Advisory Professor: James A. Bankson, Ph.D

Abstract

 Dynamic nuclear polarization creates a transient hyperpolarized nuclear state that can

dramatically increase the signal detected by magnetic resonance imaging. This signal increase allows

real-time spectroscopic imaging of specific metabolites in vivo by magnetic resonance. Real-time

imaging of both the spatial and chemical fate of hyperpolarized metabolites is showing great promise to

meaningfully benefit clinical care of cancer patients. Imaging of hyperpolarized agents will have a larger

clinical impact if it can function as a quantitative modality upon which clinical decisions can be made.

However, quantitative measurement of hyperpolarized agents is currently difficult due to the

restrictions imposed by the transient hyperpolarized state and the complexity inherent in biological

systems. As more advanced imaging and measurement techniques are developed for imaging

hyperpolarized substrates, it is critical to characterize their effect on any relevant quantitative measure.

To assist in accurate quantitative measurement of hyperpolarized agents, an infrastructure where

acquisition strategies can be developed, compared, optimized and validated was critically need. A novel

simulation architecture was developed that combines classical chemical kinetics with the basic physics

of nuclear magnetic resonance and couples them to multiple perfusion models. Simulation results

showed that changes in the acquisition strategy used will affect the resulting quantification of chemical

exchange rates and suggested that any bias that is imposed by the acquisition strategy can be avoided

by using optimized pulse sequences. To validate these predictions, a phantom system was developed

that allows controllable chemical conversion of hyperpolarized pyruvate into lactate with a variability

less than 20%. Using this phantom system, studies showed that poorly optimized pulse sequences

viii

significantly reduced the measured value of the chemical exchange rates, whereas optimized pulse

sequences showed no significant difference in chemical exchange measurements. In order to test

simulation predictions for a perfused system, an animal cohort with orthotropic anaplastic thyroid

cancer was scanned with multiple sequences. Again, optimized sequences showed no significant

difference in measured exchange rates while poorly designed sequences significantly underestimated

the exchange rates, which is consistent with the simulation results. These validation studies suggest that

this simulation architecture will be a powerful tool for developing and optimizing acquisition and

quantization methods for hyperpolarized magnetic resonance imaging.

ix

 Table of Contents

Acknowledgment .. v

Abstract ... vii

Table of Contents ... ix

List of Figures .. xiv

List of Tables .. xvii

List of Abbreviations ... xviii

Chapter 1. Introduction and Motivation ... 1

Hypothesis... 9

Chapter 2. Nuclear Magnetic Resonance Physics ... 11

Section 2.1 Larmor Precession .. 11

Section 2.2 The Magnetization Vector and Thermal Equilibrium ... 14

Section 2.3 Spin-Lattice and Spin-Spin Decay ... 17

Section 2.4 Time-Varying Magnetic Fields and the Rotating Frame ... 20

Section 2.5 Summary of the Bloch Equation .. 24

Section 2.6 Chemical Shift... 25

Section 2.7 Fourier Spectroscopy ... 26

Section 2.8 Clinical Magnetic Resonance Spectroscopy ... 30

Section 2.9 Dynamic Nuclear Polarization .. 32

Section 2.10 Models of Dynamic Nuclear polarization ... 37

x

A. The Well-Resolved Solid Effect ... 37

B. Thermal Mixing ... 40

Section 2.11: Detection of Magnetic Resonance Signal ... 45

Chapter 3. Simulation of Hyperpolarized Studies ... 49

Section 3.1: Theory ... 49

Section 3.2: Implementation .. 58

Section 3.3: Verification .. 62

Chapter 4. Quantitative Accuracy of Dynamic Spectroscopy ... 68

Section 4.1 Introduction and Theory .. 68

Section 4.2 Methods ... 72

Section 4.3 Results .. 75

Section 4.4 Discussion ... 82

Chapter 5. System Validation .. 87

Section 5.1 Introduction and Theory .. 87

Section 5.2 Methods ... 89

A. Hyperpolarization ... 89

B. Dynamic Spectroscopy Repeatability .. 90

C. Spectroscopic Phantom Imaging... 92

D. Dynamic Spectroscopy Sequence Parameter Dependence ... 92

E. Dynamic Spectroscopy in Vivo .. 93

xi

Section 5.3 Results .. 94

A. Repeatability Studies .. 94

B. Closed System Parameter Dependence .. 98

B. In Vivo Studies ... 100

Section 5.4 Discussion ... 101

Chapter 6. Conclusion and Future Work ... 104

B. Future Directions for the Simulation Architecture ... 105

C. Future Directions for the Dynamic Phantom .. 107

Appendix A: Hyperpolarized Exchange Kinetics.. 110

Section A.1 Label Exchange ... 110

Section A.2 Enzyme Flux Kinetics .. 112

Section A.3 Enzyme Exchange Kinetics ... 115

Section A.3 Enzyme Exchange Kinetics of Hyperpolarized Pyruvate .. 116

Appendix B: Source Code for HypWright .. 118

Section B.1 Higher Level Structures .. 118

World Class ... 118

Voxel Class... 124

Section B.2: Pulse Sequence ... 130

Pulse Sequence Class .. 130

RF Pulse Class .. 139

xii

Block Pulse Class ... 142

Sinc Pulse Class ... 144

Gradient Pulse Class .. 147

Linear Gradient Pulse .. 149

Section B.3: Spin Groups ... 150

Spin Group Class ... 150

Isolated Spin Group Class .. 151

Two-Site Exchange Group Class .. 153

Two-Site Perfusion Exchange Group Class .. 156

Bankson Spin Group Class ... 160

Section B.4 Signal Curve Modeling and Fitting. .. 162

MultiPool Class .. 162

MultiPool Tofts Class ... 167

MultiPool Tofts Gamma VIF Class ... 170

Gamma Bankson Model Class ... 173

Section B.5 Example Scripts .. 177

Example Script for Simulating and Processing single pulse dynamic spectroscopy 177

Example Script for a Multiband Frequency Encode Snapshot .. 182

References .. 185

Vita .. 199

xiii

xiv

 List of Figures

Figure 2-1. Visualization of the Bloch equations .. 25

Figure 2-2. Free induction decay and Lorentzian line shape.. .. 28

Figure 2-3. Fourier analysis and phase correction of a free induction decay. .. 29

Figure 2-4. Dynamic nuclear polarization. .. 33

Figure 2-5. Nucleus electron pair energy diagram. .. 34

Figure 2-6. Nucleus electron energy diagram with flip-flops transitions. .. 35

Figure 2-7. An energy diagram of an electron-nuclear pair with all dipolar interaction. 38

Figure 2-8. Polarization from the well-resolved solid effect.. .. 40

Figure 2-9. Energy diagram of the thermal mixing process. ... 41

Figure 2-10. Microwave sweep of thermal mixing. .. 43

Figure 2-11. A comparison of a conventional magnetic resonance signal and hyperpolarized magnetic

resonance signal ... 46

Figure 3-1. Outline of the simulation architecture. .. 59

Figure 3-2. A comparison of numerical methods for solving ordinary differential equations. 61

Figure 3-3. A comparison of the analytical and numerical solutions for a system of two spins coupled by

chemical exchange. ... 62

Figure 3-4. The computational performance of two spins either isolated or coupled by chemical

exchange as a function of the difference in their chemical shifts .. 63

Figure 3-5. Exchange rate fitting for the longitudinal magnetization of two exchanging spin groups. 64

Figure 3-6. Perfusion fitting of the longitudinal magnetization of a single perfused spin group assuming

two spatial compartments. ... 65

Figure 3-7. Comparison of excitation profiles for doped C13 urea.. ... 66

Figure 3-8. A comparison of dynamic spectroscopy for a dynamic phantom and a simulation 67

xv

 Figure 4-1. Workflow of simulation, processing and fitting .. 74

Figure 2-2. Percent error plots of driving versus fit exchange rates for the closed system approximation..

 .. 75

Figure 4-3. Percent error plots of driving versus fit exchange rates for the perfused system

approximation ... 76

Figure 4-4. Relative total SNR of each study for the high driving exchange rate for both closed and

perfused system. ... 77

Figure 4-5. Average SNR per excitation for the closed and perfused systems with a high driving exchange

rate. ... 78

Figure 4-6. Normalized Square-2 Norms of the fits of both closed and perfused systems, with a high

driving kpl ... 79

Figure 4-7. Contrast error maps for the closed and perfused system approximations.. 80

Figure 4-8. Percent error plots of driving versus fit exchange rates for the closed system approximation

 .. 81

Figure 4-9. Percent error plots of driving versus fit exchange rates for the perfused system. 82

Figure 5-1. A schematic view of the dynamic chemical phantom structure. ... 91

Figure 5-2. Dynamic signal evolution across (N = 7) injections into enzyme phantom 95

Figure 5-3. Spectroscopic images of the reaction carried out in a standard imaging phantom. 98

Figure 5-4. Comparing simulation to dynamic phantom data for the closed system. 99

Figure 5-5. Comparison of in vivo vs. simulation kinetic data analysis from data acquired using different

acquisition parameter combinations. ... 100

Figure 6-1. Simulated radial multi-band frequency encoded snap shot image of a square of perfused

tissue converting pyruvate to lactate. .. 107

Figure 6-2. The reaction schematic of pyruvate and peroxide ... 108

xvi

Figure A-1. Comparison of label exchange modeling. .. 111

Figure A-2. A schematic of the Theorell-Chance mechanism for lactate dehydrogenase. 112

xvii

 List of Tables

Table 2-1. Properties of nuclei commonly detected by magnetic resonance spectroscopy. 31

Table 4-1. Parameters used for simulation and fitting. .. 74

Table 5-1. The mean, standard deviation and coefficient of variation of all repetitions (N = 7) of the

dynamic phantom ... 96

Table 5-2. Survey of HP parameter variation in recent animal studies .. 96

xviii

 List of Abbreviations

ADP – Adenosine Diphosphate

 ATP – Adenosine Triphosphate

DNA - Deoxyribonucleic Acid

DNP – Dynamic Nuclear Polarization

EDTA - Ethylenediaminetetraacetic Acid

EPSI - Echo Planar Spectral Imaging

FID – Free Induction Decay

FWHM – Full Width at Half Maximum

HEPES - 4-(2-hydroxyethyl)-1-Piperazineethanesulfonic Acid

HP - Hyperpolarized

IDH – Isocitrate Dehydrogenase

LDH – Lactate Dehydrogenase

MCT - Monocarboxylate Transporter

MRI – Magnetic Resonance Imaging

MRS – Magnetic Resonance Spectroscopy

NAD+ - Oxidized Nicotinamide Adenine Dinucleotide

NADH – Reduced Nicotinamide Adenine Dinucleotide

NMR – Nuclear Magnetic Resonance

ppm – parts per million

ROS – Reactive Oxygen Species

RF – Radio Frequency

SNR – Signal to Noise Ratio

TCA – Tricarboxylic acid

xix

TIGAR - TP53-Inducible Glycolysis and Apoptosis Regulator

TR – Repetition Time

VIF – Vascular Input Function

1

 Chapter 1. Introduction and Motivation

Cancer is most fundamentally characterized by a cell or a population of cells that sustains

chronic uncontrolled proliferation1. While sustained proliferation is quite common in single cell

organisms, in more complex multi-cellular organisms, proliferation is tightly regulated to maintain

homeostasis. In the case of cancer, such regulation breaks down through many mechanisms and the

neoplastic population can become a threat to the survival of the organism. The loss of tight genetic

control is characterized by, among other traits, genotypic, phenotypic and cellular heterogeneity2,3.

Such heterogeneity is a driving factor among the many challenges associated with the

management of cancer. This point is highlighted by the relatively poor improvement in cancer mortality

in the United States since 19304, despite the massive investments in research and treatment and the

resulting breakthroughs in human understanding of the disease and how to treat it. Additionally, cancer

represents the second, likely soon to be first, largest cause of death in the United States4. In order to be

properly managed, cancers have to be well understood. Recently this core concept has been taken to its

most extreme interpretation with the advent of personalized care. The aging concept of managing

cancers based on their stage and organ of presentation is being replaced with a paradigm of

characterization and treatment of a tumor on a patient-specific basis. To achieve such a goal, technology

will have to be leveraged to give clinicians the specific information about a particular patient’s tumor

such that a treatment strategy can be devised and continuously revised. To that end, medical imaging

will play a key complementary role in detection, characterization and monitoring of disease5-9.

Imaging strategies have multiple advantages, yet in order to be useful, clinical imaging needs to

be sensitive and specific to particular biologic functions of interest10. In the case of profiling cancer,

imaging with sensitivity to cellular characteristics and processes on a molecular level, known as

molecular imaging, is particularly attractive. This is mostly because the drivers of progression in cancer

are themselves cellular processes and therefore sensitivity on a cellular level is critical to monitoring

2

such drivers1. However, in order to characterize cellular processes noninvasively, imaging methods

either require extreme detection sensitivity or must target processes that involve plentiful agents for

detection. One such cellular process that involves large set of pathways though which a multitude of

molecules are processed is cellular energetics, or metabolism. Fortunately, one of the primary cellular

functions altered by the dysregulations associated with cancers is metabolism2. Therefore, cellular

metabolism has the potential sensitivity and specificity to make it an effective molecular imaging target.

 Most normal mammalian cells metabolize glucose into C02 in order to produce adenosine

triphosphate (ATP), which is used in intercellular energy transfer11. The breakdown of glucose follows a

multi-step pathway with many branching points, but if commonly progresses to pyruvate through a

process known as glycolysis. Glycolysis is composed of ten reactions catalyzed by enzymes and converts

glucose, along with the cofactors adenosine diphosphate (ADP) and oxidized nicotinamide adenine

dinucleotide (NAD+), into pyruvate along with the higher energy compounds ATP and reduced

nicotinamide adenine dinucleotide (NADH). In well differentiated cells, pyruvate is normally transported

into the mitochondria where it is further broken down into CO2 by a process known as the tricarboxylic

acid (TCA) cycle, which produces NADH from NAD+. The excess NADH is then used to drive oxidative

phosphorylation, which generates a large amount of ATP. In total, glycolysis coupled with the TCA cycle

and oxidative phosphorylation produces 36 ATP molecules from a single glucose molecule. Oxidative

phosphorylation requires oxygen, so under anaerobic conditions pyruvate is normally shunted into

lactate through a process known as anaerobic glycolysis. Anaerobic glycolysis is a single step reaction

that oxidizes NADH to produce lactate. It takes place outside of the mitochondria in the cell’s cytosol.

Generally, lactate is exported outside of the cell after anaerobic glycolysis, where it is used by the Cori

cycle in the liver.

 Neoplastic tissue preferentially converts pyruvate into lactate even in the presence of oxygen12.

The conversion of pyruvate to lactate in the presence of oxygen is commonly referred to as aerobic

3

glycolysis or the Warburg effect13. Aerobic glycolysis, while much less energy efficient than oxidative

phosphorylation, still produces 2 ATP molecules from each molecule of glucose. It is initially non-

intuitive that highly proliferative neoplastic cells would select for a less efficient method of producing

ATP. This was first theorized to be driven by defects in the mitochondria limiting the cells’ ability to

engage in oxidative phosphorylation. However, it has been shown that mitochondria in neoplastic cells

do not often have impaired function. It has also been proposed that highly proliferative cells are not

limited by energy production14. Most neoplastic cells are in glucose-rich environments and can increase

glucose uptake, thereby offsetting the energy restrictions they might incur by favoring less efficient

anaerobic glycolysis. Therefore, if the cells can gain other benefits from favoring aerobic glycolysis, then

the less efficient ATP production might not be detrimental. Indeed, most tumors do upregulate glucose

uptake through phosphoinositide 3-kinase activation, which has been well studied, including in clinical

disease by 18F-deoxyglucose positron emission tomography.

 There are many potential proliferative benefits associated with the reduction of the TCA cycle

and the increased glucose uptake that is associated with aerobic glycolysis. Oxidative phosphorylation is

the largest generator of reactive oxygen species (ROS) in normal cells. During cell division, DNA must be

replicated and is vulnerable to damage by ROS. Therefore, a reduction in oxidative phosphorylation

could protect cells as they move through the cell cycle. Additionally, glucose can be catabolized into

other metabolic intermediates, as opposed to the complete breakdown to C02 which maximizes ATP

production. Proliferating cells need to replicate their entire cellular content. This places a high demand

on the biosynthesis of nucleotides, lipids, and amino acids. While the production of these intermediates

and their use to build macromolecules requires ATP, it also requires biomass, both of which can be

supplied by glucose. There are many metabolic products that require more carbon biomass than ATP to

be assembled. To generate these, it is more efficient to limit the ATP produced by glucose and allow it to

be used to generate metabolic precursors. Overall, cells in a proliferative state reduce the amount of

4

nutrients catabolized for energy production to allow some carbon to be used in the production of the

macromolecular structures that are needed to form two viable daughter cells15.

Another feature of anaerobic glycolysis is the production of a large amount of lactate. While the

generation and export of large amounts of lactate from the cell seems like a waste of either potential

ATP production or carbon biomass, it is important to consider the selective pressures on a proliferating

cell. When selecting for rapid proliferation, the most efficient utilization of nutrients might not be

preferred. In an organism, cells are in a nutrient-rich environment and therefore can be less efficient in

the generation of ATP and other metabolic intermediates, which can be offset by increased nutrient

uptake. Additionally, there are other tissues and organs that can utilize lactate for energy production,

thus recapturing the potential loss of energy through mechanisms such as the Cori cycle.

Generally, aerobic glycolysis confers many potential benefits onto rapidly proliferating cells.

They can take up much more glucose without having to produce the associated ROS, which could be

devastating to DNA replication. The excess glucose can be rapidly shunted into macromolecular

precursors, which will be needed to replicate the entire content of a cell. Only the most rapid steps in

glucose catabolism will be favored as lactate is exported from the cell limiting the more efficient, yet not

so rapid, later steps in glucose catabolism. Finally, anaerobic glycolysis is still energy-positive, generating

the ATP and NADH that are needed for the replication and assembly of cellular content.

A critical step in anaerobic glycolysis is the conversion of pyruvate to lactate. This is catalyzed by

the enzyme lactate dehydrogenase (LDH) and requires the co-enzyme NADH, which donates a proton to

become NAD+ 11. The conversion from pyruvate to lactate is reversible, with the direction of favorability

determined partially by the LDH isoform catalyzing the reaction. LDH is a tetramer composed of four

sub-units that can be from either or both of two genes, LDH-A and LDH-B. The combination of these two

subunits forms five possible LDH isoforms LDH (1-5), LDH1 is composed entirely of subunits encoded by

LDH-B and it favors the conversion of lactate into pyruvate while LDH5 is composed of subunits encoded

5

by LDH-A and strongly favors the conversion of pyruvate into lactate. In most cancer cells LDH-A is

strongly upregulated, creating an abundance of LDH5. This helps drive anaerobic glycolysis.

Large production of lactate will tend to occur only in stressed muscles or in tumor tissue.

Therefore, in a rested subject, the production of lactate through aerobic glycolysis would be a specific

marker of cancer. The production of lactate is also dependent upon a cell’s redox state and therefore it

is coupled with many cellular processes. Most obvious would be cell viability. Dead and dying cells will

be unable to produce lactate as cellular functions are shutting down. A cells response to cellular damage

via reactive oxygen species has also been shown to correlate with reduced lactate production. This is

mediated by ROS scavenger compounds, which deplete a cell’s reducing potential invoked to protect the

genome. The metabolic alterations in cells as a response to insult can be rapid, allowing response

characterization long before significant physiologic or morphologic changes occur16-19.

Recently it has been shown that the aberrant metabolism that is displayed by cancer is not

simply a byproduct of rapid proliferation but is closely tied to tumorigenesis20. Some tumors show a

dependence on upregulated phosphoinositide 3-kinase, which upregulates glucose transport.

Additionally, oncogenes RAS and MYC correlate with an upregulation of glycolysis. MYC also regulates

proteins that control glutamine metabolism and can lead to a phenotypic dependence on glutamine

metabolism. Tumors cell frequently experience hypoxic conditions, which along with RAS can increase

the expression of hypoxia-inducible factor1𝛼 and 2𝛼 which in turn upregulate glycolysis. Isocitrate

dehydrogenase 1 and 2 (IDH 1 and 2) have been shown to be activated in a subset of gliomas. IDH1 and

2 catalyze the conversion between isocitrate and α-ketoglutarate, resulting in a unique metabolic

phenotype in the gliomas with mutant IDH 1 or 2. Tumor suppressor genes also play a guiding role in

cellular metabolism. The tumor suppressor gene p53 can drive more glucose into the pentos phosphate

shunt by regulating the expression of TIGAR. While it is becoming clear that the mutations involved in

tumorigenesis play a role in regulating metabolism, the exact mechanisms are still under investigation.

6

Despite the ongoing investigation into how oncogenic driving mutations alter metabolism, there

has been progress in leveraging unique metabolic phenotypes, such as the production of 2-

hydroxyglutarate in IDH1 mutant glioblastomas, to characterize cancer mutations21. Such

characterization could be used to assist tumor profiling, which is becoming critical for treatment

decisions in the age of personalized therapies22. Additionally, cancer cells can be dependent upon their

altered metabolism, providing an opportunity for pharmacologic intervention23. With primary or

adjuvant therapies targeting metabolism specifically, sensitive probes of cancer metabolism would be an

unparalleled tool in monitoring therapy response and efficacy.

While pyruvate is a downstream product of glycolysis, it is also taken up by cells via the

monocarboxylate transporter 1 (MCT-1). The MCT family of proteins transport monocarboxylates in a

proton-linked manner24. Two isoforms, MCT-1 and MCT-4, are important for lactate efflux. MCT-1 is less

specific for lactate than MCT-4, and can also result in pyruvate flux into the cell. Cancer cells frequently

upregulate MCT-1 and MCT-4, which remove the excess lactate produced by anaerobic glycolysis.

Additionally, cancer cells can rapidly take up pyruvate through the MCT-1 transporter.

 Because of these biologic factors, pyruvate would be an ideal target for probing anaerobic

glycolysis of tumors. Pyruvate is an organic compound consisting of a carboxylic acid and a keto group.

Pyruvate is converted to lactate by reducing the number 2 carbon with an H- from NADH, thus altering

the chemical structure of the molecule. This chemical change will result in a change in the frequency of

its carbon magnetic resonance signal. Therefore, magnetic resonance spectroscopy of pyruvate could be

a promising tool for assessing anaerobic glycolysis and thus cancer metabolism.

The carbons that make up the backbone of a pyruvate molecule have the potential to be

detected via magnetic resonance imaging (MRI), but the magnetic resonance signal of carbon is

extremely weak. However, using the technique of hyperpolarization, the magnetic resonance signal of a

compound can be increased by many orders of magnitude25. Additionally, pyruvate has numerous

7

advantages as a hyperpolarized agent26. The carbon in the one position of pyruvate has a detection

lifetime on the order of a few minutes. Pyruvate is rapidly distributed after an intravenous injection

where it is quickly taken up by cells through the MCT-1. Once it is in the cytosol, pyruvate is quickly

converted to its downstream products27. The delivery and conversion of pyruvate can happen on the

order of a few seconds, depending on the tissue. In the case of cancer specifically, the delivery, uptake,

and conversion of pyruvate is generally quick, due in part to the Warburg effect. Fortunately, carbon 13

labeled pyruvate is non-toxic even at high dosages, allowing large amounts of pyruvate to be safely

administered28. In summary, as a hyperpolarized magnetic resonance agent, pyruvate is an ideal probe

of cancer metabolism due to its physical as well as its physiologic and biochemical properties.

Detection of hyperpolarized pyruvate by magnetic resonance is quite different from the

techniques of conventional MRI and magnetic resonance spectroscopy (MRS), which focus on detection

of hydrogen atoms normally bound in a water molecule. These differences result in acquisition

strategies that are divergent from conventional MRI and MRS16,26-30. Therefore, much of the

development and optimization of acquisition and processing associated with conventional MRI and MRS

cannot be applied to hyperpolarized agents. Additionally, as a molecular imaging strategy, the ability to

quantify results in some way that is comparable with other measurements and is intrinsically related to

underlying biology is critical for clinical utility. Given these constraints, it is imperative that

hyperpolarized MRI and MRS be thoroughly characterized and optimized. However, due to practical

limitations such characterization cannot be performed by experimentation alone. The parameter space

that needs to be explored to ensure efficient detection and quantization fidelity is far too extensive to

be thoroughly explored in the lab. There was thus a critical need for a simulation architecture that could

rapidly explore the numerous detection methods and quantization techniques proposed for

hyperpolarized MRI and MRS. In this work such a system has been developed from first principals and

validated in multiple physical models. The simulation architecture described herein is a flexible tool for

8

designing, comparing and optimizing acquisition methods related to hyperpolarized agents and will

serve as a powerful tool as hyperpolarized MRI and MRS move from developing pre-clinical techniques

to robust and routine clinical modalities.

9

Hypothesis

The value of the pyruvate-to-lactate exchange rate that is measured by hyperpolarized MR is

significantly altered by the MR data acquisition strategy that is employed. By utilizing a novel simulation,

pulse sequences can be designed such that any biases imposed by the acquisition strategy can be

removed for both phantom and in vivo studies.

Aim 1: Development of a novel perfused Bloch-McConnell simulator

The governing equations of the classical model ofnuclear magnetic resonance (NMR), the Bloch

equations, can be solved numerically. The Bloch equations are widely used to simulate and optimize MRI

pulse sequences and acquisition strategies. It should be noted that although many conventional Bloch

simulators do not account for a hyperpolarized state, the generalized Bloch equations do model this

situation. To meaningfully simulate hyperpolarized imaging, a physical model of tracer delivery and

conversion was implemented, modeling both perfusion and chemical exchange.

Aim 2: Compare the effects of excitation angles and repetition times using the perfused Bloch

simulator

Due to the non-renewable nature of hyperpolarized magnetization, each signal excitation will

affect all subsequent measurements. Therefore, the detected signal will be inherently linked to the

excitation scheme used in acquisition. Most hyperpolarized studies are processed to yield apparent

rates of chemical exchange between multiple chemical pools. Using the simulation architecture from

aim one to compare the rate constant resulting from the processing of simulation data to the actual rate

constant used in simulation, the accuracy and repeatability of the measured exchange rate was

determined across a range of sequence, physiologic, and modeling conditions.

Aim 3: Using a novel dynamic enzyme phantom and in vivo models, errors introduced by the

acquisition method, as predicted by simulation, were demonstrated for dynamic spectroscopy and

compared to sequences designed to avoid such errors.

10

In order to validate the simulation predictions from aim 2, physical phantoms must be used.

These model systems would need to convert hyperpolarized pyruvate into lactate in a repeatable

manner. However, quantification of agent delivery and exchange rates has been difficult due to the

complexity of the in vivo environment and the constraints inherent in hyperpolarized agents. The

conversion of pyruvate to lactate can be run in the controlled environment of an isolated buffer,

allowing imaging and quantification without the complexity of a biological system. Using the novel

dynamic enzyme phantom, pulses sequences predicted by simulation to introduce errors in the

measured apparent exchange rate were compared to sequences designed to avoid such errors.

Additionally, in order to account for perfusion, similar validation studies were undertaken in a mouse

model of thyroid cancer.

11

 Chapter 2. Nuclear Magnetic Resonance Physics

The phenomenon of nuclear magnetic resonance is well described by the equation first

presented by Felix Bloch31,32.

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾�⃑⃑� ×�⃑� +

1

𝑇1
(�⃑⃑� 0 − �⃑⃑� ∥) −

1

𝑇2
𝑀⊥

The Bloch equation is composed of multiple terms which will be developed independently and

then brought together. The precise interpretation of each term will be developed over the next chapter

but briefly; the first term relates the precessional motion of the net magnetization vector �⃑⃑� to the

external magnetic field �⃑� and the particles’ inherent gyromagnetic ratio 𝛾; the second term describes

the system’s tendency to return to its thermal equilibrium 𝑀0⃑⃑ ⃑⃑ ⃑ with a time constant 𝑇1; finally, the third

term describes a dephasing of the net magnetization vector due to molecular tumbling that is

characterized by a decay time 𝑇2.

Section 2.1 Larmor Precession

Elementary particles or groups of particles with a non-zero spin give rise to magnetic dipoles33.

Such dipoles will precess when in the presence of an external magnetic field. Consider a spinning

charged body with mass 𝑚 and charge 𝑞. For mathematic simplicity it can be assumed that this object is

a uniformly charged infinitesimally thin hoop. If the hoop is spinning with some angular velocity 𝜔 it has

a current34:

𝐽 =

𝑞�⃑⃑�

2𝜋
 2.1

Current loops give rise to magnetic dipoles by the relation:

 𝜇 = 𝐽𝐴 2.2

12

where 𝜇 is the magnetic dipole moment, 𝐽 is the current and 𝐴 is the area in closed by the hoop.

Combining equations (2.1) and (2.2) and assuming a perfectly circular hoop leads to31:

𝜇 =

𝑞�⃑⃑�

2𝜋
∗ 𝜋𝑟2 2.3

where 𝑟 is the radius of the hoop. To relate this back to a fundamental particle, the angular momentum

must be defined. The angular momentum of a hoop will follow35:

 �⃑� = 𝐼�⃑⃑� 2.4

where, 𝐼 is the Inertia of the system. Using the inertia of a spinning hoop of infinitesimal thickness

yields:

 �⃑� = 𝑚𝑟2�⃑⃑� 2.5

Rearranging equation (2.3) and substituting in equation (2.5) gives the relation for the dipole moment of

the form:

𝜇 =

1

2

𝑞

𝑚
�⃑� 2.6

Thus the dipole moment of a spinning hoop of charge relates to its angular momentum only by its

charge-to-mass ratio. Note that the factor of
1

2
 is purely a function of the object’s geometry. If it were

assumed to be a spinning disk that factor would be unity and it would be
2

3
 and

3

5
 for a sphere and ball

respectively. The key idea is that if the object is spherically symmetric the magnetic dipole moment is

determined by the charge-to-mass ratio scaled by a constant that is determined by the geometry.

A fundamental property of elementary particles is their inherent angular momentum, which

arises from a fundamental property of particles called spin. Spin is quantized into discreet states

denoted by the quantum number 𝑠. A particle’s intrinsic angular momentum 𝑆 relates to its spin 𝑠 and

the reduced Plank constant ℏ by36:

 𝑆 = ℏ√𝑠(𝑠 + 1) 2.7

13

 Particles, either elementary or composite, can be classified by their possible spin states. Bosons are

particles with integer spin, that is, they are symmetric about a 3600 rotation. Fermions have half integer

spin states. With half integer spin states particles that have been rotated by 3600 are distinct. Thus

asymmetry of Fermions results in their states being paired based on their spin. For Fermions, the

relation defined in equation (2.6) does not strictly hold and must be modified to:

 𝜇 = 𝑔
𝑞

2𝑚
𝑆 2.8

where 𝑔, or g-factor, is a constant of proportionality that relates a particles’ magnetic moment to its

inherent angular momentum. Interestingly, in the case of electrons, the g-factor is 2.00038 and the

above classical derivation, assuming a disk geometry, gives nearly the exact form of the quantum

relation for electrons. In the case of protons, the g factor is about 5.59 and such a classical derivation

breaks down. This illustrates that particle spin is a purely quantum phenomenon with no robust classical

analog. This should make some sense, as imagining a geometric system with spin ½, that is symmetric

about a 7200 rotation and not one of 3600, is impossible.

Commonly, the charge-to-mass ratio and g-factor are combined into a quantity known as the

gyromagnetic ratio 𝛾. With this addition equation (2.8) becomes:

 𝜇 = 𝛾𝑆 2.9

In the presence of an external magnetic �⃑� field magnetic dipoles will tend to align with the field. This is

made manifest by a torque 𝜏 given by34:

 𝜏 = 𝜇 ×�⃑� 2.10

Torque is equal to the moment of inertia times the angular acceleration 𝛼 :

 𝜏 = 𝐼𝛼 2.11

where angular acceleration is the time rate of change in angular momentum or:

𝛼 =

𝑑�⃑�

𝑑𝑡
 2.12

14

Taking the time derivative of angular momentum as defined in equation (2.4) results in:

 𝑑

𝑑𝑡
(�⃑�) =

𝑑

𝑑𝑡
(𝐼�⃑⃑�) =

𝑑𝐼

𝑑𝑡
�⃑⃑� + 𝐼

𝑑�⃑⃑�

𝑑𝑡
 2.13

Assuming no change in the moment of inertia, equation (2.13) becomes:

 𝑑�⃑�

𝑑𝑡
= 𝐼

𝑑�⃑⃑�

𝑑𝑡
= 𝐼𝛼 = 𝜏 2.14

Finally taking the time derivative of equation (2.9) with 𝛾 assumed to be constant yields:

 𝑑

𝑑𝑡
(𝜇) =

𝑑

𝑑𝑡
(𝛾 𝑆) = 𝛾

𝑑𝑆

𝑑𝑡
 2.15

Assuming angular momentum �⃑� arises solely from the particles’ intrinsic angular momentum 𝑆 requires:

𝛾
𝑑𝑆

𝑑𝑡
= 𝛾

𝑑�⃑�

𝑑𝑡
 2.16

Combining equations (2.10), (2.14), (2.15) and (2.16) yields the following relation31:

 𝑑𝜇

𝑑𝑡
= 𝛾𝜇×𝐵 2.17

Assuming that �⃑� is constant, referred to as 𝐵0⃑⃑ ⃑⃑ , equation (2.17) results in a precession about the �̂� axis

with a precessional frequency 𝜔 following

 𝜔 = −𝛾𝐵0⃑⃑ ⃑⃑ 2.18

The precessional frequency defined in equation (2.18) is referred to as the Larmor frequency.

Section 2.2 The Magnetization Vector and Thermal Equilibrium

Equation (2.17) assumes an isolated spin in a uniform magnetic field. Conventional magnetic

resonance is a bulk phenomenon and so an ensemble of spins must be considered. Assume some small

volume element or voxel that is large enough to contain a large number of fundamental particles but

has a negligible change in 𝐵0. This is reasonable when considering small molecules like water. In one

cubic micron there are over a billion water molecules. The 𝐵0 fields in the following section generally

15

refer to large man-made fields and as such will not vary significantly over distances on the order of a

micron, well satisfying the voxel conditions outlined above. When dealing with an ensemble of magnetic

material, such as a group of dipoles, a quantity called magnetization is used34.

Magnetization is defined as the differential magnetic moment 𝑑�⃑⃑� for some differential volume 𝑑𝑉:

�⃑⃑� =

𝑑�⃑⃑�

𝑑𝑉
 2.19

When some finite number of magnetic moments is being considered over some finite space 𝑉 equation

(2.19) becomes:

�⃑⃑� =

1

𝑉
∑ 𝜇 𝑖

𝑖=𝑑𝑖𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑉

 2.20

If only the dipole interaction with an external field is considered, then equation (2.17) can be combined

with equation (2.20) to yield:

 𝑑�⃑⃑�

𝑑𝑡
=
1

𝑉
∑ 𝛾𝜇 𝑖×�⃑� 𝑒𝑥𝑡

𝑖=𝑑𝑖𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑉

= 𝛾�⃑⃑� ×�⃑� 𝑒𝑥𝑡

2.21

However, equation (2.17) was derived for an isolated magnetic moment. With the inclusion of multiple

spins more interactions must be considered. In practice the voxel that defines the magnetization above

will be in thermal contact with a surrounding lattice. Additionally, the lattice can be assumed to be large

compared to the magnetization voxel, which was assumed to be small. Systems in thermal contact with

larger lattices, or reservoirs, will follow the Boltzmann distribution:

𝑃(𝜖) =

𝑒−
𝜖
𝑘𝑇

𝑍
 2.22

 where 𝜖 is the energy of a state, in this case the magnetic potential energy of a magnetization vector in

a 𝐵 field, 𝑃(𝜖) is the probability of a particle to be in that state, 𝑇 is the temperature of the reservoir, 𝑘

is the Boltzmann constant and 𝑍 is a normalization constant that ensures that the total probability of all

16

states is unity. Conceptually, the thermal energy of the lattice will continuously perturb the

magnetization from its lowest energy state, which is aligned with the external magnetic field. Therefore,

the magnetic moments will be distributed across a range of states and subsequent energy levels driven

by the temperature of the contacting lattice. The lattice must be large compared to the magnetization

voxel so the energy loss from the lattice that perturbs the magnetization can be ignored. Classically

equation (2.22) would be a continuous distribution with the magnetic energy 𝜖 defined as:

 𝜖 = 𝜇 ⋅ �⃑� 2.23

which is simply the magnetic energy of a bar magnet in an external field. However, the spin quantum

number of Fermions is quantized into half integer states and there will only be a discreet number of

possible states for equation (2.22)36. In a spin
1

2
 system the spin quantum number 𝑠 can have two

possible states + 〈
1

2
〉 and − 〈

1

2
〉. Using intrinsic angular momentum 𝑆 , equation (2.7), from those two spin

states and the resulting dipole moment 𝜇 , equation (2.9) and equation (2.23) become:

𝜖+ =

1

2
𝛾ℏ ⋅ 𝐵 𝑎𝑛𝑑 𝜖− = −

1

2
𝛾ℏ ⋅ 𝐵 2.24

The energy difference between these two states will be

 Δ𝐸 = 𝜖+ − 𝜖− = ℏ𝛾 ⋅ 𝐵 = ℏ𝜔 2.25

Note that the frequency of such an energy transition is exactly the Larmor frequency. The energy

required to induce a change in the distribution will be at or near the Larmor frequency. The

magnetization at thermal equilibrium 𝑀0 will be, as defined by the Boltzmann distribution equation

(2.22), a weighted average of all possible dipole moments over some voxel with spin density 𝜌0
31:

𝑀0 = 𝜌0

∑ 𝜇(𝑚)𝑒
−𝑚ℏ𝛾⋅𝐵
𝑘𝑇

1
2

𝑚=−
1
2

∑ 𝑒
−𝑚ℏ𝛾⋅𝐵
𝑘𝑇

1
2

𝑚=−
1
2

 2.26

In all but the super-cooled temperature ranges and for field strengths on the order of Tesla or lower

17

 𝑘𝑇 ≫ ℏ𝛾 ⋅ 𝐵 2.27

As an example assume protons at room temperature and a 3 Tesla field. 𝑘𝑇 is ~25.9 meV whereas ℏ𝛾𝐵

is ~0.25x10-4 meV satisfying the relationship in equation (2.27).

Under the conditions in the relationship (2.27), a Taylor series expansion of the exponent in

equation (2.22) is:

𝑒
−𝑚ℏ𝛾𝐵
𝑘𝑇 = 1 +

−𝑚ℏ𝛾 ⋅ 𝐵

𝑘𝑇
+ 𝒪 {(

−𝑚ℏ𝛾 ⋅ 𝐵

𝑘𝑇
)
2

} +⋯ 2.28

Using the first two terms of the expansion, equation (2.26) becomes:

𝑀0 ≅ 𝜌0

∑ 𝜇(𝑚)1 +
−𝑚ℏ𝛾 ⋅ 𝐵
𝑘𝑇

1
2

𝑚=−
1
2

∑ 1 +
−𝑚ℏ𝛾 ⋅ 𝐵
𝑘𝑇

1
2

𝑚=−
1
2

 2.29

Expanding the summation and noting that for a spin
1

2
 system 𝜇(𝑚) = ±

1

2
ℏ𝛾, equation (2.29) reduces

to:

𝑀0 ≅

𝜌0𝛾
2ℏ2𝐵

4𝑘𝑇
 2.30

with the direction of 𝑀0 parallel to the direction of 𝐵, which in most cases will be along �̂� as the

direction of the static 𝐵 field that conventionally defines the �̂� axis.

Section 2.3 Spin-Lattice and Spin-Spin Decay

If the ensemble spin system described by equation (2.21) has some thermal equilibrium 𝑀0

which is approximated by equation (2.30), it should follow that any perturbation from 𝑀0 will result in

an unstable system that will return over some length of time, governed by a decay constant 𝑇1, to 𝑀0.

The quantum mechanical perturbation theory behind this relaxation phenomenon is too lengthy to be

outlined here in full detail37. Conceptually, the energy either gained or lost to achieve the return to 𝑀0

18

from some perturbed state is provided by numerous interactions with the lattice. Assuming that the

interactions between the spin system and the lattice ar proportional to the magnitude of the

perturbation from equilibrium, the following differential equation and solution31 hold:

 𝑑𝑀

𝑑𝑡
=
1

𝑇1
(𝑀0 −𝑀)

2.31

𝑀(𝑡) = 𝑀(0)𝑒

−
𝑡
𝑇1 +𝑀0 (1 − 𝑒

−
𝑡
𝑇1)

2.32

While 𝑇1 decay governs how a spin system returns to equilibrium based on energy exchange with its

lattice, the spins within the spin system can interact with each other. Such interactions are known as

spin-spin interaction and are characterized by a constant conventionally referred to as 𝑇2. Since the

temperature of the spin system is non-zero, there will be some molecular tumbling of the atoms or

molecules in the voxel that defines a magnetization vector. The tumbling molecules which could be

charged will create fluctuations in the magnetic field. Such fluxuations will be random, small and depend

on the tumbling rate of the molecules. Small fluctuations in the magnetic field will create small

deviations from the larger applied magnetic field that will result in small changes in the Larmor

frequency. Therefore, the Larmor frequency of the spins within a voxel will a constant number but will

be distributed over a small range of frequencies. The precessional frequency characterizes the

component of the magnetization that is perpendicular to the 𝐵0 field. Conventionally this plane is

considered to define the 𝑥 and �̂� axes and simply referred to as the transverse axis or 𝑀⊥. Adding this

dephasing term to equation (2.21) for only the transverse components:

 𝑑�⃑⃑� ⊥
𝑑𝑡

= 𝛾�⃑⃑� ⊥×�⃑� −
1

𝑇2
�⃑⃑� ⊥ 2.33

Note that, unlike spin lattice interaction, spin-spin interactions are uniformly a loss of magnetization.

They also involve no energy exchange; they simply arise from a dispersion of precessional frequencies,

19

which will slowly decay the constituent spins of the transvers magnetization. If Larmor precession is

ignored, the solution to equation (2.33) is of the form:

�⃑⃑� ⊥(𝑡) = �⃑⃑� ⊥(0)𝑒

−
1
𝑇2 2.34

which is a simple exponential decay in the transverse magnetization. Practically speaking, there are

more deviations in the magnetic field than those caused by molecular tumbling, these will be referred to

as 𝑇2
′. These additional spatial variations in the magnetic field are generally considered to be time-

independent, and therefore the dephasing they cause could be reversible. The combination of the

irreversible spin-spin dephasing and the reversible interactions with time-invariant non-uniform

magnetic field distortions is referred to as 𝑇2
∗ relaxation and follows37:

 1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ 2.35

 Note that the deviation in the magnetic field caused by 𝑇2
′ are assumed to be local and isotropic. If

there is some coherency to the deviation of the external field that drives 𝑇2
′ then it would not generally

lead to an exponential decay and is not included in 𝑇2
′. For simplicity it will be assumed that the external

magnetic field is uniform and thus 𝑇2
′ = 0 𝑎𝑛𝑑 𝑇2

∗ = 𝑇2, although under most conditions the following

equations will still hold by simply replacing 𝑇2 with 𝑇2
∗.

Combining equations (2.31) and (2.33) into a single vector equation results in the

phenomenological equation first described by Bloch31,32:

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾�⃑⃑� ×�⃑� +

1

𝑇1
(�⃑⃑� 0 − �⃑⃑� ∥) −

1

𝑇2
𝑀⊥ 2.36

where �⃑⃑� has been split into two components; the longitudinal component 𝑀∥ which is parallel with the

thermal equilibrium magnetization �⃑⃑� 0, and the transverse magnetization 𝑀⊥ which is perpendicular to

the longitudinal magnetization. Note, that the spin-spin relaxation only acts on the transverse

magnetization as the longitudinal component of the magnetization will not precess around the

20

longitudinal axis. Additionally, because spin-spin dephasing is generally faster than the spin lattice

relaxation the transverse components only decay with 𝑇2.

Section 2.4 Time-Varying Magnetic Fields and the Rotating Frame

Larmor precession adds complexity to the motion of the magnetization vector. Through a

coordinate change into a frame of reference 𝐹′ that is rotating with respect to the laboratory frame 𝐹

the Larmor precession can be reduced or eliminated. Based on relative motion, the time-derivative

𝑑�⃑� ′
𝑑𝑡
⁄ of any time-dependent vector �⃑� (𝑡) with time derivative 𝑑�⃑�

𝑑𝑡
⁄ in the lab frame will be35:

 𝑑�⃑� ′

𝑑𝑡
=
𝑑�⃑�

𝑑𝑡
− �⃑⃑� 𝑟×�⃑� (𝑡) 2.37

where �⃑⃑� 𝑟 is the angular velocity vector for the rotating frame. Ignoring 𝑇1 and 𝑇2 decay for now for

simplicity, and combining equations (2.21) and (2.37) leads to:

 𝑑�⃑⃑� ′

𝑑𝑡
+ �⃑⃑� 𝑟×�⃑⃑� = 𝛾�⃑⃑� ×�⃑� 𝑒𝑥𝑡 2.38

Equation (2.38) can be reduced to:

 𝑑�⃑⃑� ′

𝑑𝑡
= 𝛾 {𝜇 ×(�⃑� 𝑒𝑥𝑡 +

�⃑⃑� 𝑟
𝛾
)} 2.39

By redefining
�⃑⃑⃑� 𝑟

𝛾
 as a fictitious B field 31 arising from the coordinate change

𝜔𝑟⃑⃑ ⃑⃑ ⃑

𝛾
= �⃑� 𝐹𝑖𝑐𝑡 then the external

B field can be combined with 𝐵𝐹𝑖𝑐𝑡 to yield an effective B field in the rotating frame 𝐵𝑒𝑓𝑓
31:

 𝑑𝜇 ′

𝑑𝑡
= 𝛾{𝜇 ×�⃑� 𝑒𝑓𝑓} 2.40

�⃑� 𝑒𝑓𝑓 = �⃑� 𝑒𝑥𝑡 +

�⃑⃑� 𝑟
𝛾

 2.41

Notice that if 𝐵𝑒𝑓𝑓 is zero than
𝑑�⃑⃑� ′

𝑑𝑡
= 0 and the magnetic moment is unchanged. This occurs when:

21

 �⃑⃑� 𝑟
𝛾
= −�⃑� 𝑒𝑥𝑡 2.42

Or

 �⃑⃑� 𝑟 = −𝛾�⃑� 𝑒𝑥𝑡 2.43

Which is the Larmor frequency. Therefore, if a rotating reference frame is chosen to rotate at the

Larmor frequency then the motion of the system is greatly simplified. A classic analogy for this frame

shift is the idea of a carousel. The motion of an object on a carousel is quite complex when observed

from the ground next to the carousel. However, if the observer were to step onto the carousel, the

motion would be greatly simplified relative to the observer.

In most cases, to detect the magnetization vector the vector must be excited away from thermal

equilibrium into the transverse plane. Generally, the perturbation away from the thermal equilibrium is

provided by a transient magnetic pulse. This will require splitting 𝐵 into a time-invariant component 𝐵0

and some short-lived component 𝐵1. Splitting up 𝐵 into these components, equation (2.36) becomes:

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 0 + �⃑� 1(𝑡)}) +

1

𝑇1
(�⃑⃑� 0 − �⃑⃑� ∥) −

1

𝑇2
�⃑⃑� ⊥ 2.44

Assuming that �⃑� 1 is left-handed circularly polarized electromagnetic field rotating about the �̂� axis with

a frequency 𝜔 and initial phase 𝜙0 following:

 �⃑� 1(𝑡) = 𝐵1{cos(𝜔𝑡 + 𝜙0) 𝑥 − sin(𝜔𝑡 + 𝜙0) �̂�} 2.45

In the rotating frame rotating with an angular frequency 𝜔𝑟𝑒𝑓𝑓, equation (2.45) will become:

 �⃑� 1
′(𝑡) = 𝐵1 {cos ((𝜔 − 𝜔𝑟𝑒𝑓𝑓)𝑡 + 𝜙0)𝑥 − sin ((𝜔 − 𝜔𝑟𝑒𝑓𝑓)𝑡 + 𝜙0) �̂�} 2.46

If the reference frame is rotating with the same frequency as the circularly polarized �⃑� 1(𝑡), or, 𝜔𝑟𝑒𝑓 =

𝜔 then equation (2.46) collapses to:

 �⃑� 1
′(𝑡) = 𝐵1𝑥 2.47

22

Also assuming that the duration of the magnetic pulse is short compared to the relaxation effects,

equation (2.44) can then be reduced to:

 𝑑𝑀′⃑⃑⃑⃑ ⃑

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 0 − 𝛾𝜔𝑟𝑒𝑓𝑓}) + 𝛾(�⃑⃑� ′×𝐵1(𝑡)𝑥)

2.48

If the 𝐵1 field also is rotating at the Larmor frequency, then equation (2.48) is further reduced to:

 𝑑𝑀′⃑⃑⃑⃑ ⃑

𝑑𝑡
= 𝛾(�⃑⃑� ′×𝐵1(𝑡)�̂�) 2.49

Equation (2.49) is in a similar form to equation (2.21) and will create a rotation about an axis. However,

since the 𝐵1
′ field is along the 𝑥 axis the rotation will also be an angle 𝜃 about 𝑥 given by:

 �⃑⃑� ′(𝑡) = �⃑⃑� ′(0)𝑅𝑥(�⃑⃑� 𝑡) 2.50

𝑅𝑥(𝜃) = [

1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos 𝜃

] 2.51

were 𝜔 = 𝛾𝐵1 and the excitation angle 𝜃 will be discussed later in this section.

For atomic nuclei, the Larmor frequency is in the radiofrequency range and therefore the

magnetic pulses used to excite such spin systems are referred to as radiofrequency pulses (RF-pulses).

When the frequency of the RF-pulse 𝜔 is offset from the Larmor frequency, which will still be considered

the reference frequency for the rotating frame 𝜔𝑟𝑒𝑓 = 𝜔0, 𝐵1 is no longer constant in time and (2.48)

becomes:

 𝑑𝑀′⃑⃑⃑⃑ ⃑

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 1(𝑡) + �⃑� 0 − 𝛾�⃑⃑� 𝑒𝑓𝑓}) 2.52

which can be distributed into its three component vectors assuming that the �⃑� 0 field is along the �̂�

direction, and that �⃑� 1is within the 𝑥�̂� plane and defining Δ�⃑⃑� = 𝛾𝐵0⃑⃑ ⃑⃑ − �⃑⃑� 𝑟𝑒𝑓𝑓 = 𝛾�⃑� 𝑒𝑓𝑓:

 𝑑𝑀𝑥
′

𝑑𝑡
= 𝑀𝑦

′ Δ𝜔 −𝑀𝑧
′𝛾𝐵1𝑥(𝑡) 2.53

 𝑑𝑀𝑦
′

𝑑𝑡
= −𝑀𝑥

′Δ𝜔 +𝑀𝑧
′𝛾𝐵1𝑥(𝑡)

2.54

23

 𝑑𝑀𝑧
′

𝑑𝑡
= −𝛾(𝐵1,𝑥(𝑡)𝑀𝑦

′ +𝐵1,𝑦(𝑡)𝑀𝑥
′) 2.55

Defining the transverse plane as a pair of complex numbers then:

 𝑀⊥ = 𝑀𝑥 + 𝑖𝑀𝑦 2.56

 𝐵1,⊥ = 𝐵1,𝑥 + 𝑖𝐵1,𝑦 2.57

Combining equations (2.53-2.57), a differential equation results:

 𝑑𝑀⊥
′

𝑑𝑡
= −𝑖Δ𝜔𝑀⊥

′ + 𝑖𝛾𝑀𝑧
′𝐵1,⊥(𝑡) 2.58

From the solution to this ordinary differential equations some of the excitation behavior of the Bloch

equation (2.44) becomes clear37:

𝑀⊥
′ (𝑡) = 𝑖𝛾𝑒−𝑖Δ𝜔∫𝑀𝑧

′

𝑡

0

(𝜏)𝐵1,⊥(𝜏)𝑒
𝑖Δ𝜔𝜏𝑑𝜏 2.59

From inspection, the complex transverse magnetization in the reference frame of the 𝐵1 field will be

dependent on the frequency relation of the 𝐵1field and the rate of precession. Equation (2.59) governs

the initial phase of the transverse magnetization similar to 𝜙0 in equation (2.45) as well as the excitation

angle, 𝜃, defined in (2.51). The idea that the relative frequency between the excitation pulse and the

Larmor frequency determines the perturbation from equilibrium also agrees with the quantum nature of

the transition between states and the energy needed briefly mentioned after equation (2.25).

 In the simplified case of a rectangular envelope pulse matched to the Larmor frequency,

following equation (2.59), the tip angle 𝜃 will be31:

 𝜃𝑡𝑖𝑝 = 𝛾𝐵1𝜏 2.60

where 𝐵1 is the amplitude of the block pulse and 𝜏 is its duration. Additionally, the phase of the

transverse magnetization will be matched to the phase of the block pulse. While these relationship hold

for a rectangular pulse, more complicated relationship between the pulse characteristics and the

resulting excitation angle and phase exist for other pulse shapes.

24

Section 2.5 Summary of the Bloch Equation

In summary the key aspects of the Bloch equation (2.44) will be restated:

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 𝑒𝑓𝑓 + �⃑� 1(𝑡)}) +

1

𝑇1
(�⃑⃑� 0 − �⃑⃑� ∥) −

1

𝑇2
𝑀⊥

2.44

A uniform ensemble of magnetic moments in the presence of a magnetic field will precess about

the magnetic field at the Larmor frequency, equation (2.18). Additionally, there is a thermal equilibrium

magnetization 𝑀0 due to Boltzmann distribution energy states that is caused by the applied field,

equation (2.22 and 2.26). The magnetization will return to its equilibrium magnetization through energy

exchange with its lattice with a characteristic spin lattice relaxation time 𝑇1, equation (2.32). Combined

with the relaxation caused by energy exchange, the coherence of the individual spins that make up the

magnetization will decay due to interaction between spins. This will cause a reduction in the transverse

magnetization characterized by the spin-spin relaxation time 𝑇2 equation (2.34). In order to excite the

magnetization out of its thermal equilibrium, energy must be added at or near the Larmor frequency,

equation (2.59). This is generally accomplished with a brief radiofrequency pulse or RF-pulse. After

excitation, the magnetization in the transverse plane will oscillate at the Larmor frequency within a

decay envelop defined by 𝑇2. This oscillating decaying signal is referred to as the free induction decay

(FID) and is the fundamental signal detected for all nuclear magnetic resonance phenomenon. The

solution to equation (2.44) is displayed in figure 2-1.

25

Figure 2-1. Visualization of the Bloch equations. Magnetization vector during a free induction decay

visualized three different ways. (Left) the components of a magnetization in three space. Note that only

the 𝑋 and 𝑌 components will be detectable in a conventional magnetic resonance signal. (Center) the

trajectory of a magnetization vector illustrating the classical corkscrew shape. (Right) a sampling of the

magnetization vector over time as it follows the trajectory in the center panel.

Section 2.6 Chemical Shift

The previous sections have all dealt with the effects that magnet fields have on dipole moments

from nuclear spins. However, the electrons that orbit nuclei generate dipole moments of their own.

There are two man effects to consider when discussing how orbital electrons interact with external

magnetic fields34; the effect from the electrons’ inherent spin which gives rise to paramagnetism; and

the effect that the magnetic field has on orbital motion, which gives rise to diamagnetism.

Paramagnetism arises in much the same way that nuclear magnetization arises, the electron’s inherent

spin results in a dipole moment that aligns with the applied field. However, this effect is only dominant

in particular atoms due to the Pauli exclusion principle for electrons, and even for those atoms it is

reduced by thermal energy affecting the fraction of alignment. Therefore, paramagnetic effects are

quite rare and will be ignored.

26

 Diamagnetism, arises from the change in the electron orbital motion due to the applied

magnetic field and results in an overall reduction of the magnetic field. A quantum mechanical

derivation of diamagnetism is beyond the scope of this discussion, but for a classical approximations

readers are directed to reference [34]34. The reduction of the external magnetic field can be

conceptualized to result from an induced magnetic field 𝐵𝑖𝑛𝑑 that oppose 𝐵0
34. The reduced magnetic

field at a nuclei caused by such induced fields is referred to as chemical shielding and is given by:

 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 𝐵0 − 𝐵𝑖𝑛𝑑 2.61

Since the induced field 𝐵𝑖𝑛𝑑 is determined by the external magnetic field 𝐵0, equation (2.61) is normally

simplified to relate 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 to 𝐵0 with a chemical shielding constant 𝜎37:

 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = (1 − 𝜎)𝐵0 2.62

Chemical shielding will depend only on the chemical structure of the molecule containing the nuclei of

interest. Chemical shielding will not be similar to the random isotropic fields that gave rise to 𝑇2 decay

but will be constant and identical for all nuclei in a particular position in a molecule. If there is a

chemical species-dependent deviation to the magnetic field, then by equation (2.18) there should be a

shift in Larmor frequency31:

 �⃑⃑� = −𝛾(1 − 𝜎)�⃑� 0 2.63

Equation (2.63) relates the frequency of the detectable Larmor precession to the chemical composition

of the molecules that produce them. Therefore, spectral analysis of the signal resulting from the Larmor

precession will yield information on the chemical structure of the compounds giving rise to the nuclear

magnetic resonance signal.

Section 2.7 Fourier Spectroscopy

 The Fourier transform can be used to spectrally analyze the frequency components of a signal.

Conceptually the Fourier transform, as it relates to NMR, decomposes a time domain signal into its

27

frequency components. Consider a function of time 𝑔(𝑡) the Fourier transform of the function ℱ{𝑔(𝑡)}

is defined as37:

𝐺(𝜉) = ℱ{𝑔(𝑡)} ≡ ∫ 𝑔(𝑡)

∞

−∞

𝑒−𝑖2𝜋𝜉𝑡𝑑𝑡 2.64

When relating 𝜉 and 𝑡 by the Fourier transform as above they are referred to as Fourier conjugates.

Again, for magnetic resonance spectroscopy the two domains related by the Fourier transform are the

time domain, normally in units of seconds, and the frequency domain, normally in units of Hz. Fourier

transforms are invertible and the inverse Fourier transform ℱ−1 will be:

𝑔(𝑡) = ℱ−1{𝐺(𝜉)} ≡ ∫ 𝐺(𝜉)𝑒𝑖2𝜋𝑡𝜉𝑑𝜉

∞

−∞

 2.65

 Note that by equation (2.64) and (2.65) 𝑔(𝑡) = ℱ−1[ℱ{𝑔(𝑡)}] and that either the time domain or the

frequency domain signals are sufficient to determine the other. Additionally, equation (2.18) is a

relationship between the Larmor frequency in units of 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑠𝑒𝑐𝑜𝑛𝑑⁄ and not Hz which is the

frequency domain defined in equation (2.64). Angular frequency and Hz are easily related by a constant

of 2𝜋, and the Fourier transform between the time domain and angular frequency is only slightly

different than equations (2.64) and (2.65). As a final note, the Fourier transforms described above are

continuous with all possible frequencies or time points in the integral, whereas in practice the data from

NMR are discrete and therefore the integral is replaced with a sum over all measured time points and

the corresponding sampling bandwidth. This discrete form of the Fourier transform is called the discrete

Fourier transform.

 The FIDs associated with the magnetic resonance signal of a single chemical species will be a

damped sinusoid as determined by equation (2.44) following:

𝑓(𝑡) = 𝑒

−𝑖𝜔0𝑡−
𝑡
𝑇2

2.66

28

 𝑔(𝜔) = ℱ{𝑓(𝑡)} =
𝑐

1
𝑇2
+ 𝑖(𝜔 + 𝜔0)

2.67

where 𝑐 is a constant related to the initial magnitude of 𝑓(𝑡0). Equation (2.67) is the classic Lorentzian

line shape as seen in figure 2.2.

Figure 2-2. Free induction decay and Lorentzian line shape. The top panel show the real and imaginary

parts of a FID following equation (2.66) and the resulting Fourier transform. The lower panel shows the

resulting Lorentzian, equation (2.67), with the same 𝑇2 and 𝜔 as the top panel, as well as the resulting

inverse Fourier transform.

Equations (2.66 and 2.67) are complex functions and give rise to what are referred to as the

absorption and dispersion parts of the signal. The relationship between the absorption and dispersion,

or just the real and imaginary parts of an NMR spectrum is determined by the phase of the signal. The

phase of the signal relates to the position of the magnetization vector in the transverse plane. If there is

29

a synchronization mismatch between the frequency of the excitation pulse and the frequency reference

of the receive system there will be a phase shift in the entire signal of a constant value. This is referred

to as the 0th order phase. Additionally, if there are multiple resonance signals in a single FID, then any

temporal delay will give rise to an additional 1st order phase shift as each resonance signal will have a

different resonance frequency and therefore impart a slightly different phase shift over the same timing

mismatch. Such phase discrepancies can be corrected by adding a phase shift to the FID prior to Fourier

transform given by:

 𝑓′(𝑡) = 𝑒−𝑖(𝜙0+𝜙1𝑡) 2.68

where 𝜙0 and 𝜙1 are the zeroth and first order phase correction terms respectively. Phase correction of

a NMR signal is shown in figure 2-3.

Figure 2-3. Fourier analysis and phase correction of a fee induction decay. The complex FID (left) is

decomposed into its spectral components by a Fourier transform. The peaks are then phase corrected

(right) so its real component (blue) is completely positive.

 Using the Fourier transform the time domain FID can be converted into its corresponding

frequency components. Relative peak intensities determined by Fourier spectroscopy can be used to

determine the relative concentrations of chemicals in some sample. This is the fundamental concept

behind magnetic resonance spectroscopy (MRS). MRS is a powerful tool for determining a substances

chemical composition non-invasivly37.

30

Section 2.8 Clinical Magnetic Resonance Spectroscopy

In clinical practice most of the magnetic resonance signal comes from protons in either water or

some lipid compound. While comparatively much smaller than the water or fat signal, other protons in

the body will generate magnetic resonance signals. Using magnetic proton resonance spectroscopy to

non-invasively probe a tissues’ chemical composition is a powerful clinical procedure for specific

diseases and anatomical locations. However, MRS is generally signal-limited, making it difficult to

perform in most of the body. Clinical MRS usually performed on relatively homogeneous organs that are

either naturally stationary or can be easily immobilized, including the brain and the prostate. This allows

multiple spectroscopic scans to be performed to allow signal averaging. By averaging the signals from

repeated measurement, spectral peaks can be enhanced, as they will add coherently while the random

noise will add incoherently. Even with large numbers of averaged acquisitions clinical MRS focuses on

only a few compounds that are relatively abundant in some tissue or disease type.

 The reason clinical MRS is so limited can be found in the Boltzmann distribution equation (2.22).

With a spin
1

2
 particle, the probabilities of being in the spin up (𝑃+) and spin down (𝑃−) position given by:

𝑃± =

𝑒±
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

 2.69

 where 𝑢 =
ℏ𝛾𝐵0

𝑘𝑇
. The number of excess spins (𝑁𝑒𝑥𝑐𝑒𝑠𝑠) will be the difference in the numbers of spin up

and spin down (𝑁(𝑃+) and 𝑁(𝑃−) respectively)31:

 𝑁𝑒𝑥𝑐𝑒𝑠𝑠 ≡ 𝑁(𝑃+) − 𝑁(𝑃−) 2.70

𝑁𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑁(
𝑒
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

−
𝑒−
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

) = 𝑁(
𝑒
𝑢
2 − 𝑒−

𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

) = tanh (
𝑢

2
) 2.71

31

where N is the total number of spins. Notice that as the term in the exponent approaches zero, normally

by 𝐵0 approaching zero, 𝑁𝑒𝑥𝑐𝑒𝑠𝑠 also approaches zero, and that as the exponential term gets larger

𝑁𝑒𝑥𝑐𝑒𝑠𝑠 approaches N. For protons with a clinically reasonable 𝐵0 = 1.5 𝑇 at body temperature (310K),

𝑢 = 6.6𝑥10−6 then by equation (2.71) the spin excess is nearly 5𝑥10−6 or 5 parts per million (ppm)31.

Therefore, out of every million protons in the body only about five can give rise to any detectable signal

by magnetic resonance. This is not catastrophic from compounds such as water or fat, which are

abundant in the body. However, for other biologic compounds like metabolites there are simply not

enough molecules in the body to generate a robust magnetic resonance signal with a high signal-to-

noise ratio (SNR) and good spatial resolution.

 The problems of a weak signal due to the low biologic abundance of compounds is exacerbated

when nuclei other than protons are considered. Other nuclei can have a non-zero spin and therefore

can be detected by magnetic resonance. Table 2.1 briefly summarizes the commonly detected nuclei for

biologic magnetic resonance spectroscopy.

Nuclei Natural Abundance Gyromagnetic Ratio Relative Sensitivity

1H 99.98 % 42.6 MHz/T 100 %

13C 1.11 % 10.7 MHz/T 1.6 %

19F 100 % 40.1 MHz/T 83 %

23Na 100 % 11.3 MHz/T 9.3 %

31P 100% 17.2 MHz/T 6.63%

Table 2-1. Properties of nuclei commonly detected by magnetic resonance spectroscopy.

While nuclei other than protons give rise to less relative signal, they additionally tend to be far

less numerous in the body compared to protons. Carbon, with its central role in organic chemistry, could

32

provide critical information about the biochemical state of tissue. The potential to detect usable

magnetic resonance signal from 13C containing molecules has driven technical advances seeking to

increase the excess spin population of 13C nuclei far surpassing its thermal equilibrium magnetization.

Increasing the excess spin population beyond thermal equilibrium can overcome the signal limitations

imposed by equation (2.71) and would allow real time MRS of select 13C compounds.

Section 2.9 Dynamic Nuclear Polarization

A brief outline of dynamic nuclear polarization will be presented followed by a description of a

few quantitative models38. Dynamic nuclear polarization (DNP) is a process that can transiently increase

the polarization of a spin population to near unity39-41. This is achieved by mixing a small amount of

paramagnetic impurities with a diamagnetic material and cooling the mixture well into the solid state. If

the paramagnetic impurities contin unpaired electrons and the diamagnetic material is a 13C-enriched

compound, both the electrons and the 13C nucleus will be particles of spin 1/2. Due to a large

discrepancy in the charge-to-mass ratio between the electron and the carbon nucleus and their

subsequent gyromagnetic ratios, equation (2.8 and 2.71) shows that electrons are polarized to near

unity (99.8%) at around 1.4 Kelvin while the 13C nucleus will remain relatively un-polarized (0.13%) at a

field strength of 3.35 T as shown in figure 2-4.

33

Figure 2-4. Dynamic nuclear polarization. Polarization as a function of temperature at 3.35T as predicted

by equation (2.71). At 1.4K electrons, protons and 13C polarize to 0.998, 0.00527 and 0.00132

respectively due to differences in their gyromagnetic ratios.

Consider an isolated electron and 13C nucleus as a dipole pair as shown in figure 2-5. The

coupled system will have four possible spin states with moments 〈↑𝑒↑𝑛〉, 〈↑𝑒↓𝑛〉, 〈↓𝑒↑𝑛〉, and 〈↓𝑒↓𝑛〉,

where the electron dipole moment is ↑𝑒 and the nuclear dipole moment is ↑𝑛 and ↑ is aligned with the

field while ↓ is aligned against. Transitions between these possible energy states will be governed by the

energy added to the system by 𝑇1 relaxation. Assuming that the electrons are fully polarized, the states

with spin down electrons will be completely unpopulated leaving just the states 〈↑𝑒↑𝑛〉 and〈↑𝑒↓𝑛〉 as the

primary states.

34

Figure 2-5. Nucleus electron pair energy diagram. An energy diagram of an electron-nuclear pair in a

high magnetic field with no di-polar interactions considered.

From these states, there are two possible dipolar interactions. So called flip-flips will completely

reverse the entire spin state or 〈↑𝑒↑𝑛〉 → 〈↓𝑒↓𝑛〉 and will require energy ℏ(𝜔𝐸 +𝜔𝐶), where 𝜔𝐸 and 𝜔𝐶

are the Larmor frequencies of the electrons and carbon nuclei, respectively. The other transition, so

called flip-flops, will be of the form 〈↑𝑒↓𝑛〉 → 〈↓𝑒↑𝑛〉 and will require energy ℏ(𝜔𝐸 −𝜔𝐶). The energy

required to induce these transitions is supplied by microwave irradiation with a either frequency 𝛺 =

𝜔𝐸 ±𝜔𝐶. If the line width of the electron’s Larmor frequency ∆𝜔𝐸 is much smaller than the resonance

frequency for carbon, the energy spectrum of flip-flips and flip-flops will not overlap and only flip-flips or

flip-flops transitions can be driven.

35

Figure 2-6. Nucleus electron energy diagram with flip-flops transitions. Dipole pairs are excited by an

external microwave source from energy level 2. to level 3. Due to rapid 𝑇1,𝑒 relaxation the electron

quickly relaxes transitioning the pair from level 3. to 1. At energy level 1. the electron can form a new

dipole pair with a different carbon nucleus and the new pair would be at energy level 2.

If the driving microwave irradiation is tuned to only excite flip-flop transitions, as shown in

figure 2-6, then after a flip-flop there will be an electron in the spin down state which could potentially

induce a reverse flip-flop of the form 〈↓𝑒↑𝑛〉 → 〈↑𝑒↓𝑛〉 . However, due to the interaction strength

between the electron and the magnetic field, relaxation of an electron back to its low energy state is so

rapid that the probability of reverse flip-flop transitions becomes vanishingly small. The relaxed spin up

electron is then able to participate in another flip-flop interaction with a different carbon nucleus driven

by the microwave irradiation. As this processes continues it becomes clear that over time the high

polarization of the electrons will eventually be transferred to the carbon nuclei.

36

Thermal interactions between the carbon nuclei and the lattice will be acting to relax them back

to their thermal equilibrium distribution. An equilibrium carbon polarization will eventually be achieved

once the lower energy carbon spin population is so large that there are as many low energy carbons

relaxing by 𝑇1 relaxation as there are dipole flip-flop transitions being induced by the microwave

irradiation. Qualitatively, the factors that affect this equilibrium value are, the 𝑇1 relaxation times of

both the carbon nuclei and the electron impurities, the ratio of electron impurities to carbon nuclei, the

strength of the microwave driver, and the thermal equilibrium polarization of the electrons and carbons.

Due to the vast difference in gyromagnetic ratio between the carbons and electron impurities, the 𝑇1

relaxation times of the electrons will be much shorter than carbons, allowing a single electron to induce

many flip-flop dipolar transitions before the resulting low energy carbons decay back to their thermal

equilibrium values. Therefore, a single electron can facilitate polarization of many carbons.

For such an energy structure to exist, the system must be frozen well into the solid state and the

electrons be spatially limited in the number of carbons they can interact with. The interaction between a

low energy carbon and an adjacent higher energy carbon somewhat diminishes the effect of spatial

isolation. A similar flip-flop dipolar transition is possible. However, it will not require any external energy

because the total energy status of the dipole pair is unchanged. These carbon-to-carbon flip-flop

transitions, also referred to as spin diffusion, allow relatively small numbers of electron impurities to

hyperpolarize a large number of carbon nuclei. To hyperpolarize a large number of carbon nuclei with

great efficiency the electrons need to be evenly distributed throughout the solid lattice. Compounds

that form structured crystal lattices frequently will not uniformly distribute the electron impurities and

therefore glassing solids are used for the majority of hyperpolarization preparations.

If the driving microwave irradiation is shut off, then the equilibrium maintained by the flip-flop

dipolar transitions will be disrupted. The carbons will decay back to their thermal equilibrium

distributions with their native 𝑇1
42. Depending on the compound and the relaxation enhancing

37

impurities, this can be on the order of hours in the solid state. A brilliant insight by Ardenkjaer-Larsen

and others that even in the liquid state a hyperpolarized agent could have a 𝑇1 on the order of tens of

seconds25,43 has brought hyperpolarization to medical and imaging science. This allows a total lifetime of

minutes, which is enough time to be used in liquid state magnetic resonance spectroscopy27. In order to

perform MRS on hyperpolarized agents in the liquid state, the solid state agent must be rapidly heated

and delivered to the magnetic resonance system that will perform the measurements. In a process

called dissolution DNP, the solid state system is flushed by a superheated fluid that allows rapid melting

and delivery to an external system for subsequent measurement.

Section 2.10 Models of Dynamic Nuclear polarization

A. The Well-Resolved Solid Effect

The previous section described, in qualitative terms, a model of the nuclear Overhauser effect

first proposed by Overhauser in 195340 and demonstrated by Slichter in conducting solids the same

year39. Dynamic nuclear polarization is generally achieved through four theoretical mechanisms38,41, two

of which apply to clinical and pre-clinical DNP: the well-resolved solid effect44,45 and thermal mixing46,47.

The derivation of each mechanism requires a full development of spin-temperature theory or density

matrix formalism that is beyond the scope of this discussion. Additionally, the resulting models require

assumptions that do not always hold for DNP in practice, and a general theoretical treatment of DNP

under all conditions is still an area of active study48. With these limitations in mind, some of the

important components of the classical models will be presented and related to the clinical and

preclinical use of DNP for 13C nuclei.

38

Figure 2-7. An energy diagram of an electron-nuclear pair with all dipolar interaction.

A two spin system composed of an electron and proton, as shown in figure 2-7, will have a

Hamiltonian45:

 ℋ = ℋ𝑧 +ℋℎ𝑓 +ℋ𝑛𝑛 +ℋ𝑒𝑒 +ℋ𝑀𝑊 2.72

where 𝐻𝑧 corresponds to the Zeeman interactions, 𝐻ℎ𝑓 corresponds to the hyperfine interactions, 𝐻𝑛𝑛

and 𝐻𝑒𝑒correspond to the dipole interactions for electrons and nuclei respectively, and 𝐻𝑀𝑊

corresponds interactions driven by an external microwave irradiation. If the microwave source is off

(𝐻𝑀𝑊 = 0) and equation (2.69)is solved,45 the population, 𝑝𝑖 of states 1-4 in figure 2-7 will be:

𝑝1 = 𝑝2 =

1

2

1

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

𝑝3 = 𝑝4 =
1

2

𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

2.73

This assumes that the nuclear Zeeman splitting is negligible compared to the electron splitting. The

polarization of the nuclei, 𝑃𝑛, and electron, 𝑃𝑒 , will follow:

39

 𝑃𝑛 = (𝑝1 − 𝑝2 + 𝑝3 − 𝑝4)

𝑃𝑒 = (𝑝1 − 𝑝3 + 𝑝2 − 𝑝4)
2.74

By combining equations (2.73 and 2.74):

 𝑃𝑛 ≅ 0

𝑃𝑒 =
1 − 𝑒−

ℏ𝛾𝑒𝐵0
𝑘𝑇

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

= −tanh(−
ℏ𝛾𝑒𝐵0
2𝑘𝑇

) = tanh (
𝑢𝑒
2
)

2.75

Essentially at thermal equilibrium the nuclei are completely unpolarized while the electrons follow the

polarization predicted by equation (2.71).

In order to drive flip-flop transitions the microwave irradiation would need to provide

 (𝜔𝑀𝑊 = 𝜔𝑒 −𝜔𝑛). If the power of the microwave source is high enough to saturate the flip-flop

transition, then 𝑝2(𝑡) = 𝑝3(𝑡), and following equation (2.74):

 𝑃𝑛 = 𝑃𝑒 = tanh (
𝑢𝑒
2
) 2.76

If the microwave source was tuned to induce flip-flips (𝜔𝑀𝑊 = 𝜔𝑒 +𝜔𝑛), then 𝑝1(𝑡) = 𝑝4(𝑡) and

equation (2.74) shows:

 𝑃𝑛 = −𝑃𝑒 = − tanh (
𝑢𝑒
2
) 2.77

Equations (2.76 and 2.77) give rise to classic signatures of the well -resolved solid effect. That is that

properly tuned narrow band microwave irradiation will give rise to either positive or negative

enhancement of the nuclear polarization. Additionally, the difference in the frequencies leading to

enhancement will be twice the Larmor frequency of the nuclei, and they will be centered about the

electron’s paramagnetic resonance.

 In practice there are far more interactions than the simplified model described above. Mostly

they arise from the multitude of nuclei interacting with each electron. Interactions between electrons

are weak because the well-resolved solid effect tends to occur when the electrons are dilute compared

40

to the nuclei and therefore spaced far apart. These additional nuclear interactions have two primary

effects on the above results: they broaden the range of frequencies that give rise to enhancement, and

they serve as an energy sink that reduces the efficiency of each electron to polarize surrounding nuclei45.

While not derived, the results of reference [38] 38 are shown in figure 2-8 outlining the two classical

hallmarks of the well-resolved solid effect.

Figure 2-8. Polarization from the well-resolved solid effect. Theoretical polarization build up for an

arbitrary electron nucleus system (left). Theoretical frequency sweep of the same system showing the

two polarization peaks offset by 𝜔𝑛 from 𝜔𝑒(right).

B. Thermal Mixing

While the well-resolved solid effect described by equations (2.72 – 2.77) and outlined in figures

2.7 and 2.8 can be the dominant effect in theory, the conditions are quite rare in practice. This is

because situations where the electron spectral resonance line width is much narrower than the Larmor

frequency of a nuclei are difficult to achieve and often require specific crystal lattices41. It is much more

common that the electron spectral width will span both the flip-flip and flip-flop transition, leading to

𝜔𝑛 ≪ Δ𝜔𝑒. Under such conditions, driving a microwave source at any particular frequency near 𝜔𝐸 ±

𝜔𝐶 will induce flip-flips and flip-flops. The overlap of these transitions will degrade the nuclear

41

polarization achievable, and if the electron spectral width is much bigger than the Larmor frequency,

any significant dynamic nuclear polarization by the solid effect becomes impossible. However, due to

the interaction between some groups of electrons and some nuclei, it is still possible to achieve dynamic

nuclear polarization, although the mechanism is different than the well-resolved solid effect. Dynamic

nuclear polarization when the spread of the electron resonance is much larger than the Zeeman splitting

of a nuclei is called thermal mixing46,47.

 Because thermal mixing requires the interaction of a large number of electrons a formalism has

been developed that draw parallels to statistical mechanics. Spin temperature (𝛽), which was first

introduced by Redfield49, is defined as:

𝛽 ≡

1

𝑘𝑇
 2.78

The population of each state defined by the Hamiltonian (ℋ) and the spin temperature given by:

𝑃 =

𝑒−𝛽ℋ

𝐴
 & 1 =∑𝑃 2.79

where 𝐴 is simply a normalization constant.

Figure 2-9. Energy diagram of the thermal mixing process. Due to the similar spin temperatures of the

nuclear Zeeman bath, and the secular electron bath they are considered to be in strong thermal contact

42

(𝛽𝑒𝑆 = 𝛽𝑛𝑍) allowing their population distributions to match. Therefore, when the secular electron bath

is cooled by interactions with the electron Zeeman bath facilitated by microwave (𝑀𝑊 = 𝜔𝑒 + Δ)

irradiation that cooling is transferred to the nuclear Zeeman bath.

Dynamic nuclear polarization arises from the interaction of the three spin temperatures that are

outlined in figure 2-938,46,47. The first two spin temperatures describe the Zeeman splitting of the

electrons and the nuclei, 𝛽𝑒𝑍 and 𝛽𝑛𝑍 respectively. These spin temperatures give rise to the population

distributions discussed for the well-resolved solid effect when the microwave irradiation was off,

equation (2.75). Additionally, now that the ensemble of electrons with a range of resonance frequencies

is being considered, there is a third spin temperature (𝛽𝑒𝑆) referred to as the secular or non-Zeeman

spin temperature that needs to be considered. Finally, similar to the solid effect, thermal mixing

requires microwave irradiation. The frequency of irradiation, by contrast, will be shifted a small amount

Δ from the electron’s resonance and not necessarily (𝜔𝑒 ±𝜔𝑛), which was needed for the well-

resolved solid effect. The evolution of all three spin temperatures has been described by Provotorov50:

 𝑑𝛽𝑒𝑍
𝑑𝑡

= −𝑊(𝛽𝑒𝑍 − 𝛽𝑛𝑍) −
1

𝑇1𝑒
(𝛽𝑒𝑍 − 𝛽′𝑒𝑍)

𝑑𝛽𝑛𝑍
𝑑𝑡

=
𝑑𝛽𝑒𝑆
𝑑𝑡

= 𝑊(
Δ2

𝐷2
) (𝛽𝑒𝑍 − 𝛽𝑛𝑍) −

1

𝑇1𝑛
(𝛽𝑛𝑍 − 𝛽′𝑛𝑍)

2.80

where 𝑊 is the transition probability induced by the microwave irradiation, 𝐷 is the electron linewidth

and 𝛽′ denotes the Zeeman spin temperatures due to interactions with the external lattice and defines

thermal equilibrium. Because the spread in the electron resonance linewidth is considered to be

comparable or large compared to the nuclear Zeeman splitting, the spin temperatures 𝛽𝑒𝑆 and 𝛽𝑛𝑍 are

considered to be in strong thermal contact38,46 and therefore equal. In the steady state
𝑑𝛽𝑒𝑍

𝑑𝑡
=
𝑑𝛽𝑛𝑍

𝑑𝑡
= 0

and the equilibrium value of the nuclear spin temperature is38:

43

𝛽𝑛𝑍 = 𝛽𝑛𝑍
′
𝜔𝑒
Δ

𝑊𝑇1𝑛 (
Δ2

𝐷2
)

(1 + 𝑓)
⁄

1 +𝑊𝑇1𝑒 +
𝑊𝑇1𝑛 (

Δ2

𝐷2
)

(1 + 𝑓)
⁄

 2.81

where 𝑓 is an additional leakage term. Equation (2.81) yields the two hallmarks of DNP by thermal

mixing. An antisymmetric response around the electron’s resonance and a linear sloping zero crossing

seen in figure 2-10.

Figure 2-10. Microwave sweep of thermal mixing. Qualitative comparison of the polarization of 1-13C-

pyruvic acid doped with 15 mM Ox063 Trityl as a function of microwave frequency and polarization as

predicted by equation (2.81). The theoretical curve does not approach zero as quickly as the measured

data as the microwave frequency diverges form the electron paramagnetic resonance. This is a

limitation of the high temperature assumption38 that leads to equation (2.81), for a more rigorous

treatment of thermal mixing references [42] and [47] should be consulted. 42,47

 Practically, dynamic nuclear polarization of carbon-13 nuclei is performed at temperatures

below that of liquid helium with field strengths on the order of Tesla. Under these conditions, unpaired

electrons in the polarizing radicals polarize to near unity. The paramagnetic impurity most commonly

44

used is the unpaired electron on a persistent radical, normally a proprietary triphenylmethyl derivative

called Ox063. The large structure surrounding the central carbon of Ox063 is sterically crowded and

therefore cannot easily react. This leaves a single unpaired valence electron radical that is chemically

stable42. Using mechanisms described above, the high polarization of such radicals can be transferred to

nuclei.

 It has been shown that at a temperature of 1.4 K and a field strength of 3.35 T the electron

linewidth of Ox063 is about 60 MHz, which is caused primarily by g-factor anisotropy when in a solution

of 1-13C-pyruvic acid at a concentration of 15 mM42. The Larmor frequency of 13C at 3.35 T is 38.55 MHz

and therefore the solid effect is not a plausible mechanism to polarize 13C. Protons however, have a

Larmor frequency of 142.7 MHz and could be well polarized by an Ox063 radical using the solid effect42.

With the C13 Larmor frequency well below the electron line width, thermal mixing will drive effective

polarization enhancement of the C13. In order to increase polarization via thermal mixing, spin-spin

interactions between the paramagnetic impurities need to be rapid and numerous. Therefore, the

distance between the paramagnetic impurities cannot be excessive. As long as the solid state system is a

glass the distance between the free radicals in Ox063 at 15 mM will be 5 nm, which is close enough to

allow them to magnetically couple. If there is a crystalline structure in the solid state, the distance

between the free radicals could be much larger and inhibit polarization. If the solute is not glass-

forming, a glassing agent such as glycerol is often used. Additionally, it has been shown that small

amounts of a Gd+ compound can increase the steady state dynamic nuclear polarization of 1-C13-Pyruvic

acid51. This is likely caused by a shortening of the electron’s 𝑇1 while the C13 𝑇1 is unaffected42. This will

lead to an increased polarization as predicted by equation (2.81). The addition of Gd+ has been shown to

increase the polarization by a factor of as much as two. However, such effects are reduced at higher

field strengths52.

45

 In practice, the above considerations lead to the following general hyperpolarized setup. A

single C13-enriched compound, such as 1-13C-Pyruvic acid, is doped with ~15 mM of a radical and ~0.1

mM Gd+ chelate. The solution is rapidly cooled below 1.5K and is irradiated via microwaves while under

a strong magnetic field. Typically build-up times are on the order of an hour, and nuclear polarizations of

~30% are common43.

Polarizations of nuclei on the order of tens of percent represent a massive increase in the

potential NMR signal. However, to be useful clinically, the polarized nuclei need to interact with some

target biology. This will involve the removal from the microwave irradiation and significant heating to

reach body temperature. Fortunately, once a polarization level is achieved it will return to thermal

equilibrium at its 𝑇1 relaxation rate. In the solid state, the 𝑇1 of C13 enriched compounds is on the order

of hours. However, once heated it is on the order of a minute. Therefore, if the process of heating,

delivery to target biology and scanning are rapid there will be significant polarization remaining from the

process of dynamic nuclear polarization. The rapid melting and delivery of highly dynamic nuclear

polarized agents is referred to as dissolution dynamic nuclear polarization.

Section 2.11: Detection of Magnetic Resonance Signal

Detecting hyperpolarized agents through magnetic resonance is substantially different than

conventional magnetic resonance imaging or spectroscopy, even though they operate according to the

same principles. In conventional magnetic resonance, after excitation the excited spin system will return

to thermal equilibrium as it interacts with its lattice through the process known as the spin-lattice

relaxation or 𝑇1 relaxation31. Additionally, there will be some dephasing of the transverse magnetization

caused by spin-spin interactions, also referred to as the 𝑇2 decay. These effects combine to generate the

signal depicted in figure 2-11. The net magnetization, 𝑀0 is excited to create a transverse magnetization,

and longitudinal magnetization is initially reduced but will then recover following 𝑇1 relaxation. The

46

transverse magnetization will oscillate at the Larmor frequency while decaying with time constant 𝑇2

towards zero. Note that 𝑇2 ≤ 𝑇1 or, the spin-spin relaxation will always be as fast or faster than the spin

lattice relaxation. If serial excitation is performed faster than a few 𝑇1 times, then a steady state

magnetization will be achieved as seen in figure 2-11. This steady state magnetization is foundational to

conventional magnetic resonance spectroscopy or imaging as it imparts contrast and allows the

assumption of consistency between measurements.

Figure 2-11. A comparison of a conventional magnetic resonance signal (top) and a hyperpolarized

magnetic resonance signal (bottom). The conventional signal recovers with 𝑇1, eventually reaching a

steady state signal. The hyperpolarized signal, by contrast, is constantly decaying and no steady state

signal is achieved.

47

Unlike conventional magnetic resonance, hyperpolarized agents derive their longitudinal

magnetization from the process of dynamic nuclear polarization. Once the DNP process is terminated

the hyperpolarized will begin to decay with its inherent spin lattice relaxation time back to thermal

equilibrium. As in conventional magnetic resonance, excitation of a hyperpolarized spin state will excite

some or all of the longitudinal magnetization into the transverse plane where it can then be detected by

a loop receiver coil. However, unlike conventional magnetic resonance, the hyperpolarized longitudinal

magnetization will not recover after excitation. It will continue to decay. Due to this fundamentally

transient magnetization, the steady state magnetization which is so often fundamental to conventional

magnetic resonance is achieved only after longitudinal magnetization has decayed to undetectable

levels. Therefore, while much of conventional wisdom and techniques associated with magnetic

resonance do apply to hyperpolarized agents, many do not. A helpful analogy is to conceptualize the

longitudinal magnetization of a hyperpolarized agent as a diminishing resource. Excitation into the

transverse plane is necessary for signal detection and the amount of the resource consumed during an

excitation will directly correlate to the strength of the signal detected. However, if serial measurements

are to be made, some longitudinal magnetization will have to be conserved to be available for

subsequent excitations and detection.

The simplest magnetic resonance study of a hyperpolarized agent is a single spectroscopic

acquisition. This would be no different than the spectral acquisitions described in section 2.7 except for

the substantially increased signal due to hyperpolarization. With the massive signal increase made

possible by dynamic nuclear polarization, it is possible to serially excite the spin system using excitations

that do not completely consumed the longitudinal magnetization. Such a serial excitation would allow

for multiple spectral readouts. Each spectral readout could be treated independently using the same

methods described in section 2.10. The only exception would be that the previous excitation would

48

diminish the remaining longitudinal magnetization for subsequent excitations. This can be partially

accounted for either by keeping the excitation angles so low that they have negligible effect on future

excitations compared to 𝑇1 decay, but such low excitation could severely limit the signal. Alternatively,

the resulting signal could be corrected with a simple scaling factor that accounts for all previous

excitations or signal losses due to excitation which could be accounted for in quantification methods53,54.

This fundamental link between the detection strategy and the resulting signal evolution must be well

characterized if reliable quantification methodologies are to be applied to hyperpolarized studies.

49

 Chapter 3. Simulation of Hyperpolarized Studies

This chapter is intended to address Aim 1.

Section 3.1: Theory

Once the hyperpolarized signal is detected it needs to be processed. For hyperpolarized

pyruvate, the study endpoint of interest is normally some metric of the rate of metabolic conversion of

pyruvate to lactate26. While some sense of metabolic rate can be determined from a qualitative analysis

of signal curves from simple dynamic spectroscopy, a quantitative measure of the rate of conversion

would allow much more specific information on the underlying biology. Many methods have been

proposed to quantify the rate of conversion of hyperpolarized pyruvate to lactate. Simple methods such

as the ratio of the pyruvate signal to the lactate signal55, to more advanced methods that attempt to fit

the signal evolution to some model of conversion53,56-60 have been proposed. Due to the non-renewable

nature of a hyperpolarized signal, excitation for detection will affect all subsequent measurements. It is

still unclear to what the extent such perturbations in signal evolution caused by detection alter

quantitative strategies for detecting metabolic conversion of hyperpolarized pyruvate61.

 With current technology, the process of generating hyperpolarized pyruvate is lengthy due to

the need to build up a significant hyperpolarized state. Additionally, due to the hardware and reagent

requirements, the creation of hyperpolarized pyruvate is still relatively costly compared to other magnet

resonance agents26. With these practical concerns in mind, exhaustively testing a range of acquisition

strategies experimentally would be exceedingly expensive and difficult. Additionally, the quantitative

parameter of interest, the apparent rate constant for chemical conversion, at a minimum will require

dynamic chemical conversion. These requirements limit the systems available to explore how the

sequence used in detection affects the quantitative results. Fortunately, there exist well-accepted

50

numeric models for all of the above considerations62. The physics behind the magnetic resonance

phenomenon is well described using the Bloch equations. The Bloch equations can be adapted to

account for chemical exchange between two distinct chemical species, in that form, they are referred to

as the Bloch-McConnell equations63. Delivery of a magnetic resonance contrast agent via endogenous

vasculature has been described by Tofts in the case of gadolinium64,65 and adapted for hyperpolarized

agents by Bankson53. By combining all of these models, it should be possible to numerically simulate the

critical aspects of a realistic magnetic resonance study of hyperpolarized pyruvate. Such a simulation

platform would be able to explore how detection strategies affect the resulting hyperpolarized signal

and any subsequent quantization across a wide range of biologic and sequence parameters62.

 Recall that the Bloch equation described in chapter 2:

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 0 + �⃑� 1(𝑡)}) +

1

𝑇1
(�⃑⃑� 0 − �⃑⃑� ∥) −

1

𝑇2
𝑀⊥ 2.44

where �⃑⃑� is the magnetization vector with longitudinal and transvers components �⃑⃑� ∥ and 𝑀⊥

respectively, 𝛾 is the gyromagnetic ratio, �⃑� 0 is the static magnetic field, �⃑� 1(𝑡) is some time varying

magnetic field, 𝑇1 is the spin lattice relaxation time, �⃑⃑� 0 is the equilibrium magnetization, and 𝑇2 is the

spin-spin relaxation time. In the case of hyperpolarized carbon, it is generally assumed that the

contribution to the signal from thermal polarization is negligible i.e., �⃑⃑� 0 ≪ �⃑⃑� (𝑡), even as �⃑⃑� (𝑡)

approaches zero due to 𝑇1 relaxation. Therefore, �⃑⃑� 0 can be neglected and the Bloch equation for

hyperpolarized 𝐶13 agents then becomes:

 𝑑�⃑⃑�

𝑑𝑡
= 𝛾(�⃑⃑� ×{�⃑� 0 + �⃑� 1(𝑡)}) +

1

𝑇1
(�⃑⃑� ∥) −

1

𝑇2
𝑀⊥ 3.1

In order to account for multiple chemical species, equation (3.1) needs to be expanded into a matrix

form. Additionally, with the removal of 𝑀0, the 𝑇1 and 𝑇2 terms can be combined resulting in:

51

𝛿

𝛿𝑡
[

𝑀𝑥
𝑀𝑦
𝑀𝑧

] = 𝛾 [

𝑀𝑦𝐵𝑧 −𝑀𝑧𝐵𝑦
𝑀𝑧𝐵𝑥 −𝑀𝑥𝐵𝑧
𝑀𝑥𝐵𝑦 −𝑀𝑦𝐵𝑥

] +

[

1

𝑇2
0 0

0
1

𝑇2
0

0 0
1

𝑇1]

[

𝑀𝑥
𝑀𝑦
𝑀𝑧

] 3.2

For simplicity equation (3.2) combines 𝐵0 and 𝐵1(𝑡) into a single 𝐵. With the inclusion of two chemical

species equation (3.2) becomes:

𝛿

𝛿𝑡

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

= 𝛾

[

(1 − 𝜎𝑎)(𝑀𝑦,𝑎𝐵𝑧 −𝑀𝑧,𝑎𝐵𝑦)

(1 − 𝜎𝑎)(𝑀𝑧,𝑎𝐵𝑥 −𝑀𝑥,𝑎𝐵𝑧)

(1 − 𝜎𝑎)(𝑀𝑥,𝑎𝐵𝑦 −𝑀𝑦,𝑎𝐵𝑥)

(1 − 𝜎𝑏)(𝑀𝑦,𝑏𝐵𝑧 −𝑀𝑧,𝑏𝐵𝑦)

(1 − 𝜎𝑏)(𝑀𝑧,𝑏𝐵𝑥 −𝑀𝑥,𝑏𝐵𝑧)

(1 − 𝜎𝑏)(𝑀𝑥,𝑏𝐵𝑦 −𝑀𝑦,𝑏𝐵𝑥)]

+

[

1

𝑇2,𝑎
0 0 0 0 0

0
1

𝑇2,𝑎
0 0 0 0

0 0
1

𝑇1,𝑎
0 0 0

0 0 0
1

𝑇2,𝑏
0 0

0 0 0 0
1

𝑇2,𝑏
0

0 0 0 0 0
1

𝑇1,𝑏]

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

3.3

where 𝜎 is the chemical shielding term and the second subscript 𝑎 or 𝑏 is used to denote the separate

chemical species. Equation (3.3) is little more than a combination two forms of equation (3.2). Without

any cross terms, the chemical species 𝑎 and 𝑏 are completely independent. In order to couple the two

chemical species, some chemical exchange term needs to be added.

 Chemical exchange between two chemical pools will be given by:66

𝐴
𝑘1
⇄
𝑘2

𝐵 3.4

52

where 𝑘1 and 𝑘2 are the forward and reverse apparent exchange rates respectively. Equation (3.4) can

be written in matrix form following:

 𝜕

𝜕𝑡
[
[𝐴](𝑡)

[𝐵](𝑡)
] = [

−𝑘1 𝑘2
𝑘1 −𝑘2

] [
[𝐴](𝑡)

[𝐵](𝑡)
] 3.5

where [𝐴] and [𝐵] are the concentrations of 𝐴 and 𝐵 respectively. Equations (3.5) and (3.3) can be

combined into63,67-69:

𝛿

𝛿𝑡

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

= 𝛾

[

(1−𝜎𝑎)(𝑀𝑦,𝑎𝐵𝑧−𝑀𝑧,𝑎𝐵𝑦)

(1−𝜎𝑎)(𝑀𝑧,𝑎𝐵𝑥−𝑀𝑥,𝑎𝐵𝑧)

(1−𝜎𝑎)(𝑀𝑥,𝑎𝐵𝑦−𝑀𝑦,𝑎𝐵𝑥)

(1−𝜎𝑏)(𝑀𝑦,𝑏𝐵𝑧−𝑀𝑧,𝑏𝐵𝑦)

(1 −𝜎𝑏)(𝑀𝑧,𝑏𝐵𝑥−𝑀𝑥,𝑏𝐵𝑧)

(1 −𝜎𝑏)(𝑀𝑥,𝑏𝐵𝑦−𝑀𝑦,𝑏𝐵𝑥)]

−

[

1

𝑇2,𝑎
+ 𝑘1 0 0 −𝑘2 0 0

0
1

𝑇2,𝑎
+ 𝑘1 0 0 −𝑘2 0

0 0
1

𝑇1,𝑎
+ 𝑘1 0 0 −𝑘2

−𝑘1 0 0
1

𝑇2,𝑏
+ 𝑘2 0 0

0 −𝑘1 0 0
1

𝑇2,𝑏
+ 𝑘2 0

0 0 −𝑘1 0 0
1

𝑇1,𝑏
+ 𝑘2

]

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

3.6

The coupling between the chemical pools has computational implications when attempting to solve

equation (3.6) numerically. During times when there is no radiofrequency excitation, 𝐵1(𝑡) = 0, and

equation (3.2) becomes a well behaved exponential decay in the rotating frame. For most conventional

sequences, the excitation pulses are short and relatively infrequent compared to times when they are

not present. This allows a substantial speeding up of computation in the rotating frame by many orders

of magnitude when physical values for 𝐵0 and 𝛾 are used. Even when there are 𝐵1(𝑡) pulses, if they are

close to the Larmor frequency then the transformed field 𝐵𝑒𝑓𝑓 will cause only minor deviations from a

simple exponential decay and the computational burden will be minimal. However, once the two

chemical pools have been coupled by an exchange term, moving into a rotating frame begins to offer a

53

reduced computational advantage. This is because there are now two Larmor frequencies to account for

in the frame shift corresponding to each chemical species. If the chemical species are well-separated

such that there is a few ppm of separation between them, even a moderate magnetic field can result in

a few kHz of difference in their Larmor frequencies. Solutions with rapid oscillation pose a sizeable

computational burden when solved numerically. The step size for a numeric computation has to be

small compared to the frequency of oscillation resulting in step sizes on the order of microseconds for

well-separated chemical species.

 Fortunately, under certain conditions, there exists a closed form solution to equation (3.6). In

order to arrive at the closed form solution to equation (3.6), the cross product terms can be combined

with the decay terms yielding:

𝛿

𝛿𝑡

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

= 𝐴

[

𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏]

 3.7

where:

𝐴 = 𝛾

[

 −

1

𝑇2,𝑎
− 𝑘1 (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 𝑘2 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
− 𝑘1 −(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 𝑘2 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
− 𝑘1 0 0 𝑘2

𝑘1 0 0 −
1

𝑇2,𝑏
− 𝑘2 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 𝑘1 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
− 𝑘2 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 𝑘1 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
− 𝑘2

]

 3.8

𝐵𝑒𝑓𝑓 is simply the magnetic field in any arbitrary rotating frame, and 𝜎𝑎 and 𝜎𝑏 are the chemical

shielding terms for the chemical species 𝑎 and 𝑏 respectively. If there is no active radio frequency pulse,

then 𝐵𝑒𝑓𝑓 is no longer time-dependent and 𝐴 also becomes time independent. The closed form solution

to equation (3.7) when 𝐴 is constant in time is70:

 �⃑⃑� (𝑡) = 𝑒𝐴𝑡�⃑⃑� (0) 3.9

54

where, �⃑⃑� is the combined vector for both chemical species. Note that in equation (3.9) the exponent

represents matrix exponentiation. If there is some time-varying magnetic field, then equation (3.9)

breaks down. However, equation (3.6) can still be solved numerically during such times. Therefore, by

combining a numerical solver with the analytical solution, a large reduction in computation time can be

achieved when the radio frequency pulses do not occupy a majority of the calculation time. By solving

equation (3.7) or its closed form under the right conditions, equation (3.9), it is possible to simulate the

chemical exchange of a hyperpolarized agent.

 The simplest model for pyruvate delivery would be to assume instantaneous delivery as a delta

function bolus, or that all of the pyruvate that will arrive during the study does so at 𝑡 = 0. This

approximation is little more than a boundary condition on equation (3.7) and does not represent a good

model of perfusion. A second model would be to allow a driving input function for the pyruvate or

lactate magnetizations over time, �⃑� (𝑡). This would change equation (3.7) to:

 𝛿�⃑⃑�

𝛿𝑡
= 𝐴�⃑⃑� + 𝑐�⃑� (𝑡) 3.10

 where 𝑐 is an exchange constant between the vascular delivery and the system of interest. Equation

(3.10) also has a closed form solution given by70:

�⃑⃑� (𝑡) = 𝑒𝐴𝑡�⃑⃑� (0) + 𝑐∫ 𝑒𝐴𝜏�⃑� (𝜏)

𝑡

0

𝑑𝜏 3.11

Equation (3.11) has a computational consideration as the integral will need to be evaluated numerically.

However, for most cases the computation of a single definite integral will be much more efficient than

numerically solving a rapidly oscillating system, and therefore equation (3.11) still represents a

significant speedup over (3.10). Note there are some forms of 𝐴 that run into discretization issues when

computed. The decay terms in 𝐴 act as forcing functions that drive any magnetization, either transverse

or longitudinal, eventually to zero over a long enough time. These forcing terms eventually become so

large, that, depending on the programing language used, they can result in infinite numbers that destroy

55

computational fidelity. However, under these unstable conditions it is generally safe to assume that

there is no signal, as the initial signal would have to have been huge in order to be able to outlast a

forcing function that pushed the discretization limits of a system. It would have to be so large that it

would likely have its own discretization issues. Therefore, simply replacing any poorly defined numeric

results in the computation of the integral in equation (3.11) with zeros sufficiently resolves this issue.

Alternatively, computation intervals that are long enough to push the forcing terms to their

discretization limits can also be split and recalculated. By combining such splitting with a recursive

algorithm, it is possible to solve for an arbitrarily long time interval using equation (3.11).

 If a more complicated model of perfusion is to be implemented, equation (3.11) needs to be

altered. Tofts has proposed a multi-compartment model for perfusion of magnetic resonance imaging

contrast agents64,65 that was adapted for hyperpolarized agents by Bankson53. Following these models, a

tissue is divided into two spatially separated compartments; the vascular space, and the extravascular

space, although additional compartments could be considered. When the agent is injected

intravenously, it arrives to the tissue via the vasculature, and thus the concentration of the agent follows

a vascular input function that is a function of the vascular system and the injection bolus. Once in the

vasculature, the agent would move across the vessel walls with a transfer constant 𝐾𝑣𝑒. The rate at

which the agent crossing from the blood into the extravascular space will simply be the 𝐾𝑣𝑒 divided by

the volume fraction of the extravascular-extracellular space 𝑣𝑒. With these constants, the transfer of an

agent out of the vasculature would be given by:

𝛿

𝛿𝑡
[
𝐶𝑣
𝐶𝑒𝑣
] =

[

 −
𝐾𝑣𝑒
𝑣𝑒

𝐾𝑣𝑒
𝑣𝑒

𝐾𝑣𝑒
𝑣𝑒

−
𝐾𝑣𝑒
𝑣𝑒]

[
𝐶𝑣
𝐶𝑒𝑣
] 3.12

where 𝐶𝑣 and 𝐶𝑒𝑣 are the agent concentrations in the vasculature and extravascular spaces respectively.

Note that equation (3.12) assumes that the rate constant for transfer of an agent from the vascular

space to the extravascular-extracellular space is the same as the reverse transfer constant, that is to say

56

there is no biological preference for uptake or clearance of the agent across the vasculature in the tissue

of interest.

Notably only the pyruvate in the cytosol would be converted into lactate as the enzyme lactate

dehydrogenase is confined in the cytosol. To account for this, the extravascular space could be divided

into two compartment, the cellular compartment and an extravascular extracellular space. Such

compartmentalization requires a three-step transport from the vasculature to the cells involving not

only leakage from the vasculature but cellular uptake which would likely be mediated by MCT-1. If

cellular uptake is so quick that the two spatially separated pools can be considered to be in quasi-

equilibrium, than all pyruvate outside of the vascular pool can be assumed to be available for conversion

into lactate. Indeed, initial modeling results suggest that the simpler, two physical pool model of

perfusion is sufficient to model in vivo delivery of pyruvate and its subsequent conversion to lactate53.

With the assumption of two physical pools and two chemical pools, equation (3.12) can be combined

with equation (3.10) to yield:53,62

 𝛿�⃑⃑�

𝛿𝑡
= 𝑣𝑒 {𝐴𝑒𝑣�⃑⃑� 𝑒𝑣 +

𝑘𝑣𝑒
𝑣𝑒
�⃑⃑� 𝑣} + (1 − 𝑣𝑒)𝐴𝑣�⃑⃑� 𝑣

𝐴𝑒𝑣 = 𝛾

[

 −

1

𝑇2,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 𝑘2 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 𝑘2 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

0 0 𝑘2

𝑘1 0 0 −
1

𝑇2,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 𝑘1 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 𝑘1 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒]

𝐴𝑣 = 𝛾

[

 −

1

𝑇2,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 0 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 0 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

0 0 0

0 0 0 −
1

𝑇2,𝑏
−
𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 0 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
−
𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 0 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
−
𝑘𝑒𝑣
𝑣𝑒]

3.13

where 𝑀𝑒𝑣⃑⃑ ⃑⃑ ⃑⃑ ⃑ is the magnetization in the extravascular pool, and 𝑀𝑣⃑⃑ ⃑⃑ ⃑ is the magnetization in the vascular

pool. Equation (3.13), assumes a closed vascular system, which is not the case for perfused tissue. In

57

perfused tissue, the vascular compartment will contain rapidly flowing blood and therefore the signal

from that compartment, and it should be modeled differently than the extravascular pool. A vascular

input function is commonly used to model the signal from an agent in the blood71. The rapid flow in the

vascular pools allows some simplifications of 𝑀𝑣⃑⃑ ⃑⃑ ⃑. First, since any agents in the vascular pool rapidly

leave the tissue, agent washout from the extravascular space can be modeled as a loss term with no

increase in the signal in the vascular compartment. Additionally, since agents in the vascular pool are

constantly being supplied by fresh flowing blood, the local signal loss terms such as 𝑇1 and 𝑘𝑣𝑒 can be

ignored. As a consequence of these assumptions, the signal from the vascular pool is governed solely by

the concentration in the total blood pool defined by the vascular input function, �⃑⃑� 𝑣 ≡ 𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑ ⃑(𝑡).

Following this assumption, equation (3.13) reduces to:

 𝛿�⃑⃑�

𝛿𝑡
= 𝑣𝑒 {𝐴𝑒𝑣�⃑⃑� 𝑒𝑣 +

𝑘𝑣𝑒
𝑣𝑒
𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑ ⃑(𝑡)} + (1 − 𝑣𝑒){𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑ ⃑(𝑡)} 3.14

 When there is not time varying 𝐵 field there is a closed form solution to equation (3.14) given by53:

�⃑⃑� (𝑡) = 𝑣𝑒 {𝑒

𝐴𝑒𝑣(𝑡)�⃑⃑� 0 +
𝑘𝑣𝑒
𝑣𝑒
∫ 𝑒𝐴(𝑡−𝜏)𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑ ⃑(𝑡)𝑑𝜏
𝑡

0

} + (1 − 𝑣𝑒){𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑ ⃑(𝑡)} 3.15

Equation (3.15) accounts for the basic physics behind magnetic resonance, as well as the chemical

exchange taking place in an isolated extravascular compartment that is fed by the vasculature via

exchange across vessel walls. Both the vascular and extravascular compartments contribute to the

detected magnetic resonance signal in amounts that depend on their volume fractions of the tissue of

interest. Inspection of equation (3.15) reveals that the terms from the Bloch equation are exclusively in

the extravascular compartment and do not affect the vascular compartment. As a result, the

magnetization vectors in the vascular pool would be unaffected by an excitation pulses would not

contribute detectable magnetic resonance signal. If the magnetization in the vascular pool were

58

sensitive to excitation, it could contribute a signal but could be significantly reduced below the vascular

input function, a violation of the assumption leading to equation (3.14). In order to account for this

discrepancy, it can be assumed that the excitation pulses are short compared to the flow rate in the

vascular compartment. Under a short excitation assumption, the effects of perfusion and excitation can

be considered separately. If there is no time-varying magnetic field, then the intravascular longitudinal

magnetization can be set to a value defined by the vascular input function in order to preserve fidelity

with the perfusion model. Additionally, since it is assumed that perfusion of transverse magnetization is

negligible, the transverse components of the magnetization can evolve according to the Bloch

equations. During excitation, perfusion can be ignored, again because the duration of the pulse is so

short compared to the perfusion timescale. This allows the longitudinal magnetization in the vascular

pool to be excited into the transverse plane where it will be detected as a signal without needing to

account for blood flow. Once the pulse has played out, the longitudinal magnetization is returned to the

value dictated by the vascular input function while the transverse magnetization will continue to evolve

according to the Bloch equations. Such modifications to the VIF allows the signal from the blood pool to

be accounted for without the need to model complex flow of blood in an arbitrary vasculature. If the

radiofrequency pulses are long, or significantly affect the vascular input function, then non-negligible

errors in the perfusion model would be introduced by this assumption.

Section 3.2: Implementation

 Equation (3.15) and its underlying differential equation were coded in Matlab (The MathWorks

Natick MA). The basic structure of the object-oriented architecture is displayed in figure 3-1 and

documented in detail in Appendix B. Instantiation of the simulation environment is performed by a

singleton72 world object which stores references to all the information about the spin systems and the

pulse sequence. The pulse sequence is a series of gradient and radiofrequency pulses that are stored as

arbitrary 𝑏(𝑡) allowing any pulse shape to be used. To assist in usability, helper functions have been

59

created for the construction of the most standard gradient and RF-pulse waveforms that are used in

MRI/MRS. Spin groups logically represent an isochromat and differ based on the underlying assumptions

about which model they follow. Once a world system has been populated with both a pulse sequence

and a set of spins, it is then calculated and finally evaluated to yield a set of free induction decays or

echoes.

Figure 3-1. Outline of the simulation architecture. The World stores an array of voxels and a single pulse

sequence. The Pulse Sequence stores a list of radio frequency pulses and gradient pulses and has logic to

more efficiently organize them for rapid query of the magnetic field as a function of time, as well as flags

for when the analytic solution (equation 3.15) does not hold. Voxel stores arrays of spin groups and has

functions to calculate their solutions, which are stored for fast evaluation at arbitrary times. Spin Groups

store all the biophysical parameters and the details of the underlying model. Spin models must be of the

form in equation (3.7) and need to have a valid analytical solution and the logic to determine if it

applies.

 The calculation simply solves equation (3.14) and other preceding equations based on the spin

groups present in the simulation. When there are no excitation pulses, the analytical solution can be

60

used. During the calculation step the analytical solution is defined as a function of 𝑡 over a time frame

that is determined by the pulse sequence. If, however, there is a time varying magnetic field, then the

closed form solution that was presented above does not hold and the differential equation must be

solved numerically. The simplest way to solve an ordinary differential equation such as equation (3.8) is

known as Euler’s method70:

 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ 𝑦𝑛
′ (𝑡𝑛) 3.16

 where the derivative, 𝑦′, of a function 𝑦 is calculated at a particular time 𝑡𝑛 and then advanced by some

small Δ𝑡 to another time point 𝑡𝑛+1 to find an approximate solution 𝑦𝑛+1.This process is repeated until

the solution has been found for all time points of interest. This method is rarely used in practice for two

main reasons (i) it is not very stable, that is, if there are regions of the solution that are changing rapidly

than the derivative will be large and therefore the step can be quite large leading to sizeable errors and

(ii) it is normally slower than other methods with the same accuracy when variable step sizes are used.

If, however, a “trial” step or steps are used in between each step, the error in the function can be

minimized. If these trial steps are based on reducing the error order in a Taylor series expansion they are

referred to as Runge-Kutta methods70. These trial points allow for a better sampling of the function

along its solution, and since the location of their evaluation is derived from the Taylor series expansion

they are generally more efficient than the brute force Euler method with a similar number of function

calls. This increased efficiency normally allows for larger step sizes with the same accuracy as with lower

order methods for most practical problems, and with larger steps sizes comes faster evaluation. The

most commonly used Runge-Kutta method uses four test points and is general faster and more accurate

than Eulers method or even a Runge-Kutta method with only a single additional trial point70. A

comparison of the different methods is shown in figure 7-2.

Once the numeric solutions have been calculated, they are stored along with the analytical

solution in a series of objects that allow for evaluation at arbitrary time points within the calculated

61

solution space. This set of solutions can then be evaluated at the desired sampling time points to yield a

series of free induction decays or echoes. This series of free induction decays can then be evaluated

using any processing methods that are applicable to real magnetic resonance data sets, as will be

discussed in Chapter 4.

Figure 3-2. A comparison of numerical methods for solving ordinary differential equations. The black line

is the actual function 𝑦(𝑡) = 𝑒
−𝑡

𝑏 ∗ sin (𝑎𝑡) with a derivative of the form
𝑑𝑦

𝑑𝑡
= −

1

𝑏
𝑒
−𝑡

𝑏 ∗ sin(𝑎𝑡) + 𝑎𝑒
−𝑡

𝑏 ∗

cos (𝑎𝑡). The red dots are the sample points used in a Runge-Kutta 4th order solution. The blue line is the

sample point used in an Euler’s method solution with a step size tat was set to ensure the same number

of sample points as the 4th order Runge-Kutta. The cyan asterisks are the evaluation points used in a

Euler’s method solution with a step size that was set to ensure the same number of function evaluations

as the 4th order Runge-Kutta. Within the same computational burden, the 4th order Runge-Kutta shows

superior accuracy.

62

Section 3.3: Verification

To ensure consistency between equations (3.14) and (3.15), a system consisting of two

exchanging spins was evaluated using both the analytic solution, equation (3.15), and using an adaptive

4th order Runge-Kutta method to solve equation (3.14). The differences between the results were many

orders of magnitude lower than the solution values as seen in figure 3-3. As the error tolerance for the

Runge-Kutta method was tightened, the difference between the two separate solutions was reduced, as

was the L2 norm, which is also depicted in figure 3-3.

Figure 3-3. A comparison of the analytical and numerical solutions for a system of two spins coupled by

chemical exchange. The top series of plots are the resulting free induction decay signals using either

equation (3.14) or (3.15) and the difference between the solutions using a relatively high error tolerance

of 1×10−6 and the lower plot series is identical plots but with the error tolerance reduced to 1×10−12.

The plot to the far right is the L2 norm of the difference between the analytical and numerical solvers as

a function of the error tolerance of the Runge-Kutta method.

 More than providing higher numeric precision, the analytical solution also results in better

computational efficiency. As shown in figure 3-4, the computational time for two isolated spins is

independent of their chemical shifts. The independence of isolated spins is possible because they can

have separate reference frames for calculation and can avoid the computational burden of Larmor

63

precession via a frame shift. If the two spins are coupled by chemical exchange, it becomes impossible

to completely remove the oscillatory motion with a frame shift. The computational burden imposed by

the oscillatory motion will be directly related to the difference in chemical shift of the coupled spins,

with larger differences in chemical shift resulting in faster oscillatory motion and therefore, longer

computational times as shown in figure 3-4. By utilizing the analytical solution, the computational

impacts associated with oscillatory motion are removed as the solution is not found iteratively, and

computation time is independent of chemical shift just like the isolated spins that are also illustrated in

figure 3-4.

Figure 3-4. The computational performance of two spins that are either isolated or are coupled by

chemical exchange as a function of the difference in their chemical shifts. The blue line shows the

computational time for two isolated spins and is stable at 1.5 seconds. The red line shows the increasing

computational time for two coupled spins when solved numerically as the difference between the two

chemical shifts is increased. The yellow line shows that using the analytical solution removes any

dependence on the chemical shift and returns the computation to a stable 1.5 second.

64

 In order to verify that the chemical exchange between two spin groups is computationally

sound, a pair of coupled spin groups were simulated in the absence of any excitation into the transverse

plane. The resulting longitudinal magnetization was fit to equation (3.15) using a least squares method

and only fitting for chemical exchange. As seen in figure 3-5 the fit exchange rate matches the simulated

exchange rate with good numeric fidelity across a range of exchange rates.

Figure 3-5. Exchange rate fitting for the longitudinal magnetization of two exchanging spin groups. Good

qualitative agreement between the fitting function and the simulated longitudinal magnetization with

an exchange rate of 0.1 𝑠𝑒𝑐−1 as seen in the left-most plot. In the center plot the fitted exchange rates

are plotted against the simulated exchange rates showing good quantitative agreement with both the

slope and 𝑅2 equal to unity. In the right-most plot the residual of the fit for a range of exchange terms is

shown.

Similar fitting of the longitudinal magnetization was performed to assess fidelity of the perfusion

parameters. A single spin was simulated using the two physical compartment model described by

equation (3.12). The resulting longitudinal magnetization was fit with a least squares method allowing

both 𝑘𝑣𝑒 and 𝑣𝑒 as fit parameters for a range of values as seen in figure 5-6. The fit results matched the

simulated longitudinal magnetization with good qualitative and quantitative accuracy.

65

Figure 3-6. Perfusion fitting for the longitudinal magnetization of a single perfused spin group assuming

two spatial compartments. In the top left plot good qualitative fitting is shown between the simulated

longitudinal magnetization and the fitting function with 𝑘𝑣𝑒 = 0.02 and 𝑣𝑒 = 0.9. The bottom left and

right plots show strong correlation between the simulated 𝑘𝑣𝑒 and 𝑣𝑒 and the resulting fit values with

slope and 𝑅2 equal to unity. The top right plot shows the fit residual as a function of the 𝑘𝑣𝑒

In order to asses that radiofrequency excitations were being properly modeled, a single isolated

spin was simulated with a simple pulse acquire experiment. The spin parameters were set to match

those of C13 Urea doped with Gd+ with 𝛿 = 173.5 ppm, 𝑇1 = 3 sec and 𝑇2 = 20 msec. The pulse

sequence, both simulated and actual, used a 1500 msec block pulse and a 900 excitation angle. A 5 kHz

readout bandwidth with 2048 points was used. The center frequency of the pulse was swept from -25

ppm to 25 ppm with a full 15 seconds between each excitation to ensure complete 𝑇1 recovery. Finally,

the simulated data were corrected to match the initial phase of the on-resonance excitation with an

identical correction factor used for all off-resonance excitations. All dynamic spectroscopy was

performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp., Billerica, MA) using B-GA12SHP

66

gradients and a dual-tuned 1H/13C volume coil (72-mm ID, Bruker Biospin MRI). Figure 3-7 shows good

agreement between the simulated magnitude and phase of the signal as a function of the center

frequency of the excitation pulse and the measured data. This suggests that excitation pulses are indeed

well modeled in the simulation architecture.

Figure 3-7. Comparison of excitation profiles for doped C13 urea. The top two plots show the measured

phase and magnitude of a C13 urea bulb as a function of the center frequency of the excitation pulse.

The lower two plots show the simulation phase and magnitude using an identical simulation pulse

sequence.

Finally, simulated dynamic spectroscopy was qualitatively compared to phantom studies. Free

induction decays acquired by dynamic spectroscopy of a dynamic enzyme phantom,68,73 which will be

described in chapter 5 are compared to the simulation results with matching chemical and sequence

parameters in figure 3-8. There is strong qualitative agreement between the simulated data and that

acquired from a phantom. The only minor sources of disagreement are slightly different noise factors,

minor peak splitting in the phantom data caused by imperfect shimming not modeled in the system and

67

the presence of pyruvate-hydrate in the phantom data. Pyruvate hydrate is normally a small metabolic

inactive signal that is generally ignored and therefore is not simulated.

Figure 3-8. A comparison between dynamic spectroscopy data acquired from a phantom (top) and data

resulting from a simulation using the same physical and sequence parameters.

These verification studies demonstrate that the simulation architecture is mathematically

consistent with the models outlined, specifically equations (3.8) and (3.14). With such a numerically

sound platform more complicated biology or sequences can be explored to ensure that measured

exchange rates are not skewed by detection methods.

68

 Chapter 4. Quantitative Accuracy of Dynamic Spectroscopy

This Chapter is based upon

Walker, C. M., Chen, Y., Lai, S. Y. & Bankson, J. A. A novel perfused Bloch-McConnell simulator for

analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43, 854, doi:10.1118/1.4939877

(2016).

Copyright © 2016 American Association of Physicists in Medicine. Reproduced with permission of

American Association of Physicists in Medicine.

This chapter is intended to address Aim 2.

Section 4.1 Introduction and Theory

Equation (3.14) can be used to generate a single free induction decay or a series of them. After

processing as described in chapter 2, a series of time value curves that represent the relative signal

intensities of the distinct chemical species can be generated. If hyperpolarized pyruvate is the agent of

interest for the simulation study, then the expected downstream product would be hyperpolarized

lactate. In that case, the signal curves would show some initial pyruvate signal or early pyruvate

perfusion followed by its subsequent conversion to lactate. Eventually, due to wash out or 𝑇1 decay and

excitation losses, all of the signal will dissipate. In order to quantify the rate of conversion of pyruvate to

lactate a model similar to the equations described in chapter 3 can be fit to the resulting curves. The

equations will be slightly different as the fitting will only address two relative signal intensities and not a

series of magnetization vectors in 3-space.

 Assuming no perfusion, referred to as a closed system approximation, the signal curves will

follow62,68:

 𝛿

𝛿𝑡
𝑃𝑦𝑟(𝑡) = −(

1

𝑇1,𝑃𝑦𝑟
+
cos(𝜃)

𝑇𝑅
+ 𝑘′𝑝𝑙)𝑃𝑦𝑟(𝑡) 4.1

69

𝛿

𝛿𝑡
𝐿𝑎𝑐(𝑡) = −(

1

𝑇1,𝐿𝑎𝑐
+
cos(𝜃)

𝑇𝑅
)𝐿𝑎𝑐(𝑡) + 𝑘𝑝𝑙

′ 𝑃𝑦𝑟(𝑡)

where 𝑃𝑦𝑟(𝑡) and 𝐿𝑎𝑐(𝑡) are the pyruvate and lactate signal magnitudes respectively, 𝑇1,𝑃𝑦𝑟 and 𝑇1,𝐿𝑎𝑐

are the longitudinal relaxation times for pyruvate and lactate respectively, 𝜃 is the excitation angle, 𝑇𝑅

is the repetition time, and 𝑘𝑝𝑙
′ is the apparent exchange rate between pyruvate and lactate. Note that

𝑘𝑝𝑙
′ is not the same term as 𝑘1 in equations (3.4-13); 𝑘1 describes a physical exchange of chemical

species between two pools, 𝑘𝑝𝑙
′ describes the evolution of the signal resulting from 𝑘1 exchange. The

distinction is subtle, but important. Ideally 𝑘𝑝𝑙
′ would relate to 𝑘1 in some logical way, or even be

identical to it. A final note on 𝑘𝑝𝑙
′ , 𝑘𝑝𝑙

′ is an apparent exchange rate, or it is the observed rate exchange

of the hyperpolarized signal and might not be identical to the actual rate of conversion of metabolites.

Therefore, 𝑘𝑝𝑙
′ is independent of the underlying process as long as the resulting signal curves are the

same. No conversion from lactate to pyruvate is assumed, e.g. 𝑘2 = 0. However, that can be added to

equation (4.1) without much more complexity. Additionally, note that 𝑇1 decay and excitation losses will

be combined into a single term28,53. This assumes that excitation losses can be averaged over the entire

repetition time as opposed to being accounted for during the short time interval that the excitation

pulse is interacting with the spin system. This assumption has a few conditions under which it is

accurate; the excitation angles are not changing during the acquisition, the repetition time is constant

throughout the acquisition and the excitation pulse is small. If these conditions are not met, there is a

good chance that numerical solutions to equation (4.1) will have reduced accuracy. Additionally, the

analytical solution with averaged signal loss will require the excitation angle to be uniform for all

excitations. It is possible to account for excitation pulses instantaneously and thus to remove the

dependence on such assumptions. Such an instantaneous loss modeling strategy will be presented at

the end of this section.

70

 Accounting for perfusion following using a model similar to Toft’s model 53,64,65 requires an

adaptation of equation53,62 (4.1):

 𝛿

𝛿𝑡
𝑃𝑦𝑟𝑒(𝑡) = −(

1

𝑇1,𝑃𝑦𝑟
+
cos(𝜃)

𝑇𝑅
+ 𝑘′𝑝𝑙 +

𝑘𝑣𝑒
𝑣𝑒
)𝑃𝑦𝑟𝑒(𝑡) +

𝑘𝑣𝑒
𝑣𝑒
𝑃𝑦𝑟𝑣(𝑡)

𝛿

𝛿𝑡
𝐿𝑎𝑐(𝑡) = −(

1

𝑇1,𝐿𝑎𝑐
+
cos(𝜃)

𝑇𝑅
+
𝑘𝑣𝑒
𝑣𝑒
)𝐿𝑎𝑐(𝑡) + 𝑘𝑝𝑙

′ 𝑃𝑦𝑟(𝑡) +
𝑘𝑣𝑒
𝑣𝑒
𝐿𝑎𝑐𝑣(𝑡)

𝑃𝑦𝑟𝑣(𝑡) = 𝑏𝑃(𝑡)

𝐿𝑎𝑐𝑣(𝑡) = 𝑏𝐿(𝑡)

4.2

where the subscripts 𝑒 and 𝑣 are used to denote the vascular and extravascular spaces. Generally, it is

assumed that lactate is not carried into the tumor via vasculature, and under these conditions all the

𝐿𝑎𝑐𝑣(𝑡) terms would be removed. The vascular input term for pyruvate 𝑏𝑃(𝑡) was modeled as a gamma

variate71:

𝑃𝑦𝑟𝑣(𝑡) = Γ(𝑡) = 𝑡

𝛼𝑒𝑥𝑝 (
−𝑡

𝛽
) 4.3

where 𝛼 and 𝛽 are shape terms.

Under these assumptions equations (3.14) and (4.2) reduce to:

 𝜕𝑀𝑃𝑒𝑣
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

𝜕𝑡
= 𝛾(𝑀𝑃𝑒𝑣

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ×�⃑�) − (RP⃑⃑⃑⃑ ⃑ + kpl +
kve
ve
)MPev
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ +

kve
ve
MPv
⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝜕𝑀𝐿𝑒𝑣
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝜕𝑡
= 𝛾(𝑀𝐿𝑒𝑣

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑×𝐵) − RL⃑⃑ ⃑⃑ MLev
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ + kplMLev

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝑀𝑃𝑣
⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝛤(𝛼, 𝛽, 𝑡)

4.4

 𝜕𝑃𝑦𝑟𝐸(𝑡)

𝜕𝑡
= −(

𝑘𝑣𝑒
𝑣𝑒
+ 𝑘𝑝�̂� + 𝑅𝑃𝑦𝑟) 𝑃𝑦𝑟𝐸(𝑡) +

𝑘𝑣𝑒
𝑣𝑒
𝑃𝑦𝑟𝑣(𝑡)

𝜕𝐿𝑎𝑐𝐸(𝑡)

𝜕𝑡
= 𝑘𝑝�̂�𝑃𝑦𝑟𝐸(𝑡) − 𝑅𝐿𝑎𝑐𝐿𝑎𝑐𝐸(𝑡)

𝑃𝑦𝑟𝑣(𝑡) = Γ(𝛼, 𝛽, t)

4.5

71

Equation (4.4 and 4.5) implicitly assume that the signal losses due to excitation can be

approximated by effectively reducing the 𝑇1 by a factor
cos(𝜃)

𝑇𝑅
, which essentially averages the excitation

losses over the entire repetition time. In reality a closer approximation would be to track the transverse

and longitudinal magnetization even though only the transverse magnetization can be detected. By

relating the longitudinal magnetization to the detected signal it becomes possible to treat signal

excitation as an instantaneous event. Creating a discontinuity in the non-detectable longitudinal

magnetization which will subsequently affect the transverse magnetizations. If the excitation losses are

not averaged over the entire repetition time but are modeled as instantaneous losses equations (4.5)

would be modified to:

[
𝑀𝑃,𝑖
′

𝑀𝐿,𝑖
′] = [

𝑀𝑃,(𝑖−1)
𝑀𝐿,(𝑖−1)

] 𝑒𝐴∗(𝑡𝑖−1−𝑡𝑖) +
𝑘𝑣𝑒
𝑣𝑒
∫ 𝑒𝐴(𝑡𝑖−1−𝜏)

𝑏𝑃(𝜏)

𝑏𝐿(𝜏)
𝑑𝜏

𝑡𝑖

𝑡𝑖−1

𝐴 =

[

 −

1

𝑇1,𝑃
− 𝑘𝑝𝑙 −

𝑘𝑣𝑒
𝑣𝑒

𝑘𝑙𝑝

𝑘𝑝𝑙 −
1

𝑇1,𝐿
− 𝑘𝑙𝑝

]

[
𝑆𝑝𝑦𝑟,𝑖
𝑆𝑙𝑎𝑐, 𝑖

] =
sin(𝜃𝑝𝑦𝑟,𝑖)

sin(𝜃𝑙𝑎𝑐,𝑖)
∗ {𝑣𝑒 [

𝑀𝑃,𝑖
′

𝑀𝐿,𝑖
′] + (1 − 𝑣𝑒)

𝑏𝑃(𝑖 ∗ 𝑇𝑅)

𝑏𝐿(𝑖 ∗ 𝑇𝑅)
}

[
𝑀𝑃,𝑖
𝑀𝐿,𝑖

] =
cos(𝜃𝑝𝑦𝑟,𝑖)

cos(𝜃𝑙𝑎𝑐,𝑖)
[
𝑀𝑃,𝑖
′

𝑀𝐿,𝑖
′]

4.6

where 𝑀𝑃,𝑖′ and 𝑀𝐿,𝑖′ are the longitudinal magnetizations for pyruvate and lactate before the 𝑖th

excitation, 𝑇1,𝑃 and 𝑇1,𝐿 are the longitudinal relaxation times for pyruvate and lactate respectively, 𝑘𝑝𝑙

and 𝑘𝑙𝑝 are the forward and reverse exchange rates between pyruvate and lactate respectively, 𝑏𝑃(𝑡)

and 𝑏𝐿(𝑡) are the vascular input functions for pyruvate and lactate respectively, 𝑘𝑣𝑒 and 𝑣𝑒 are the

72

extravasation rate and extravascular volume fraction respectively as described by Tofts65 and 𝑡𝑖 is the

time of the 𝑖𝑡ℎ RF excitation.

Section 4.2 Methods

The above Bloch-McConnell equations were numerically solved in a custom-built simulation

environment developed using the MATLAB computing language (MathWorks, Natick, MA) as outlined in

chapter 3. Specifically, a perfectly homogeneous B0 of 7 Tesla was assumed with a radiofrequency

excitation pulse modeled as a five-lobed sinc pulse with 5-kHz bandwidth centered halfway between the

lactate and pyruvate resonances. The spectral readout had a 4096-Hz bandwidth and 2048 points.

Excitation angles were varied from 5° to 80°, and repetition times (TRs) ranging from 1-s to 10-s were

tested. All simulations were carried out for 100 seconds, which ensured that all of the hyperpolarized

signal had decayed below the noise floor. For the closed system, equation (3.7) assuming a single

physical compartment was used to generate the signal curves with some initial pyruvate signal at the

beginning of the acquisition and no additional signal entering the system. To simulate a perfused tissue

equation (3.14) was used, and the initial pyruvate was assumed to be zero and that all of the pyruvate

was assumed to have arrived in ro the system via perfusion. High and low driving model exchange rate

constants of 0.1-s-1 and 0.02-s-1, respectively, were used. The T1 values used for pyruvate and lactate

were assumed to be 43-s and 33-s respectively following the results in74, and T2* was set to 20-ms for

both metabolites75. In the perfused system, the vascular input function was modeled as a gamma-

variate; the shape terms for pyruvate’s gamma variate were 𝛼 = 2.8 and 𝛽 = 4.5; the extravasation

rate (kve) was assumed to be 0.02-s-1,76 and ve = 0.91. Total SNR for these dynamic data sets was defined

as the sum of the half-height full-width area of noise-free spectral peaks over all time points divided by

the standard deviation of the Gaussian noise that was subsequently added. The average signal-to-noise

ratio per excitation for each combination of parameter values was calculated as the total SNR divided by

the number of excitations.

73

Gaussian noise was added to noise-free simulation results to achieve a total SNR of ~1,000 for

the perfused and closed systems under reference conditions with 20° excitations and TR = 2-s. This

yielded metabolite curves that are consistent with our prior observations in vivo. The same noise

amplitude was added to simulation results for all other parameter combinations. After Fourier

transformation, phase correction was applied and the full-width at half-max (FWHM) area of the

spectral peaks was calculated for each point in time. The resulting dynamic curves were fit to equations

(4.1), (4.5) or (4.6) by minimizing the mean square error using a trust region reflective algorithm. For this

analysis, only the fit exchange term 𝑘𝑝�̂� was allowed to vary; all other parameters in the analysis model

equation (4.1), (4.5) or (4.6) were assumed to be identical to those used in the driving model equation

(4.4). This process was repeated 20 times for all parameter combinations, and the average apparent fit

exchange rate resulting from the analysis was compared with the driving exchange rate used by the

driving model.

Parameter Symbol Value

Gyromagnetic Ratio 𝜸
𝟔𝟕. 𝟐𝟔𝟐×𝟏𝟎𝟔

𝒓𝒂𝒅

𝒔𝒆𝒄 ∗ 𝑻

Vascular extravasation rate 𝒌𝒗𝒆 𝟎. 𝟎𝟐 𝒔𝒆𝒄−𝟏

Extravascular volume fraction 𝒗𝒆 𝟎. 𝟗𝟏

Pyruvate T1 Relaxation Time 𝑻𝟏,𝑷𝒚𝒓 𝟒𝟑 𝒔𝒆𝒄

Lactate T1 Relaxation Time 𝑻𝟏,𝑳𝒂𝒄 𝟑𝟑 𝒔𝒆𝒄

𝑻𝟐
∗Relaxation Time for both

Pyruvate and Lactate

𝑻𝟐
∗ 𝟐𝟎 𝒎𝒔𝒆𝒄

Vascular Input Function 𝚪(𝒕)
𝒕𝟏.𝟖𝒆𝒙𝒑 (

−𝒕

𝟒. 𝟓
)

74

Table 4-1. Parameters used for simulation and fitting.

 This workflow is represented schematically in Fig. 4-1 and the set of constants used for

simulation are summarized in Table 4-1. A similar process was used to explore contrast, which we define

as the difference between the two exchange rates observed using identical acquisition parameters. To

assess fit quality, the squared 2-norm of each fit was calculated and averaged for each of the 20 fitting

repetitions. The squared 2-norm of the fits was normalized for the total number of excitations to

remove dependence on the number of data points.

Figure 4-1. Workflow of simulation, processing and fitting: The Bloch-McConnell equations coupled with

perfusion were solved for a range of sequence parameters. Noise was added to the resulting free

induction decay signals. The signal of each metabolite was estimated via FWHM integration of the

spectral peak at each time point. The signal evolution curves were fit using a two-site model to

determine fit exchange. The fitted 𝑘𝑝𝑙
′ was then compared to the assumed (driving) value to determine

the accuracy of the exchange rate measurements for a given combination of sequence parameters.

75

Section 4.3 Results

Heat maps of the percent error for each combination of excitation angle and TR for the closed

system are shown in Figure 4-2. A wide range of excitation angle and TR combinations resulted in

accurate measurement of exchange rates, nominally with errors less than about 10% of the driving

exchange rate. The range of sequence parameters that resulted in accurate fits was larger when a

higher apparent exchange rate was used in the driving model. Estimates of the driving exchange rate

began to result in inaccurate rate constants at very low and relatively high excitation angles, with a

weaker dependence on TR. Accurate fit exchange rates were achieved with excitation angles of 10° to

40° for nearly all TRs at both high and low simulation exchange rates. Notably, the accuracy of analysis

degrades precipitously for combinations with low exchange and large excitation angles as excitation

losses suppressed the entire hyperpolarized signal before a significant lactate signal could be produced.

Figure 2-2. Percent error plots of driving versus fit exchange rates for the closed system approximation.

Left, high simulation exchange rate of 0.1 s-1; right, low simulation exchange rate of 0.02 s-1. Errors

76

ranged from 1% to greater than 250%. A wide range of sequence parameters provided accurate

estimations of 𝑘𝑝�̂�, especially for the high simulation exchange rate data.

When perfusion was included, the accuracy of these measurements (Figure 4-3) at the lower

driving exchange rate did not deteriorate to the same extent as was seen in the closed system.

Generally, a more limited range of sequence parameter combinations yielded accurate observations

though the maximum overall error was reduced. Regarding the high driving exchange rate, accuracy of

measurements begins to degrade along a boundary extending approximately from an excitation angle of

30° and TR of 2 seconds to an excitation angle of 70° and TR of 10 s. Data assuming a lower driving

exchange rate resulted in substantial error (~30% or greater) except over a narrow band from excitation

angle 20o and TR of 2 to excitation angle 30o and TR of 10 as the limited lactate signal produced by slow

exchange was more sensitive to the effects of excitation on signal evolution.

Figure 4-3. Percent error plots of driving versus fit exchange rates for the perfused system

approximation. Left, high simulation exchange rate of 0.1 s-1; right, simulation exchange conversion rate

77

of 0.02 s-1. The errors ranged from 1% to over 200%. Generally, the errors were less drastic than those

for the closed system. However, there were fewer combinations of sequence parameters that yielded

highly accurate exchange rate estimations.

Total SNR and average SNR per excitation were used as metrics of signal quality. The effects of

excitation angle and TR on these metrics are summarized in Figures 4-4 and 4-5. The total SNR is

maximized at fast repetition times and relatively low excitation angles for the closed system (Figure 4-4).

In contrast to the closed system, a wider range of excitation angles resulted in maximal total SNR for the

perfused system likely due to vascular delivery of fresh pyruvate offsetting the signal losses at higher

excitation angles. The average SNR per excitation, in contrast, peaks at higher excitation angles with

longer TRs (Figure 4-5). It is important to note that the sequence parameter combinations that result in

very low total SNR (Figure 4-4) or average SNR per excitation (Figure 4-5) do not correspond well to

regions of high fit error (Figures 4-2 and 4-3) except at the lowest excitation angles.

Figure 4-4. Relative total SNR of each study for the high driving exchange rate for both closed and

perfused system. The total SNR peaks at a moderate excitation angle and short repetition time for the

78

closed system as opposed to the perfused system where the total SNR is relatively independent of

excitation angle except at the lowest excitation angles. The results are similar for lower driving exchange

(data not shown).

Figure 4-5. Average SNR per excitation for the closed and perfused systems with a high driving exchange

rate. The average SNR is greater at higher excitation angles and longer TRs. Additionally, the SNR of the

perfused system has a weak dependence on TR for higher excitation angles. Average SNR plots are

similar for lower driving exchange (data not shown).

To explore the cause of fitting errors, we considered fit residual as a metric of fitting

performance. The normalized square-2 norm of the fits for the high conversion rate (Figures. 4-2a, 4-3a)

are shown in Figure 4-6. For the closed system, the norm increases with larger excitation angles with a

slight dependence on TR. In contrast, the perfused system shows fairly low and uniform residuals.

Higher fit norms (Figure 4-6) do not correlate with parameter combinations that resulted in inaccurate

fitting of the exchange rate (Figures 4-2a, 4-3a), which implies that fit quality alone cannot explain

inaccurate fitting results.

79

Figure 4-6. Normalized Square-2 norms of the fits for both closed and perfused systems, with a high

driving kpl. The norms for the closed system rise rapidly at higher excitation angles. In contrast, the

norms for the perfused system are uniformly lower. The norms of both closed and perfused systems

have limited dependence on TR. Similar results were observed with a lower driving exchange (data not

shown).

Because of a fundamental motivating interest in the detection of changes in metabolism by MRS

of hyperpolarized (HP)-pyruvate, we sought to determine which set of sequence parameters would

provide the most accurate measurement of differences between high and low driving exchange rates.

Maps for the error in the observed differences, or contrast error, for the closed and perfused systems

are shown in Figure 4-7. In general, regions of sequence parameter values that result in the most

accurate measurement of contrast closely match the corresponding regions for data reflecting the

higher driving exchange rates. This is not true at the highest excitation angles, where very large errors in

analysis of low driving exchange rate more significantly affect the differences that were observed.

80

Figure 4-7. Contrast error maps for the closed (left) and perfused (right) system approximations. The

errors ranged from 1% to more than 100%. The large discrepancy between the simulation exchange

rates in the two systems led to accuracy plots that closely matched the higher exchange rate plots.

Using instantaneous excitation loss modeling in equation (4.6), figures 4-2 and 4-3 were

recalculated. The results in figures 4-8 and 4-9 show a slight but meaningful divergence from the results

modeled with excitation losses averaged over the entire repetition time. Generally, fitting with the

instantaneous excitation losses allowed for more accurate 𝑘𝑝𝑙 measurement at longer repetition times

and larger excitation angles and had little effect on accuracy for smaller excitation angles. This illustrates

the limitations of the averaged excitation loss model and highlights the importance of calculating the

basic physics modeled by the Bloch simulator. The errors introduced by the modeling assumptions, i.e.,

the differences between 4-8 and 4-9 vs 4-2 and 4-3, can be found by processing the same simulation

data with different modeling assumptions.

81

Figure 4-8. Percent error plots of driving versus fit exchange rates for the closed system approximation.

These are similar to Figure 4-2 but are fit with equation (4.6). Left, high simulation exchange rate of 0.1

s-1; right, low simulation exchange rate of 0.02 s-1.

82

Figure 4-9. Percent error plots of driving versus fit exchange rates for the perfused system. These are

similar to Figure 4-3 but are fit with equation (4.6). Left, high simulation exchange rate of 0.1 s-1; right,

low simulation exchange rate of 0.02 s-1.

The results in figure 4-2 demonstrated that in a closed system, sequence parameters have a

limited effect on the accuracy of exchange rate measurements, and only become a significant source of

error at extreme TR, excitation angles, or lower limits of chemical exchange. The closed system model

best represents a phantom environment, but it does not realistically model all the characteristics of

biological systems. In a perfused system (Figure 4-3), which applies to in vivo studies, sequence

parameters can more significantly impact the measured exchange rates. As shown in figure 4-4 and 4-5,

errors are unlikely to be a result of poor SNR except under relatively extreme conditions of very low

excitation angles where the low total SNR does correspond to a region of inaccurate exchange rate

fitting. The quality of the fit is also not a primary source of these errors. If poor fit quality were the

dominate cause of inaccurate fitting results, correlation between higher fit residuals and error in kpl

would be expected. However, as shown in Figure 4-6, fit residuals are either uniform or do not

correspond with sequence combinations that result in large kpl errors in the fit (Figures 4-2 and 4-3).

Section 4.4 Discussion

This work develops the computational structure needed to begin designing and optimizing

hyperpolarized acquisition strategies to be simulated. Hyperpolarized magnetic resonance is sensitive to

a wide array of parameters, many of which add to its usefulness, such as chemical exchange, while

others likely serve as confounders, such as sequence parameter dependence, sensitivity to agent

delivery, decay constants’ dependence on tissue type, etc. With such a complicated parameterization, as

83

well as multiple proposed models, the ability to rapidly and meaningfully simulate hyperpolarized

studies allows quick and efficient exploration of these parameter spaces.

Using the simulation architecture, sensitivity to acquisition design and modeling assumptions

was found for even the simplest dynamic spectroscopy studies of hyperpolarized pyruvate. Sequence

parameters will have different effects on the accuracy of the results for perfused versus closed system

assumptions. Therefore, optimization of sequences under a particular assumption may not apply under

different delivery conditions.

Many physical and biologic processes affect the signal evolution in HP-MRS measurements.

Since the acquisition strategy itself perturbs the system and affects subsequent measurements, it is

critical that the acquisition strategy is not itself a confounder. If the parameter of interest is chemical

exchange, the sampling strategy must sample the most critical information pertaining to the exchange

rate. This work shows that properly tuned sequences result in more accurate estimation of the exchange

rate than if less relevant data were sampled, such as exhaustive sampling before significant exchange

has occurred.

At the extreme ranges of exchange rates, excitation angles, and TRs, the effects on fitting error

are exacerbated in the closed system. A single 80° pulse reduces the entire signal of all of the

subsequent measurements by 83%. If significant exchange of HP-pyruvate to lactate has yet to take

place, then accurate estimation of the exchange rate is unlikely. This is likely to be the source of high

error rates in excess of 250% in the situations with the low simulation exchange rates and high

excitation angles as shown in Figure 4-3. If the chemical conversion is fast enough, rapid use of the

signal from high excitation angles can still result in accurate exchange modeling, as significant lactate

buildup will occur during the first few pulses. This explains the increased accuracy of results at high

excitation angles and high simulation exchange rates. Perfusion enables fresh HP-pyruvate to flow into

the tissue over time, reducing the attenuating effect of high excitation angles on the total SNR (Figure 4-

84

5), and may account for the reduced severity of the errors at high excitation angles and low simulation

exchange rates shown in Figure 4-4. Additionally, all data sets exhibited accurate fit estimates at long

TRs. This likely resulted from exact matching of the HP-pyruvate delivery in the analysis and driving

models. In practice, pyruvate arrival time will not be known exactly as it is not detectable until after

excitation. Very long TRs will then correspond to larger uncertainty in the pyruvate delivery time and will

likely drive errors in the analysis. The effect of uncertain delivery could degrade the relatively accurate

estimations of fit exchange at the longer TRs.

When attempting to detect a difference in the exchange rate of HP-pyruvate to lactate,

investigators must take great care in selecting the sequence parameters, as the biases imposed by their

sampling strategies may completely obscure any underlying rate differences. Attempting to find a single

best-case sampling strategy for multiple pyruvate-to-lactate exchange rates may not always be possible

and some sequence parameter bias could be unavoidable. Additionally, the sequence parameter effects

on measurement will need to be accounted for when comparing rate measurements made with

different sequence parameter values.

Although the exchange rate constants we considered represent the extremes of realistic

metabolism, one of the strengths of using hyperpolarized pyruvate is the relatively large change in

exchange rates that can be detected. Therefore, it is not unreasonable to have a study that attempts to

detect a change in exchange rate of nearly an order of magnitude, as was simulated in this work. This

large difference in exchange rates biased the contrast error to more closely match errors associated

with the high simulation exchange rate. This is expected, as an error rate of 10% for an exchange rate of

0.1 will have a greater effect on the contrast than will the same percent error for an exchange rate of

0.02. Sequence parameter combinations that are accurate for the high simulation exchange rate data

begin to degrade in terms of contrast accuracy at higher excitation angles for the closed approximation.

This is because errors in the low simulation exchange become large enough to approach errors at the

85

higher exchange rate. Additionally, there were some sequence parameter combinations that resulted in

extremely accurate detection of contrast with reduced accuracy for detection of either the high or low

exchange rate data (Figures 4-4 and 4-8). This implies that the biases from those sequence parameters

offset each other allowing for an accurate difference from two less accurate measurements.

The results of the perfused studies suggested the use of higher excitation angles than generally

used. Conservative sampling strategies are used to ensure that the signal is not completely consumed

before significant exchange of HP-pyruvate to lactate can progress. If fresh HP-pyruvate is constantly

flowing into the voxel or slice over some time frame, such conservative sampling is no longer necessary.

If the excitation pulse significantly impacts the bulk of the HP-pyruvate pool, such as in sampling of the

heart or whole-body excitation, the assumption that fresh HP-pyruvate is flowing into the voxel would

begin to breakdown and conservative sampling would likely be needed. Additionally, higher excitation

angles will cause more sensitivity to errors in excitation angle and will require even more careful

measurement of excitation profiles and calibration of excitation pulses.

High excitation angle schemes may not be effective for magnetic resonance spectroscopic

imaging studies in which many more excitations are needed to encode spatial information. We

anticipate that similar simulation-based studies of imaging sequences will highlight opportunities for

optimization to improve image quality and quantitative accuracy.

In this study we assumed that every variable used in the analysis model aside from the exchange

rate was known exactly. Future studies will be able to determine how sampling strategies affect

estimates of pyruvate-to-lactate exchange rates with more unknowns in the analysis model. A critical

examination of the propagation of errors for acquisition strategies that include prior information will

also be crucial.

Although MRI and MRS of HP-agents have demonstrated amazing promise as a non-invasive

clinical probe of metabolism, there are still many challenges ahead. Care must be taken to ensure that

86

this technique is optimally used as it moves toward clinical use, including a good understanding of

circumstances that may lead to bias or error. This work shows that even the most simplistic pulse

sequences and modeling strategies can result in estimates of chemical exchange that are dependent on

acquisition parameters. Investigators must take great care in acquiring, processing, and comparing

results from dynamic studies with HP-agents to ensure that sequence parameter effects are accounted

for. Moreover, simulation studies such as these are imperative as increasingly advanced techniques are

employed for acquisition, processing, or modeling of MRI and MRS of HP-agents. To that end, the

modified Bloch-McConnell equations described herein will serve as powerful tools to characterize the

complex relationships among detection methods and quantification of MRI and MRS of HP-agents.

87

 Chapter 5. System Validation

This Chapter based upon

Walker, C. M., Chen, Y., Lai, S. Y. & Bankson, J. A. A novel perfused Bloch-McConnell simulator for

analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43, 854, doi:10.1118/1.4939877

(2016).

Copyright © 2016 American Association of Physicists in Medicine. Reproduced with permission of

American Association of Physicists in Medicine,

Walker, C. M., Lee J., Ramirez M.S., Schellingerhout D., Millward S., Bankson J.A. A catalyzing phantom

for reproducible dynamic conversion of hyperpolarized [1-(1)(3)C]-pyruvate. PLoS One 8, e71274,

doi:10.1371/journal.pone.0071274 (2013)

© 2013 Walker et al. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

This chapter is intended to address Aim 3.

Section 5.1 Introduction and Theory

The simulation results outlined in the previous chapter need to be validated in physical systems.

Using in vivo models will allow for inherent chemical conversion of pyruvate to lactate as well as delivery

via endogenous vasculature. However, in vivo models have many practical limitations. Living systems are

constantly changing and the assumption that the same study performed on the same living system at a

different time point will yield the same measurement value, particularly in murine models of cancer

does not generally hold. This is exacerbated by the amount of pyruvate that is generally delivered, which

can be quite large in order to have sufficient signal and thus can alter the metabolism after injection.

88

Additionally, very little pyruvate is converted into lactate in healthy tissue and therefore, tumor models

are normally used for hyperpolarized studies. Tumors introduce additional temporal heterogeneity as

they are rapidly growing and the assumption that the same cellular and physiologic status remain across

multiple days cannot be relied upon. It is also impossible to know the exact biologic and physical

parameters in living systems, and therefore the determination of the accuracy of the quantization of

said parameters is at best an approximation for living systems. These inherent limitations are coupled

with the practical constraints on the use of living systems, such as cost, sensitivity to diet and

anesthesia, etc. Initial validation of the simulation system would be simpler using a more controllable

and repeatable model than those offered by living systems.

Fortunately, the conversion of pyruvate to lactate is a relatively simple reaction involving a

single enzyme catalyst and coenzyme and can be readily performed in solution77. This allows fine-tuned

control over the rate and extent of the reaction that is more controllable and repeatable than a living

system. Performing this reaction in a controlled buffer alters the delivery of pyruvate into the system as

compared to living systems which have endogenous vasculature. Therefore, in a dynamic enzyme

phantom, pyruvate will be delivered in a nearly instantaneous bolus and these results will be a closer

match to the closed system results from the previous chapter.

Pyruvate is specifically converted into lactate by the enzyme lactate dehydrogenase (LDH) and

coenzyme nicotinamide adenine dinucleotide (NADH):

 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝑁𝐴𝐷𝐻
𝐿𝐷𝐻
↔ 𝑁𝐴𝐷+ + 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 5.1

This ordered ternary complex is modeled using classical enzyme kinetics57,78-80 to derive reaction

velocities (Mol/s) of the reaction as a function of constituent concentrations as shown in Appendix A.

The enzyme LDH is a relatively stable protein and can be mixed with NADH up to fairly high

concentrations in a buffer. This enzyme mixture is then able to convert pyruvate into lactate, and if

some of the pyruvate is hyperpolarized then the signal evolution can be measured using dynamic

89

spectroscopy. In order to measure such conversion, the phantom system needs to be positioned in the

sensitive volume of the scanner and therefore some delivery system will be required. Additionally, 𝐵0

homogeneity is critical for high quality magnetic resonance spectroscopy, and therefore interfaces

between the buffer system and a substance with a different magnetic susceptibility, such as air or

plastic, need to be reduced. Finally, the delivery and mixing of the hyperpolarized pyruvate with the

enzyme system must be rapid to ensure that the pyruvate arrives in an instantaneous bolus and then

reacts to form lactate as assumed for the closed system simulations. With such a phantom system, it will

be possible to run multiple studies with the same conversion rate allowing for reliable measurement of

a rate constant under specific sequence conditions. Multiple excitation angles and repetitions times can

be used to ensure that the biases predicted by simulation for the closed system are measured in a

physical system.

The perfused system assumes delivery via native vasculature that is difficult to emulate in

phantom systems. Additionally, cellular metabolism is complex, and multiple processes are involved to

maintain the cellular concentration of NADH and pyruvate, which are not replicated in an isolated

buffer. Therefore, simulation studies were compared to a set of measurements made in a mouse model

of thyroid cancer to demonstrate that the simulation predictions that most closely model living tissue

are confirmed in vivo.

Section 5.2 Methods

A. Hyperpolarization

 13 mg of [1-13C]-pyruvic acid with 7.5 mM OX063 (GE Healthcare) and 0.375 mM Prohance

(Bracco Diagnostics) were hyperpolarized in a HyperSense DNP system (Oxford Instruments) as

described previously25,81. The sample was dissolved in 4 mL of buffer consisting of 40 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 94 mM NaOH, 30 mM NaCl, and 50 mg/L EDTA

90

with a pH of 12.5. Once the dissolution process was complete, 0.15 mL of HP [1-13C]pyruvate (nominally

30% polarization) was drawn into a syringe for injection into the phantom.

B. Dynamic Spectroscopy Repeatability

 The enzyme phantom consisted of 2 mL of buffer containing 2 mM hyperpolarized [1-13C]-

pyruvate, 40 mM lactate, 3.92U/mL LDH, and 4 mM Β-NADH. Phantom concentrations were optimized

to reduce reaction rate sensitivity to variabilities in the concentrations of its components, ensure that

the reaction had run to competition before the hyperpolarized signal had decayed below the threshold

of detectability, and had progressed at a rate consistent with previous in vivo observations. Special

consideration was given to reducing the sensitivity due to pyruvate concentration and LDH activity, as

these were assumed to be the least reproducible characteristics of the phantom system. While LDH is a

remarkably stable enzyme, it is still a delicate protein and is sensitive to many environmental conditions

such as temperature and pH. Since the injection into the phantom system was performed by hand, the

volume of pyruvate, and therefore its delivered concertation, would be more difficult to control than the

concentration of any of the other reagents. A custom phantom container was machined out of a cylinder

of Ultem resin stock, which matches the susceptibility of water, and fitted with a 1m long, 3.175 mm

diameter polyethylene catheter (Coilhose Pneumatics, East Brunswick, NJ) for remote injection into the

cavity when it is located at the isocenter of the magnet. The rectangular cavity was 1×1×3 cm with the

injection catheter connecting to the front as shown in Figure 5-1. LDH and NADH were thawed from

aliquoted solutions that had been stored at -80°C and were mixed in a 5 mL syringe shortly before the

pyruvate finished polarizing. NADH was mixed with buffer to a concentration of 5mM and then froze in

200 𝜇𝐿 aliquots while LDH aliquots of 200 𝜇L at 250 U/mL in buffer. Once polarization of the pyruvate

was complete, the HP pyruvate was injected into the phantom followed by the enzyme substrate

mixture to fill the phantom cavity. The nominal final concentrations were 2 mM hyperpolarized 13C-

Pyruvate, 40 mM Lactate, 3.92U/m LDH (Worthington), and 4 mM Β-NADH (Sigma Aldrech) in the Tris

91

buffer (81.3 mM trisma preset crystals pH 7.2, 203.3 mM NaCl) (Sigma Aldrech). The phantom was held

at 28°C with a final pH of 7.2 and a 3-mL final volume.

Figure 5-1. A schematic view of the dynamic chemical phantom structure. The injection and discharge

ports were fitted with catheters to facilitate rapid mixture of reagents at the isocenter. A thin acrylic

sheet was attached to the top to seal the fill cavity. This top could be removed to allow cleaning after

injection. The phantom rested on a sled that allowed convenient removal and insertion of the phantom

and included warm circulating water to maintain a constant temperature.

Dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp.,

Billerica, MA) using B-GA12 gradient (120-mm inner diameter (ID), Gmax = 400 mT/m) and a dual-tuned

1H/13C volume coil (72-mm ID, Bruker Biospin MRI). Dynamic 13C spectra were acquired with a 2.5 kHz

bandwidth, 4098 points, 10° excitations, 2-sec TR, with 60 repetitions over a 3-min scan time beginning

at dissolution and triggered by the HyperSense system. To evaluate performance and repeatability, the

measurement was repeated seven times using an identical reagent concentration.

92

 The signal from each metabolite at each TR was determined by integrating the full-width at half-

maximum (FWHM) of each metabolite peak. Signal amplitudes were normalized to account for

variations in the amount of polarized pyruvate that is present at the onset of scanning. Two quantitative

parameters were used to characterize the reaction rate for each measurement: total lactate signal

normalized to the total carbon signal, and kPL for the closed system model described by equations (4.1).

C. Spectroscopic Phantom Imaging

 To demonstrate the usefulness of the enzyme phantom for evaluating spatial sequence

performance, a 10-mL standard imaging phantom was drained and fitted with the same injection

catheter described above. A slightly lower concentration of NADH (2 mM) was used among an

otherwise identical mixture due to the increased phantom volume. A custom-built dual-tuned 1H/13C

linear birdcage coil with a 35 mm ID was used in conjunction with B-G6 gradients (60-mm ID, Gmax =

1000 mT/m, Bruker Biospin Corp.) . The phantom was scanned with a radial echo planar spectral imaging

(EPSI) sequence82. This was a single image and consume the entire hyperpolarized signal to acquire a

single set of spectroscopic imaging data. The acquisition was started ~40 seconds after all components

were combined in the phantom, and the data were acquired with a repetition time of 60 ms, an initial

echo time of 5.5 ms, and a 1.3 msec echo spacing to form a 32-point echo train. A variable flip angle was

used to ensure equal sampling of the longitudinal magnetization83. The spectral bandwidth was 23.8 kHz

with a 744 Hz or 9.85 ppm spectral width. Fifty spatial projections were taken with 32 readout points

over a 4 cm by 4 cm field of view and a 2 cm slice thickness.

D. Dynamic Spectroscopy Sequence Parameter Dependence

Slightly altered phantom concentrations of 2 mM hyperpolarized [1-13C]-pyruvate, 40 mM

lactate, 4U/mL LDH, and 4 mM Β-NADH were used to assess and validate the simulation results for the

closed system. A slightly altered phantom enclosure was used where the cavity was 1x1x2 cm is size.

93

Dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp., Billerica,

MA) using B-GA12SHP gradient and a dual-tuned 1H/13C volume coil (72-mm ID, Bruker Biospin MRI).

Simulation results for the closed system slow exchange, figure 4-2, suggested that dynamic spectroscopy

acquired at TR=2-s, 𝜃 = 20𝑜 and TR=7-s, 𝜃 = 60𝑜 would not bias the measurement and should result in

a similar 𝑘𝑝𝑙
′ measurement while using TR=2-s, 𝜃 = 60𝑜 would result in a significant underestimation of

𝑘𝑝𝑙
′ . Dynamic 13C pulse-acquire spectroscopy was performed at 4096 Hz bandwidth over 2048 spectral

points, and three combinations of excitation angle and repetition time (TR=2s, 𝜃 = 20o; TR=2s, 𝜃 = 60o; or

TR = 7s, 𝜃 = 60o) were used, with a total scan duration of 3-min beginning 20 seconds before dissolution.

Each parameter combination was repeated three times.

The dynamic spectroscopy signal was analyzed using the same process as had been used for the

simulated data to generate dynamic curves. The curves were fit with T1s for pyruvate and lactate of 61

and 35 sec respectively as consistent with previous measurements. The exchange rate was fit with the

closed system model using the signal values at the time of the peak of thepyruvate signal as an initial

condition. The studies were grouped based on the sequence parameters and a two-tailed t-test

assuming unequal variances was used to detect any differences between the groups.

E. Dynamic Spectroscopy in Vivo

Nude mice bearing orthotopic xenografts of anaplastic thyroid cancer84 were anesthetized and

placed prone on an imaging sled. 2% isoflurane in oxygen was delivered through a nose cone under

observation using a commercial small-animal physiological monitoring system (Small Animal

Instruments, Inc., Stony Brook, New York). 200 µL of HP [1-13C] pyruvate (nominally 30% polarization)

was administered to the animals via a tail-vein catheter. All animal procedures were approved by our

Institutional Animal Care and Use Committee, which is accredited by the Association for the Assessment

and Accreditation of Laboratory Animal Care International.

94

Imaging and dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker

Biospin Corp., Billerica, MA) using B-GA12SHP gradient and a dual-tuned 1H/13C volume coil (40-mm ID,

Bruker Biospin MRI). Simulation of the high exchange rate perfused data, figure 4-3, also predicted a

significant underestimation of 𝑘𝑝𝑙
′ at TR=2-s, 𝜃 = 60𝑜 and no bias at TR=2-s, 𝜃 = 20𝑜 and TR=7-s, 𝜃 =

60𝑜. Therefore, slice selective dynamic 13C pulse-acquire spectra were acquired with a 10-mm slice

centered over the tumors, a 5 kHz bandwidth over 2048 spectral points, and three combinations of

excitation angle and repetition time (TR=2s, 𝜃=20o; TR=2s, 𝜃=60o; or TR=7s, 𝜃=60o), with a total scan

duration of 3-min beginning at dissolution and triggered by the HyperSense system.

Signals from in vivo dynamic spectroscopy were analyzed using the same process as was used

for the simulated data to generate dynamic curves. The unknowns that were determined by analysis of

the dynamic curves included kpl, the shape terms for the gamma variate VIF, the injection time, and the

excitation angle. The fitting results for the excitation angle never differed by more than 8% from the

prescribed excitation angle and mainly served as an internal control. The studies were grouped based on

the sequence parameters and a two-tailed t-test assuming unequal variances was used to detect any

differences between groups.

Section 5.3 Results

A. Repeatability Studies

The phantom system, shown in Figure 5-1, was assembled and tested (N=7 replicates),

demonstrating reproducible conversion of hyperpolarized tracer as summarized in Figure 5-2 and table

5-1. After a brief delay between the start of data acquisition and the injection of the polarized tracer,

the pyruvate signal peaked quickly as it filled the chamber. The pyruvate signal decayed due to

relaxation, signal excitation, and chemical conversion to undetectable levels in less than two minutes.

The lactate signal rose until the growth of the HP lactate pool, from chemical exchange, was reduced

below the losses due to relaxation and signal excitation at which point it similarly decayed. The

95

coefficient of variation for common measures of this reaction, including the ratio of total lactate to total

13C signal and the forward reaction rate (kPL) were 14.5% and 19.0%, respectively, as summarized in

Table 4-1. This level of variability is less than the average within-group variation of approximately 28% in

9 animal studies16,85-92 that was reported recently in the literature, and is summarized in Table 5-2.

Figure 5-2. Dynamic signal evolution across (seven) injections into enzyme phantom. The mean signal

for lactate and pyruvate, normalized to the peak carbon signal for each injection, is displayed with error

bars that indicate the minimum and maximum values at each time over all injections. The total HP 13C

was estimated by summing the signal from HP 13C Lactate and HP 13C Pyruvate. The average linewidth

for pyruvate and lactate peaks were 19±5 Hz and 17±5 Hz, respectively.

96

Table 5-1. The mean, standard deviation and coefficient of variation for all repetitions (N = 7) of the

dynamic phantom

Reference Location Disease Parameter

No.

Animals

Coeff. of

Variation

Albers85 Prostate Cancer Metabolite SNR 5,4,3,3, 25%

Day16 Subcutaneous Lymphoma Kpl 8 17%

Laustsen86 Kidney Diabetes Lac/Total 13C

Signal

10,6 40%

Thind88 Thorax Radiation Injury Lac/Pyr 6,4,5 36%

Bohndiek91 Subcutaneous Colorectal Cancer Lac/Pyr N/A 24%

Park92 Brain Glioblatoms Lac/Pyr 7,9 54%

Bohndiek Subcutaneous Lymphoma Kpl 10,7,7, 37%

Matsumoto Subcutaneous Squamous Cell

Carc.

Lac/Total 13C

Signal

5,4 12%

Laustsen86 Heart Normal Lac/Total 13C Signal 11,6 28%

Average 29%

Table 5-2. Survey of HP parameter variation in recent animal studies

97

To test the feasibility for such a reaction to be conducted inside a phantom with the spatial

details that are necessary to validate spectroscopic imaging sequences, a standard MRI quality

assurance phantom was drained and refilled with a similar catalytic mixture. Snapshot spectroscopic

imaging shows a relatively homogeneous mixture of components and distribution of the agent and

metabolite 40s after initiation of the reaction. Images of HP pyruvate and lactate, alone and in overlay

over reference proton images, can be seen in Figure 5-3. While the resolution of the MRSI sequence is

significantly lower than that of the proton image, it is possible to resolve features within the

spectroscopic images for both individual metabolites. No significant spatial distortions are seen, but

importantly, artifacts, specifically interpolation artifacts can seen as thin black lines on the pyruvate and

lactate images. They can be identified and could be characterized through the use of this phantom

system and minimized to reduce the likelihood of interference in subsequent measurements made in

vivo.

98

Figure 5-3. Spectroscopic images of the reaction carried out in a standard imaging phantom. Proton

imaging (top left) shows the phantom structure in high resolution. Spectroscopic imaging data acquired

using a radial EPSI sequence allow metabolite-specific visualization of the agent distribution (bottom

row). Spectroscopic data can be intrinsically registered to high-resolution proton images (top center and

top right).

B. Closed System Parameter Dependence

Due to poor heating of the second phantom structure, the rate of chemical exchange of the third set

of phantoms studies was much lower than those of the prior two studies. This system was much closer

to the low conversion rate system seen in figure 4-2. To test for the large error in 𝑘𝑝𝑙
′ at high excitation

angles and short repetition time predicted by figure 4-2, three excitation angles were used (N=3

99

replicates). As seen in figure 5-4, the mean 𝑘𝑝𝑙
′ low excitation angle (TR=2-s, 𝜃 = 20𝑜) closely matched

those at the longer repetition times (TR=7-s, 𝜃 = 60𝑜) and no significant difference was detected,

p=0.737. When the excitation angle was high and the repetition time was short (TR=2-s, 𝜃 = 60𝑜) there

was no detectable lactate peak and the only signal detected at 183.1 was likely due to noise or spillover

from the sizable pyruvate or pyruvate hydrate peaks. As predicted by simulation, the average 𝑘𝑝𝑙
′

detected at TR=2-s, 𝜃 = 60𝑜 was significantly lower than TR = 2-s, 𝜃 = 20𝑜 and TR = 7-s, 𝜃 = 60𝑜 with p

= 0.002 and 0.003 respectively. Qualitatively, the predicted and measure signal curves show agreed

remarkably well.

Figure 5-4. Comparing simulated to dynamic phantom data for the closed system. A qualitative

comparison of the closed system signal curves predicted by the simulation at various excitation angles

and repetition times to the measured signal curves in the dynamic phantom system. Additionally, the

fitted 𝑘𝑝𝑙
′ values are compared in both the simulation and the phantom.

100

B. In Vivo Studies

To examine the correspondence between these simulations and measurements in vivo, a cohort of

mice were scanned using protocols with parameter combinations that the simulations suggested would

introduce varying levels of measurement bias. The results (Fig. 5-5) show that when TR=2-s and 𝜃=60o,

exchange is significantly underestimated compared to TR=2=s, 𝜃 =20o (P=0.035), where relatively

accurate measurements are expected. Interestingly, the exchange measured with TR=2-s and 𝜃 =60o

was ~50% lower than the values measured at TR=2-s and 𝜃 =20o. This closely matches the predicted bias

of ~60% seen in Figure 4-3. Additionally, bias is reduced again with TR=7-s and 𝜃 =60o which also agrees

Figure 4-3. Notably the variance is higher under these conditions, which is likely due at least in part to

the increased uncertainty in the injection time due to the longer sampling intervals.

Figure 5-5. Comparison of in vivo vs. simulated kinetic data analysis from data acquired using different

acquisition parameter combinations. a) Anatomical image of a mouse bearing an anaplastic thyroid

tumor and the slice used for dynamic HP spectroscopy. b) Dynamic metabolite curves of the same

animal scanned with excitation TR=2-s and 𝜃 =20o (top), TR=2-s and 𝜃 =60o (middle), and TR=7-s and 𝜃

101

=60o (bottom). c) kpl values from animals scanned with TR=2-s and 𝜃 =20o (n=3), TR=2-s and 𝜃 =60o

(n=4), and TR=7-s and 𝜃 =60o (n=4). Data acquired with TR=2-s and 𝜃 =60o significantly underestimates

kpl compared to the other two groups (P<0.035).

Section 5.4 Discussion

These simulation results are of limited use in isolation and require validation in physical systems.

However, physical systems for repeated controlled hyperpolarized studies are not yet well developed

and some inherent challenges remain. When the study endpoint is the characterization of chemical

exchange, a dynamic chemical reaction will be needed. Additionally, the system will need to be able to

repeatedly carry out the reaction of interest in some controllable manner. These two requirements

make working in living systems practically challenging. In order to move away from living systems, a

novel dynamic chemical exchange phantom was developed where exchange rates could be controlled. It

demonstrated an improved repeatability over in vivo systems. This system was used to validate

simulation predictions that did not assume pyruvate delivery by native vasculature.

This phantom system provides new capabilities for experimental development and validation

with distinct advantages over single-tracer injections, static multi-compartment thermal equilibrium

phantoms, and in-vivo models. The platform provides dynamic evolution of HP tracer signals through

chemical exchange in a manner that is consistent with that observed in target biology and can be tuned

to mimic different disease conditions. The spatial characteristics of the phantom are known a priori,

allowing rigorous evaluation of data encoding, acquisition, and reconstruction algorithms. This is

especially important when considering data reduction strategies that are designed to address key

limitations in the measurement of hyperpolarized tracers but that blur traditional definitions of spatial

and temporal resolution in the observation of dynamic processes. Static phantoms are useful for

confirming some functionality, but do not create the dynamic conditions that could lead to artifacts in

102

reconstruction algorithms that are based to any extent on the assumption of a stationary subject.

Assessment using in vivo models is challenging because of biological heterogeneity and the evolution of

target processes in diseases such as cancer that can progress rapidly and increase within-group

variations even in a matter of days. With this platform, acquisitions can be readily repeated, at arbitrary

intervals, to extract statistical measures of image properties. The system has a known distribution of

metabolites, and could be designed with multiple compartments73 with reaction rates tuned to simulate

different tissues or disease states in parallel. This platform is ideal for exploration of thresholds for

detectability of pathologies that may not be evident in 1H MRI, for early testing of new sequences to

ensure preservation of spatial and temporal accuracy, and even for regular quality assurance scans to

confirm that similar acquisition, reconstruction, and analysis parameters lead to similar data over time

both within and between laboratories and institutions.

 Hyperpolarized contrast agents are relatively new, and research into the best practices for signal

acquisition, reconstruction, and analysis is ongoing. This dynamic phantom will enable robust,

reproducible, and tunable baseline measurements, providing a benchmark through which experimental

strategies can be compared and optimized. This system catalyzes the final step in aerobic glycolysis, the

conversion of pyruvate into lactate, without the need for animal subjects, human subjects, or cell

suspensions that can increase the cost and the variability of technical measurements. The 14.5-19%

variation that we observed is a result of many factors. LDH is sensitive to a range of experimental factors

77; small variations in temperature, pH, or even time from thawing to injection can affect the enzyme

activity and therefore the rate of the reaction. To ensure that the reaction progresses to completion,

which is truest to in vivo studies, NADH has to be in excess and thus the rate of the reaction will depend

on pyruvate concentration. In this work, the injection of a small amount of hyperpolarized pyruvate was

performed by hand, potentially leading to unnecessarily high variations in the final concentration of

103

pyruvate. This variability can be reduced by utilizing automated injections that are currently under

development.

 A crucial step in the translation of powerful new imaging technologies into routine preclinical

and clinical use is the establishment of well-defined reference standards93 to provide a common

reference against which experimental circumstances can be compared. This reference can be used to

ensure comparable results across platforms, laboratories, and institutions, and to aid in study design

and execution. This dynamic single enzyme phantom helps fill this critical need. The physical structure of

the phantom can be tailored to more closely approximate preclinical or clinical applications, and the rate

of the reaction can be controlled through multiple compartments in a spatially-dependent manner to

simulate a wide range of disease states. This phantom platform represents a flexible and powerful tool

to aid in the development, optimization, validation, and certification of techniques, processes, and

instrumentation that are crucial to ensure the successful and efficient clinical translation of powerful

new imaging capabilities afforded by MRSI of hyperpolarized tracers such as [1-13C]-pyruvate.

Using the phantom system, the simulation prediction from chapter 4, namely that a low rate of

conversion, high excitation angles and rapid repetition times would suppress the apparent production of

hyperpolarized lactate, was confirmed. Tuning the phantom system to match the low conversion rate

used in the simulations showed a remarkable correlation in the expected mean 𝑘𝑝𝑙
′ measured and the

signal evolution curves. This shows that the dynamic enzyme phantom system was an ideal model to

validate the simulation architecture in the simplest case, where endogenous vasculature delivery is

ignored. Additionally, the in vivo studies show strong agreement with the simulation predictions

demonstrating the validity of the simulation architecture to account for perfusion. In aggregate, these

results serve as a strong validation of the simulation architecture and support the dual ideas that

simulation of hyperpolarized studies is a useful method for developing and optimizing acquisitions.

104

Chapter 6. Conclusion and Future Work

 Magnetic resonance spectroscopy of hyperpolarized agents, specifically pyruvate, is a powerful

tool in characterizing tissue. However, to be fully realized as a clinical biomarker, HP-pyuvate must

directly relate to metabolism in a well characterized quantitative manner. To ensure that clinical

endpoint is robust enough to be used in clinical decision making, the verification, validation and

optimization tools that were outline in this work will be critical. The parameter space associated with

hyperpolarized MRI is extensive, with acquisition design, tissue characteristics like perfusion, and

cellular processes such as uptake and redox status all playing a role. The Bloch simulator developed in

this work overcomes the computational burdens associated with modeling hyperpolarized signal

evolution to allow rapid exploration of the parameter space associated with hyperpolarized pyruvate.

Additionally, because it is a simulation platform, the underlying values of parameters of interest are

known. Therefore, the accuracy and reproducibility of data processing and modeling strategies can be

evaluated with a fidelity that is not possible in physical systems.

Using this simulation architecture, it was shown that the excitation angle and repetition time

that are used for dynamic spectroscopy can significantly bias the measurement of the exchange rate for

hyperpolarized pyruvate. Stated generally, rapidly pulsing with high excitation angles leads to a

significant underestimation of the exchange rate while no underestimation was observed for rapid,

small excitation or slow, large excitation. This bias was demonstrated across a range of metabolic

parameters, perfusion models and data processing strategies. The bias did not correlate with sequences

that lead to poor quality fits or to a low SNR suggesting that the bias imposed is inherent in the

acquisition and is not caused by poor data quality or modeling. The sequences tested represent the

most simplistic hyperpolarized studies, and their inherent dependence on the acquisition parameters

stresses the critical need for all hyperpolarized acquisition and processing strategies, especially the more

105

complicated methods that have been proposed for hyperpolarized imaging, to be thoroughly

characterized and validated using systems such as the Bloch simulator developed in this work.

 In order to extend the simulation result into a physical system, exchange rates were measured

in an isolated phantom that showed superior reproducibility to current in vivo work in the field. The

phantom system was then used to show that rapid large, excitation schemes do significantly

underestimate the measure exchange rate as compared to rapid, low excitation or slow, large excitation

schemes. The phantom system designed in this work is more than a tool to validate simulation results; it

represents the necessary structure for validation of any hyperpolarized study where exchange

measurement is the endpoint. Additionally, the phantom platform will serve as an ideal standard for

quality assurance and validation as hyperpolarization moves into routine clinical care.

 While the phantom system reproducibly converts HP-pyruvate to HP-lactate, it doesn’t fully

mimic living systems. Using a mouse model of thyroid cancer, the simulation results for a perfused

system were confirmed, showing that even in living systems the acquisition parameters can significantly

alter exchange rate quantification. These results show that quantitative measurement of hyperpolarized

exchange rates is sensitive to the acquisition parameters. The computational and physical platforms

developed in this work are ideal tools for careful validation and optimization of such acquisitions.

B. Future Directions for the Simulation Architecture

 The strength of this platform is understood by considering its future directions. The equations

presented in this project do not account for spatial dimensions. However, incorporating three-

dimensional space is fairly straightforward. The only real complexity comes in the form of the

computational burden, as the incorporation of three spatial dimensions greatly increases the number of

spins that must be independently calculated. Preliminary spectroscopic imaging sequences75 have been

developed for this simulation platform. Example images acquired using radial multi-band frequency

106

encoding are displayed75 in Figure 6-1. These images are “snap-shot” images and attempt to

characterize the spectral and spatial aspects of a system as a single time point or over some time

window at the cost of the entire hyperpolarized signal. These snap shot images, while useful as shown

by their use in the first clinical28 trial with hyperpolarized pyruvate, are not the absolute end goal of

hyperpolarized studies. The ability to monitor a metabolic process with hyperpolarized pyruvate makes

the loss of temporal resolution unacceptable in most cases. However, in order to encode the spectral,

spatial, and temporal aspects of a hyperpolarized signal requires either spectrally selective excitation

pulses94-97 or advanced reconstructions53,75,98-101. Additionally, if properly carried out, dynamic spectral

spatial studies can be processed to yield an exchange rate constant which can then be quantitatively

compared to the actual exchange rate used in the imaging voxel. This direct method of comparison to a

physical parameter allows straightforward determination of accuracy with methods that are very similar

to this work. Finally, spectroscopic imaging tends to require many more excitations than dynamic

spectroscopy and a similar, if not exacerbated, dependence on sequence parameters is likely. Both

spectral-spatial pulse based imaging and advance constrained reconstructions are presently being added

to the simulation architecture to ensure its continued utility to the field of hyperpolarized magnet

resonance as it moves from dynamic spectroscopy to dynamic spectral imaging.

107

Figure 6-1. Simulated radial multi-band frequency-encoded snap shot image of a square of perfused

tissue converting pyruvate to lactate. The images were simulated with 64 voxels (an 8x8 grid for 10x10

mm area) containing identical spins.

C. Future Directions for the Dynamic Phantom

 Finally, the dynamic phantom developed to validate these studies represents a powerful

paradigm for not only validation of hyperpolarized acquisition and processing but also as a reference

standard for quality assurance which will be greatly needed as hyperpolarized imaging moves into

routine clinical use. The initial phantoms that we have described have some limitations. Most

paramount relates to the use of enzymes that are sensitive to a plethora of reaction conditions as well

as to storage and age. We have considered an alternative reaction, requiring only simple chemical

compounds. As shown in figure 6-2, when mixed with hydrogen peroxide, pyruvate is broken down into

108

acetate and 𝐶𝑂2
102. This reaction involves no delicate enzymes or coenzyme and can be tuned by the

concentration of either pyruvate or hydrogen peroxide. As shown in figure 6-2, this reaction can proceed

in solution with rates similar to the lactate-to-pyruvate exchange rate seen in-vivo. Therefore, for the

simple chemical conversion of pyruvate into some downstream product, the far more robust conversion

to acetate is maybe a preferred choice. However, if the specific chemical shifts of the metabolites or the

method of exchange are critical to the detection process then the full enzyme system will be needed.

This will be true for excitation schemes that are specific to lactate’s and pyruvate’s resonance

frequencies or if the readout band is tuned precisely to a particular set of chemical shifts.

Figure 6-2. The reaction schematic of pyruvate and peroxide (left). The total spectrum of hyperpolarized

2-C13-Pyruvate reacting with peroxide in a phantom monitored with magnetic resonance spectroscopy

(center). The dynamic signal curves of hyperpolarized pyruvate and acetate showing the initial arrival of

pyruvate and its subsequent reaction to acetate (right).

 Additional work is underway to better characterize the enzyme rate constants for LDH so that

the heuristic concentrations used in this phantom design can be altered to account for different

concentrations, enzyme activity or even temperature. Ideally a set of experimental constraints, the

desired reaction rate, and the enzyme kinetics outlined in appendix A would be used to calculate the

exact phantom concentrations to be used. Measurement of the physical constants needed for such a

109

system are currently being invetigated. Additionally, the phantom enclosure itself is being further

refined. Multiple chambers have been developed to allow for the exchange rate contrast to be explored

in a single study73, and the capability to automatically deliver a fixed amount of pyruvate over a

repeatable time frame is under developments.

 In summary, this work aimed at developing a robust simulation platform for hyperpolarized

magnetic resonance spectroscopy. The simulation platform was leveraged to show that sequence

parameters significantly bias the measured exchange rates. Such bias was validated in a novel phantom

system designed to approximate the chemical conversion of pyruvate to lactate observed in vivo while

offering improved repeatability and practicality. Finally, that sequence parameter imposed bias

predicted for perfused tissue was validated in a mouse cohort. These initial validation studies show that

sequence parameters will affect the exchange rate quantification for hyperpolarized pyruvate.

Additionally, no significant bias in exchange rate measurements was detected using sequence

parameters designed by simulation to avoid such bias.

110

 Appendix A: Hyperpolarized Exchange Kinetics

Section A.1 Label Exchange

 Practically hyperpolarized nuclei will never make up the entirety of the nuclei for a specific

chemical species in a sample. Therefore, hyperpolarized nuclei can be considered as a label that is

placed on a fraction of the nuclei in a system67. This fractional labeling can be modeled as:

 [𝐴] = [𝐴 ∙ 𝑋] + [𝐴 ∙ 𝑋∗] A.1

where [𝑨] is the total concentration of the chemical species 𝑨, [𝑨 ∙ 𝑿] is the concentration of 𝑨 without

a hyperpolarized nuclei and [𝑨 ∙ 𝑿∗] is the concentration of 𝑨 with a hyperpolarized nucleus. If 𝑨 is

exchanging with a separate chemical species 𝑩 following equation (3.4):

[𝐴]
𝑘1
⇄
𝑘2

[𝐵]

[𝐴 ∙ 𝑋] + [𝐴 ∙ 𝑋∗]
𝑘1
⇄
𝑘2

[𝐵 ∙ 𝑋] + [𝐵 ∙ 𝑋∗]

A.2

Then the rate of change of the labels will simply be the rate of exchange between the two pools

multiplied by the probability that an exchanging compound will be labeled:

 𝑑[𝐴 ∙ 𝑋∗]

𝑑𝑡
= 𝑉𝑟

[𝐵 ∙ 𝑋∗]

[𝐵]
− 𝑉𝑓

[𝐴 ∙ 𝑋∗]

[𝐴]

𝑑[𝐵 ∙ 𝑋∗]

𝑑𝑡
= 𝑉𝑓

[𝐴 ∙ 𝑋∗]

[𝐴]
−𝑉𝑟

[𝐵 ∙ 𝑋∗]

[𝐵]

A.3

where 𝑉𝑓and 𝑉𝑟are the forward and reverse velocity of the reaction respectively. Note the net change in

reaction is 𝑉𝑓 − 𝑉𝑟. Under the conditions outlined in equation A.2 the forward and reverse velocities will

be:

 𝑉𝑓 = 𝑘1[𝐴]

𝑉𝑓 = 𝑘2[𝐵]

A.4

111

Substituting A.4 into A.3 yields:

 𝑑[𝐴 ∙ 𝑋∗]

𝑑𝑡
= 𝑘2[𝐵]

[𝐵 ∙ 𝑋∗]

[𝐵]
− 𝑘1[𝐴]

[𝐴 ∙ 𝑋∗]

[𝐴]
= 𝑘2[𝐵 ∙ 𝑋

∗] − 𝑘1[𝐴 ∙ 𝑋
∗]

𝑑[𝐵 ∙ 𝑋∗]

𝑑𝑡
= 𝑘1[𝐴]

[𝐴 ∙ 𝑋∗]

[𝐴]
− 𝑘2[𝐵]

[𝐵 ∙ 𝑋∗]

[𝐵]
= 𝑘1[𝐴 ∙ 𝑋

∗] − 𝑘2[𝐵 ∙ 𝑋
∗]

A.5

Therefore, assuming first order kinetics, the rate of change of the labeled compound is determined

solely by the concentration of the labeled compounds and the exchange terms. The rate of change is

independent of any net exchange of the total compound. The equivalence of equations A.5 and A.3 is

show in in figure A-1.

Figure A-1. Comparison of label exchange modeling. A comparison of a full modeling of label exchange,

equation (A.3) vs the reduced form equation (A.5) under both net flux conditions (top) and equilibrium

exchange (bottom)

112

Section A.2 Enzyme Flux Kinetics

In the case of hyperpolarized pyruvate, it is converted to lactate via an enzyme catalyzed

reaction and equation A.2 might not strictly hold. The conversion of lactate to pyruvate has been shown

to follow a Theorell-Chance mechanism103 outlined schematically in figure A-2 and is given by66:

𝐸 +𝑁𝐴𝐷𝐻

𝑘1
⇌
𝑘2

𝐸 ∙ 𝑁𝐴𝐷𝐻

𝐸 ∙ 𝑁𝐴𝐷𝐻 + 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒
𝑘3
⇌
𝑘4

𝐸 ∙ 𝑁𝐴𝐷+ + 𝐿𝑎𝑐𝑡𝑎𝑡𝑒

𝐸 ∙ 𝑁𝐴𝐷+
𝑘5
⇌
𝑘6

 𝐸 + 𝑁𝐴𝐷+

A.6

where E is free enzyme, 𝐸 ∙ 𝑁𝐴𝐷𝐻 and 𝐸 ∙ 𝑁𝐴𝐷+ is enzyme bound to 𝑁𝐴𝐷𝐻 or 𝑁𝐴𝐷+ respectively, and

the 𝑘𝑖 terms are the rate constants for the 𝑖𝑡ℎ reaction step.

113

Figure A-2. A schematic of the Theorell-Chance mechanism for lactate dehydrogenase. Free enzyme is

bound by either 𝑁𝐴𝐷𝐻 or 𝑁𝐴𝐷+, and these enzyme complexes are then able to convert pyruvate to

lactate. The binding, conversion and disassociation of either pyruvate or lactate are so rapid that they

are considered as a single step with a single rate constant pair. Such an approximation is known as a

Theorell-Chance mechanism.

 Assuming that enzyme concentration is low enough that there is little change in the

concentration of the enzyme complexes over the majority of the reaction, known as the steady state

assumption66:

 𝑑𝐸

𝑑𝑡
=
𝑑𝐸 ∙ 𝑁𝐴𝐷+

𝑑𝑡
=
 𝑑𝐸 ∙ 𝑁𝐴𝐷𝐻

𝑑𝑡
= 0

𝐸𝑇 = 𝐸 + 𝐸 ∙ 𝑁𝐴𝐷
+ + 𝐸 ∙ 𝑁𝐴𝐷𝐻

A.7

where 𝐸𝑇 is the total enzyme concentration. Under the steady state assumption, the method outlined

by Fromm104 can be used to determine the forward and reverse velocities of the reaction. Initially the

concentrations of the individual enzyme species are determined based on the reagent concentrations.

For LDH this would be:

 [𝐸] = 𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃]

[𝐸 ∙ 𝑁𝐴𝐷𝐻] = 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+]

[𝐸 ∙ 𝑁𝐴𝐷+] = 𝑘2𝑘6[𝑁𝐴𝐷
+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷

+] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

[𝐸𝑇] = 𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃] + 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻]

+ 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+] + 𝑘2𝑘6[𝑁𝐴𝐷

+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷
+]

+ 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

A.8

Because the concentration of the enzyme species is not changing, the velocity of each step must be the

same for each direction. Therefore, the forward velocity will be:

 𝑉𝑓 = 𝑘3[𝑃][𝐸 ∙ 𝑁𝐴𝐷𝐻] A.9

114

It is difficult to determine the concentration of the particular enzyme complexes. However, the total

enzyme concentration is often known. Multiplying equation (A.9) by
[𝐸𝑇]

[𝐸𝑇]
 and substituting equation (A.8)

for [𝐸 ∙ 𝑁𝐴𝐷𝐻] yields:

𝑉𝑓 =

𝐸𝑇𝑘3[𝑃](𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+])

𝑑𝑒𝑛𝑜𝑚

𝑑𝑒𝑛𝑜𝑚 = 𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃] + 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻]

+ 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+] + 𝑘2𝑘6[𝑁𝐴𝐷

+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷
+]

+ 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

A.10

Similarly, the reverse velocity would be given by:

𝑉𝑟 =

𝐸𝑇𝑘4[𝐿](𝑘2𝑘6[𝑁𝐴𝐷
+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷

+] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻])

𝑑𝑒𝑛𝑜𝑚
 A.11

Therefore, the net change in the reaction would follow:

𝑣 ≡

𝑑[𝐿]

𝑑𝑡
=
−𝑑[𝑃]

𝑑𝑡
= 𝑉𝑓 − 𝑉𝑟 A.12

The 𝐸𝑇𝑘3𝑘4𝑘6[𝐿][𝑃][𝑁𝐴𝐷
+] and 𝐸𝑇𝑘1𝑘3𝑘4[𝐿][𝑃][𝑁𝐴𝐷𝐻] appear in both 𝑉𝑓 and 𝑉𝑟 and will cancel

leaving:

𝑣 =

𝐸𝑇(𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻] − 𝑘2𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+])

𝑑𝑒𝑛𝑜𝑚
 A.13

If only the initial rate is considered80, then [𝐿] = [𝑁𝐴𝐷+] = 0 and equation (A.13) reduces to:

 𝑣

𝐸𝑡
=

𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘5 + 𝑘5𝑘3[𝑃] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]
 A.14

Multiplying by
1 𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]⁄

1 𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]⁄⁄ to cancel out the top terms yields:

 𝑣

𝐸𝑡
=

1

𝑘2
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]
⁄ + 1 𝑘1[𝑁𝐴𝐷𝐻]

⁄ + 1 𝑘3[𝑃]
⁄ + 1 𝑘5

⁄
 A.15

Inverting results in the initial rate of the reaction, which has been shown to match the rates that were

measured in LDH isolated from rabbit muscle 57,79,80. Note that the exchange rate diagram used in those

115

references assume that the conversion of lactate to pyruvate is the forward reaction and the exchange

constants, 𝑘𝑖, are in reverse order than this derivation.

 𝐸𝑡
𝑣
=

𝑘2
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

+
1

𝑘1[𝑁𝐴𝐷𝐻]
+

1

𝑘3[𝑃]
+
1

𝑘5
 A.16

If the products [𝐿] and [𝑁𝐴𝐷+] are present, then equation (A.16) needs to be modified following the

procedure outlined in 4,105, and accounting for product and substrate inhibition104 equation (A.16) is

modified to:

[𝐸]𝑡
𝑣
=
(1 +

[𝑃]
𝑘𝑖
)

𝑘5
+

1

𝑘1[𝑁𝐴𝐷𝐻]
+
(1 +

[𝐿]
𝑘𝑖𝑖
) (1 +

𝑘5[𝐿]
𝑘4

)

𝑘3[𝑃]
+
𝑘2 (1 +

𝑘5[𝐿]
𝑘4

)

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

A.17

This matches the initial reaction velocity of pyruvate conversion in lysed lymphoma cells57.

Section A.3 Enzyme Exchange Kinetics

If just the forward velocity is to be considered, then only equation (A.9) needs to be considered.

By inspection of figure A-2 the relation:

[𝐸 ∙ 𝑁𝐴𝐷𝐻] =

𝑘1[𝐸][𝑁𝐴𝐷𝐻]

𝑘2
 A.18

is apparent. Substituting equation (A.16) into (A.9) yields:

𝑉𝑓 =

𝑘3𝑘1
𝑘2

[𝑃][𝐸][𝑁𝐴𝐷𝐻] A.19

In order to remove the [𝐸] terms they are be replaced with [𝐸𝑇]. Combining equation (A.8) with

equation (A.18) and noting relations similar to equation (A.18) by inspection of figure A-2, then:

[𝐸 ∙ 𝑁𝐴𝐷+] =

𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4
 A.20

[𝐸𝑇] = [𝐸] {1 +

𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4
}

A.21

116

Note that equation (A.20) could have been written as a function of [𝑁𝐴𝐷+] and [𝐿] but this increases

the number of concentrations that need to be considered. Multiplying equation (A.19) by
𝐸𝑇

𝐸𝑇
 to remove

the [𝐸] term and substituting equation (A.21) leaves:

𝑉𝑓 = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4

 A.22

Finally, accounting for inhibitory complexes equation (A.22) is expanded to:

𝑉𝑓 = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻](1 +

[𝑃]
𝐾𝑖
)

𝑘2𝑘4

A.23

Equation (A.23) has been show to model the exchange of hyperpolarized pyruvate to lactate in murine

lymphoma cells57.

Section A.3 Enzyme Exchange Kinetics of Hyperpolarized Pyruvate

Relating equation (A.23) to equation (A.5) assuming no reverse exchange results in:

𝑑[𝑃∗]

𝑑𝑡
= 𝐸𝑇

(
𝑘3𝑘1
𝑘2
[𝑁𝐴𝐷𝐻]) [𝑃]

1 +
𝑘3𝑘1
𝑘2
[𝑃][𝑁𝐴𝐷𝐻] +

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] (1 +
[𝑃]
𝐾𝑖
)

𝑘2𝑘4

 ×
[𝑃∗]

[𝑃]

= 𝐸𝑇

(
𝑘3𝑘1
𝑘2
[𝑁𝐴𝐷𝐻]) [𝑃∗]

1 +
𝑘3𝑘1
𝑘2
[𝑃][𝑁𝐴𝐷𝐻] +

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] (1 +
[𝑃]
𝐾𝑖
)

𝑘2𝑘4

A.24

For the pseudo first-order kinetics that are assumed in equation (3.4), (3.5) and (A.2), all the terms

except [𝑃∗] must remain relatively constant. If that condition is met, then:

117

𝑘𝑝𝑙
′ = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻](1 +

[𝑃]
𝐾𝑖
)

𝑘2𝑘4

A.23

This implies that the apparent exchange rate measured by hyperpolarized pyruvate is simply the rate

constant that defines the enzymatic exchange rate as a function of pyruvate concentration. If, however,

there was some reverse conversion of lactate to pyruvate, or the substrate concentration were time

dependent, then the apparent exchange rate would be a more complicated parameter and unlikely to

be constant over time.

118

 Appendix B: Source Code for HypWright

 In this section the source code for the perfused Bloch-McConnell simulator is present along with

a brief discussion of the functionality of the code. Discussion of particular design decisions will be

outlined along with alternative approaches and areas for planned future development

Section B.1 Higher Level Structures

World Class

 The World object follows a singleton pattern. Logically, there should never be more than a single

world and therefore enforcing a singleton pattern ensures that user errors such as multiple worlds

operating simultaneously can be avoided. This may be an issue for batch processing and the removal of

the singleton framework may need to be considered for future studies.

 The world object is first initialized which clears out any old world properties leaving a fresh

world to be populated with the simulation parameters. The world stores the strength of the static

magnetic field, which is assumed to be ever present and homogenous. If more complicated 𝐵0

interaction need to be accounted for, a separate scanner object may need to be developed and

incorporated into the pulse sequence objects. The pulse sequence object is the logical structure that

stores all of the sequence information and is described in section B.2. Aside from the pulse sequence

and 𝐵0 the final simulation parameter stored in the world object is an array of voxels. Voxels represent a

volume of space and are described after the world object.

 The world object additionally stores the value of the last time point at which a solution was

calculated. Attempting to evaluate the simulation past this point will result in an error. Finally, there is

memory allocated for solutions to be stored on the world level. However, current implementation stores

the solution at the voxel level. Lower level storage of the solution structure allows easier access to the

119

solution values but is vulnerable to user errors such as the addition of a voxel after calculation which will

not have a defined solution.

 An attempt has been made to parallelize this code with respect to voxels since they are assumed

to be independent. However, storing and mixing the magnetization from multiple parallel voxels was

non-trivial, and more work will be needed to ensure proper parallelization. Once functional, a similar

parallelization algorithm should work for the calculation step, and will likely be simpler as calculation

result are stored on the voxel level and do not need to be aggregated.

classdef (Sealed) World < handle

 %WORLD: Hello World!

 % storage for global system states, this is a singleton and golbal

 % PROPERTIES

 % B0 - The main magnetic field of the scanner

 % pulseSequence - The MR pulse sequence

 % Voxels - all of the active voxels

 % init - logical for weather or not the world has been initiated

 % calEndTime - the last timepoint for which a solution has been found

 % METHODS

 % B0 - The main magnetic field of the scanner, default 3T

 % PulseSequence - The MR pulse sequence

 % Voxels - all of the active voxels

 % init - logical for weather or not the world has been initiated

 % Methods

 % setB0(B0) - sets the static B field to B0

 % setPulseSequence(pulseSequence) - sets the sroted pulse sequence

 % to the input PulseSequence

 % initWorld() initializes the world and sets B0 to its default and

 % initializes an empty pusle sequence

 % initWorld(B0) - initializes the world with some input B0 that

 % should be a 3x1 column vector of the form [x;y;z]

 % addVoxel(voxelList) - adds all the voxels in voxelList to the

 % world

 % calculate(times) - claculates the MR signal for all the time points

 % specifed by (time)

 % evaluate(time) - returns a M vector for each time point in the

 % time vector t

 % *Note M is only defined from 0 to the end time passed in to

 % calulate, and will only reflect the system state at the last

 % calculate. This function will sort the time vector and remove any

 % points outside of the range [0, calEndTime] as well as removing

 % any redundent time points rounding to the nearest picosecond

 properties

 end

 properties (SetAccess = private)

 B0; % The main magnetic field of the scanner

120

 pulseSequence; % The MR pulse sequence

 Voxels; % all of the active voxels

 init; % logical for weather or not the world has been initiated

 calEndTime % the last timepoint for which a solution has been found

 solutions; % a cell of enums that stores the calculated solutions

 end

 properties (Constant)

 voxelSize = 1e-15; % The voxel size, I am not sure if this is used

 end

 methods (Access = private)

 function self = World

 % CONSTRUCTOR: Starts the Bloch Simulator. Initializes a pulse

 % sequence

 self.init = false;

 end

 end

 methods (Static)

 function singleObj = getWorld

 persistent localObj

 if isempty(localObj) || ~isvalid(localObj)

 localObj = HypWright.World;

 end

 singleObj = localObj;

 end

 end

 methods

 function value = getB0(self),value = self.B0; end

 function setB0(self,B0),self.B0 = B0;end

 function value = getPulseSequence(self),value = self.pulseSequence;end

 function setPulseSequence(self,pulseSequence),self.pulseSequence = pulseSequence;end

 function b = getB(self,x,y,z,t)

 % Gets the combined magnetic field from all sources at a

 % position (x,y,z) and a time t.

 b = repmat(self.B0,1,length(t))+self.pulseSequence.B(x,y,z,t);

 end

 function initWorld(self,varargin)

 % INITWORLD: initializes the a new empty world.

 % initWorld() initializes the world and sets B0 to its default and

 % initializes an empty pusle sequence and clears out any voxel

 % initWorld(B0) - initializes the world with some input B0 that

 % should be a 3x1 column vector of the form [x;y;z]

 p = inputParser;

 p.addParameter('B0',[0;0;3.0],@isnumeric);

 p.parse(varargin{:})

 self.B0 = p.Results.B0;

 self.pulseSequence = [];

 self.solutions = [];

 self.calEndTime = 0;

 self.clearVoxels();

 self.init = true;

 end

121

 function addVoxel(self,voxelList)

 % ADDVOXEL - adds a voxel to the world

 % addVoxel(voxelList) - adds all the voxels in voxelList to the

 % world. They are added in the order they were passed in.

 % Currently there is not great for managing and manipulating

 % multiple voxels, this should probably be addressed if more

 % complicated voxel geometries are to be used, probably a

 % factory object.

 for i = 1:numel(voxelList)

 self.Voxels = [self.Voxels,voxelList(i)];

 end

 end

 function clearVoxels(self)

 % CLEARVOXELS - removes all voxels from the world

 self.Voxels = [];

 end

 function calculate(self,timeRange)

 % CALCULATE - calculates the MR signal from all voxels over

 % some time range, assumes a start time of zeros if only one

 % number is passed in

 % Compiles the pulse sequence for efficency. Need to add a

 % check to make sure the sequence has not already been

 % compiled.

 self.pulseSequence.compile();

 % Generate temporary variables for clarity

 tmpEndTime = timeRange(end);

 tmpPS = self.pulseSequence;

 tmpB0 = self.B0;

 tmpSolutions = cell(numel(self.Voxels),1); % Allocate space for the solutions

 % Let each voxl calculate it's own solution,

 for i = 1:numel(self.Voxels)

 tmpSolutions{i} = self.Voxels(i).calculate(tmpEndTime,tmpPS,tmpB0);

 end

 self.solutions = tmpSolutions; % store the solutions an replace any old solutions

 % stores the end time of the calculated range

 self.calEndTime = tmpEndTime;

 end

 function [signal, freqAxis, timeAxis,M] = evaluate(self,times,varargin)

 % EVALUATE - returns the complext MR signal for the time points

 % passed in. The world needs to be calculated before it can be

 % evaluated.

 % [signal, freqAxis, timeAxis] = evaluate(times) -

 % evaluate(time) - returns a M vector for each time point in the

 % time vector t

 % *Note M is only defined from 0 to the end time passed in to

 % calulate, and will only reflect the system state at the last

 % calculate. This function will sort the time vector and remove any

 % points outside of the range [0, calEndTime] as well as removing

 % any redundent time points rounding to the nearest picosecond

 times = (unique(round(times.*10e12)))./10e12;

 times = sort(times);

 p = inputParser;

122

 p.addOptional('ref',0,@isnumeric)

 p.addOptional('verbose',0,@islogical)

 p.parse(varargin{:})

 tmpB0 = self.B0;

 tmpRef = p.Results.ref;

 tmpM = zeros(numel(self.Voxels),3,length(times));

 tmpVoxels = self.Voxels;

 for i = 1:numel(self.Voxels)

 tmpM(i,:,:) = tmpVoxels(i).getM(times,tmpRef,tmpB0);

 end

 % Attempt to parrallelize Not working

% tic

% tmpSolutions = self.solutions;

% tmpM = zeros(numel(self.Voxels),...

% size(tmpSolutions{i}.functions,2),length(times),3);

% parfor i = 1:numel(self.Voxels)

% for j = 1:size(tmpSolutions{i}.functions,2)

% density = tmpSolutions{i}.spinDensity{j};

% omegaRef = tmpSolutions{i}.frameFreq{j}(tmpB0);

% for k = 1:length(times)

% iSolution = find(times(k)<tmpSolutions{i}.pulseTimes,1,'first');

% if isempty(iSolution)

% iSolution = numel(tmpSolutions{i}.pulseTimes);

% end

% theta = times(k)*omegaRef;

% if tmpSolutions{i}.useAnalytical(iSolution,j)

% tmpMFrame = tmpSolutions{i}.functions{iSolution}(times(k));

% else

% tmpMFrame = deval(...

% tmpSolutions{i}.functions{iSolution},(times(k)));

% end

% MSum = [0;0;0];

% for m = 1:3:size(tmpMFrame,1)

% MSum = MSum+density*...

% [cos(theta),-sin(theta),0;...

% sin(theta),cos(theta),0;...

% 0,0,1]*tmpMFrame(m:m+2);

% end

% tmp1(i) = MSum(1);

% tmp2(i) = MSum(2);

% tmp3(i) = MSum(3);

% end

% end

% end

% % tmpM = [tmp1;tmp2;tmp3];

% toc

% keyboard

 M = squeeze(sum(tmpM,1));

 signal = M(1,:)+1i*M(2,:);

 signal = signal.';

 BW = 1/(times(2)-times(1));

 freqAxis = linspace(-BW/2,BW/2,length(times));

 timeAxis = times;

123

 if (p.Results.verbose)

 figure

 subplot(2,1,1),plot(times,real(signal),'r',times,imag(signal),...

 'b')

 xlabel('Time (seconds)')

 FTSig = fftshift(fft(fftshift(signal)));

 subplot(2,1,2),plot(freqAxis,real(FTSig),'r',freqAxis,...

 imag(FTSig),'b',freqAxis,abs(FTSig),'k')

 xlabel('Frequency (HZ)')

 end

 end

 end

end

124

Voxel Class

 The voxel class is the main working object of the simulation structure. Nearly all calculation and

evaluation is done in this class. Logically, it represents some arbitrary volume of space that is best

described by a single point in space as the extent of the voxel is currently poorly defined. A more

rigorous definition of a voxel may be necessary as more complicated numeric phantoms are considered.

However, adding much more complexity to the voxel will start pushing this simulator into finite element

methodologies.

 The voxel is packed with an arbitrary number of spin objects. The density property that is

inherent to each spin controls how much of the signal that spin contributes to the voxels’ signal. The

solutions are calculated using two methods as outline in Section 3. Spins must store a function that will

return their time derivative at a position and time, as well as some initial condition that is assumed to

exist at time 0. This is used for the iterative solver that utilizes an adaptive 4th order Runge-Kutta

method. If applicable, an analytical solution can also be defined. To use the analytical solution, the voxel

checks with both the spin object and the pulse sequence to ensure that the analytical solution is valid. If

so, the analytical solution is defined by the spin object and then stored in the voxel. This level of

abstraction allows for a wide variety of ordinary differential equations to be solved and the solution

space stored for subsequent evaluation with arbitrary temporal precision. Additionally, all the

implementation details are stored in the spin objects themselves, so as long as the spin objects have a

valid interface with the voxel they can be properly solved.

 Additionally, it should be noted that the analytical solution is evaluated for each time point

independently. This can lead to some redundancy when time integrals are part of the solution.

Independent evaluations of such integrals can lead to significant duplication of calculation as the same

integral is calculated over very similar time frames. It is likely that a cumulative sum approach that

125

utilizes the previous evaluation points would remove this overhead and greatly speed up the analytical

solution for perfused systems.

classdef Voxel < handle

 %VOXEL Represents a volume of space

 % A voxel represents a voulme of space that contains some set of spins.

 % once the calculate method has been run the voxel stores a solution

 % describing the evolution of the total magnetization vector up to some

 % time. this can be evaluated with the getM method.

 % Properties

 % position - Vector defining the position of the Voxel

 % Methods

 % Voxel(position) - initializes an empty voxel at the coordinates

 % defined by position

 % Voxel(position, spinList)- initializes a Voxel at the coordinates

 % defined by position and fills it with any spin groups in the

 % optional variable spinList

 % addSpin(spin) - adds the input spin to the voxel

 % calculate(endTime) - runs the solvers to the specified end time

 % getM(t) - returns the magnetization vector for all time points in

 % the vector t

 properties

 position % Vector defining the position of the Voxel

 sol = {}; % list of all the solution structurs defing the time evolution of M

 anlyticSol = {}; %functions for all the analytic solutions

 debug = false; %switches on debug mode (will save the Mz of the spin)

 solTimes % the time ranges each solution structure spans

 end

 properties (SetAccess = private)

 solution % cell that stores all the data needed to solve for this Voxel

 end

 properties (Access = private)

 spinGroups % list of all spins in the voxel

 end

 properties (Constant)

 T2Star = 2e-14; % determins B0 inhomogenaety thus T2 star in thsis voxel

 numSubSpins = 1^3; % Defines the number of spin groups in this voxel

 end

 methods

 function self = Voxel(position,varargin)

 % CONSTRUCTOR - initializes the voxel at some position

 % Voxel(position) - initializes an empty voxel at the coordinates

 % defined by position

 % Voxel(position, spinList)- initializes a Voxel at the coordinates

 % defined by position and fills it with any spin groups in the

 % optional variable spinList

 p = inputParser();

 p.addOptional('spinList',[])

 p.parse(varargin{:})

126

 self.position = position;

 for i = 1:numel(p.Results.spinList)

 self.spinGroups = {p.Results.spinList(i)};

 end

 end

 function addSpin(self,spin)

 % ADDSPIN - adds spins to the Voxel

 % addSpin(spin) - adds the input spin to the voxel

 self.spinGroups{end+1} = spin;

 end

 function solution = calculate(self,endTime,PS,B0)

 % CALCULATE - calculates the time dependent magnetization vector for

 % this voxel

 pulseTimes = PS.eventTimes(1,:); % Times when B changes in the Pulse sequence

 pulseTimes = pulseTimes(find(pulseTimes>0,1,'first'):end);

 pulseTimes = pulseTimes(pulseTimes<=endTime);

 pulseTimes = [0,pulseTimes,endTime];

 pulseTimes = sort(pulseTimes);

 pulseTimes = unique(round(pulseTimes.*1e9))./1e9;

 pulseTimes = unique(pulseTimes);

 self.solTimes = pulseTimes;

 solution.pulseTimes = pulseTimes;

 % initialize the storage for the solutions

 self.anlyticSol = cell(length(pulseTimes)-1,numel(self.spinGroups));

 self.sol = cell(length(pulseTimes)-1,numel(self.spinGroups));

 % generate and stor the solutions for each pulse time

 for i = 1:length(pulseTimes)-1

 tSpan = [pulseTimes(i),pulseTimes(i+1)];

 x = self.position(1);

 y = self.position(2);

 z = self.position(3);

 t = mean(tSpan);

 tmpSpinGroups = self.spinGroups;

 if(i>1)

 tmpAnlyticSol2 = tmpAnlyticSol;

 tmpSol2 = tmpSol;

 else

 tmpAnlyticSol2 = self.anlyticSol(i,:);

 tmpSol2 = self.sol(i,:);

 end

 tmpAnlyticSol = self.anlyticSol(i,:);

 tmpSol = self.sol(i,:);

 ODEBool = PS.solver(tSpan);

 %tic

 for j = 1:numel(tmpSpinGroups)

 % callculate current M

 if i == 1,

 tmpM = tmpSpinGroups{j}.M;

 else

 if isempty(tmpSol2{j})

 tmpFun = tmpAnlyticSol2{j};

127

 tmpM = tmpFun(tSpan(1));

 else

 tmpFun = tmpSol2{j};

 tmpM = deval(tmpFun,tSpan(1));

 end

 end

 if(ODEBool || ~tmpSpinGroups{j}.useAnalytical())

 % used ODE solver when PS is changing

 odefun = @(M,t)tmpSpinGroups{j}.dM(x,y,z,M,t,PS,B0);

% figure

% ode45(odefun,tSpan,tmpM)

 tmpSol{j} = ode45(odefun,tSpan,tmpM);

 solution.functions(i,:) = tmpSol;

 solution.useAnalytical(i,:) = false;

 else

 B = B0+PS.B(x,y,z,t);

 tmpAnlyticSol{j} = ...

 @(t)tmpSpinGroups{j}.analytical(...

 x,y,z,tSpan(1),tmpM,t,PS,B0,B);

 tmpSol{j} = {};

 solution.functions(i,:) = tmpAnlyticSol;

 solution.useAnalytical(i,:) = true;

% odefun = @(M,t)tmpSpinGroups{j}.dM(x,y,z,M,t,PS,B0);

% figure

% ode45(odefun,tSpan,tmpM)

% pause(waitforbuttonpress)

 %tmpsol{i,j} = ode45(odefun,tspan,tmpM);

 end

 end

 for j = 1:numel(tmpSpinGroups)

 solution.frameFreq{j} = @(B0)...

 self.spinGroups{j}.calculationFrame(B0);

 solution.spinDensity{j} = self.spinGroups{j}.density;

 end

 self.anlyticSol(i,:) = tmpAnlyticSol;

 self.sol(i,:) = tmpSol;

 %toc

 end

 end

 function M = getM(self,t,ref,B0)

 % GETM - retuns the magnetization vector over some time vector

 % getM(t) - returns the magnetization vector for all time points in

 % the vector t

 % set up sub spins within this voxel

 B0inHomogFact = 0;% normrnd(0,self.T2Star,self.numSubSpins,1)*self.T2Star;

 while std(B0inHomogFact) > 1.3*self.T2Star

 B0inHomogFact = normrnd(0,self.T2Star,self.numSubSpins,1);

 end

 M = zeros(3,length(t));

 % Break up the time vector into chunks that mach the diffrent

 % solutions

 start = find(t(1)<self.solTimes,1,'first');

128

 devalTimes = 1;

 if self.debug

 tmp = {};

 save('tmp','tmp')

 end

 for j = start:numel(self.solTimes)

 devalTimes(end+1) = find(t<self.solTimes(j),1,'last');

 tmp = find(t>=self.solTimes(j),1,'first');

 if isempty(tmp)

 break;

 else

 devalTimes(end+1) = tmp;

 end

 end

 devalTimes(end+1) = length(t);

 devalTimes = sort(devalTimes);

 for n = 1:2:numel(devalTimes)-1

 tDeval = t(unique(devalTimes(n):devalTimes(n+1)));

 % find wich solution to use for this time

 j = find(self.solTimes>tDeval(1),1,'first');

 if isempty(j), j = length(self.solTimes); end

 j = j-1;

 tmpM = zeros(3,numel(tDeval));

 for i = 1:numel(self.spinGroups)

 % calculate M0 for a spin group at the passed in time

 if isempty(self.sol{j,i})

 % Calculat with analytical

 %tmp = self.anlyticSol{j,i}(tDeval(1));

 Mframe = self.anlyticSol{j,i}(tDeval);

 if self.debug

 load('tmp.mat')

 tmp{j,i} = Mframe;

 save('tmp','tmp')

 end

 else

 % calculate woth ode

 Mframe = deval(self.sol{j,i},tDeval);

 if self.debug

 load('tmp.mat')

 tmp{j,i} = Mframe;

 save('tmp','tmp')

 end

 end

 % account for sub spins

 for m = 1:self.numSubSpins

 for p = 1:numel(tDeval)

 % rotate to refrence frame

 theta = (self.spinGroups{i}.calculationFrame(B0)+ref)*...

 (1+B0inHomogFact(m))*tDeval(p);

 %loop over all the spins in a group

 for k = 1:3:size(Mframe,1)

 tmpM(:,p) = tmpM(:,p)+self.spinGroups{i}.density*...

 [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;...

129

 0,0,1]*Mframe(k:k+2,p);

 end

 end

 end

 end

 M(:,unique(devalTimes(n):devalTimes(n+1))) =...

 tmpM./self.numSubSpins;

 end

 end

 end

end

130

Section B.2: Pulse Sequence

Pulse Sequence Class

The pulse sequence class takes an assembly of gradient and radiofrequency pulses and compiles

them into a magnetic vector that is a function of time. A fair amount of logic is used to optimize the

sequence before calculation, as the state of the magnetic field at a particular time is called with great

frequency during analytical and numerical calculation, and performance profiling has found that

interaction with the pulse sequence is a major source of computational burden.

During calculation, multiple solvers can be used, and since the solver to be used can depend on

the pulse sequence, any time the pulse sequence is changed an event is stored. Events are merely flags

that are used by the pulse sequence compiler and the voxel class as points where the solvers need to re-

evaluate which method to use.

Gradient and radiofrequency pulses are sorted and compiled separately. However, they are

eventually combined to yield a single magnet field vector as a function of time and position. Pulses are

added to the end of the storage array and can be removed by their index in the array. A more robust

structure for the addition and removal of pulses would likely be beneficial. With the current

implementation it is best to build the correct sequence the first time.

The ADC represents the analog-to-digital converter that can be used to define evaluation points.

However, this is not required.

Compilation of gradients currently has logic to account for slew rates. However, this has not

been rigorously test and should be used with great care. RF pulses are not allowed to overlap in time

and should be combined into a single waveform if overlapping is required.

The display function has been overridden to show a sequence diagram. The methodology for

how repetition time and RF pulses are displayed in the sequence diagram should probably be

reconsidered and textual information about the sequence should be included.

131

classdef PulseSequence < handle

 %PULSESEQUENCE Classrepresenting a MRI pusle sequence

 % Detailed explanation goes here

 properties

 ADC = []; % A vector storing start, stop time and bandwidth of the ADC

 end

 properties (SetAccess = private)

 rfPulses = {} % Vector of rf Pulses in the sequence

 gradientPulses = {} % Vector of rf Pulses in the sequence

 time = {}

 eventTimes % vector defining when pulses are on or off

 slewRate = 1e9 % maximal gradient slope in T/(m*sec)

 gradientVect % The gradient amplitudes

 RFVect % Grid Containg the Times for each RF Pulse

 end

 properties (Constant)

 maxSize = 1e4; % Maximum number of points used for displaying pulses

 end

 properties (Dependent)

 timeStep % Not sure whatthis does

 end

 methods

 function compile(self)

 if (isempty(self.gradientPulses))

 self.gradientVect = [0,1e9;0,0;0,0;0,0];

 else

 self.compileGrads();

 end

 if(isempty(self.rfPulses))

 self.RFVect = [0,1e9;0,0];

 else

 self.compileRF();

 end

 self.updateTime()

 end

 function val = get.timeStep(self)

 % timeStep: not quite sure whatthis does

 val = 1;

 for i = 1:length(self.eventTimes)-1

 if(self.eventTimes(i+1)-self.eventTimes(i)<val)

 val = self.eventTimes(i+1)-self.eventTimes(i);

 end

 end

 end

 function b = B(self,x,y,z,t)

 % B: retuns the Bfield at some point defined by (x,y,z) at some time

 % t

 b = zeros(3,length(t));

 RFPulses = interp1(self.RFVect(1,:),self.RFVect(2,:),t,'nearest','extrap');

 for i = 1:length(t)

 if RFPulses(i) ~= 0

132

 b(:,i) = [real(self.rfPulses{RFPulses(i)}.B(x,y,z,t(i)));...

 imag(self.rfPulses{RFPulses(i)}.B(x,y,z,t(i)));0];

 end

 end

 % Old implementation

% for i = 1:numel(self.rfPulses)

% if(t>=self.rfPulses{i}.startTime && t<=self.rfPulses{i}.endTime)

% b = b + [real(self.rfPulses{i}.B(x,y,z,t));...

% imag(self.rfPulses{i}.B(x,y,z,t));zeros(1,length(t))];

% end

% end

 if(size(self.gradientVect,2) >1)

 b = b + self.BGrad(x,y,z,t);

 end

 end

 function b = BGrad(self,x,y,z,t)

 % B: retuns the Bfield of just the gradient fields at some time t

 % and some location x,y,z

 b = zeros(3,length(t));

 b(3,:) = interp1(self.gradientVect(1,:),self.gradientVect(2,:),t,...

 'nearest','extrap')*x + ...

 interp1(self.gradientVect(1,:),self.gradientVect(3,:),t,...

 'nearest','extrap')*y + ...

 interp1(self.gradientVect(1,:),self.gradientVect(4,:),t,...

 'nearest','extrap')*z;

% b = zeros(3,length(t));

% for i = 1:numel(self.gradientPulses)

% b = b + self.gradientPulses{i}.B(x,y,z,t);

% end

 end

 function addPulse(self,Pulse)

 % ADDPULSE: adds a pulse to the Pulse Sequence

 RFPulseList = {'HypWright.SincPulse','HypWright.BlockPulse',...

 'HypWright.BlockPulseSpatial','HypWright.SincPulseSpatial'};

 GradientPulseList = {'HypWright.GradientPulse',...

 'HypWright.LinearGradientPulse'};

 if(find(ismember(class(Pulse),RFPulseList)))

 self.rfPulses{length(self.rfPulses)+1} = Pulse;

 else if(find(ismember(class(Pulse),GradientPulseList)))

 self.gradientPulses{length(self.gradientPulses)+1} = Pulse;

 else error(['Pulse passed in not a recognized pulse type.'...

 'Consider updating the pulse lists in the PS object'])

 end

 end

 end

 function removePulse(self,n)

 % REMOVEPULSE: removes the nth pulse in the pulse sequence

 if(~(length(self.rfPulses) > n || n > 0 || isscalar(n)))

 disp('Error! Pulse index selected to delete not in the sequence')

 return

 end

 self.rfPulses(n) = [];

 end

133

 function addADC(self,startTime,bandwidth,nPoints)

 % ADDADC: adds a virtual ADC to record the MR data.

 % addADC(self,StartTime,Bandwidth,nPoints) (StartTiem), sampling rate (Bandwidth) and

number of

 % points (nPoints). The lenght of time the ADC is on is defined by

 % nPoints/Bandwidth

 endTime = startTime+nPoints*(1/bandwidth);

 self.ADC(end+1,:) = [startTime,endTime,bandwidth];

 end

 function removeADC(self,n)

 % REMOVEADC - removes an ADC

 % removeADC(n) - removes the nth (n) ADC from the pulse sequence

 self.ADC(n,:) = [];

 end

 % TODO this seems like an old method and should be removed

 function [value,isterminal,direction] = events(self,t)

 % EVENTS: uses the stored pollynomilas to tell the solver when RF

 % pulses turn on and off

 value = polyval(self.eventTimes,t);

 isterminal = 1;

 direction = 0;

 end

 % TODO: it is not very intuitive to remove pulses based on some arbitray

 % number assigned when they were created. need a beeter method to

 % identify pulses

 function clearRFPulses(self)

 %CLEARPULSES: Clear all pulses from the pulse sequence

 self.rfPulses = [];

 self.updateTime();

 end

 % TODO: rework the ADC display feature to have ADC be accounted for in

 % the sampling time

 function display(self,varargin)

 % DISPLAY - displays all the RF,aand gradient pulses as well as when

 % ADCS are on

 % display() - displays in a new figure with thedefault time range)

 % to 100 seconds

 % display([startTime,endTime]) displays in a new figure from the

 % start time to the end time

 % display([startTime,endTime], figure) same as above but plots in

 % the passed in figure

 self.compile();

 p = inputParser();

 p.addOptional('timeRange',[0,self.eventTimes(end)])

 p.addOptional('figure',[])

 p.parse(varargin{:})

 if(isempty(p.Results.figure))

 figure('units','normalized','outerposition',[0.25 0 0.5 1]);

 else

 figure(p.Results.figure);

 end

 for i = 1:numel(self.time)

 if self.time(i)> p.Results.timeRange(1) &&...

134

 self.time(i)< p.Results.timeRange(2)

 dispTime(i) = self.time(i);

 end

 if self.time(i)> p.Results.timeRange(2)

 break

 end

 end

 if dispTime(1) > self.time(1)

 dispTime = [self.time(1),dispTime];

 end

 if dispTime(1) > p.Results.timeRange(1)

 dispTime = [p.Results.timeRange(1),dispTime];

 end

 if dispTime(end) < p.Results.timeRange(2)

 dispTime = [dispTime,p.Results.timeRange(2)];

 end

 x=0;y=0;z=0;

 RFDisp = zeros(size(dispTime));

 GXDisp = zeros(size(dispTime));

 GYDisp = zeros(size(dispTime));

 GZDisp = zeros(size(dispTime));

 ADCDisp = zeros(size(dispTime));

 for i = 1:numel(dispTime)

 for j = 1:numel(self.rfPulses)

 RFDisp(i) = RFDisp(i)+self.rfPulses{j}.B(x,y,z,dispTime(i));

 end

 end

 for i = 1:numel(dispTime)

 for j = 1:numel(self.gradientPulses)

 if(dispTime(i) < self.gradientPulses{j}.endTime && ...

 dispTime(i) > self.gradientPulses{j}.startTime)

 tmpGVect = self.gradientPulses{j}.slope;

 GXDisp(i) = GXDisp(i) + tmpGVect(1);

 GYDisp(i) = GYDisp(i) + tmpGVect(2);

 GZDisp(i) = GZDisp(i) + tmpGVect(3);

 end

 end

 end

 for i = 1:numel(dispTime)

 for j = 1:length(self.ADC)

 if (dispTime(i) > self.ADC(j,1) &&...

 dispTime(i) < self.ADC(j,2))

 ADCDisp(i) = ADCDisp(i) + 1;

 end

 end

 end

 subplot(6,1,1),plot(dispTime,real(RFDisp),...

 'b',dispTime,imag(RFDisp),'r',dispTime,abs(RFDisp),'k')

 xlabel('Time (seconds)'),ylabel('RF Magnitude'),title('RF Pulses')

 legend('Real','Iamginary','Magnitude')

 subplot(6,1,2),plot(dispTime,GXDisp,'k')

 xlabel('Time (seconds)'),ylabel('Gradient Slope')

 title('X Gradient'),

135

 subplot(6,1,3),plot(dispTime,GYDisp,'k')

 xlabel('Time (seconds)'),ylabel('Gradient Slope')

 title('Y Gradient')

 subplot(6,1,4),plot(dispTime,GZDisp,'k')

 xlabel('Time (seconds)'),ylabel('Gradient Slope')

 title('Z Gradient')

 subplot(6,1,5), plot(dispTime,ADCDisp)

 xlabel('Time (seconds)'),ylabel('Number of ADCs on')

 title('ADC')

 axis([dispTime(1),dispTime(end),min(ADCDisp)-0.5,max(ADCDisp)+0.5])

 subplot(6,1,6), plot(self.eventTimes(:,1),self.eventTimes(:,2))

 xlabel('Time (seconds)'),ylabel('Using Analytic Solution')

 title('Solver Type')

 end

 function S = solver(self,eventTimes)

 % SOLVER - returns the time dependency in the pulse sequence

 S = false;

 for i = 1:numel(self.rfPulses)

 if (self.rfPulses{i}.startTime - eventTimes(1)) < 1e-8 &&...

 (self.rfPulses{i}.endTime - eventTimes(2)) > -1e-8

 S = S || self.rfPulses{i}.timeDependence;

 end

 end

 end

 end

 methods (Access = private)

 function compileGrads(self)

 %A sub function that Converts the Gradien Pulses into a single

 % 4 by n vector that has the valuse for each gradient direction and

 % the times those valuse change

 %Initialize the gradient vector with the first gradient pulse

 % Calculate the slew time

 slewTime = max(abs(0-self.gradientPulses{1}.slope(:)))/self.slewRate;

 % Fill the time vectors for the pulse

 tmpVect(1,1) = self.gradientPulses{1}.startTime;

 tmpVect(1,2) = self.gradientPulses{1}.startTime+slewTime;

 tmpVect(1,3) = self.gradientPulses{1}.endTime-slewTime;

 tmpVect(1,4) = self.gradientPulses{1}.endTime;

 % Fill the gradient slopes for the pulse

 tmpVect(2:4,1) = 0;

 tmpVect(2:4,2) = self.gradientPulses{1}.slope(:);

 tmpVect(2:4,3) = 0;

 tmpVect(2:4,4) = -self.gradientPulses{1}.slope(:);

 % Add the rest of the gradient to the pulse

 for i=2:numel(self.gradientPulses)

 % get the gradent slope valuse at the begining and end of the

 % pulse

 startSlope = [interp1(tmpVect(1,:),tmpVect(2,:),...

 self.gradientPulses{1}.startTime,'nearest','extrap');...

 interp1(tmpVect(1,:),tmpVect(3,:),...

 self.gradientPulses{1}.startTime,'nearest','extrap');...

 interp1(tmpVect(1,:),tmpVect(4,:),...

 self.gradientPulses{1}.startTime,'nearest','extrap')];

136

 endSlope = [interp1(tmpVect(1,:),tmpVect(2,:),...

 self.gradientPulses{1}.endTime,'nearest','extrap');...

 interp1(tmpVect(1,:),tmpVect(3,:),...

 self.gradientPulses{1}.endTime,'nearest','extrap');...

 interp1(tmpVect(1,:),tmpVect(4,:),...

 self.gradientPulses{1}.endTime,'nearest','extrap')];

 % Calculate the slew times

 slewTimeStart = max(abs(startSlope...

 -self.gradientPulses{1}.slope(:)))/self.slewRate;

 slewTimeEnd = max(abs(endSlope...

 -self.gradientPulses{1}.slope(:)))/self.slewRate;

 j = (i-1)*4+1; % counter for tmpVect

 % Fill the time vectors for the pulse

 tmpVect(1,j) = self.gradientPulses{i}.startTime;

 tmpVect(1,j+1) = self.gradientPulses{i}.startTime+slewTimeStart;

 tmpVect(1,j+2) = self.gradientPulses{i}.endTime-slewTimeEnd;

 tmpVect(1,j+3) = self.gradientPulses{i}.endTime;

 % Fill the gradient slopes for the pulse

 tmpVect(2:4,j) = 0;

 tmpVect(2:4,j+1) = self.gradientPulses{i}.slope(:);

 tmpVect(2:4,j+2) = 0;

 tmpVect(2:4,j+3) = -self.gradientPulses{i}.slope(:);

 [~,I]=sort(tmpVect(1,:)); % Sort Times

 tmpVect = tmpVect(:,I); % match slopes to Times

 % Combine duplicates

 tmpI = 1;

 sumI = 1;

 trashI = [];

 for k = 2:size(tmpVect,2)

 % grab all the slop changes at a particular time

 if (tmpVect(1,k) == tmpVect(1,tmpI))

 sumI = [sumI,k]; % cant think of a way to pre-allocate this

 % sum all identical slope changes then move to next time point

 else

 tmpVect(2:4,sumI(1)) = sum(tmpVect(2:4,sumI),2);

 trashI = [trashI,sumI(2:end)];

 tmpI = k;

 sumI = k;

 end

 end

 tmpVect(:,trashI) = [];

 end

 tmpBSlope = zeros(3,1);

 self.gradientVect = zeros(size(tmpVect));

 for i=1:size(tmpVect,2)

 self.gradientVect(1,i) = tmpVect(1,i);

 tmpBSlope = tmpBSlope+tmpVect(2:4,i);

 self.gradientVect(2:4,i) = tmpBSlope;

 end

 % Debug Plotting

% figure('Position',[700,200,1100,800])

% subplot(3,1,1),plot(self.gradientVect(1,:),self.gradientVect(2,:));

% title('Slope X'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)')

137

% subplot(3,1,2),plot(self.gradientVect(1,:),self.gradientVect(3,:));

% title('Slope Y'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)')

% subplot(3,1,3),plot(self.gradientVect(1,:),self.gradientVect(4,:));

% title('Slope Z'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)')

 end

 function compileRF(self)

 self.RFVect = [-1,1e3;0,0];

 for i = 1:numel(self.rfPulses)

 % Store which pulse is on

 % note a 2 pico second buffer is added to each pulse. this will

 % result in an error if a pulse starts at the exact time one

 % ends

 self.RFVect = [self.RFVect,[self.rfPulses{i}.startTime-1e-12;0]];

 self.RFVect = [self.RFVect,[self.rfPulses{i}.endTime+1e-12;0]];

 % Store 0 for when pulse is off

 self.RFVect = [self.RFVect,[self.rfPulses{i}.startTime;i]];

 self.RFVect = [self.RFVect,[self.rfPulses{i}.endTime;i]];

 end

 [~,I] = sort(self.RFVect(1,:));

 self.RFVect = self.RFVect(:,I);

 for i = 1:2:size(self.RFVect,2)

 if self.RFVect(2,i) ~= self.RFVect(2,i+1)

 error('RF Pulses %d and %d are overlapping with times %d, %d and %d,

%d\n',...

 self.RFVect(i,1),self.RFVect(i+1,1),...

 self.rfPulses{i}.startTime,self.rfPulses{i}.endTime,...

 self.rfPulses{i+1}.startTime,self.rfPulses{i+1}.endTime)

 end

 end

 end

 function updateTime(self)

 % UPDATETIME: iterates through the pulse sequence and stores the

 % times that pulses are turned on or off for use by the solver

 allPulses = [self.rfPulses,self.gradientPulses];

 pointsPerPulse = self.maxSize/length(allPulses);

 self. time = 0;

 self.eventTimes = [];

 for i = 1:length(allPulses)

 self.time = [self.time,linspace(allPulses{i}.startTime,...

 allPulses{i}.endTime,pointsPerPulse)];

 self.eventTimes(end+1) = allPulses{i}.startTime;

 self.eventTimes(end+1) = allPulses{i}.endTime;

 end

 % stores the on and off times for each pulse as a root to a

 % polynomial

 self.time = sort(self.time);

 self.eventTimes = unique(self.eventTimes);

 self.eventTimes = sort(self.eventTimes);

% self.eventTimes = [];

% for i = 1:size(self.RFVect,2)

% if(self.RFVect(2,i))

% self.eventTimes = [self.eventTimes,[self.RFVect(1,i);1]];

% else

138

% self.eventTimes = [self.eventTimes,[self.RFVect(1,i);0]];

% end

% end

% for i = 1:size(self.gradientVect,2)-1

% if(sum(self.gradientVect(2:4,i))~=sum(self.gradientVect(2:4,i+1)))

% self.eventTimes = [self.eventTimes,[self.gradientVect(1,i+1);1]];

% else

% self.eventTimes = [self.eventTimes,[self.gradientVect(1,i+1);0]];

% end

% end

% [~,I] = sort(self.eventTimes(1,:));

% self.eventTimes = self.eventTimes(:,I);

% I = find(diff(self.eventTimes(1,:))<=0);

% self.eventTimes(2,I+1) = max([self.eventTimes(2,I);self.eventTimes(2,I+1)]);

% self.eventTimes(:,I) = [];

 end

 end

end

139

RF Pulse Class

 The RF class represents an arbitrary radiofrequency pulse and should be mostly used as a parent

object, yet full abstraction seemed too extreme. All RF pulses must have a duration and a center time.

Memory is allocated for a carrier frequency to mix the RF pulse to near the Larmor frequency. However,

this is not required and can be set to zero. For this high level class, the magnetic field is stored as a

function of location and time.

 The display function has been overridden to show the pulse shape and the mixed waveform. The

textual information about each pulse should probably be in the children classes.

classdef RFPulse < handle

 %RFPULSE The base Class or Radio frequency Pulses

 % Properties

 % Bfun: function pointer defining the pulse

 % center: the center of the pulse

 % durration: the length of the pulse (truncates Bfun otherwise)

 % omega: carrier frequency of the pulse

 % Name: a (hopefully) unique name for the pulse

 % startTime: start time of the pulse (truncate Bfun before this point)

 % endTime: end time of the pulse (truncates Bfun after this point)

 % Methods

 % RFPulse(center, durration,omega, name) initializes center time (center),

 % pulse durration (durraton), carrier frequency (omega), and name

 % display(self) displays in a new figure

 % display(self,h) displays in a passed in figure h

 % B1(x,y,z,t) returns a 3D vector defining B1 for this pulse at

 % the passed in postion (x,y,z) and time (t)

 properties (SetAccess = protected)

 Bfun % function pointer defining the pulse

 center % the center of the pulse

 durration % the length of the pulse (truncates Bfun otherwise)

 omega % carrier frequency of the pulse

 name % a (hopefully) unique name for the pulse

 end

 properties (Dependent)

 startTime % start time of the pulse

 endTime % end time of the pulse

 end

 properties (Constant)

 timeDependence = true;

 end

 methods (Abstract = true, Access = protected)

 calB(self) % returns a pointer to the function defining the pulse

 end

140

 methods

 function setCenter(self,center),self.center = center; end

 function setDurration(self,durration), self.durration = durration; end

 function setOmega(self,omega), self.omega = omega; end

 function val = get.startTime(self),val=self.center-self.durration/2;end

 function val = get.endTime(self),val=self.center+self.durration/2;end

 function self = RFPulse(center,durration,omega,name)

 % CONSTRUCTOR - Base Constructo for all RFPulse subclasses

 % RFPulse(center, durration,omega, name) initializes center time,

 % durration, carrier frequency omega, and name

 self.center = center;

 self.durration = durration;

 self.omega = omega;

 self.name = name;

 end

 function display(self,varargin)

 % DISPLAY - Displays the RF pulse evelope, in both frequency and

 % time domaines

 % display(self) displays in a new figure

 % display(self,h) displays in a passed in figure h

 p = inputParser();

 p.addOptional('figure',[])

 p.parse(varargin{:})

 N = 2^10;

 t = linspace(-self.durration/2,self.durration/2,N);

 B1 = zeros(length(t),1);

 x = 0; y = 0; z = 0;

 for i = 1:length(t)

 B1(i) = self.Bfun(x,y,z,t(i));

 end

 FT = fftshift(fft(fftshift(B1)));

 freqAxis = linspace(1/(t(2)-t(1))/length(t),1/(t(2)-t(1)),...

 length(t)); % Calculate frequency axis

 if(isempty(p.Results.figure))

 figure;

 else

 figure(p.Results.figure);

 end

 subplot(2,1,1),plot(t,real(B1),'k',t,imag(B1),'r',t,abs(B1),'b')

 xlabel('Time (seconds)')

 ylabel('B1 (Tesla)')

 legend('X','Y','Magnitude')

 subplot(2,1,2),plot(freqAxis,real(FT),'k',freqAxis,imag(FT),'r',...

 freqAxis,abs(FT),'b')

 xlabel('Frequency (Hz)')

 ylabel('Magnitude (arb)')

 legend('real','Imaginary','Magnitude')

 end

 function B1 = B(self,x,y,z,t)

 % B1: gives the B1 of this pulse at a time and location

 % B1(x,y,z,t) returns a 3D vector defining B1 for this pulse at

 % the passed in postion (x,y,z) and time (t)

 B1 = zeros(1,length(t));

141

 pulseOnTimes = find(self.startTime < t & t < self.endTime);

 if ~isempty(pulseOnTimes)

 B1(pulseOnTimes) = self.Bfun(x,y,z,t(pulseOnTimes)-self.center)...

 .*exp(1i*self.omega*(t(pulseOnTimes)));

 end

 end

 end

end

142

Block Pulse Class

 A Block Pulse is a block-shaped waveform that is then mixed up to a particular carrier frequency.

The amplitude should be set to
𝜃

𝛾∗𝜏
. The duration of the block pulse will determine the width of the sinc

excitation profile and the carrier frequency omega will determine the center frequency of the sinc

profile. A child class that incorporates spatial variability has been written, but will not be documented in

this text.

classdef BlockPulse < HypWright.RFPulse

 %SINCPULS Sinc Enveloped RF Pulse

 % Properties

 % bandwidth: Bandwidth of the sinc pulse

 % amplitude: Amplitude of the Sinc

 % lobes: number of lobes in the sinc envelope default(5)

 % Methods

 % SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the

 % center time (center), the pulse bandwidth (bandwidth), the pulse

 % amplitude (amplitude) and the carrier frequencey (omega) Will set

 % the name to a random number and the number of lobes to 5

 % SinPulse(...,lobes) - same as above but accepts a posotive integer

 % as the number of lobes in this pulse

 % SinPulse(...,name) - same as above but the last argument will be

 % set as the pulses' name, to use the default value (5) for the

 % number of lobes just pass in [] as the 5th argument

 % setDurration(self,durration) - does nothing and warns the user note

 % that for a sinc pulse the durration is a function of the bandwidth

 properties

 end

 properties(SetAccess = private)

 amplitude % Amplitude of the Pulse

 end

 methods

 function self = BlockPulse(center,durration,omega,amplitude,varargin)

 % CONSTRUCTOR - Initializes the Block pulse

 % BlockPulse(center,bandwidth,amplitude,omega,varargin) - sets the

 % center time (center), the pulse durration (durration), the pulse

 % amplitude (amplitude) and the carrier frequencey (omega)

 % BlockPulse(...,name) - same as above but the last argument will be

 % set as the pulses' name

 p = inputParser();

 p.addOptional('name',sprintf('Pulse%d',int16(rand(1)*10000)),@isstr)

 p.parse(varargin{:})

 self = self@HypWright.RFPulse(center,durration,omega,p.Results.name);

 self.amplitude = amplitude;

 self.calB();

 end

143

 function setDurration(self,value)

 % SETDurration - sets the amplitude of the pulse

 self.durration = value;

 self.calB();

 end

 function setAmplitude(self,value)

 % SETAMPLITUDE - sets the amplitude of the pulse

 self.amplitude = value;

 self.calB();

 end

 end

 methods (Access = protected)

 function calB(self)

 % CALB - re-calculates the function that defines the envelope for

 % this sinc pulse

 self.Bfun = @(x,y,z,t)self.amplitude;

 end

 end

end

144

Sinc Pulse Class

 The sinc pulse class builds a n-lobed sinc pulse with a set excitation bandwidth, and an

amplitude set to
𝜃

𝛾
. The carrier frequency omega will determine the center of the excitation band and

the center time defines the center of the pulse. The pulse duration and therefore, the start and end

times will depend on the pulse bandwidth and on the number of lobes and are properties that can be

returned, but not set.

classdef SincPulse < HypWright.RFPulse

 %SINCPULS Sinc Enveloped RF Pulse

 % Properties

 % bandwidth: Bandwidth of the sinc pulse

 % amplitude: Amplitude of the Sinc

 % lobes: number of lobes in the sinc envelope default(5)

 % Methods

 % SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the

 % center time (center), the pulse bandwidth (bandwidth), the pulse

 % amplitude (amplitude) and the carrier frequencey (omega) Will set

 % the name to a random number and the number of lobes to 5

 % SinPulse(...,lobes) - same as above but accepts a posotive integer

 % as the number of lobes in this pulse

 % SinPulse(...,name) - same as above but the last argument will be

 % set as the pulses' name, to use the default value (5) for the

 % number of lobes just pass in [] as the 5th argument

 % setDurration(self,durration) - does nothing and warns the user note

 % that for a sinc pulse the durration is a function of the bandwidth

 properties

 end

 properties(SetAccess = private)

 bandwidth % Bandwidth of the sinc pulse

 amplitude % Amplitude of the Sinc

 lobes % number of lobes in the sinc envelope

 end

 methods

 function self = SincPulse(center,bandwidth,amplitude,omega,varargin)

 % CONSTRUCTOR - Initializes the Sinc pulse

 % SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the

 % center time (center), the pulse bandwidth (bandwidth), the pulse

 % amplitude (amplitude) and the carrier frequencey (omega) Will set

 % the name to a random number and the number of lobes to 5

 % SinPulse(...,lobes) - same as above but accepts a posotive integer

 % as the number of lobes in this pulse

 % SinPulse(...,name) - same as above but the last argument will be

 % set as the pulses' name, to use the default value (5) for the

 % number of lobes just pass in [] as the 5th argument

 function val = lobeTest(x)

145

 if isempty(x)

 val = 1;

 else

 val = (mod(x,1) == 0 && x > 0);

 end

 end

 p = inputParser();

 p.addOptional('lobes',5,@lobeTest)

 p.addOptional('name',sprintf('Pulse%d',int16(rand(1)*10000)),@isstr)

 p.parse(varargin{:})

 self = self@HypWright.RFPulse(center,0,omega,p.Results.name);

 self.amplitude = amplitude;

 self.bandwidth = bandwidth;

 if isempty(p.Results.lobes)

 self.lobes = 5;

 else

 self.lobes = p.Results.lobes;

 end

 self.durration = ((self.lobes))*2/self.bandwidth;

 self.calB();

 end

 function setDurration(self,durration)

 % SETDURRATION - overloaded for a nLobed sincPulse as it should not

 % be changeable. Durration is a function of bandwidth

 % setDurration(self,durration) - does nothing and warns the user

 disp(['the durration of this pulse is a function of bandwidth and'...

 ' should bealtered by changing thebandwidth']);

 end

 function setAmplitude(self,value)

 % SETAMPLITUDE - sets the amplitude of the pulse

 self.amplitude = value;

 self.calB();

 end

 function setBW(self,newBW)

 % SETBW - Sets the bandwidth of the pulse

 % SetBW(self, newBW) - sets thebandwidth to some ne wbandwidth

 % (newBW)

 self.functionBW = newBW;

 self.durration = ((self.lobes)-1)*2/self.bandwidth;

 self.calB();

 end

 end

 methods (Access = protected)

 function calB(self)

 % CALB - re-calculates the function that defines the envelope for

 % this sinc pulse

 self.Bfun = @(x,y,z,t)self.amplitude.*self.bandwidth.*...

 sinc(self.bandwidth.*t).*...

 interp1(-self.durration/2:self.durration/100:self.durration/2,...

 blackman(...

 length(-self.durration/2:self.durration/100:self.durration/2))...

 ,t);

 end

146

 end

end

147

Gradient Pulse Class

 A gradient pulse class is very similar to the RF pulse class, as it is mostly intended to be used as a

parent class to define an interface, but not so strictly as to be abstracted. A gradient pulse stores a

duration and center time from which the start and end times are calculated. Otherwise, it stores an

arbitrary function to define the magnetic field vector as a function of position and time. The main

distinction is that gradient pulses do not have the logic to use a carrier frequency like RF pulses.

 Gradient pulses have overridden the display function to show the gradient as a vector field.

classdef GradientPulse < handle

 %GRADIENTPULSE Class to represent a gradient field

 % Detailed explanation goes here

 properties

 center

 durration

 name

 end

 properties (Abstract, Access = protected)

 bFun

 end

 properties (Dependent)

 startTime

 endTime

 end

 methods

 function self = GradientPulse(center, durration, name)

 % CONSTRUCTOR - initializes a gradient pulse objects

 % GradientPulse(startTime, endTime, slope, magnitude) initializes a

 % gradient pulse with a start time, end time, magnitude, and slope,

 % will give the pulse a randome name

 % GradientPulse(...,name) - same as above but will give the puse a

 % specified name

 self.center = center;

 self.durration = durration;

 self.name = name;

 end

 function val = get.startTime(self),val=self.center-self.durration/2;end

 function val = get.endTime(self),val=self.center+self.durration/2;end

 function bOut = B(self,x,y,z,t)

 % B: returns the gradient Bfied at some point and time

 % bOut = B(x,y,z,t) returns the B-filed(bOut) ate somepoint (x,y,z)

 % some time t

 if length(t) == 1

 if ((t > self.startTime)&&(t < self.endTime))

 bOut = self.bFun(x,y,z,t);

148

 else

 bOut = zeros(3,1);

 end

 else

 bOut = zeros(3,length(t));

 pulseOnTimes = find(self.startTime -t < 1e-9 & t < self.endTime);

 if ~isempty(pulseOnTimes)

 bOut(:,pulseOnTimes) = self.bFun(x,y,z,t(pulseOnTimes));

 end

 end

 end

 function display(self,varargin)

 p = inputParser();

 p.addOptional('axis',[])

 p.parse(varargin{:})

 if isempty(p.Results.axis)

 figure

 curAxis = gca;

 else

 curAxis = p.Results.axis;

 end

 span = -1:0.3:1;

 [X,Y,Z] = meshgrid(span,span,span);

 U = zeros(size(X));

 V = zeros(size(Y));

 W = zeros(size(Z));

 centerTime = (self.startTime+self.endTime)/2;

 for i = 1:numel(span)

 for j = 1:numel(span)

 for k = 1:numel(span)

 tmpVect = self.B(i,j,k,centerTime);

 U(i,j,k) = tmpVect(1);

 V(i,j,k) = tmpVect(2);

 W(i,j,k) = tmpVect(3);

 end

 end

 end

 quiver3(curAxis,X,Y,Z,U,V,W)

 end

 end

 methods (Access = private)

 function calB(self)

 % CALB: recalculates the function defining the gradiaent pulse

 self.bFun = @(x,y,z,t)[0,0,0;0,0,0;self.slope]*[x;y;z];

 end

 end

end

149

Linear Gradient Pulse

 The linear gradient pulse class represents a gradient that has a linear spatial dependence. The

slope of the gradient is stored in a vector 𝑠𝑙𝑜𝑝𝑒 = [𝑠𝑙𝑜𝑝𝑒𝑥 , 𝑠𝑙𝑜𝑝𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒𝑧].

classdef LinearGradientPulse < HypWright.GradientPulse

 %GRADIENTPULSE Class to represent a gradient field

 % Detailed explanation goes here

 properties (SetAccess = private)

 slope

 end

 properties (Access = protected)

 bFun

 end

 properties (Constant)

 timeDependence = false;

 end

 methods

 function self = LinearGradientPulse(center, durration, slope,varargin)

 % CONSTRUCTOR - initializes a gradient pulse objects

 % GradientPulse(startTime, endTime, slope, magnitude) initializes a

 % gradient pulse with a start time, end time, magnitude, and slope,

 % will give the pulse a randome name

 % GradientPulse(...,name) - same as above but will give the puse a

 % specified name

 p = inputParser();

 p.addOptional('name',sprintf('GradPulse%d',int16(rand(1)*10000)),...

 @isstr)

 p.parse(varargin{:})

 self = self@HypWright.GradientPulse(center,durration,p.Results.name);

 self.slope = slope;

 self.calB();

 end

 function setSlope(self,slope)

 self.slope = slope;

 self.calB();

 end

 end

 methods (Access = private)

 function calB(self)

 % CALB: recalculates the function defining the gradiaent pulse

 self.bFun = @(x,y,z,t)[0,0,0;0,0,0;self.slope]*[x;y;z];

 end

 end

end

150

Section B.3: Spin Groups

SpinGroups represent a set of spins that follows one of the models outlined in chapter 3. They

store all of the parameters and logic to define their interactions with a pulse sequence following the

interface needed to be calculated and evaluated by a voxel object.

Spin Group Class

 The SpinGroup class in an abstract class that defines the interface for spin groups. It is abstract

and therefore can never be instantiated. All spin groups should inherit from this class. Its current form

requires that a spin group store some function that returns the derivative of the magnetization as a

function of position, time, initial magnetization and 𝐵0. Also the frequency of the calculation is required

to ensure proper frame shifting to the rotating frame is performed. Additional functions for the

analytical solution should probably be added as they are expected in the voxel class. Also the dM

function interface needs to be updated. Fortunately, due to Matlab’s inheritance rules, these changes

are merely housekeeping measures and will not affect the performance of the other classes.

classdef (Abstract) SpinGroup < handle

 %SPINGROUP The parent class for all spin groups

 % defines the interface of a spin group

 properties (Abstract)

 end

 methods (Abstract)

 dm = dM(self,position,M,time,PS,B0)

 % dM(self,position,M,time) - calulates the dm of the spin at some

 % position and time in the calculation frame defined by the spin.

 val = calculationFrame(self,B0)

 % calculationFrame the vector defining the angular momentum of the

 % calculation frame dm is defined in. remember to create a get method

 % for this variable in in inherited classes

 end

end

151

Isolated Spin Group Class

 The isolated spin group class represents a single magnetization vector with an initial position M,

equilibrium position 𝑀0, 𝑇1 and 𝑇2 values, gyromagnetic ratio 𝛾, chemical shift 𝑝𝑝𝑚 and a density. The

density is simply a scaling factor that will be applied to the magnetization. It allows the signal

contribution of each spin group to be controlled. The analytical solution builds the A matrix used in

equation (3.7) but for a single spin. The solution is then defined by equation (3.9). Note that equations

(3.7) and (3.9) requires 𝑀0 to be zero and as of yet no analytical solution for a spin with a nonzero

magnetization has been written into this simulation code.

classdef IsolatedSpinGrp < HypWright.SpinGroup

 %ISOLATEDSPINGRP a class that represents a set of isolated spins

 % Detailed explanation goes here

 % Properties

 % M - magnetization vector

 % M0 - Equilibrium magnetization

 % T1 - T1 decay constant

 % T2 - T2 Decay constant

 % gamma - gyromagnetic ratio

 % ppm - ppm shift of the spin

 % density - relative number of spins in this group

 % Methods

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma)

 % some chemical shift (ppm) and, spin density (density)

 % calculationFrame() - returns the frequencty of the rotating

 % refrence frame that dm is calculated in

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 properties

 M % magnetization vector

 M0 % Equilibrium magnetization

 T1 % T1 decay constant

 T2 % T2 Decay constant

 gamma % gyromagnetic ratio

 ppm % ppm shift of the spin

 density % relative number of spins in this group

 end

 methods

 function self = IsolatedSpinGrp(M,M0,T1,T2,gamma,ppm,density)

 % Constructor - initializes the spin group

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,ppm,density) - initializes the spin

152

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma),

 % some chemical shift (ppm) and, spin density (density)

 self.M = M;

 self.M0 = M0;

 self.T1 = T1;

 self.T2 = T2;

 self.gamma = gamma;

 self.ppm = ppm;

 self.density = density;

 end

 function val = calculationFrame(self,B0)

 % CALCULATIONFRAME - returns the frequencty of the rotating

 % refrence frame that dm is calculated in

 tmp = [0;0;1].*B0*self.gamma*(1+self.ppm);

 val = tmp(3);

 end

 function dm = dM(self,x,y,z,t,M,PS,B0)

 % DM: returns the delta m at some time and location and given M

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 dm = self.getA(x,y,z,t,PS,B0)*M+1/self.T1*self.M0;

 end

 function A = getA(self,x,y,z,t,PS,B0,varargin)

 % GETA - gets the matrix that defines dm

 if ~isempty(varargin) == 1

 B = varargin{1};

 else

 B = repmat(B0,1,length(t))+PS.B(x,y,z,t);

 end

 theta = -self.calculationFrame(B0)*t;

 Beff = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;0,0,1]*B-...

 [0;0;1].*B0;

 A = self.gamma*...

 [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0] + ...

 [-1/self.T2,0,0;0,-1/self.T2,0;0,0,-1/self.T1];

 end

 function ret = useAnalytical(self)

 %USEANALYTICAL: determins if the Analytical Soultion shouldbe used

 %for the given spin group under the given conditions

 ret = all(self.M0 == 0);

 end

 function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin)

 % ANALYTICAL: retun a function handle to the analytical soluton

 A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:});

 vals = cell2mat(arrayfun(@(t2)expm(A*(t2-t0))*M,...

 t,'UniformOutput',false));

 end

 end

end

153

Two-Site Exchange Group Class

 A two-site exchange group class is similar to an isolated spin group. However, it contains terms

for chemical exchange between two chemical pools, kab and kba. The magnetization vectors will be 6x1

with each three rows representing a spin group. Density and gamma are identical for each spin. The

logic for defining default values can probably be compressed.

classdef TwoSiteExchangeGroup < HypWright.SpinGroup

 % TwoSiteExchangeGroup a class that represents a set of isolated spins

 % Detailed explanation goes here

 % Properties

 % M - magnetization vector

 % M0 - Equilibrium magnetization

 % T1 - T1 decay constant

 % T2 - T2 Decay constant

 % gamma - gyromagnetic ratio

 % density - relative number of spins in this group

 % Methods

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and

 % spin density (density)

 % calculationFrame() - returns the frequencty of the rotating

 % refrence frame that dm is calculated in

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 properties

 M % magnetization vector

 M0 % Equilibrium magnetization

 T1a % T1 decay constant for spin a

 T2a % T2 Decay constant for spin a

 ppma % chemical shift for spin a

 T1b % T1 decay constant for spin b

 T2b % T2 Decay constant for spin b

 ppmb % chemical shift for spin b

 gamma % gyromagnetic ratio

 density % relative number of spins in this group

 kab % a to be exchange rate

 kba % b to a exchange rate

 end

 methods

 function self = TwoSiteExchangeGroup(varargin)

 % Constructor - initializes the spin group

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and

 % spin density (density)

154

 p = inputParser();

 p.addOptional('M',[0;0;1;0;0;1],@isnumeric)

 p.addOptional('M0',[0;0;0;0;0;0],@isnumeric)

 p.addOptional('T1a',56,@isnumeric)

 p.addOptional('T2a',0.02,@isnumeric)

 p.addOptional('ppma',171*1e-6,@isnumeric)

 p.addOptional('T1b',30,@isnumeric)

 p.addOptional('T2b',0.02,@isnumeric)

 p.addOptional('ppmb',185*1e-6,@isnumeric)

 p.addOptional('gamma',67.262e6,@isnumeric)

 p.addOptional('density',1,@isnumeric)

 p.addOptional('kab',0.3,@isnumeric)

 p.addOptional('kba',0.0,@isnumeric)

 p.parse(varargin{:})

 if ~isempty(p.Results.M), self.M = p.Results.M;

 else self.M = [0;0;1;0;0;1];end

 if ~isempty(p.Results.M0),self.M0 = p.Results.M0;

 else self.M0 = [0;0;0;0;0;0];end

 if ~isempty(p.Results.T1a),self.T1a = p.Results.T1a;

 else self.T1a = 56;end

 if ~isempty(p.Results.T2a),self.T2a = p.Results.T2a;

 else self.T2a = 0.02;end

 if ~isempty(p.Results.ppma),self.ppma = p.Results.ppma;

 else self.ppma = 171*1e-6;end

 if ~isempty(p.Results.T1b),self.T1b = p.Results.T1b;

 else self.T1b = 30;end

 if ~isempty(p.Results.T2b),self.T2b = p.Results.T2b;

 else self.T2b = 0.02;end

 if ~isempty(p.Results.ppmb),self.ppmb = p.Results.ppmb;

 else self.ppmb = 185*1e-6;end

 if ~isempty(p.Results.gamma),self.gamma = p.Results.gamma;

 else self.gamma = 67.262e6;end

 if ~isempty(p.Results.density),self.density = p.Results.density;

 else self.density = 1;end

 if ~isempty(p.Results.kab),self.kab = p.Results.kab;

 else self.kab = 0.3;end

 if ~isempty(p.Results.kba),self.kba = p.Results.kba;

 else self.kba = 0.0;end

 end

 function val = calculationFrame(self,B0)

 % CALCULATIONFRAME - returns the frequencty of the rotating

 % refrence frame that dm is calculated in

 tmp = [0;0;1].*B0*self.gamma*...

 (1+mean([self.ppma,self.ppmb]));

 val = tmp(3);

 end

 function dm = dM(self,x,y,z,t,M,PS,B0)

 % DM: returns the delta m at some time and location and given M

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 Recovery(1:3) = 1/self.T1a*self.M0(1:3);

 Recovery(4:6) = 1/self.T1b*self.M0(4:6);

 dm = self.getA(x,y,z,t,PS,B0)*M+Recovery.';

155

 end

 function A = getA(self,x,y,z,t,PS,B0,varargin)

 if ~isempty(varargin) == 1

 B = varargin{1};

 else

 B = repmat(B0,1,length(t))+PS.B(x,y,z,t);

 end

 theta = -self.calculationFrame(B0)*t;

 Beff(1:3) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;...

 0,0,1]*B-[0;0;1].*B0*...

 (1+mean([self.ppma,self.ppmb])-self.ppma);

 Beff(4:6) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;...

 0,0,1]*B-[0;0;1].*B0*...

 (1+mean([self.ppma,self.ppmb])-self.ppmb);

 A = zeros(6);

 A(1:3,1:3) = self.gamma*...

 [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0]+...

 [-1/self.T2a,0,0;0,-1/self.T2a,0;0,0,-1/self.T1a];

 A(4:6,4:6) = self.gamma*...

 [0,-Beff(6),Beff(5);Beff(6),0,-Beff(4);-Beff(5),Beff(4),0]+...

 [-1/self.T2b,0,0;0,-1/self.T2b,0;0,0,-1/self.T1b];

 A = A+[-self.kab,0,0,self.kba,0,0;...

 0,-self.kab,0,0,self.kba,0;...

 0,0,-self.kab,0,0,self.kba;...

 self.kab,0,0,-self.kba,0,0;...

 0,self.kab,0,0,-self.kba,0;...

 0,0,self.kab,0,0,-self.kba];

 end

 function ret = useAnalytical(self)

 %USEANALYTICAL: determins if the Analytical Soultion shouldbe used

 %for the given spin group under the given conditions

 ret = all(self.M0 == 0);

 end

 function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin)

 % ANALYTICAL: the anylitical solution for this spin over some

 % time range (tSpan) and some initial condition (M)

 A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:});

 vals = cell2mat(arrayfun(@(t2)expm(A*(t2-t0))*M,t,...

 'UniformOutput',false));

 end

 end

end

156

Two-Site Perfusion Exchange Group Class

 A Child Class of Two site exchange group but with logic to account for perfusion. This class will

represent the extravascular space and should be paired with a Bankson spin group class to represent the

vascular space. The only additional parameters are the kve (which should be normalized for ve) and the

VIF with a variable b, which should return the VIF magnetization as a function of time.

classdef TwoSitePerfusionExchangeGroup < HypWright.TwoSiteExchangeGroup

 % TwoSiteExchangeGroup a class that represents a set of isolated spins

 % Detailed explanation goes here

 % Properties

 % M - magnetization vector

 % M0 - Equilibrium magnetization

 % T1 - T1 decay constant

 % T2 - T2 Decay constant

 % gamma - gyromagnetic ratio

 % density - relative number of spins in this group

 % Methods

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and

 % spin density (density)

 % calculationFrame() - returns the frequencty of the rotating

 % refrence frame that dm is calculated in

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 properties

 b % input function

 kve % extravisation fraction

 end

 methods

 function self = TwoSitePerfusionExchangeGroup(varargin)

 % Constructor - initializes the spin group

 % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and

 % spin density (density)

 p = inputParser();

 p.addOptional('M',[0;0;1;0;0;1],@isnumeric)

 p.addOptional('M0',[0;0;0;0;0;0],@isnumeric)

 p.addOptional('T1a',56,@isnumeric)

 p.addOptional('T2a',0.02,@isnumeric)

 p.addOptional('ppma',171*1e-6,@isnumeric)

 p.addOptional('T1b',30,@isnumeric)

 p.addOptional('T2b',0.02,@isnumeric)

 p.addOptional('ppmb',185*1e-6,@isnumeric)

 p.addOptional('gamma',67.262e6,@isnumeric)

157

 p.addOptional('density',1,@isnumeric)

 p.addOptional('kab',0.3,@isnumeric)

 p.addOptional('kba',0.0,@isnumeric)

 p.addOptional('kve',1.0,@isnumeric)

 p.addOptional('b', @(t)zeros(6,1))

 p.parse(varargin{:})

 if ~isempty(p.Results.M), self.M = p.Results.M;

 else self.M = [0;0;1;0;0;1];end

 if ~isempty(p.Results.M0),self.M0 = p.Results.M0;

 else self.M0 = [0;0;0;0;0;0];end

 if ~isempty(p.Results.T1a),self.T1a = p.Results.T1a;

 else self.T1a = 56;end

 if ~isempty(p.Results.T2a),self.T2a = p.Results.T2a;

 else self.T2a = 0.02;end

 if ~isempty(p.Results.ppma),self.ppma = p.Results.ppma;

 else self.ppma = 171*1e-6;end

 if ~isempty(p.Results.T1b),self.T1b = p.Results.T1b;

 else self.T1b = 30;end

 if ~isempty(p.Results.T2b),self.T2b = p.Results.T2b;

 else self.T2b = 0.02;end

 if ~isempty(p.Results.ppmb),self.ppmb = p.Results.ppmb;

 else self.ppmb = 185*1e-6;end

 if ~isempty(p.Results.gamma),self.gamma = p.Results.gamma;

 else self.gamma = 67.262e6;end

 if ~isempty(p.Results.density),self.density = p.Results.density;

 else self.density = 1;end

 if ~isempty(p.Results.kab),self.kab = p.Results.kab;

 else self.kab = 0.3;end

 if ~isempty(p.Results.kba),self.kba = p.Results.kba;

 else self.kba = 0.0;end

 if ~isempty(p.Results.kve),self.kve = p.Results.kve;

 else self.kve = 1.0;end

 if ~isempty(p.Results.b),self.b = p.Results.b;

 else self.b = @(t)zeros(6,1);end

 end

 function A = getA(self,x,y,z,t,PS,B0,varargin)

 if ~isempty(varargin) == 1

 B = varargin{1};

 else

 B = repmat(B0,1,length(t))+PS.B(x,y,z,t);

 end

 theta = -self.calculationFrame(B0)*t;

 Beff(1:3) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;...

 0,0,1]*B-[0;0;1].*B0*...

 (1+mean([self.ppma,self.ppmb])-self.ppma);

 Beff(4:6) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;...

 0,0,1]*B-[0;0;1].*B0*...

 (1+mean([self.ppma,self.ppmb])-self.ppmb);

 A = zeros(6);

 A(1:3,1:3) = self.gamma*...

 [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0]+...

 [-1/self.T2a,0,0;0,-1/self.T2a,0;0,0,-1/self.T1a];

 A(4:6,4:6) = self.gamma*...

158

 [0,-Beff(6),Beff(5);Beff(6),0,-Beff(4);-Beff(5),Beff(4),0]+...

 [-1/self.T2b,0,0;0,-1/self.T2b,0;0,0,-1/self.T1b];

 A = A+[-self.kab-self.kve,0,0,self.kba,0,0;...

 0,-self.kab-self.kve,0,0,self.kba,0;...

 0,0,-self.kab-self.kve,0,0,self.kba;...

 self.kab,0,0,-self.kba,0,0;...

 0,self.kab,0,0,-self.kba,0;...

 0,0,self.kab,0,0,-self.kba];

 end

 function dm = dM(self,x,y,z,t,M,PS,B0)

 % DM: returns the delta m at some time and location and given M

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 Recovery(1:3) = 1/self.T1a*self.M0(1:3);

 Recovery(4:6) = 1/self.T1b*self.M0(4:6);

 dm = self.getA(x,y,z,t,PS,B0)*M+Recovery.'+self.kve*self.b(t);

 end

 function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin)

 % ANALYTICAL: retun a function handle to the analytical soluton

 warning('off','MATLAB:integral:NonFiniteValue')

 warning('off','MATLAB:trapz:NonFiniteValue')

 A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:});

 if length(t) == 1

 ForceFunIntegral = integral(@(t2)expm(-A*(t2-t0))*self.kve*self.b(t2),...

 t0,t,'ArrayValued',true);

 ForceFunIntegral(isnan(ForceFunIntegral)) = 0;

 vals = expm(A*(t-t0))*(M+ForceFunIntegral);

 else

 vals = zeros(length(M),length(t));

 tmpT = t0-0.001:0.001:t(end)+0.001;

 tmpVals = cell2mat(arrayfun(@(t2)expm(-A*(t2-t0))*...

 self.kve*self.b(t2),tmpT,'UniformOutput',false));

 tmpIntelgral = cumtrapz(tmpT,tmpVals,2);

 ForceFunIntegral = interp1(tmpT,tmpIntelgral.',t).';

 ForceFunIntegral(isnan(ForceFunIntegral)) = 0;

 for i = 1:length(t)

 vals(:,i) = expm(A*(t(i)-t0))*(M+ForceFunIntegral(:,i));

 end

 end

 if (any(isnan(vals(:))) || any(isinf(vals(:))))

 fprintf('Warning still have a NaN or INF in the solution')

 tmp = self.analytical(self,x,y,z,t0,M,t(1:floor(end/2)),PS,B0,varargin);

 tmp2 =

self.analytical(self,x,y,z,t0,tmp(end),t(floor(end/2))+1:end,PS,B0,varargin);

 vals = [tmp,tmp2];

% odefun = @(M,t)self.dM(x,y,z,M,t,PS,B0);

% tmpSol = ode45(odefun,[t0,t(end)],M);

% vals = deval(tmpSol,t);

 end

 warning('on','MATLAB:integral:NonFiniteValue')

 warning('on','MATLAB:trapz:NonFiniteValue')

 end

 end

159

end

160

Bankson Spin Group Class

 A Bankson spin group represents the vascular pool of a voxel. It will switch between defining 𝑀𝑧

as the VIF or allowing it to follow the Bloch equations when an RF pulse is on. Instead of taking an

arbitrary VIF, it assumes a gamma variate and therefore defines the shape terns 𝛼 and 𝛽, 𝑡0 and a

scaling factor as properties. Note that the switching for 𝑀𝑧 is dependent on the analytical solution with

the numerical solution ignoring the VIF. Therefore, if 𝑀0 ≠ 0 and the analytical solution is never used,

then the VIF will never be used.

classdef BanksonSpinGrp < HypWright.SpinGroup

 properties

 M % magnetization vector

 M0 % Equilibrium magnetization

 T1 % T1 decay constant

 T2 % T2 Decay constant

 gamma % gyromagnetic ratio

 ppm % ppm shift of the spin

 density % relative number of spins in this group

 shapeTerms % terms that define the gamma pdf

 t0 %injection delay

 end

 methods

 function self = BanksonSpinGrp(M,M0,T1,T2,gamma,ppm,density,shapeTerms,t0)

 % Constructor - initializes the spin group

 % v(M,M0,T1,T2,gamma,ppm,density) - initializes the spin

 % group with an initial magnetization (M), equilibrium magentization

 % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma),

 % some chemical shift (ppm), spin density (density), and shape terms

 % for the gamma pdf (shapeTerms)

 self.M = M;

 self.M0 = M0;

 self.T1 = T1;

 self.T2 = T2;

 self.gamma = gamma;

 self.ppm = ppm;

 self.density = density;

 self.shapeTerms = shapeTerms;

 self.t0 = t0;

 % War user if the use analytical will always be true, if so

 % this spin group will not account for perfusion

 if(~useAnalytical(self))

 warning('The Analytical Solution of a Bankson Spin group will no be used. Any

Perfusion in that spin group will be ignored\n')

161

 end

 end

 function val = calculationFrame(self,B0)

 % CALCULATIONFRAME - returns the frequencty of the rotating

 % refrence frame that dm is calculated in;

 tmp = [0;0;1].*B0*self.gamma*(1+self.ppm);

 val = tmp(3);

 end

 function dm = dM(self,x,y,z,t,M,PS,B0)

 % DM: returns the delta m at some time and location and given M

 % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time

 % (t), and some initial magnetization M ([Mx;My;Mz])

 dm = self.getA(x,y,z,t,PS,B0)*M+1/self.T1*self.M0;

 end

 function A = getA(self,x,y,z,t,PS,B0,varargin)

 % GETA - gets the matrix that defines dm

 if ~isempty(varargin) == 1

 B = varargin{1};

 else

 B = repmat(B0,1,length(t))+PS.B(x,y,z,t);

 end

 theta = -self.calculationFrame(B0)*t;

 Beff = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;0,0,1]*B-...

 [0;0;1].*B0;

 A = self.gamma*...

 [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0] + ...

 [-1/self.T2,0,0;0,-1/self.T2,0;0,0,-1/self.T1];

 end

 function ret = useAnalytical(self)

 %USEANALYTICAL: determins if the Analytical Soultion shouldbe used

 %for the given spin group under the given conditions

 ret = all(self.M0 == 0);

 end

 function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin)

 % ANALYTICAL: retun a function handle to the analytical soluton

 A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:});

 vals = cell2mat(arrayfun(@(t2)[subsref(expm(A*(t2-t0))*M,...

 struct('type','()','subs',{{1:2,1}}));...

 self.shapeTerms(3)*gampdf(...

 t2-self.t0,self.shapeTerms(1),self.shapeTerms(2))],t,...

 'UniformOutput',false));

 end

 end

end

162

Section B.4 Signal Curve Modeling and Fitting.

 The modeling architecture is slightly more advanced than the spin group logic and many of the

features in the modeling classes should be translated to the spin group objects to improve their

flexibility. Additionally, the new version of the modeling has not been written for averaged excitation

loss which needs to be done. All models are abstract, which means that they cannot be instantiated.

Conceptually they represent a model or set of equations that applies to some data. Therefore, each

model must have passed in to it all of the parameters that it needs in order to evaluate any results.

Finally, there is practically no input validation for parameters, as it was seen as too burdensome for the

least squares fitting procedure.

MultiPool Class

 The multi-pool model represents any system of N exchanging spins. The exchange process is

defined by the ExchangeTerms matrix, which must be NxN, and by the exchange term 𝑘𝑟𝑐 representing

the exchange from chemical species number in the row to the chemical species number in the column.

For pyruvate and lactate, with 𝑘𝑝𝑙 = 0.1 and 𝑘𝑙𝑝 = 0.001; 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑇𝑒𝑟𝑚𝑠 = [
0 0.1

0.001 0
]. The 𝑇1

values are also passed in for each chemical species in an Nx1 vector. A list of excitation times is also

passed in as a vector. Finally, excitation angles (in degrees) for each chemical species at each excitation

angle is passed in as an NxnTR matrix. For constant excitation angles only an Nx1 vector is needed and

all TRs will be filled in with the same excitation angle. With these parameters defined, an arbitrary

system of exchanging spins can be built and will interact with the series of excitation pulses. Parameters

are passed in as a structure with name-value pairs for each parameter. A similar structure is used for

fitting. Fitting options can be set, as well as the fitting limits for a least squares fitting.

classdef MultiPool

 %TWOPOOL A simple chemical exchange model assuming no inpu functions

 % parameters Values

163

 % * ExchangeTerms - A Matrix defining chemical Exchange. Defalt: 0

 % * T1s - A row vector of T1 decay terms. Default: 100

 % * FaList - A matrix of excitation angles. Default: 0

 % * TRList - A matrix of excitation times. Default: 0

 % * fitOptions - A matlab fit option structure. Default: optimset(''lsqcurvefit'')

 % There is NO imput validation for the parameters passed in, for more

 % detail on the assumed data structur of these parameters use the

 % defaults function

 properties

 end

 methods (Static)

 function defaults()

 % DEFAULTS explains the default values for each parameter

 names = {'ExchangeTerms','T1s','FaList','TRList','fitOptions'};

 discriptions = {'A NxN Matrix of Exchange Terms, where N is the number of chemical

pools. The From pools should be along the rRows With the To pool along the Columns. Diagnal

elemets will be set to zero'...

 ' A Row vector of T1 decay times for each chemical pool.'...

 ' A NxM of matrix of flip angles in radians, where N is the number of

excitations and M is the number of chemical Pools'...

 ' A NxM of Excitation Times in seconds, where N is the number of excitations and

M is the number of chemical Pools'...

 ' Matlab FitOptions object'};

 defaultsVals = {'0','100','0','0','optimset(''lsqcurvefit'')'};

 for i = 1:numel(names)

 fprintf('''%s'': %s\n Default Vaule: %s\n',...

 names{i},discriptions{i},defaultsVals{i});

 end

 end

 function paramsOut = parseParams(paramsIn)

 % parseParams: a function to fill default param values if they are

 % not defined

 default = struct('ExchangeTerms',0,'T1s',100,'FaList',0,...

 'TRList',0,'fitOptions', optimset('lsqcurvefit'));

 tmpNames = fieldnames(default);

 paramsOut = paramsIn;

 for i = 1:numel(tmpNames)

 if ~isfield(paramsOut,tmpNames{i})

 paramsOut.(tmpNames{i}) = default.(tmpNames{i});

 end

 end

 % Fill all flip angles with a value if only one flip angle is passed in

 if size(paramsOut.FaList,2)==1

 paramsOut.FaList = repmat(paramsOut.FaList(:,1),...

 1,length(paramsOut.TRList));

 end

% % Assuming input validation will put too much computational burdon on the fitting

% % Hopeing user will supply valid input!

% % Validte input

% if (size(params.ExchangeTerms,1)~=size(params.ExchangeTerms,1))

% error('Exchange matrix not square.')

164

% end

 N = size(paramsIn.ExchangeTerms,1);

 K = triu(paramsIn.ExchangeTerms)+tril(paramsIn.ExchangeTerms);

 T1 = paramsIn.T1s;

 A = zeros(N);

 for i = 1:N

 for j = 1:N

 if(i == j)

 A(i,i) = -sum(K(i,:))-1/T1(i);

 else

 A(i,j) = K(j,i);

 end

 end

 end

 paramsOut.A = A;

 end

 function [TRList,Mxy,Mz] = compile(M0,params)

 % EVALUATE: runs the model based on some input parameters

 params = HypWright.Models.MultiPool.parseParams(params);

 A = params.A;

 FaList = params.FaList;

 TRList = params.TRList;

 [TRList, Mxy, Mz] = HypWright.Models.MultiPool.evaluate(...

 TRList,FaList,M0,A);

 end

 function [x,resultParams,allParams,resnorm,residual,exitflag,output,lambda,jacobian]...

 = fitData(params,guess,xdata,ydata,varargin)

 p = inputParser();

 p.addOptional('lb',[])

 p.addOptional('ub',[])

 p.parse(varargin{:})

 xNames = fieldnames(guess);

 j = 1;

 xIndex = cell(size(xNames));

 for i = 1:numel(xNames)

 iFits = ~isnan(guess.(xNames{i}));

 xIndex{i} = find(iFits==1);

 for k = 1:numel(xIndex{i})

 x0(j) = guess.(xNames{i})(xIndex{i}(k));

 j = j+1;

 end

 end

 params = HypWright.Models.MultiPool.parseParams(params);

 Y0 = ydata(:,1)./sin(params.FaList(:,1));

 fun = @(x,xdata)HypWright.Models.MultiPool.fitFunction(...

 params,x,xNames,xIndex,Y0);

 opts = params.fitOptions;

 [x,resnorm,residual,exitflag,output,lambda,jacobian] = ...

 lsqcurvefit(fun,x0,xdata,ydata,...

 [p.Results.lb],[p.Results.ub],opts);

 resultParams = guess;

 allParams = params;

 j = 1;

165

 for i = 1:numel(xNames)

 for k = 1:numel(xIndex{i})

 resultParams.(xNames{i})(xIndex{i}(k)) = x(j);

 allParams.(xNames{i})(xIndex{i}(k)) = x(j);

 j = j+1;

 end

 end

 end

 function [TRList, Mxy, Mz] = evaluate(TRList,FaList,M0,A)

 % EVALUATE: runs the model based on some input parameters

 fun = @(t,y)A*y;

 Mz = zeros(size(FaList));

 Mxy = zeros(size(FaList));

 Mz(:,1) = M0.*cos(FaList(:,1));

 Mxy(:,1) = (M0.*sin(FaList(:,1)));

 for i = 2:length(TRList)

 [~,Y] = ode45(fun,[TRList(i-1),TRList(i)],Mz(:,i-1));

 Mz(:,i) = Y(end,:).';

 Mxy(:,i) = sin(FaList(:,i)).*Mz(:,i);

 Mz(:,i) = cos(FaList(:,i)).*Mz(:,i);

 end

 end

 function DataCompare(A,params,M0,xdata,ydata)

 M0 = M0./sin(params.FaList(:,1));

 [TRList,Mxy,~] = A.compile(M0,params);

 figure

 for i = 1:size(Mxy,1)

 tmpLine = plot(TRList,Mxy(i,:));

 hold on

 plot(xdata,ydata(i,:),'o','MarkerEdgeColor',tmpLine.Color);

 end

 hold off

 xlabel('Time (sec)')

 ylabel('Signal (arb)')

 end

 end

 methods (Access = private, Static)

 function Y = fitFunction(params,x,xNames,xIndex,Y0)

 % fitFunction packs the parameter in params and x up and evaluates

 % using the evaluate funnction over some time (tSpan) with some

 % initial value (Y0)

 j = 1;

 for i = 1:numel(xNames)

 for k = 1:numel(xIndex{i})

 params.(xNames{i})(xIndex{i}(k)) = x(j);

 % Check if fitting flip angle (there mus be a better

 % way to do this

 if strcmp(xNames{i}, 'FaList')

 params.(xNames{i}) =...

 repmat(x(j),size(params.(xNames{i})));

 end

 j = j+1;

166

 end

 end

 [~, Y, ~] = HypWright.Models.MultiPool.compile(Y0,params);

 end

 end

end

167

MultiPool Tofts Class

 Similar to the Multipool function, but allows for perfusion using the two physical pool model.

Signals from the vascular and extravascular spaces are combined automatically. The exchange terms

need to be an Nx1 matrix representing 𝑘𝑣𝑒 for each chemical species. Finally, the VIF is an abstract

function that should return an Nxt matrix for the 𝑀𝑧 of the VIF. Note that the abstract nature of the VIF

does not allow it to be fit.

classdef MultiPoolToffts

 %TWOPOOLTOFFTS Summary of this class goes here

 % Detailed explanation goes here

 properties

 end

 methods (Static)

 function defaults()

 % DEFAULTS explains the default values for each parameter

 names = {'ExchangeTerms','T1s','FaList','TRList',...

 'PerfusionTerms','volumeFractions','VIF','fitOptions'};

 discriptions = {'A NxN Matrix of Exchange Terms, where N is the number of chemical

pools. The From pools should be along the rRows With the To pool along the Columns. Diagnal

elemets will be set to zero'...

 ' A Row vector of T1 decay times for each chemical pool.'...

 ' A NxM of matrix of flip angles in radians, where N is the number of

excitations and M is the number of chemical Pools'...

 ' A NxM of Excitation Times in seconds, where N is the number of excitations and

M is the number of chemical Pools'...

 ' A Row Vector of perfusion Exchange Constnats for each chemical pool.'...

 ' A Row Vector of volme fraction for each chemical pool. Only one value can be

use if all pools have the same volume fraction.'...

 ' A function of a time variable (t) in seconds that returns a Row vector for the

VIF of each chemical pool at the time t.'...

 ' Matlab FitOptions object'};

 defaultsVals = {'0','100','0','0','0','1','@(t)0','optimset(''lsqcurvefit'')'};

 fprintf('*Note* all terms must be a vector of size 1 x N where N is the number of

chemical Pools\n')

 for i = 1:numel(names)

 fprintf('''%s'': %s\n Default Vaule: %s\n',...

 names{i},discriptions{i},defaultsVals{i});

 end

 end

 function paramsOut = parseParams(paramsIn)

 % parseParams: a function to fill default param values if they are

 % not defined

 default = struct('ExchangeTerms',0,'T1s',100,'FaList',0,...

 'TRList',0,'PerfusionTerms',0,'volumeFractions',1,'VIF',@(t)0,...

168

 'fitOptions', optimset('lsqcurvefit'));

 tmpNames = fieldnames(default);

 paramsOut = paramsIn;

 for i = 1:numel(tmpNames)

 if ~isfield(paramsOut,tmpNames{i})

 paramsOut.(tmpNames{i}) = default.(tmpNames{i});

 end

 end

 % Fill all flip angles with a value if only one flip angle is passed in

 if size(paramsOut.FaList,2)==1

 paramsOut.FaList = repmat(paramsOut.FaList(:,1),...

 1,length(paramsOut.TRList));

 end

% % Assuming input validation will put too much computational burdon on the fitting

% % Hopeing user will supply valid input!

% % Validte input

% if (size(params.ExchangeTerms,1)~=size(params.ExchangeTerms,1))

% error('Exchange matrix not square.')

% end

 N = size(paramsIn.ExchangeTerms,1);

 K = triu(paramsIn.ExchangeTerms)+tril(paramsIn.ExchangeTerms);

 T1 = paramsIn.T1s;

 kve = paramsIn.PerfusionTerms;

 if(length(paramsIn.volumeFractions)==1)

 ve = zeros(N,1)+paramsIn.volumeFractions;

 else

 ve = paramsIn.volumeFractions;

 end

 A = zeros(N);

 for i = 1:N

 for j = 1:N

 if(i == j)

 A(i,i) = -sum(K(i,:))-1/T1(i)-kve(i)/ve(i);

 else

 A(i,j) = K(j,i);

 end

 end

 end

 paramsOut.A = A;

 paramsOut.b = paramsIn.VIF;

 paramsOut.kve = paramsIn.PerfusionTerms;

 paramsOut.ve = paramsIn.volumeFractions;

 end

 function [TRList,Mxy,Mz] = compile(M0,params)

 % EVALUATE: runs the model based on some input parameters

 params = HypWright.Models.MultiPoolToffts.parseParams(params);

 A = params.A;

 b = params.b;

 FaList = params.FaList;

 TRList = params.TRList;

 [TRList, Mxy, Mz] = HypWright.Models.MultiPoolToffts.evaluate(...

 TRList,FaList,M0,A,b,params);

 end

169

 function [TRList, Mxy, Mz] = evaluate(TRList,FaList,M0,A,b,params)

 % EVALUATE: runs the model based on some input parameters

 kve = params.kve;

 ve = params.ve;

 fun = @(t,y)A*y+(kve/ve).'.*b(t);

 Mz = zeros(size(FaList));

 Mxy = zeros(size(FaList));

 Mz(:,1) = M0.*cos(FaList(:,1));

 Mxy(:,1) = (params.ve*M0+(1-params.ve)*params.b(TRList(1))).*sin(FaList(:,1));

 for i = 2:length(TRList)

 [~,Y] = ode45(fun,[TRList(i-1),TRList(i)],Mz(:,i-1));

 Mz(:,i) = Y(end,:).';

 Mxy(:,i) = sin(FaList(:,i)).*(params.ve.*Mz(:,i)+...

 (1-params.ve).*b(TRList(i)));

 Mz(:,i) = cos(FaList(:,i)).*Mz(:,i);

 end

 end

 function DataCompare(A,params,M0,xdata,ydata)

 M0 = M0./sin(params.FaList(:,1));

 [TRList,Mxy,~] = A.compile(M0,params);

 figure

 for i = 1:size(Mxy,1)

 tmpLine = plot(TRList,Mxy(i,:));

 hold on

 plot(xdata,ydata(i,:),'o','MarkerEdgeColor',tmpLine.Color);

 end

 hold off

 xlabel('Time (sec)')

 ylabel('Signal (arb)')

 end

 end

end

170

MultiPool Tofts Gamma VIF Class

 A child class MultiPool Tofts Class that simply defines the VIF as a gamma variate. It allows the

VIF amplitude and the shape terms to be fit. In order to zero out the VIF for a particular species, it is best

to zero out its VIF scale factor. Zeroing the shape terms is a risky choice.

classdef MultiPoolTofftsGammaVIF < HypWright.Models.MultiPoolToffts

 %MULTIPOOLTOFFTSGAMMAVIF A chemical exchange model assuming two pooled

 %Tofts model of perfusion

 % parameters Values

 %* ExchangeTerms - A Matrix defining chemical Exchange. Defalt: 0

 %* T1s - A row vector of T1 decay terms. Default: 100

 %* FaList - A matrix of excitation angles. Default: 0

 %* TRList - A matrix of excitation times. Default: 0

 %* t0 - A row vector for delivery delay of each metabolite. Default: 0

 %* gammaPdfA - A row vector for shape term alpha of each metabolite. Default: 2.8

 %* gammaPdfB - A row vector for shape term beta of each metabolite. Default: 4.5

 %* ScaleFactor - A row vector for each metabolite's VIF scale factor. Default: 1

 %* fitOptions - A matlab fit option structure. Default: optimset(''lsqcurvefit'')

 %* PerfusionTerms - A row vector for each metabolite's extravisation rate. Default: 0

 %* volumeFractions - A row vector for each metabolite's volume fraction. Default: 1

 % There is NO imput validation for the parameters passed in, for more

 % detail on the assumed data structur of these parameters use the

 % defaults function

 properties

 end

 methods (Static)

 function defaults()

 % DEFAULTS explains the default values for each parameter

 names = {'t0','gammaPdfA','gammaPdfB','scaleFactor'};

 discriptions = {'A Row vector of time delays for each metabolite'...

 ' A Row vector of shape term Alpha, set this to zero to have no VIF for a

chemical pool'...

 ' A Row vector of shape term Beta, this cannot be zero and will be set to 1e-40

if zero is used'...

 ' A Row vector of Scale Factor to be applied to the VIF'};

 defaultsVals = {'0','2.8','4.5','1'};

 fprintf('*Note* all terms must be a vector of size 1 x N where N is the number of

chemical Pools\n')

 for i = 1:numel(names)

 fprintf('''%s'': %s\n Default Vaule: %s\n',...

 names{i},discriptions{i},defaultsVals{i});

 end

 defaults@HypWright.Models.MultiPoolToffts();

 end

 function paramsOut = parseParams(paramsIn)

 % parseParams: Parses the input shape terms of a gamma variate

 % for the VIF, each term should be a vector with shape terms

 % for each chemical species

171

 % Fill Default Values

 default = struct('t0',0,'gammaPdfA',2.8,...

 'gammaPdfB',4.5,'scaleFactor',1);

 tmpNames = fieldnames(default);

 paramsOut = paramsIn;

 for i = 1:numel(tmpNames)

 if ~isfield(paramsOut,tmpNames{i})

 paramsOut.(tmpNames{i}) = default.(tmpNames{i});

 end

 end

 % Build VIF

 paramsOut.VIF = @(t)paramsIn.scaleFactor.*...

 gampdf(t-paramsIn.t0,paramsIn.gammaPdfA,paramsIn.gammaPdfB);

 % Fill in parent Class defaults

 paramsOut = parseParams@HypWright.Models.MultiPoolToffts(paramsOut);

 end

 function [TRList,Mxy,Mz] = compile(M0,params)

 % EVALUATE: runs the model based on some input parameters

 params = HypWright.Models.MultiPoolTofftsGammaVIF.parseParams(params);

 [TRList,Mxy,Mz] = compile@HypWright.Models.MultiPoolToffts(M0,params);

 end

 function [x,resultParams,allParams,resnorm,residual,exitflag,output,lambda,jacobian]...

 = fitData(params,guess,xdata,ydata,varargin)

 p = inputParser();

 p.addOptional('lb',[])

 p.addOptional('ub',[])

 p.parse(varargin{:})

 xNames = fieldnames(guess);

 j = 1;

 xIndex = cell(size(xNames));

 for i = 1:numel(xNames)

 iFits = ~isnan(guess.(xNames{i}));

 xIndex{i} = find(iFits==1);

 for k = 1:numel(xIndex{i})

 x0(j) = guess.(xNames{i})(xIndex{i}(k));

 j = j+1;

 end

 end

 params = HypWright.Models.MultiPoolTofftsGammaVIF.parseParams(params);

 Y0 = ydata(:,1)./sin(params.FaList(:,1));

 fun = @(x,xdata)HypWright.Models.MultiPoolTofftsGammaVIF.fitFunction(...

 params,x,xNames,xIndex,xdata,Y0);

 opts = params.fitOptions;

 [x,resnorm,residual,exitflag,output,lambda,jacobian] = ...

 lsqcurvefit(fun,x0,xdata,ydata,...

 [p.Results.lb],[p.Results.ub],opts);

 resultParams = guess;

 allParams = params;

 j = 1;

 for i = 1:numel(xNames)

 for k = 1:numel(xIndex{i})

 resultParams.(xNames{i})(xIndex{i}(k)) = x(j);

172

 allParams.(xNames{i})(xIndex{i}(k)) = x(j);

 j = j+1;

 end

 end

 end

 end

 methods (Access = private, Static)

 function Y = fitFunction(params,x,xNames,xIndex,tSpan,Y0)

 % fitFunction packs the parameter in params and x up and evaluates

 % using the evaluate funnction over some time (tSpan) with some

 % initial value (Y0)

 j = 1;

 for i = 1:numel(xNames)

 for k = 1:numel(xIndex{i})

 params.(xNames{i})(xIndex{i}(k)) = x(j);

 j = j+1;

 end

 end

 params.TRList = tSpan;

 [~, Y, ~] = HypWright.Models.MultiPoolTofftsGammaVIF.compile(Y0,params);

 end

 end

end

173

Gamma Bankson Model Class

 The Gamma Bankson Model Class is a sample of the old modeling system that averages

excitation losses over the repetition time. It behaves similarly to the abstract modeling above. However,

the number of chemical species is defined to be two and therefore no matrices are used as parameters.

classdef GammaBanksonModel < HypWright.Models.BanksonModel

 %BANKSONMODEL model for a two site excange system with perfused by a

 %vascular pool. b defines the vascular input function wich is assumed to be

 %uneffected.

 % This is the basic two site exchange model. This model has a linear flip

 % angle correction and will not work for non-linear sampling.

 % The parameters for this model follow

 % Kab - exchange reate from pool a to b: default 0

 % Kba - exchange reate from pool b to a: default 0

 % T1a - T1 decay constant for pool a: default 56

 % T1b - T1 decay constant for pool b: default 31

 % flipAngle - excitation angle in radians: default 0

 % TR - repetition time (again this is a linear TR model): default 1

 % kve - vascular extraction fraction: default 0.122

 % ve - vascular volume fraction: defaul 0.91

 % b - input function, some function of time that returns a change in

 % pool a and b must return a 2 row vector: default [0;0]

 properties (Access = private)

 end

 methods (Static)

 function [Y,T,sol] = evaluate(params,tSpan,Y0)

 % EVALUATE: solves this model over some time span (tSpan), with an

 % initial Y (Y0) and some parameters (params).

 % Params is a struct with the values

 % Kab - exchange reate from pool a to b: default 0

 % Kba - exchange reate from pool b to a: default 0

 % T1a - T1 decay constant for pool a: default 56

 % T1b - T1 decay constant for pool b: default 31

 % flipAngle - excitation angle in radians: default 0

 % TR - repetition time (again this is a linear TR model): default 1

 % kve - vascular extraction fraction: default 0.122

 % ve - vascular volume fraction: defaul 0.91

 % b - input function, some function of time that returns a change in

 % poola and b must return a 2 row vector: default [0;0]

 params = HypWright.Models.GammaBanksonModel.parseParams(params);

 A = [-(params.kve/params.ve+params.Kab+...

 1/params.T1a+((1-cos(params.flipAngle))/params.TR)),...

 params.Kba; params.Kab,...

 -(params.Kba+1/params.T1b+((1-cos(params.flipAngle))/params.TR))];

 % Analytic Solution (VERY SLOW!)

% fun = @(t)expm(A*(t-tSpan(1)))*Y0+integral(...

% @(t2)expm(A*(t-t2))*params.kve/params.ve*params.b(t2),...

% tSpan(1),t,'ArrayValued',true);

174

% Y = zeros(length(Y0),length(tSpan));

% for i = 1:length(tSpan)

% Y(:,i) = (1-params.ve)*fun(tSpan(i))+params.ve*params.b(tSpan(i));

% end

 T = tSpan;

 bfit = @(t)params.scaleFactor*padarray(gampdf(...

 t,params.gammaPdfA,params.gammaPdfB),1,'post');

 fun = @(t,y)A*y+params.kve/params.ve*bfit(t-params.t0);

 sol = ode45(fun,tSpan,Y0);

 if length(T) == 2, T = sol.x; end

 Y = params.ve*deval(sol,T)+(1-params.ve)*bfit(T-params.t0);

 end

 function [x,resultParams,resnorm,residual,exitflag,output,lambda,jacobian] =

fitData(params,guess,...

 xdata,ydata,varargin)

 % FITDATA: fits some data set (xdata, ydata) with some constant

 % parameters (params) and variable parameters (guess) using the

 % perfused two site exchange model. Which ever parameters are in the

 % guess struct will be fit, any parameters in the params struct will

 % be held constant, any parameters not specfied will be set to their

 % defaults and held constant. The fit will return one more argument

 % than the number of guesses. The last number is a scaling factor

 % applied to the fit data, to better match the magnitude og the

 % input

 % Params is a struct with the values

 % Kab - exchange reate from pool a to b: default 0

 % Kba - exchange reate from pool b to a: default 0

 % T1a - T1 decay constant for pool a: default 56

 % T1b - T1 decay constant for pool b: default 31

 % flipAngle - excitation angle in radians: default 0

 % TR - repetition time (again this is a linear TR model): default 1

 % kve - vascular extraction fraction: default 0.122

 % ve - vascular volume fraction: defaul 0.91

 % b - input function, some function of time that returns a change in

 % pool a and b must return a 2 row vector: default [0;0]

 p = inputParser();

 p.addOptional('lb',[])

 p.addOptional('ub',[])

 p.parse(varargin{:})

 xNames = fieldnames(guess);

 x0 = zeros(numel(xNames),1);

 for i = 1:numel(xNames)

 params.(xNames{i}) = guess.(xNames{i});

 x0(i) = guess.(xNames{i});

 end

 params = HypWright.Models.GammaBanksonModel.parseParams(params);

 Y0 = ydata(:,1);

 fun = @(x,xdata)HypWright.Models.GammaBanksonModel.fitFunction(...

 params,x,xNames,xdata,Y0);

 opts = params.fitOptions;

 [x,resnorm,residual,exitflag,output,lambda,jacobian] = ...

 lsqcurvefit(fun,x0,xdata,ydata,...

 [p.Results.lb],[p.Results.ub],opts);

175

 resultParams = params;

 for i = 1:numel(xNames)

 resultParams.(xNames{i}) = x(i);

 end

 end

 function dataCompare(params,xdata,ydata,varargin)

 % DATACOMPARE: displays the model with the parameters parameters

 % (params) against the data (xdata, ydata). optiona 4th argument for

 % a figure axis in which to draw the plot

 % Params is a struct with the values

 % Kab - exchange reate from pool a to b: default 0

 % Kba - exchange reate from pool b to a: default 0

 % T1a - T1 decay constant for pool a: default 56

 % T1b - T1 decay constant for pool b: default 31

 % flipAngle - excitation angle in radians: default 0

 % TR - repetition time (again this is a linear TR model): default 1

 % kve - vascular extraction fraction: default 0.122

 % ve - vascular volume fraction: defaul 0.91

 % b - input function, some function of time that returns a change in

 % pool a and b must return a 2 row vector: default [0;0]

 % axis - axis handle to plot data

 p = inputParser();

 p.addOptional('axis',[])

 p.parse(varargin{:})

 Y0 = ydata(:,1);

 Y = HypWright.Models.GammaBanksonModel.evaluate(params,xdata,Y0);

 resNorm = sum(sum((Y-ydata).^2));

 if(isempty(p.Results.axis))

 figure;

 curAxis = gca;

 else

 curAxis = p.Results.axis;

 end

 plot(curAxis,xdata,Y(1,:)','g',xdata,Y(2,:),'b',...

 xdata,ydata(1,:),'go',xdata,ydata(2,:),'bo')

 xlabel('Time')

 ylabel('Signal Intensity')

 legend('Model Pool A','Model Pool B')

 title('Comparison of data with two site exchage model')

 fprintf('The norm of the residual is: %d\n',resNorm)

 end

 end

 methods (Static, Access = protected)

 function paramsOut = parseParams(paramsIn)

 % parseParams: a function to fill default param values if they are

 % not defined

 default = struct('Kab',0,'Kba',0,'T1a',56,'T1b',31,'flipAngle',0,...

 'TR',1,'kve',0.02,'ve',0.91,'t0',0,'gammaPdfA',2.8,...

 'gammaPdfB',4.5,'scaleFactor',1,'fitOptions', optimset('lsqcurvefit'));

 tmpNames = fieldnames(default);

 paramsOut = paramsIn;

 for i = 1:numel(tmpNames)

 if ~isfield(paramsOut,tmpNames{i})

176

 paramsOut.(tmpNames{i}) = default.(tmpNames{i});

 end

 end

 paramsOut.b = @(t)paramsOut.scaleFactor*[...

 gampdf(t-paramsOut.t0,paramsOut.gammaPdfA,paramsOut.gammaPdfB);0];

 end

 function Y = fitFunction(params,x,xNames,tSpan,Y0)

 % fitFunction packs the parameter in params and x up and evaluates

 % using the evaluate funnction over some time (tSpan) with some

 % initial value (Y0)

 for i = 1:numel(xNames)

 params.(xNames{i}) = x(i);

 end

 % Uses the last value of x as a scaling factor.

 Y = HypWright.Models.GammaBanksonModel.evaluate(params,tSpan,Y0);

 end

 end

end

177

Section B.5 Example Scripts

Example Script for Simulating and Processing single pulse dynamic spectroscopy

function [raw,t,freqAx] = PerfusedCalc(base)

import HypWright.*

import HypWright.Models.*

Initialize variable

if ~exist('base','var')

 base = struct();

end

% Default Values, empy fields are only used in the fitting and not need for

% this function, however then still are checked when looking for

% superfalice variables

Default = struct('gamma', 67.262e6, 'readBandwidth', 4096, 'rfBandwidth', 5000,...

 'nPoints', 2048,'t0',0,'endTime', 100, 'T1a', 56, 'T2a', 0.02, 'T1b', 30,...

 'T2b', 0.02, 'kve', 0.02, 'vb', 0.09, 've', .91, 'ppma', -7e-6,...

 'ppmb', 7e-6,'gammaPdfA',2.8,'gammaPdfB',4.5,'scaleFactor',1,...

 'Kab', 0.1, 'flipAngle', 20, 'TR', 2,'verbose', false,...

 'FWHMRange', [], 'A', [],'noiseLevel', [],...

 'nAverages', [], 'lb',[],'ub',[],'centers',[],'fitOptions',[],...

 'B0',3.0);

% Check that there are no unsed variables in base;

tmpNames = fieldnames(base);

for i = 1:numel(tmpNames)

 if ~isfield(Default,tmpNames{i})

 warning('WARNING! the field "%s" was passesed in but does not match any of the default

names.\n',tmpNames{i});

 warning('This variable wont be used!\n')

 end

end

tmpNames = fieldnames(Default);

for i = 1:numel(tmpNames)

 if ~isfield(base,tmpNames{i})

 base.(tmpNames{i}) = Default.(tmpNames{i});

 end

end

base.flipAngle = base.flipAngle*pi/180;

gamma = base.gamma;

readBandwidth = base.readBandwidth;

rfBandwidth = base.rfBandwidth;

nPoints = base.nPoints;

endTime = base.endTime;

t0 = base.t0;

T1a = base.T1a;

T2a = base.T2a;

178

T1b = base.T1b;

kve = base.kve;

vb = base.vb;

ve = base.ve;

ppma = base.ppma;

ppmb = base.ppmb;

b = @(t)base.scaleFactor*padarray(padarray(...

 gampdf(t-t0,base.gammaPdfA,base.gammaPdfB),2),1,'post');

Kab = base.Kab;

flipAngle = base.flipAngle;

TR = base.TR;

verbose = base.verbose;

Mz = [];

B0 = base.B0;

%TODO add input validation;

Initialize World

world = HypWright.World.getWorld;

world.initWorld()

world.setB0([0;0;B0])

Spin = TwoSitePerfusionExchangeGroup([0;0;0;0;0;0],[0;0;0;0;0;0],...

 T1a,T2a,ppma,T1b,T2a,ppmb,gamma,ve,Kab,[],kve/ve,b);

Spin2 = BanksonSpinGrp([0;0;0],[0;0;0],T1a,T2a,gamma,ppma,vb,...

 [base.gammaPdfA,base.gammaPdfB,base.scaleFactor],t0);

V = Voxel([0;0;0],Spin);

V.addSpin(Spin2);

if (verbose)

V.debug = true;

end

world.addVoxel(V);

Build Pulse Sequence

PS = PulseSequence;

t = 0:TR:endTime;

ADC = zeros(nPoints,length(t));

for i = 1:length(t)

 Pulse = SincPulse(t(i),rfBandwidth,flipAngle/(gamma),gamma*B0,[],...

 sprintf('Excitation%d',1));

 PS.addPulse(Pulse)

 ADC(:,i) = Pulse.endTime:1/readBandwidth:Pulse.endTime+(nPoints-1)/readBandwidth;

end

world.setPulseSequence(PS)

Calculate

world.calculate(t(end)+10);

if (verbose)

179

V.debug = true;

tMz = 0:0.1:endTime;

world.evaluate(tMz);

load('tmp')

evSpace = [];

vSpace = [];

for i = 1:size(tmp,1)

evSpace = [evSpace,tmp{i,1}];

vSpace = [vSpace,tmp{i,2}];

end

M(1:3,:) = ve*evSpace(1:3,:)+vb*vSpace;

M(4:6,:) = ve*evSpace(4:6,:);

MzPyr = M(3,:);

MzLac = M(6,:);

V.debug = false;

end

FID = zeros(nPoints,length(t));

for i = 1:length(t)

 [FID(:,i), freqAx] = world.evaluate(ADC(:,i).',-gamma*B0);

end

raw = FID;

t = linspace(ADC(floor(end/2),1),ADC(floor(end/2),end),size(ADC,2));

if (verbose)

 figure

 surf(t,freqAx,abs(fftshift(fft(FID,[],1),1)));

 drawnow

 figure('Name',sprintf('Kab: %.4f Flip Angle %2f Repetition Time %.4f',...

 Kab,flipAngle,TR),'NumberTitle','off','Position',[660 50 1040 400])

 plot(tMz,MzPyr,'go',tMz,MzLac,'bo')

 legend('Simulated Pyruvate Mz','Simulated Lactate Mz');

 % Display model and Mz

end

end

function [fits, fitErr, SNR, exitflag] = PerfusedFit(base,fitParams,raw,t,freqAxis)

import HypWright.*

import HypWright.Models.*

import HypWrightRunners.*

Initialize variable

if isempty(base)

 base = struct();

end

if isempty(fitParams)

 error('No initial guesses were passed in for any fit parameters');

end

Default = struct('gamma', 67.262e6, 'readBandwidth', 4096, 'rfBandwidth', 5000,...

 'nPoints', 2048,'t0',0,'endTime', 100, 'T1a', 56, 'T2a', 0.02, 'T1b', 30,...

 'T2b', 0.02, 'kve', 0.02, 'vb', 0.09, 've', .91, 'ppma', -7e-6,...

180

 'ppmb', 7e-6,'gammaPdfA',2.8,'gammaPdfB',4.5,'scaleFactor',1,...

 'Kab', 0.1, 'flipAngle', 20, 'TR', 2,'verbose', false,...

 'FWHMRange', [], 'A', MultiPoolTofftsGammaVIF(),'noiseLevel', 0,...

 'nAverages', 1, 'lb',0,'ub',100,'centers',[],'fitOptions',...

 optimset('lsqcurvefit'),'B0',7,'autoVIFNorm',false);

tmpNames = fieldnames(base);

for i = 1:numel(tmpNames)

 if ~isfield(Default,tmpNames{i})

 fprintf('WARNING! the field %s was passesed in but does not match any of the default

names. This variable wont be used!\n',tmpNames{i})

 end

end

% Fill with defaults

tmpNames = fieldnames(Default);

for i = 1:numel(tmpNames)

 if ~isfield(base,tmpNames{i})

 base.(tmpNames{i}) = Default.(tmpNames{i});

 end

end

% calc FWHM range if needed

if isempty(base.FWHMRange) || isempty(base.centers)

 [I, ~, peakI] = FWHMRange(freqAxis, sum(abs(fftshift(fft(raw,[],1),1)),2));

 base.FWHMRange = I;

 base.centers = peakI;

end

IFWHM = base.FWHMRange;

A = base.A;

bfit = @(t)padarray(gampdf(t,base.gammaPdfA,base.gammaPdfB),1,'post');

base.b = bfit;

Kab = base.Kab;

noiseLevel = base.noiseLevel;

nAverages = base.nAverages;

lb = base.lb;

ub = base.ub;

centers = base.centers;

verbose = base.verbose;

% Correct for VIF normilization if needed

if base.autoVIFNorm

 base.scaleFactor = 0.021614001850489*base.flipAngle+1.312872065860338e+03;

end

Fit data

fits = zeros(nAverages,length(fieldnames(fitParams)));

fitErr = zeros(nAverages,1);

for j = 1:nAverages

 if(noiseLevel ~= 0)

 [noiseyData, SNR] = ApplyNoise(raw, noiseLevel,freqAxis,...

 IFWHM,centers);

 FTData = fftshift(fft(noiseyData,[],1),1);

 else

181

 FTData = fftshift(fft(raw,[],1),1);

 SNR = inf;

 end

peakMax = zeros(size(centers));

phases = zeros(size(centers));

signals = zeros(size(raw,2),size(centers,2));

PhaseData = zeros([size(FTData),length(centers)]);

% Phase correct and FWHM integrate each peak

%for m = 1:length(centers)

for m = 1:length(centers)

 if(centers(m) == 0)

 continue

 end

 [~,peakMax(m)] = max(abs(FTData(centers(m),:))); % fint the maximal peak location

 phases(m) = angle(FTData(centers(m),peakMax(m))); % find the phase at the above point

 for n = 1:length(t)

 % FWHM integrate the Phased signal

 PhaseData(:,n,m) = real(exp(-1i*(phases(m)))*FTData(:,n));

 end

 [signals(:,m)] = SignalIntegration(freqAxis, squeeze(PhaseData(:,:,m)), IFWHM(m,:));

end

nLac = sum(abs(signals(:,2)))/sum(sum(abs(signals)));

flipAngles(1,:) = base.flipAngle*pi/180;%zeros(1,size(raw,2))+base.flipAngle*pi/180;

flipAngles(2,:) = base.flipAngle*pi/180;%zeros(1,size(raw,2))+base.flipAngle*pi/180;

Model Results

tmpNames = fieldnames(fitParams);

fitConstants = base;

for i = 1:numel(tmpNames)

 if isfield(fitConstants,tmpNames{i})

 fitConstants = rmfield(fitConstants,tmpNames{i});

 end

end

params = struct('ExchangeTerms',[0,base.Kab;0,0],'T1s',[base.T1a,base.T1b],...

 'TRList',t,'FaList',flipAngles,'PerfusionTerms',[base.kve,0],...

 'volumeFractions',[base.ve],'t0',[0;0],'gammaPdfA',[base.gammaPdfA;1],...

 'gammaPdfB',[base.gammaPdfB;1],'scaleFactor',[base.scaleFactor;0],...

 'fitOptions',base.fitOptions);

[fits(j,:),resultParams,allParams,resnorm(j),residual,exitflag,output,lambda,jacobian]...

 = A.fitData(params,fitParams,t,signals.',lb,ub);

end

if(verbose)

 % Display Model accuracy

 A.DataCompare(A,allParams,signals(1,:).',t,signals.')

 drawnow

end

end

182

 Example Script for a Multiband Frequency Encode Snapshot

clear all

close all

clear classes

clear imports

clc

import HypWright.*

% Init World

world = HypWright.World.getWorld;

world.initWorld()

% init Variable

%Change These

FOV = 0.04;

nSpins = 4^2;

nBands = 2;

nProj = 40;

Tr = 0.1;

flipAngle = 10;

nSamp = 64;

xStart = 0.0;

xEnd = 0.01;

yStart = 0.0;

yEnd = 0.01;

protonResolution = 0.001;

%Maybe dont change these

gamma = 67.262e6;

sinoShift = -2;

deltaPPM = 15e-6;

singleBandwidth = gamma*world.B0(3)*deltaPPM;

maxSlope = 0.5*singleBandwidth/(gamma*FOV);

rewindTime = 0.001;

totalBW = singleBandwidth*nBands/(2*pi);

samplingTime = 1/totalBW*nSamp;

resolution = FOV/nSamp;

goldenAngle = pi*(3-sqrt(5));

projAngles = 0:goldenAngle:(nProj-1)*goldenAngle;

projAngles = mod(projAngles,pi);

xPos = linspace(xStart,xEnd,sqrt(nSpins));

yPos = linspace(yStart,yEnd,sqrt(nSpins));

% Build Phantom

for i = 1:length(xPos)

 for j = 1:length(yPos)

 Spin = TwoSiteExchangeGroup([0;0;1;0;0;0.5],...

 [],[],[],-7e-6,[],[],7e-6,gamma,[],0,[]);

 V = Voxel([xPos(i);yPos(j);0],Spin);

 world.addVoxel(V);

 end

183

end

% Build Pulse Sequence

FID = zeros(nProj,nSamp); %init memory for FID

readGrad = LinearGradientPulse.empty(nProj,0); %init memory for readGrad

PS = PulseSequence;

for i = 1:nProj

S = SincPulse(Tr*(i-1),5000,flipAngle*pi/180/gamma,gamma*3.0,[],sprintf('RF90%d',1));

PS.addPulse(S)

xSlope = cos(projAngles(i))*maxSlope;

ySlope = sin(projAngles(i))*maxSlope;

xRewind = -xSlope/2;

yRewind = -ySlope/2;

reWindGrad = LinearGradientPulse(S.endTime+rewindTime/2,rewindTime,[xRewind,yRewind,0]...

 ,sprintf('RewindGrad%d',0));

PS.addPulse(reWindGrad)

readGrad(i) =

LinearGradientPulse(reWindGrad.endTime+samplingTime/2,samplingTime,[xSlope,ySlope,0]...

 ,sprintf('ReadGrad%d',0));

PS.addPulse(readGrad(i))

end

world.setPulseSequence(PS)

% Calculate

disp('Calculation Time')

tic

world.calculate(readGrad(end).endTime);

toc

% Evaluate

for i = 1:nProj

tic

FID(i,:) = world.evaluate(linspace(readGrad(i).startTime,readGrad(i).endTime,nSamp),-gamma*3.0);

toc

end

% Recon Image

FTData = fftshift(fft(fftshift(FID,2),[],2),2);

pyrBand = circshift(FTData,sinoShift,2);

pyrBand = pyrBand(:,1:32);

lacBand = circshift(FTData,sinoShift+33,2);

lacBand = lacBand(:,1:32);

figure('name','Sinogram')

imagesc(abs(FTData));

figure('Position',[200,350,1250,500],'name','C13 Images')

im = iradon(abs(pyrBand).',projAngles*180/pi);

im = flipud(im);

xRes = linspace(-FOV/2,FOV/2,size(im,1));

yRes = linspace(-FOV/2,FOV/2,size(im,2));

subplot(1,2,1),imagesc(xRes,yRes,im);

set(gca,'YDir','reverse');

title('Pyruvate')

im = iradon(abs(lacBand).',projAngles*180/pi);

im = flipud(im);

subplot(1,2,2),imagesc(xRes,yRes,im);

title('Lactate')

% Make 1H image

184

[X,Y] = meshgrid(-FOV/2:protonResolution:FOV/2,-FOV/2:protonResolution:FOV/2);

protonImage = zeros(size(X));

I = X>=xStart&X<=xEnd&Y>=yStart&Y<=yEnd;

protonImage(I) = 1;

figure('name','Proton Image');

imagesc(X(1,:),Y(:,1),protonImage);

colormap gray

185

 References

1 Weinberg, R. A. The biology of cancer. Second edition. (Garland Science, Taylor & Francis Group,

2014).

2 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674,

doi:10.1016/j.cell.2011.02.013 (2011).

3 Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P.,

Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q.,

Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., Nohadani, M., Eklund, A. C., Spencer-

Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P. A. &

Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing. N Engl J Med 366, 883-892, doi:10.1056/NEJMoa1113205 (2012).

4 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J Clin 66, 7-30,

doi:10.3322/caac.21332 (2016).

5 Prescott, J. W. Quantitative imaging biomarkers: the application of advanced image processing

and analysis to clinical and preclinical decision making. J Digit Imaging 26, 97-108,

doi:10.1007/s10278-012-9465-7 (2013).

6 Stephen, R. M. & Gillies, R. J. Promise and progress for functional and molecular imaging of

response to targeted therapies. Pharm Res 24, 1172-1185, doi:10.1007/s11095-007-9250-3

(2007).

7 Pantaleo, M. A., Nannini, M., Lopci, E., Castellucci, P., Maleddu, A., Lodi, F., Nanni, C., Allegri, V.,

Astorino, M., Brandi, G., Di Battista, M., Boschi, S., Fanti, S. & Biasco, G. Molecular imaging and

targeted therapies in oncology: new concepts in treatment response assessment. a collection of

cases. Int J Oncol 33, 443-452 (2008).

186

8 Morse, D. L. & Gillies, R. J. Molecular imaging and targeted therapies. Biochem Pharmacol 80,

731-738, doi:10.1016/j.bcp.2010.04.011 (2010).

9 Mammatas, L. H., Verheul, H. M., Hendrikse, N. H., Yaqub, M., Lammertsma, A. A. & Menke-van

der Houven van Oordt, C. W. Molecular imaging of targeted therapies with positron emission

tomography: the visualization of personalized cancer care. Cell Oncol (Dordr) 38, 49-64,

doi:10.1007/s13402-014-0194-4 (2015).

10 Kessler, L. G., Barnhart, H. X., Buckler, A. J., Choudhury, K. R., Kondratovich, M. V., Toledano, A.,

Guimaraes, A. R., Filice, R., Zhang, Z., Sullivan, D. C. & Group, Q. T. W. The emerging science of

quantitative imaging biomarkers: terminology and definitions for scientific studies and

regulatory submissions. Stat Methods Med Res 24, 9-26, doi:10.1177/0962280214537333

(2015).

11 Lehninger, A. L., Nelson, D. L. & Cox, M. M. Lehninger principles of biochemistry. 6th edn, (W.H.

Freeman, 2013).

12 Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the

metabolic requirements of cell proliferation. Science 324, 1029-1033,

doi:10.1126/science.1160809 (2009).

13 Warburg, O. On respiratory impairment in cancer cells. Science 124, 269-270 (1956).

14 Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707,

doi:10.1016/j.cell.2008.08.021 (2008).

15 DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. & Thompson, C. B.

Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds

the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104, 19345-

19350, doi:10.1073/pnas.0709747104 (2007).

187

16 Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D. E., Lerche, M., Wolber, J., Golman, K.,

Ardenkjaer-Larsen, J. H. & Brindle, K. M. Detecting tumor response to treatment using

hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13, 1382-1387,

doi:10.1038/nm1650 (2007).

17 Witney, T. H., Kettunen, M. I., Day, S. E., Hu, D. E., Neves, A. A., Gallagher, F. A., Fulton, S. M. &

Brindle, K. M. A comparison between radiolabeled fluorodeoxyglucose uptake and

hyperpolarized (13)C-labeled pyruvate utilization as methods for detecting tumor response to

treatment. Neoplasia 11, 574-582, 571 p following 582 (2009).

18 Juweid, M. E. & Cheson, B. D. Positron-emission tomography and assessment of cancer therapy.

N Engl J Med 354, 496-507, doi:10.1056/NEJMra050276 (2006).

19 Sandulache, V. C., Chen, Y., Lee, J., Rubinstein, A., Ramirez, M. S., Skinner, H. D., Walker, C. M.,

Williams, M. D., Tailor, R., Court, L. E., Bankson, J. A. & Lai, S. Y. Evaluation of hyperpolarized [1-

(1)(3)C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS

One 9, e87031, doi:10.1371/journal.pone.0087031 (2014).

20 Puzio-Kuter, A. M. The role of p53 in metabolic regulation. Genes Cancer 2, 385-391,

doi:10.1177/1947601911409738 (2011).

21 Chaumeil, M. M., Larson, P. E., Yoshihara, H. A., Danforth, O. M., Vigneron, D. B., Nelson, S. J.,

Pieper, R. O., Phillips, J. J. & Ronen, S. M. Non-invasive in vivo assessment of IDH1 mutational

status in glioma. Nat Commun 4, 2429, doi:10.1038/ncomms3429 (2013).

22 Zhang, H. The potential of hyperpolarized (13)C MRI in assessing signaling pathways in cancer.

Acad Radiol 21, 215-222, doi:10.1016/j.acra.2013.11.015 (2014).

23 Galluzzi, L., Kepp, O., Vander Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy.

Nat Rev Drug Discov 12, 829-846, doi:10.1038/nrd4145 (2013).

188

24 Halestrap, A. P. & Wilson, M. C. The monocarboxylate transporter family--role and regulation.

IUBMB Life 64, 109-119, doi:10.1002/iub.572 (2012).

25 Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin,

R., Thaning, M. & Golman, K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state

NMR. Proc Natl Acad Sci U S A 100, 10158-10163, doi:10.1073/pnas.1733835100 (2003).

26 Kurhanewicz, J., Vigneron, D. B., Brindle, K., Chekmenev, E. Y., Comment, A., Cunningham, C. H.,

Deberardinis, R. J., Green, G. G., Leach, M. O., Rajan, S. S., Rizi, R. R., Ross, B. D., Warren, W. S. &

Malloy, C. R. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for

translation to clinical research. Neoplasia 13, 81-97 (2011).

27 Golman, K., Ardenkjaer-Larsen, J. H., Petersson, J. S., Mansson, S. & Leunbach, I. Molecular

imaging with endogenous substances. Proc Natl Acad Sci U S A 100, 10435-10439,

doi:10.1073/pnas.1733836100 (2003).

28 Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E., Harzstark, A. L., Ferrone, M., van

Criekinge, M., Chang, J. W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E. J., Munster, P.,

Weinberg, V. K., Ardenkjaer-Larsen, J. H., Chen, A. P., Hurd, R. E., Odegardstuen, L. I., Robb, F. J.,

Tropp, J. & Murray, J. A. Metabolic imaging of patients with prostate cancer using

hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 5, 198ra108,

doi:10.1126/scitranslmed.3006070 (2013).

29 Merritt, M. E., Harrison, C., Storey, C., Jeffrey, F. M., Sherry, A. D. & Malloy, C. R. Hyperpolarized

13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl

Acad Sci U S A 104, 19773-19777, doi:10.1073/pnas.0706235104 (2007).

30 Golman, K., Zandt, R. I., Lerche, M., Pehrson, R. & Ardenkjaer-Larsen, J. H. Metabolic imaging by

hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66,

10855-10860, doi:10.1158/0008-5472.CAN-06-2564 (2006).

189

31 Haacke, E. M., Thompson, M.R., Venkatesan, R., Brown, R.W., & Cheng, Y.N. Magnetic resonance

imaging : physical principles and sequence design. (Wiley, 1999).

32 Bloch, F. Nuclear induction. Physical Review 70, 460-474, doi:Doi 10.1103/Physrev.70.460

(1946).

33 Griffiths, D. J. Introduction to elementary particles. (Harper & Row, 1987).

34 Griffiths, D. J. Introduction to electrodynamics. Fourth edition. edn, (Pearson, 2013).

35 Thornton, S. T. & Marion, J. B. Classical dynamics of particles and systems. 5th edn,

(Brooks/Cole, 2004).

36 Griffiths, D. J. Introduction to quantum mechanics. 2nd edn, (Pearson Prentice Hall, 2005).

37 Abragam, A. The principles of nuclear magnetism. (Clarendon Press, 1961).

38 Abragam, A. & Goldman, M. Principles of dynamic nuclear-polarization. Reports on Progress in

Physics 41, 395-467, doi:Doi 10.1088/0034-4885/41/3/002 (1978).

39 Carver, T. R. & Slichter, C. P. Polarization of nuclear spins in metals. Physical Review 92, 212-213,

doi:DOI 10.1103/PhysRev.92.212.2 (1953).

40 Overhauser, A. W. Polarization of nuclei in metals. Physical Review 92, 411-415, doi:DOI

10.1103/PhysRev.92.411 (1953).

41 Abragam, A. & Goldman, M. Nuclear magnetism : order and disorder. (Clarendon Press ;

Oxford University Press, 1982).

42 Ardenkjaer-Larsen, J. H., Macholl, S. & Johannesson, H. Dynamic nuclear polarization with trityls

at 1.2 K. Applied Magnetic Resonance 34, 509-522, doi:10.1007/s00723-008-0134-4 (2008).

43 Wolber, J., Ellner, F., Fridlund, B., Gram, A., Johannesson, H., Hansson, G., Hansson, L. H., Lerche,

M. H., Mansson, S., Servin, R., Thaning, M., Golman, K. & Ardenkjaer-Larsen, J. H. Generating

highly polarized nuclear spins in solution using dynamic nuclear polarization. Nuclear

190

Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and

Associated Equipment 526, 173-181, doi:10.1016/j.nima.2004.03.171 (2004).

44 Wenckebach, W. T. The solid effect. Applied Magnetic Resonance 34, 227-235,

doi:10.1007/s00723-008-0121-9 (2008).

45 Hovav, Y., Feintuch, A. & Vega, S. Theoretical aspects of dynamic nuclear polarization in the solid

state - the solid effect. J Magn Reson 207, 176-189, doi:10.1016/j.jmr.2010.10.016 (2010).

46 Goldman, M. Overview of spin temperature, thermal mixing and dynamic nuclear polarization.

Applied Magnetic Resonance 34, 219-226, doi:10.1007/s00723-008-0114-8 (2008).

47 Hovav, Y., Feintuch, A. & Vega, S. Theoretical aspects of dynamic nuclear polarization in the solid

state--spin temperature and thermal mixing. Phys Chem Chem Phys 15, 188-203,

doi:10.1039/c2cp42897k (2013).

48 Zhang, W. X., Hu, J. L., Zhuang, J., You, J. Q. & Liu, R. B. Protection of center-spin coherence by a

dynamically polarized nuclear spin core. Physical Review B 82, doi:ARTN 045314

10.1103/PhysRevB.82.045314 (2010).

49 Redfield, A. G. Nuclear magnetic resonance saturation and rotary saturation in solids. Physical

Review 98, 1787-1809, doi:DOI 10.1103/PhysRev.98.1787 (1955).

50 Provotorov, B. N. Nuclear magnetic resonance in solids. Optika I Spektroskopiya 11, 123-125

(1961).

51 Lumata, L., Merritt, M. E., Malloy, C. R., Sherry, A. D. & Kovacs, Z. Impact of Gd3+ on DNP of [1-

C-13]pyruvatedoped with trityl OX063, BDPA, or 4-Oxo-TEMPO. Journal of Physical Chemistry A

116, 5129-5138, doi:10.1021/jp302399f (2012).

52 Johanneson, H., Macholl, S. & Ardenkjaer-Larsen, J. H. Dynamic nuclear polarization of [1-C-

13]pyruvic acid at 4.6 tesla. Journal of Magnetic Resonance 197, 167-175,

doi:10.1016/j.jmr.2008.12.016 (2009).

191

53 Bankson, J. A., Walker, C. M., Ramirez, M. S., Stefan, W., Fuentes, D., Merritt, M. E., Lee, J.,

Sandulache, V. C., Chen, Y., Phan, L., Chou, P. C., Rao, A., Yeung, S. C., Lee, M. H.,

Schellingerhout, D., Conrad, C. A., Malloy, C., Sherry, A. D., Lai, S. Y. & Hazle, J. D. Kinetic

modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved

metabolic imaging of tumors. Cancer Res 75, 4708-4717, doi:10.1158/0008-5472.CAN-15-0171

(2015).

54 Harris, T., Eliyahu, G., Frydman, L. & Degani, H. Kinetics of hyperpolarized 13C1-pyruvate

transport and metabolism in living human breast cancer cells. Proc Natl Acad Sci U S A 106,

18131-18136, doi:10.1073/pnas.0909049106 (2009).

55 Li, L. Z., Kadlececk, S., Xu, H. N., Daye, D., Pullinger, B., Profka, H., Chodosh, L. & Rizi, R.

Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the

quantification of reaction rate constants. NMR Biomed 26, 1308-1320, doi:10.1002/nbm.2953

(2013).

56 Bahrami, N., Swisher, C. L., Von Morze, C., Vigneron, D. B. & Larson, P. E. Kinetic and perfusion

modeling of hyperpolarized (13)C pyruvate and urea in cancer with arbitrary RF flip angles.

Quant Imaging Med Surg 4, 24-32, doi:10.3978/j.issn.2223-4292.2014.02.02 (2014).

57 Witney, T. H., Kettunen, M. I. & Brindle, K. M. Kinetic modeling of hyperpolarized 13C label

exchange between pyruvate and lactate in tumor cells. J Biol Chem 286, 24572-24580,

doi:10.1074/jbc.M111.237727 (2011).

58 Harrison, C., Yang, C., Jindal, A., DeBerardinis, R. J., Hooshyar, M. A., Merritt, M., Sherry, D.A. &

Malloy, C. R. Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by

hyperpolarized 13 C NMR. NMR Biomed 25, 1286-1294, doi:10.1002/nbm.2801 (2012).

192

59 Pages, G. & Kuchel, P. W. Mathematical modeling and data analysis of NMR experiments using

hyperpolarized (13)C metabolites. Magn Reson Insights 6, 13-21, doi:10.4137/MRI.S11084

(2013).

60 Zierhut, M. L., Yen, Y. F., Chen, A. P., Bok, R., Albers, M. J., Zhang, V., Tropp, J., Park, I., Vigneron,

D. B., Kurhanewicz, J., Hurd, R. E. & Nelson, S. J. Kinetic modeling of hyperpolarized 13C1-

pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson 202, 85-92,

doi:10.1016/j.jmr.2009.10.003 (2010).

61 Xing, Y., Reed, G. D., Pauly, J. M., Kerr, A. B. & Larson, P. E. Optimal variable flip angle schemes

for dynamic acquisition of exchanging hyperpolarized substrates. J Magn Reson 234, 75-81,

doi:10.1016/j.jmr.2013.06.003 (2013).

62 Walker, C. M., Chen, Y., Lai, S. Y. & Bankson, J. A. A novel perfused Bloch-McConnell simulator

for analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43, 854,

doi:10.1118/1.4939877 (2016).

63 McConnell, H. M. Reaction rates by nuclear magnetic resonance. Journal of Chemical Physics 28,

430-431, doi:Doi 10.1063/1.1744152 (1958).

64 Tofts, P. S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7,

91-101 (1997).

65 Tofts, P. S., Brix, G., Buckley, D. L., Evelhoch, J. L., Henderson, E., Knopp, M. V., Larsson, H. B.,

Lee, T. Y., Mayr, N. A., Parker, G. J., Port, R. E., Taylor, J. & Weisskoff, R. M. Estimating kinetic

parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer:

standardized quantities and symbols. J Magn Reson Imaging 10, 223-232 (1999).

66 Segel, I. H. Enzyme kinetics : behavior and analysis of rapid equilibrium and steady state enzyme

systems. (Wiley, 1975).

193

67 Duffield, R. B. & Calvin, M. The stability of chelatecompounds .3. Exchange reactions of copper

chelate compounds. Journal of the American Chemical Society 68, 557-561, doi:DOI

10.1021/ja01208a007 (1946).

68 Walker, C. M., Lee, J., Ramirez, M. S., Schellingerhout, D., Millward, S. & Bankson, J. A. A

catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-(1)(3)C]-pyruvate.

PLoS One 8, e71274, doi:10.1371/journal.pone.0071274 (2013).

69 Kettunen, M. I., Hu, D. E., Witney, T. H., McLaughlin, R., Gallagher, F. A., Bohndiek, S. E., Day, S.

E. & Brindle, K. M. Magnetization transfer measurements of exchange between hyperpolarized

[1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med 63, 872-880,

doi:10.1002/mrm.22276 (2010).

70 Press, W. H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. Numerical recipes in C++ : the art

of scientific computing. 2nd edn, (Cambridge University Press, 2002).

71 Davenport, R. The derivation of the gamma-variate relationship for tracer dilution curves. J Nucl

Med 24, 945-948 (1983).

72 Gamma, E. Design patterns : elements of reusable object-oriented software. (Addison-Wesley,

1995).

73 Walker, C. M., Merritt, M., Wang, J. X. & Bankson, J. A. Use of a multi-compartment dynamic

single enzyme phantom for studies of hyperpolarized magnetic resonance agents. J Vis Exp,

doi:10.3791/53607 (2016).

74 Kazan, S. M., Reynolds, S., Kennerley, A., Wholey, E., Bluff, J. E., Berwick, J., Cunningham, V. J.,

Paley, M. N. & Tozer, G. M. Kinetic modeling of hyperpolarized (13)C pyruvate metabolism in

tumors using a measured arterial input function. Magn Reson Med 70, 943-953,

doi:10.1002/mrm.24546 (2013).

194

75 Ramirez, M. S., Lee, J., Walker, C. M., Sandulache, V. C., Hennel, F., Lai, S. Y. & Bankson, J. A.

Radial spectroscopic MRI of hyperpolarized [1-(13) C] pyruvate at 7 tesla. Magn Reson Med 72,

986-995, doi:10.1002/mrm.25004 (2014).

76 Fletcher, J. W., Logan, T. F., Eitel, J. A., Mathias, C. J., Ng, Y., Lacy, J. L., Hutchins, G. D. & Green,

M. A. Whole-body PET/CT evaluation of tumor perfusion using generator-based 62Cu-

ethylglyoxal bis(thiosemicarbazonato)copper(II): validation by direct comparison to 15O-water

in metastatic renal cell carcinoma. J Nucl Med 56, 56-62, doi:10.2967/jnumed.114.148106

(2015).

77 Bergmeyer, H.U., & Gawehn, K. Methods of enzymatic analysis. 3 edn, Vol. 3 (Verlag Chemie,

1983).

78 Yagil, G. & Hoberman, H. D. Rate of isotope exchange in enzyme-catalyzed reactions.

Biochemistry 8, 352-360 (1969).

79 Zewe, V. & Fromm, H. J. Kinetic studies of rabbit muscle lactate dehydrogenase. J Biol Chem 237,

1668-1675 (1962).

80 Zewe, V. & Fromm, H. J. Kinetic studies of rabbit muscle lactatedehydrogenase. II. Mechanism of

the reaction. Biochemistry 4, 782-792 (1965).

81 Sandulache, V. C., Skinner, H. D., Wang, Y., Chen, Y., Dodge, C. T., Ow, T. J., Bankson, J. A., Myers,

J. N. & Lai, S. Y. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and

improves response to conventional chemotherapy and radiation. Mol Cancer Ther 11, 1373-

1380, doi:10.1158/1535-7163.MCT-12-0041 (2012).

82 Ramirez, M., Lee, J. & Bankson, J. in Innovations in Cancer Prevention and Research Conference.

Austin Texas 2012 (Cancer Prevention and Research Institute of Texas).

195

83 Zhao, L., Mulkern, R., Tseng, C. H., Williamson, D., Patz, S., Kraft, R., Walsworth, R. L., Jolesz, F. A.

& Albert, M. S. Gradient-echo imaging considerations for hyperpolarized 129Xe MR. J Magn

Reson B 113, 179-183 (1996).

84 Nucera, C., Nehs, M. A., Mekel, M., Zhang, X., Hodin, R., Lawler, J., Nose, V. & Parangi, S. A novel

orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 19, 1077-1084,

doi:10.1089/thy.2009.0055 (2009).

85 Albers, M. J., Bok, R., Chen, A. P., Cunningham, C. H., Zierhut, M. L., Zhang, V. Y., Kohler, S. J.,

Tropp, J., Hurd, R. E., Yen, Y. F., Nelson, S. J., Vigneron, D. B. & Kurhanewicz, J. Hyperpolarized

13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and

grading. Cancer Res 68, 8607-8615, doi:10.1158/0008-5472.CAN-08-0749 (2008).

86 Laustsen, C., Ostergaard, J. A., Lauritzen, M. H., Norregaard, R., Bowen, S., Sogaard, L. V.,

Flyvbjerg, A., Pedersen, M. & Ardenkjaer-Larsen, J. H. Assessment of early diabetic renal changes

with hyperpolarized [1-(13) C]pyruvate. Diabetes Metab Res Rev 29, 125-129 (2013).

87 Schroeder, M. A., Lau, A. Z., Chen, A. P., Gu, Y., Nagendran, J., Barry, J., Hu, X., Dyck, J. R., Tyler,

D. J., Clarke, K., Connelly, K. A., Wright, G. A. & Cunningham, C. H. Hyperpolarized (13)C

magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the

failing heart. Eur J Heart Fail 15, 130-140 (2013).

88 Thind, K., Chen, A., Friesen-Waldner, L., Ouriadov, A., Scholl, T. J., Fox, M., Wong, E., Vandyk, J.,

Hope, A. & Santyr, G. Detection of radiation-induced lung injury using hyperpolarized (13) C

magnetic resonance spectroscopy and imaging. Magn Reson Med 16, 24525 (2012).

89 Lodi, A., Woods, S. M. & Ronen, S. M. Treatment with the MEK inhibitor U0126 induces

decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer

cells. NMR Biomed 26, 299-306 (2013).

196

90 Clatworthy, M. R., Kettunen, M. I., Hu, D. E., Mathews, R. J., Witney, T. H., Kennedy, B. W.,

Bohndiek, S. E., Gallagher, F. A., Jarvis, L. B., Smith, K. G. & Brindle, K. M. Magnetic resonance

imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular

necrosis. Proc Natl Acad Sci U S A 109, 13374-13379 (2012).

91 Bohndiek, S. E., Kettunen, M. I., Hu, D. E. & Brindle, K. M. Hyperpolarized (13)C spectroscopy

detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer

Res 72, 854-864 (2012).

92 Park, I., Bok, R., Ozawa, T., Phillips, J. J., James, C. D., Vigneron, D. B., Ronen, S. M. & Nelson, S. J.

Detection of early response to temozolomide treatment in brain tumors using hyperpolarized

13C MR metabolic imaging. J Magn Reson Imaging 33, 1284-1290 (2011).

93 Buckler, A. J., Bresolin, L., Dunnick, N. R., Sullivan, D. C., Aerts, H. J., Bendriem, B., Bendtsen, C.,

Boellaard, R., Boone, J. M., Cole, P. E., Conklin, J. J., Dorfman, G. S., Douglas, P. S., Eidsaunet, W.,

Elsinger, C., Frank, R. A., Gatsonis, C., Giger, M. L., Gupta, S. N., Gustafson, D., Hoekstra, O. S.,

Jackson, E. F., Karam, L., Kelloff, G. J., Kinahan, P. E., McLennan, G., Miller, C. G., Mozley, P. D.,

Muller, K. E., Patt, R., Raunig, D., Rosen, M., Rupani, H., Schwartz, L. H., Siegel, B. A., Sorensen, A.

G., Wahl, R. L., Waterton, J. C., Wolf, W., Zahlmann, G. & Zimmerman, B. Quantitative imaging

test approval and biomarker qualification: interrelated but distinct activities. Radiology 259,

875-884, doi:10.1148/radiol.10100800 (2011).

94 von Morze, C., Bok, R. A., Reed, G. D., Ardenkjaer-Larsen, J. H., Kurhanewicz, J. & Vigneron, D. B.

Simultaneous multiagent hyperpolarized (13)C perfusion imaging. Magn Reson Med 72, 1599-

1609, doi:10.1002/mrm.25071 (2014).

95 Yen, Y. F., Kohler, S. J., Chen, A. P., Tropp, J., Bok, R., Wolber, J., Albers, M. J., Gram, K. A.,

Zierhut, M. L., Park, I., Zhang, V., Hu, S., Nelson, S. J., Vigneron, D. B., Kurhanewicz, J., Dirven, H.

197

A. & Hurd, R. E. Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized

13C-pyruvate. Magn Reson Med 62, 1-10, doi:10.1002/mrm.21987 (2009).

96 Gordon, J. W., Vigneron, D. B. & Larson, P. E. Development of a symmetric echo planar imaging

framework for clinical translation of rapid dynamic hyperpolarized 13 C imaging. Magn Reson

Med, doi:10.1002/mrm.26123 (2016).

97 Jiang, W., Lustig, M. & Larson, P. E. Concentric rings K-space trajectory for hyperpolarized (13)C

MR spectroscopic imaging. Magn Reson Med 75, 19-31, doi:10.1002/mrm.25577 (2016).

98 Hu, S., Lustig, M., Chen, A. P., Crane, J., Kerr, A., Kelley, D. A., Hurd, R., Kurhanewicz, J., Nelson,

S. J., Pauly, J. M. & Vigneron, D. B. Compressed sensing for resolution enhancement of

hyperpolarized 13C flyback 3D-MRSI. J Magn Reson 192, 258-264,

doi:10.1016/j.jmr.2008.03.003 (2008).

99 Brindle, K. M., Bohndiek, S. E., Gallagher, F. A. & Kettunen, M. I. Tumor imaging using

hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66, 505-519,

doi:10.1002/mrm.22999 (2011).

100 Cunningham, C. H., Chen, A. P., Albers, M. J., Kurhanewicz, J., Hurd, R. E., Yen, Y. F., Pauly, J. M.,

Nelson, S. J. & Vigneron, D. B. Double spin-echo sequence for rapid spectroscopic imaging of

hyperpolarized 13C. J Magn Reson 187, 357-362, doi:10.1016/j.jmr.2007.05.014 (2007).

101 Wiesinger, F., Weidl, E., Menzel, M. I., Janich, M. A., Khegai, O., Glaser, S. J., Haase, A.,

Schwaiger, M. & Schulte, R. F. IDEAL spiral CSI for dynamic metabolic MR imaging of

hyperpolarized [1-13C]pyruvate. Magn Reson Med 68, 8-16, doi:10.1002/mrm.23212 (2012).

102 Lee, Y., Zacharias, N. M., Piwnica-Worms, D. & Bhattacharya, P. K. Chemical reaction-induced

multi-molecular polarization (CRIMP). Chem Commun (Camb) 50, 13030-13033,

doi:10.1039/c4cc06199c (2014).

198

103 Theorell, H. & Bonnichsen, R. Studies on liver alcohol dehydrogenase .1. Equilibria and initial

reaction velocities. Acta Chem Scand 5, 1105-1126, doi:DOI 10.3891/acta.chem.scand.05-1105

(1951).

104 Fromm, H. J. & Nelson, D. R. Ribitol dehydrogenase .3. Kinetic studies with product inhibition.

Journal of Biological Chemistry 237, 215-& (1962).

105 King, E. L. & Altman, C. A Schematic method of deriving the ratelaws for enzyme-catalyzed

reactions. J Phys Chem-Us 60, 1375-1378, doi:DOI 10.1021/j150544a010 (1956).

199

 Vita

 Christopher Michael Walker Was Born on August 22nd 1987 the son of Mike and Cheryl Walker

in Raleigh, North Carolina. He graduated from Westlake High School in 2005 in Austin, Texas and

matriculated into Trinity University in San Antonio, Texas. He graduated from Trinity University in 2010

with a bachelor’s of science in physics with computation as a second major. He began his graduate

studies The University of Texas Graduate School of Biomedical Sciences at Houston in Houston, Texas

September of 2010 and conducted his research in the magnetic resonance system and instrumentation

laboratory of the university of Texas M.D. Anderson Cancer Center.

Permanent address:

5920 Cape Coral Dr.

Austin, TX 78746

	Texas Medical Center Library
	DigitalCommons@TMC
	12-2016

	Novel Simulation to Avoid Bias in Measurement of Hyperpolarized Pyruvate: Demonstrated in Phantom and In Vivo
	Christopher M. Walker
	Recommended Citation

	currentLoopMagnticMoment

