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NOVEL SIMULATION TO AVOID BIAS IN MEASUREMENT OF HYPERPOLARIZED PYRUVATE: 
DEMONSTRATED IN PHANTOM AND IN VIVO 

 
Christopher M. Walker B.Sc 

Advisory Professor: James A. Bankson, Ph.D 

Abstract 

 Dynamic nuclear polarization creates a transient hyperpolarized nuclear state that can 

dramatically increase the signal detected by magnetic resonance imaging. This signal increase allows 

real-time spectroscopic imaging of specific metabolites in vivo by magnetic resonance. Real-time 

imaging of both the spatial and chemical fate of hyperpolarized metabolites is showing great promise to 

meaningfully benefit clinical care of cancer patients. Imaging of hyperpolarized agents will have a larger 

clinical impact if it can function as a quantitative modality upon which clinical decisions can be made. 

However, quantitative measurement of hyperpolarized agents is currently difficult due to the 

restrictions imposed by the transient hyperpolarized state and the complexity inherent in biological 

systems. As more advanced imaging and measurement techniques are developed for imaging 

hyperpolarized substrates, it is critical to characterize their effect on any relevant quantitative measure. 

To assist in accurate quantitative measurement of hyperpolarized agents, an infrastructure where 

acquisition strategies can be developed, compared, optimized and validated was critically need.  A novel 

simulation architecture was developed that combines classical chemical kinetics with the basic physics 

of nuclear magnetic resonance and couples them to multiple perfusion models. Simulation results 

showed that changes in the acquisition strategy used will affect the resulting quantification of chemical 

exchange rates and suggested that any bias that is imposed by the acquisition strategy can be avoided 

by using optimized pulse sequences. To validate these predictions, a phantom system was developed 

that allows controllable chemical conversion of hyperpolarized pyruvate into lactate with a variability 

less than 20%. Using this phantom system, studies showed that poorly optimized pulse sequences 
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significantly reduced the measured value of the chemical exchange rates, whereas optimized pulse 

sequences showed no significant difference in chemical exchange measurements. In order to test 

simulation predictions for a perfused system, an animal cohort with orthotropic anaplastic thyroid 

cancer was scanned with multiple sequences. Again, optimized sequences showed no significant 

difference in measured exchange rates while poorly designed sequences significantly underestimated 

the exchange rates, which is consistent with the simulation results. These validation studies suggest that 

this simulation architecture will be a powerful tool for developing and optimizing acquisition and 

quantization methods for hyperpolarized magnetic resonance imaging.   
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 Chapter 1. Introduction and Motivation 

Cancer is most fundamentally characterized by a cell or a population of cells that sustains 

chronic uncontrolled proliferation1. While sustained proliferation is quite common in single cell 

organisms, in more complex multi-cellular organisms, proliferation is tightly regulated to maintain 

homeostasis. In the case of cancer, such regulation breaks down through many mechanisms and the 

neoplastic population can become a threat to the survival of the organism. The loss of tight genetic 

control is characterized by, among other traits, genotypic, phenotypic and cellular heterogeneity2,3. 

Such heterogeneity is a driving factor among the many challenges associated with the 

management of cancer. This point is highlighted by the relatively poor improvement in cancer mortality 

in the United States since 19304, despite the massive investments in research and treatment and the 

resulting breakthroughs in human understanding of the disease and how to treat it. Additionally, cancer 

represents the second, likely soon to be first, largest cause of death in the United States4. In order to be 

properly managed, cancers have to be well understood. Recently this core concept has been taken to its 

most extreme interpretation with the advent of personalized care. The aging concept of managing 

cancers based on their stage and organ of presentation is being replaced with a paradigm of 

characterization and treatment of a tumor on a patient-specific basis. To achieve such a goal, technology 

will have to be leveraged to give clinicians the specific information about a particular patient’s tumor 

such that a treatment strategy can be devised and continuously revised.  To that end, medical imaging 

will play a key complementary role in detection, characterization and monitoring of disease5-9. 

Imaging strategies have multiple advantages, yet in order to be useful, clinical imaging needs to 

be sensitive and specific to particular biologic functions of interest10. In the case of profiling cancer, 

imaging with sensitivity to cellular characteristics and processes on a molecular level, known as 

molecular imaging, is particularly attractive. This is mostly because the drivers of progression in cancer 

are themselves cellular processes and therefore sensitivity on a cellular level is critical to monitoring 
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such drivers1. However, in order to characterize cellular processes noninvasively, imaging methods 

either require extreme detection sensitivity or must target processes that involve plentiful agents for 

detection. One such cellular process that involves large set of pathways though which a multitude of 

molecules are processed is cellular energetics, or metabolism. Fortunately, one of the primary cellular 

functions altered by the dysregulations associated with cancers is metabolism2. Therefore, cellular 

metabolism has the potential sensitivity and specificity to make it an effective molecular imaging target. 

 Most normal mammalian cells metabolize glucose into C02 in order to produce adenosine 

triphosphate (ATP), which is used in intercellular energy transfer11. The breakdown of glucose follows a 

multi-step pathway with many branching points, but if commonly progresses to pyruvate through a 

process known as glycolysis. Glycolysis is composed of ten reactions catalyzed by enzymes and converts 

glucose, along with the cofactors adenosine diphosphate (ADP) and oxidized nicotinamide adenine 

dinucleotide (NAD+), into pyruvate along with the higher energy compounds ATP and reduced 

nicotinamide adenine dinucleotide (NADH). In well differentiated cells, pyruvate is normally transported 

into the mitochondria where it is further broken down into CO2 by a process known as the tricarboxylic 

acid (TCA) cycle, which produces NADH from NAD+. The excess NADH is then used to drive oxidative 

phosphorylation, which generates a large amount of ATP. In total, glycolysis coupled with the TCA cycle 

and oxidative phosphorylation produces 36 ATP molecules from a single glucose molecule. Oxidative 

phosphorylation requires oxygen, so under anaerobic conditions pyruvate is normally shunted into 

lactate through a process known as anaerobic glycolysis. Anaerobic glycolysis is a single step reaction 

that oxidizes NADH to produce lactate. It takes place outside of the mitochondria in the cell’s cytosol. 

Generally, lactate is exported outside of the cell after anaerobic glycolysis, where it is used by the Cori 

cycle in the liver. 

 Neoplastic tissue preferentially converts pyruvate into lactate even in the presence of oxygen12. 

The conversion of pyruvate to lactate in the presence of oxygen is commonly referred to as aerobic 



3 
 

glycolysis or the Warburg effect13. Aerobic glycolysis, while much less energy efficient than oxidative 

phosphorylation, still produces 2 ATP molecules from each molecule of glucose. It is initially non-

intuitive that highly proliferative neoplastic cells would select for a less efficient method of producing 

ATP. This was first theorized to be driven by defects in the mitochondria limiting the cells’ ability to 

engage in oxidative phosphorylation. However, it has been shown that mitochondria in neoplastic cells 

do not often have impaired function. It has also been proposed that highly proliferative cells are not 

limited by energy production14. Most neoplastic cells are in glucose-rich environments and can increase 

glucose uptake, thereby offsetting the energy restrictions they might incur by favoring less efficient 

anaerobic glycolysis.  Therefore, if the cells can gain other benefits from favoring aerobic glycolysis, then 

the less efficient ATP production might not be detrimental. Indeed, most tumors do upregulate glucose 

uptake through phosphoinositide 3-kinase activation, which has been well studied, including in clinical 

disease by 18F-deoxyglucose positron emission tomography.  

 There are many potential proliferative benefits associated with the reduction of the TCA cycle 

and the increased glucose uptake that is associated with aerobic glycolysis. Oxidative phosphorylation is 

the largest generator of reactive oxygen species (ROS) in normal cells. During cell division, DNA must be 

replicated and is vulnerable to damage by ROS. Therefore, a reduction in oxidative phosphorylation 

could protect cells as they move through the cell cycle. Additionally, glucose can be catabolized into 

other metabolic intermediates, as opposed to the complete breakdown to C02 which maximizes ATP 

production. Proliferating cells need to replicate their entire cellular content. This places a high demand 

on the biosynthesis of nucleotides, lipids, and amino acids. While the production of these intermediates 

and their use to build macromolecules requires ATP, it also requires biomass, both of which can be 

supplied by glucose. There are many metabolic products that require more carbon biomass than ATP to 

be assembled. To generate these, it is more efficient to limit the ATP produced by glucose and allow it to 

be used to generate metabolic precursors. Overall, cells in a proliferative state reduce the amount of 
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nutrients catabolized for energy production to allow some carbon to be used in the production of the 

macromolecular structures that are needed to form two viable daughter cells15. 

Another feature of anaerobic glycolysis is the production of a large amount of lactate. While the 

generation and export of large amounts of lactate from the cell seems like a waste of either potential 

ATP production or carbon biomass, it is important to consider the selective pressures on a proliferating 

cell. When selecting for rapid proliferation, the most efficient utilization of nutrients might not be 

preferred. In an organism, cells are in a nutrient-rich environment and therefore can be less efficient in 

the generation of ATP and other metabolic intermediates, which can be offset by increased nutrient 

uptake. Additionally, there are other tissues and organs that can utilize lactate for energy production, 

thus recapturing the potential loss of energy through mechanisms such as the Cori cycle.  

Generally, aerobic glycolysis confers many potential benefits onto rapidly proliferating cells. 

They can take up much more glucose without having to produce the associated ROS, which could be 

devastating to DNA replication. The excess glucose can be rapidly shunted into macromolecular 

precursors, which will be needed to replicate the entire content of a cell. Only the most rapid steps in 

glucose catabolism will be favored as lactate is exported from the cell limiting the more efficient, yet not 

so rapid, later steps in glucose catabolism. Finally, anaerobic glycolysis is still energy-positive, generating 

the ATP and NADH that are needed for the replication and assembly of cellular content. 

A critical step in anaerobic glycolysis is the conversion of pyruvate to lactate. This is catalyzed by 

the enzyme lactate dehydrogenase (LDH) and requires the co-enzyme NADH, which donates a proton to 

become NAD+ 11. The conversion from pyruvate to lactate is reversible, with the direction of favorability 

determined partially by the LDH isoform catalyzing the reaction. LDH is a tetramer composed of four 

sub-units that can be from either or both of two genes, LDH-A and LDH-B. The combination of these two 

subunits forms five possible LDH isoforms LDH (1-5), LDH1 is composed entirely of subunits encoded by 

LDH-B and it favors the conversion of lactate into pyruvate while LDH5 is composed of subunits encoded 
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by LDH-A and strongly favors the conversion of pyruvate into lactate. In most cancer cells LDH-A is 

strongly upregulated, creating an abundance of LDH5. This helps drive anaerobic glycolysis. 

Large production of lactate will tend to occur only in stressed muscles or in tumor tissue. 

Therefore, in a rested subject, the production of lactate through aerobic glycolysis would be a specific 

marker of cancer. The production of lactate is also dependent upon a cell’s redox state and therefore it 

is coupled with many cellular processes. Most obvious would be cell viability. Dead and dying cells will 

be unable to produce lactate as cellular functions are shutting down. A cells response to cellular damage 

via reactive oxygen species has also been shown to correlate with reduced lactate production. This is 

mediated by ROS scavenger compounds, which deplete a cell’s reducing potential invoked to protect the 

genome. The metabolic alterations in cells as a response to insult can be rapid, allowing response 

characterization long before significant physiologic or morphologic changes occur16-19. 

Recently it has been shown that the aberrant metabolism that is displayed by cancer is not 

simply a byproduct of rapid proliferation but is closely tied to tumorigenesis20. Some tumors show a 

dependence on upregulated phosphoinositide 3-kinase, which upregulates glucose transport. 

Additionally, oncogenes RAS and MYC correlate with an upregulation of glycolysis. MYC also regulates 

proteins that control glutamine metabolism and can lead to a phenotypic dependence on glutamine 

metabolism.  Tumors cell frequently experience hypoxic conditions, which along with RAS can increase 

the expression of hypoxia-inducible factor1𝛼 and 2𝛼 which in turn upregulate glycolysis. Isocitrate 

dehydrogenase 1 and 2 (IDH 1 and 2) have been shown to be activated in a subset of gliomas. IDH1 and 

2 catalyze the conversion between isocitrate and α-ketoglutarate, resulting in a unique metabolic 

phenotype in the gliomas with mutant IDH 1 or 2. Tumor suppressor genes also play a guiding role in 

cellular metabolism. The tumor suppressor gene p53 can drive more glucose into the pentos phosphate 

shunt by regulating the expression of TIGAR. While it is becoming clear that the mutations involved in 

tumorigenesis play a role in regulating metabolism, the exact mechanisms are still under investigation. 
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Despite the ongoing investigation into how oncogenic driving mutations alter metabolism, there 

has been progress in leveraging unique metabolic phenotypes, such as the production of 2-

hydroxyglutarate in IDH1 mutant glioblastomas, to characterize cancer mutations21. Such 

characterization could be used to assist tumor profiling, which is becoming critical for treatment 

decisions in the age of personalized therapies22. Additionally, cancer cells can be dependent upon their 

altered metabolism, providing an opportunity for pharmacologic intervention23. With primary or 

adjuvant therapies targeting metabolism specifically, sensitive probes of cancer metabolism would be an 

unparalleled tool in monitoring therapy response and efficacy. 

While pyruvate is a downstream product of glycolysis, it is also taken up by cells via the 

monocarboxylate transporter 1 (MCT-1). The MCT family of proteins transport monocarboxylates in a 

proton-linked manner24. Two isoforms, MCT-1 and MCT-4, are important for lactate efflux. MCT-1 is less 

specific for lactate than MCT-4, and can also result in pyruvate flux into the cell. Cancer cells frequently 

upregulate MCT-1 and MCT-4, which remove the excess lactate produced by anaerobic glycolysis. 

Additionally, cancer cells can rapidly take up pyruvate through the MCT-1 transporter. 

 Because of these biologic factors, pyruvate would be an ideal target for probing anaerobic 

glycolysis of tumors. Pyruvate is an organic compound consisting of a carboxylic acid and a keto group. 

Pyruvate is converted to lactate by reducing the number 2 carbon with an H- from NADH, thus altering 

the chemical structure of the molecule. This chemical change will result in a change in the frequency of 

its carbon magnetic resonance signal. Therefore, magnetic resonance spectroscopy of pyruvate could be 

a promising tool for assessing anaerobic glycolysis and thus cancer metabolism.  

The carbons that make up the backbone of a pyruvate molecule have the potential to be 

detected via magnetic resonance imaging (MRI), but the magnetic resonance signal of carbon is 

extremely weak. However, using the technique of hyperpolarization, the magnetic resonance signal of a 

compound can be increased by many orders of magnitude25. Additionally, pyruvate has numerous 
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advantages as a hyperpolarized agent26. The carbon in the one position of pyruvate has a detection 

lifetime on the order of a few minutes. Pyruvate is rapidly distributed after an intravenous injection 

where it is quickly taken up by cells through the MCT-1. Once it is in the cytosol, pyruvate is quickly 

converted to its downstream products27. The delivery and conversion of pyruvate can happen on the 

order of a few seconds, depending on the tissue. In the case of cancer specifically, the delivery, uptake, 

and conversion of pyruvate is generally quick, due in part to the Warburg effect. Fortunately, carbon 13 

labeled pyruvate is non-toxic even at high dosages, allowing large amounts of pyruvate to be safely 

administered28. In summary, as a hyperpolarized magnetic resonance agent, pyruvate is an ideal probe 

of cancer metabolism due to its physical as well as its physiologic and biochemical properties.  

Detection of hyperpolarized pyruvate by magnetic resonance is quite different from the 

techniques of conventional MRI and magnetic resonance spectroscopy (MRS), which focus on detection 

of hydrogen atoms normally bound in a water molecule. These differences result in acquisition 

strategies that are divergent from conventional MRI and MRS16,26-30. Therefore, much of the 

development and optimization of acquisition and processing associated with conventional MRI and MRS 

cannot be applied to hyperpolarized agents. Additionally, as a molecular imaging strategy, the ability to 

quantify results in some way that is comparable with other measurements and is intrinsically related to 

underlying biology is critical for clinical utility. Given these constraints, it is imperative that 

hyperpolarized MRI and MRS be thoroughly characterized and optimized. However, due to practical 

limitations such characterization cannot be performed by experimentation alone. The parameter space 

that needs to be explored to ensure efficient detection and quantization fidelity is far too extensive to 

be thoroughly explored in the lab. There was thus a critical need for a simulation architecture that could 

rapidly explore the numerous detection methods and quantization techniques proposed for 

hyperpolarized MRI and MRS. In this work such a system has been developed from first principals and 

validated in multiple physical models. The simulation architecture described herein is a flexible tool for 
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designing, comparing and optimizing acquisition methods related to hyperpolarized agents and will 

serve as a powerful tool as hyperpolarized MRI and MRS move from developing pre-clinical techniques 

to robust and routine clinical modalities. 
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Hypothesis 

The value of the pyruvate-to-lactate exchange rate that is measured by hyperpolarized MR is 

significantly altered by the MR data acquisition strategy that is employed. By utilizing a novel simulation, 

pulse sequences can be designed such that any biases imposed by the acquisition strategy can be 

removed for both phantom and in vivo studies. 

Aim 1: Development of a novel perfused Bloch-McConnell simulator 

The governing equations of the classical model ofnuclear magnetic resonance (NMR), the Bloch 

equations, can be solved numerically. The Bloch equations are widely used to simulate and optimize MRI 

pulse sequences and acquisition strategies. It should be noted that although many conventional Bloch 

simulators do not account for a hyperpolarized state, the generalized Bloch equations do model this 

situation. To meaningfully simulate hyperpolarized imaging, a physical model of tracer delivery and 

conversion was implemented, modeling both perfusion and chemical exchange.  

Aim 2: Compare the effects of excitation angles and repetition times using the perfused Bloch 

simulator 

Due to the non-renewable nature of hyperpolarized magnetization, each signal excitation will 

affect all subsequent measurements. Therefore, the detected signal will be inherently linked to the 

excitation scheme used in acquisition. Most hyperpolarized studies are processed to yield apparent 

rates of chemical exchange between multiple chemical pools. Using the simulation architecture from 

aim one to compare the rate constant resulting from the processing of simulation data to the actual rate 

constant used in simulation, the accuracy and repeatability of the measured exchange rate was 

determined across a range of sequence, physiologic, and modeling conditions. 

Aim 3: Using a novel dynamic enzyme phantom and in vivo models, errors introduced by the 

acquisition method, as predicted by simulation, were demonstrated for dynamic spectroscopy and 

compared to sequences designed to avoid such errors. 
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In order to validate the simulation predictions from aim 2, physical phantoms must be used. 

These model systems would need to convert hyperpolarized pyruvate into lactate in a repeatable 

manner. However, quantification of agent delivery and exchange rates has been difficult due to the 

complexity of the in vivo environment and the constraints inherent in hyperpolarized agents. The 

conversion of pyruvate to lactate can be run in the controlled environment of an isolated buffer, 

allowing imaging and quantification without the complexity of a biological system. Using the novel 

dynamic enzyme phantom, pulses sequences predicted by simulation to introduce errors in the 

measured apparent exchange rate were compared to sequences designed to avoid such errors. 

Additionally, in order to account for perfusion, similar validation studies were undertaken in a mouse 

model of thyroid cancer. 
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 Chapter 2. Nuclear Magnetic Resonance Physics 

The phenomenon of nuclear magnetic resonance is well described by the equation first 

presented by Felix Bloch31,32.  

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾𝑀⃑⃑ ×𝐵⃑ +

1

𝑇1
(𝑀⃑⃑ 0 − 𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⊥ 

 

The Bloch equation is composed of multiple terms which will be developed independently and 

then brought together. The precise interpretation of each term will be developed over the next chapter 

but briefly; the first term relates the precessional motion of the net magnetization vector 𝑀⃑⃑  to the 

external magnetic field 𝐵⃑  and the particles’ inherent gyromagnetic ratio 𝛾; the second term describes 

the system’s tendency to return to its thermal equilibrium 𝑀0⃑⃑ ⃑⃑  ⃑ with a time constant 𝑇1; finally, the third 

term describes a dephasing of the net magnetization vector due to molecular tumbling that is 

characterized by a decay time 𝑇2. 

 

Section 2.1 Larmor Precession 

Elementary particles or groups of particles with a non-zero spin give rise to magnetic dipoles33.  

Such dipoles will precess when in the presence of an external magnetic field. Consider a spinning 

charged body with mass 𝑚 and charge 𝑞. For mathematic simplicity it can be assumed that this object is 

a uniformly charged infinitesimally thin hoop. If the hoop is spinning with some angular velocity 𝜔 it has 

a current34:  

 
𝐽 =

𝑞𝜔⃑⃑ 

2𝜋
 2.1  

Current loops give rise to magnetic dipoles by the relation: 

 𝜇 = 𝐽𝐴 2.2  
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where 𝜇 is the magnetic dipole moment, 𝐽 is the current and 𝐴 is the area in closed by the hoop. 

Combining equations (2.1) and (2.2) and assuming a perfectly circular hoop leads to31: 

 
𝜇 =

𝑞𝜔⃑⃑ 

2𝜋
∗ 𝜋𝑟2 2.3  

where 𝑟 is the radius of the hoop.  To relate this back to a fundamental particle, the angular momentum 

must be defined. The angular momentum of a hoop will follow35: 

 𝐿⃑ =  𝐼𝜔⃑⃑  2.4  

where, 𝐼 is the Inertia of the system. Using the inertia of a spinning hoop of infinitesimal thickness 

yields: 

 𝐿⃑ = 𝑚𝑟2𝜔⃑⃑  2.5  

Rearranging equation (2.3) and substituting in equation (2.5) gives the relation for the dipole moment of 

the form: 

 
𝜇 =

1

2

𝑞

𝑚
𝐿⃑  2.6  

Thus the dipole moment of a spinning hoop of charge relates to its angular momentum only by its 

charge-to-mass ratio. Note that the factor of 
1

2
 is purely a function of the object’s geometry. If it were 

assumed to be a spinning disk that factor would be unity and it would be 
2

3
 and 

3

5
 for a sphere and ball 

respectively. The key idea is that if the object is spherically symmetric the magnetic dipole moment is 

determined by the charge-to-mass ratio scaled by a constant that is determined by the geometry. 

A fundamental property of elementary particles is their inherent angular momentum, which 

arises from a fundamental property of particles called spin. Spin is quantized into discreet states 

denoted by the quantum number 𝑠. A particle’s intrinsic angular momentum 𝑆  relates to its spin 𝑠 and 

the reduced Plank constant ℏ by36: 

 𝑆 = ℏ√𝑠(𝑠 + 1) 2.7  
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 Particles, either elementary or composite, can be classified by their possible spin states. Bosons are 

particles with integer spin, that is, they are symmetric about a 3600 rotation. Fermions have half integer 

spin states. With half integer spin states particles that have been rotated by 3600 are distinct. Thus 

asymmetry of Fermions results in their states being paired based on their spin. For Fermions, the 

relation defined in equation (2.6) does not strictly hold and must be modified to: 

 𝜇 = 𝑔
𝑞

2𝑚
𝑆  2.8  

where 𝑔, or g-factor, is a constant of proportionality that relates a particles’ magnetic moment to its 

inherent angular momentum. Interestingly, in the case of electrons, the g-factor is 2.00038 and the 

above classical derivation, assuming a disk geometry, gives nearly the exact form of the quantum 

relation for electrons. In the case of protons, the g factor is about 5.59 and such a classical derivation 

breaks down. This illustrates that particle spin is a purely quantum phenomenon with no robust classical 

analog. This should make some sense, as imagining a geometric system with spin ½, that is symmetric 

about a 7200 rotation and not one of 3600, is impossible. 

Commonly, the charge-to-mass ratio and g-factor are combined into a quantity known as the 

gyromagnetic ratio 𝛾. With this addition equation (2.8) becomes: 

 𝜇 = 𝛾𝑆  2.9  

In the presence of an external magnetic 𝐵⃑  field magnetic dipoles will tend to align with the field. This is 

made manifest by a torque 𝜏  given by34: 

 𝜏 = 𝜇 ×𝐵⃑  2.10  

Torque is equal to the moment of inertia times the angular acceleration 𝛼 : 

 𝜏 = 𝐼𝛼  2.11  

where angular acceleration is the time rate of change in angular momentum or: 

 
𝛼 =

𝑑𝐿⃑ 

𝑑𝑡
 2.12  
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Taking the time derivative of angular momentum as defined in equation (2.4) results in: 

 𝑑

𝑑𝑡
(𝐿⃑ ) =

𝑑

𝑑𝑡
(𝐼𝜔⃑⃑ ) =

𝑑𝐼

𝑑𝑡
𝜔⃑⃑ + 𝐼

𝑑𝜔⃑⃑ 

𝑑𝑡
 2.13  

Assuming no change in the moment of inertia, equation (2.13) becomes: 

 𝑑𝐿⃑ 

𝑑𝑡
= 𝐼

𝑑𝜔⃑⃑ 

𝑑𝑡
= 𝐼𝛼 = 𝜏  2.14  

Finally taking the time derivative of equation (2.9) with 𝛾 assumed to be constant yields: 

 𝑑

𝑑𝑡
(𝜇 ) =

𝑑

𝑑𝑡
(𝛾 𝑆 ) = 𝛾

𝑑𝑆 

𝑑𝑡
 2.15  

Assuming angular momentum 𝐿⃑  arises solely from the particles’ intrinsic angular momentum 𝑆  requires: 

 
𝛾
𝑑𝑆 

𝑑𝑡
= 𝛾

𝑑𝐿⃑ 

𝑑𝑡
 2.16  

Combining equations (2.10), (2.14), (2.15) and (2.16) yields the following relation31: 

 𝑑𝜇

𝑑𝑡
= 𝛾𝜇×𝐵 2.17  

Assuming that 𝐵⃑  is constant, referred to as 𝐵0⃑⃑ ⃑⃑ , equation (2.17) results in a precession about the 𝐵̂ axis 

with a precessional frequency 𝜔 following 

 𝜔 = −𝛾𝐵0⃑⃑ ⃑⃑   2.18  

The precessional frequency defined in equation (2.18) is referred to as the Larmor frequency. 

 

Section 2.2 The Magnetization Vector and Thermal Equilibrium 

Equation (2.17) assumes an isolated spin in a uniform magnetic field. Conventional magnetic 

resonance is a bulk phenomenon and so an ensemble of spins must be considered. Assume some small 

volume element or voxel that is large enough to contain a large number of fundamental particles but 

has a negligible change in 𝐵0. This is reasonable when considering small molecules like water. In one 

cubic micron there are over a billion water molecules. The 𝐵0 fields in the following section generally 
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refer to large man-made fields and as such will not vary significantly over distances on the order of a 

micron, well satisfying the voxel conditions outlined above. When dealing with an ensemble of magnetic 

material, such as a group of dipoles, a quantity called magnetization is used34. 

Magnetization is defined as the differential magnetic moment 𝑑𝑚⃑⃑  for some differential volume 𝑑𝑉: 

 
𝑀⃑⃑ =

𝑑𝑚⃑⃑ 

𝑑𝑉
 2.19  

When some finite number of magnetic moments is being considered over some finite space 𝑉 equation 

(2.19) becomes: 

 
𝑀⃑⃑ =

1

𝑉
∑ 𝜇 𝑖

𝑖=𝑑𝑖𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑉

 2.20  

If only the dipole interaction with an external field is considered, then equation (2.17) can be combined 

with equation (2.20) to yield: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
=
1

𝑉
∑ 𝛾𝜇 𝑖×𝐵⃑ 𝑒𝑥𝑡

𝑖=𝑑𝑖𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑉

= 𝛾𝑀⃑⃑ ×𝐵⃑ 𝑒𝑥𝑡  

 

2.21  

However, equation (2.17) was derived for an isolated magnetic moment. With the inclusion of multiple 

spins more interactions must be considered. In practice the voxel that defines the magnetization above 

will be in thermal contact with a surrounding lattice. Additionally, the lattice can be assumed to be large 

compared to the magnetization voxel, which was assumed to be small. Systems in thermal contact with 

larger lattices, or reservoirs, will follow the Boltzmann distribution: 

 
𝑃(𝜖) =

𝑒−
𝜖
𝑘𝑇

𝑍
 2.22  

 where 𝜖 is the energy of a state, in this case the magnetic potential energy of a magnetization vector in 

a 𝐵 field, 𝑃(𝜖) is the probability of a particle to be in that state, 𝑇 is the temperature of the reservoir, 𝑘 

is the Boltzmann constant and 𝑍 is a normalization constant that ensures that the total probability of all 
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states is unity. Conceptually, the thermal energy of the lattice will continuously perturb the 

magnetization from its lowest energy state, which is aligned with the external magnetic field. Therefore, 

the magnetic moments will be distributed across a range of states and subsequent energy levels driven 

by the temperature of the contacting lattice. The lattice must be large compared to the magnetization 

voxel so the energy loss from the lattice that perturbs the magnetization can be ignored. Classically 

equation (2.22) would be a continuous distribution with the magnetic energy 𝜖 defined as: 

 𝜖 = 𝜇 ⋅ 𝐵⃑  2.23  

which is simply the magnetic energy of a bar magnet in an external field.  However, the spin quantum 

number of Fermions is quantized into half integer states and there will only be a discreet number of 

possible states for equation (2.22)36. In a spin 
1

2
 system the spin quantum number 𝑠 can have two 

possible states + 〈
1

2
〉 and − 〈

1

2
〉. Using intrinsic angular momentum 𝑆 , equation (2.7), from those two spin 

states and the resulting dipole moment 𝜇 , equation (2.9) and equation (2.23) become: 

 
𝜖+ =

1

2
𝛾ℏ ⋅ 𝐵 𝑎𝑛𝑑 𝜖− = −

1

2
𝛾ℏ ⋅ 𝐵 2.24  

The energy difference between these two states will be 

 Δ𝐸 = 𝜖+ − 𝜖− = ℏ𝛾 ⋅ 𝐵 = ℏ𝜔 2.25  

Note that the frequency of such an energy transition is exactly the Larmor frequency. The energy 

required to induce a change in the distribution will be at or near the Larmor frequency. The 

magnetization at thermal equilibrium 𝑀0 will be, as defined by the Boltzmann distribution equation 

(2.22), a weighted average of all possible dipole moments over some voxel with spin density 𝜌0
31: 

 

𝑀0 = 𝜌0

∑ 𝜇(𝑚)𝑒
−𝑚ℏ𝛾⋅𝐵
𝑘𝑇

1
2

𝑚=−
1
2

∑ 𝑒
−𝑚ℏ𝛾⋅𝐵
𝑘𝑇

1
2

𝑚=−
1
2

 2.26  

In all but the super-cooled temperature ranges and for field strengths on the order of Tesla or lower 
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 𝑘𝑇 ≫ ℏ𝛾 ⋅ 𝐵    2.27  

As an example assume protons at room temperature and a 3 Tesla field. 𝑘𝑇 is ~25.9 meV whereas ℏ𝛾𝐵 

is ~0.25x10-4 meV satisfying the relationship in equation (2.27). 

Under the conditions in the relationship (2.27), a Taylor series expansion of the exponent in 

equation (2.22) is: 

 
𝑒
−𝑚ℏ𝛾𝐵
𝑘𝑇 = 1 +

−𝑚ℏ𝛾 ⋅ 𝐵

𝑘𝑇
+ 𝒪 {(

−𝑚ℏ𝛾 ⋅ 𝐵

𝑘𝑇
)
2

} +⋯ 2.28  

Using the first two terms of the expansion, equation (2.26) becomes: 

 

𝑀0 ≅ 𝜌0

∑ 𝜇(𝑚)1 +
−𝑚ℏ𝛾 ⋅ 𝐵
𝑘𝑇

1
2

𝑚=−
1
2

∑ 1 +
−𝑚ℏ𝛾 ⋅ 𝐵
𝑘𝑇

1
2

𝑚=−
1
2

 2.29  

Expanding the summation and noting that for a spin 
1

2
 system 𝜇(𝑚) = ±

1

2
ℏ𝛾, equation (2.29) reduces 

to: 

 
𝑀0 ≅

𝜌0𝛾
2ℏ2𝐵

4𝑘𝑇
 2.30  

with the direction of 𝑀0 parallel to the direction of 𝐵, which in most cases will be along 𝑧̂ as the 

direction of the static 𝐵 field that conventionally defines the 𝑧̂ axis. 

 

Section 2.3 Spin-Lattice and Spin-Spin Decay 

If the ensemble spin system described by equation (2.21) has some thermal equilibrium 𝑀0 

which is approximated by equation (2.30), it should follow that any perturbation from 𝑀0 will result in 

an unstable system that will return over some length of time, governed by a decay constant 𝑇1, to 𝑀0. 

The quantum mechanical perturbation theory behind this relaxation phenomenon is too lengthy to be 

outlined here in full detail37. Conceptually, the energy either gained or lost to achieve the return to 𝑀0 
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from some perturbed state is provided by numerous interactions with the lattice. Assuming that the 

interactions between the spin system and the lattice ar proportional to the magnitude of the 

perturbation from equilibrium, the following differential equation and solution31 hold: 

 𝑑𝑀

𝑑𝑡
=
1

𝑇1
(𝑀0 −𝑀) 

2.31  

 
𝑀(𝑡) = 𝑀(0)𝑒

−
𝑡
𝑇1 +𝑀0 (1 − 𝑒

−
𝑡
𝑇1) 

2.32  

While 𝑇1 decay governs how a spin system returns to equilibrium based on energy exchange with its 

lattice, the spins within the spin system can interact with each other. Such interactions are known as 

spin-spin interaction and are characterized by a constant conventionally referred to as 𝑇2. Since the 

temperature of the spin system is non-zero, there will be some molecular tumbling of the atoms or 

molecules in the voxel that defines a magnetization vector. The tumbling molecules which could be 

charged will create fluctuations in the magnetic field. Such fluxuations will be random, small and depend 

on the tumbling rate of the molecules. Small fluctuations in the magnetic field will create small 

deviations from the larger applied magnetic field that will result in small changes in the Larmor 

frequency. Therefore, the Larmor frequency of the spins within a voxel will a constant number but will 

be distributed over a small range of frequencies. The precessional frequency characterizes the 

component of the magnetization that is perpendicular to the 𝐵0 field. Conventionally this plane is 

considered to define the 𝑥 and 𝑦̂ axes and simply referred to as the transverse axis or 𝑀⊥. Adding this 

dephasing term to equation (2.21) for only the transverse components: 

 𝑑𝑀⃑⃑ ⊥
𝑑𝑡

= 𝛾𝑀⃑⃑ ⊥×𝐵⃑ −
1

𝑇2
𝑀⃑⃑ ⊥ 2.33  

Note that, unlike spin lattice interaction, spin-spin interactions are uniformly a loss of magnetization. 

They also involve no energy exchange; they simply arise from a dispersion of precessional frequencies, 
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which will slowly decay the constituent spins of the transvers magnetization. If Larmor precession is 

ignored, the solution to equation (2.33) is of the form: 

 
𝑀⃑⃑ ⊥(𝑡) = 𝑀⃑⃑ ⊥(0)𝑒

−
1
𝑇2 2.34  

which is a simple exponential decay in the transverse magnetization. Practically speaking, there are 

more deviations in the magnetic field than those caused by molecular tumbling, these will be referred to 

as 𝑇2
′. These additional spatial variations in the magnetic field are generally considered to be time-

independent, and therefore the dephasing they cause could be reversible. The combination of the 

irreversible spin-spin dephasing and the reversible interactions with time-invariant non-uniform 

magnetic field distortions is referred to as 𝑇2
∗ relaxation and follows37: 

 1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ 2.35  

  Note that the deviation in the magnetic field caused by 𝑇2
′ are assumed to be local and isotropic. If 

there is some coherency to the deviation of the external field that drives 𝑇2
′ then it would not generally 

lead to an exponential decay and is not included in 𝑇2
′. For simplicity it will be assumed that the external 

magnetic field is uniform and thus 𝑇2
′ = 0 𝑎𝑛𝑑 𝑇2

∗ = 𝑇2, although under most conditions the following 

equations will still hold by simply replacing 𝑇2 with 𝑇2
∗. 

Combining equations (2.31) and (2.33) into a single vector equation results in the 

phenomenological equation first described by Bloch31,32: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾𝑀⃑⃑ ×𝐵⃑ +

1

𝑇1
(𝑀⃑⃑ 0 − 𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⊥ 2.36  

where 𝑀⃑⃑  has been split into two components; the longitudinal component 𝑀∥ which is parallel with the 

thermal equilibrium magnetization 𝑀⃑⃑ 0, and the transverse magnetization 𝑀⊥ which is perpendicular to 

the longitudinal magnetization. Note, that the spin-spin relaxation only acts on the transverse 

magnetization as the longitudinal component of the magnetization will not precess around the 
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longitudinal axis. Additionally, because spin-spin dephasing is generally faster than the spin lattice 

relaxation the transverse components only decay with 𝑇2. 

 

Section 2.4 Time-Varying Magnetic Fields and the Rotating Frame 

Larmor precession adds complexity to the motion of the magnetization vector. Through a 

coordinate change into a frame of reference 𝐹′ that is rotating with respect to the laboratory frame 𝐹 

the Larmor precession can be reduced or eliminated. Based on relative motion, the time-derivative 

𝑑𝑉⃑ ′
𝑑𝑡
⁄   of any time-dependent vector 𝑉⃑ (𝑡) with time derivative 𝑑𝑉⃑

 
𝑑𝑡
⁄  in the lab frame will be35: 

 𝑑𝑉⃑ ′

𝑑𝑡
=
𝑑𝑉⃑ 

𝑑𝑡
− 𝜔⃑⃑ 𝑟×𝑉⃑ (𝑡) 2.37  

where 𝜔⃑⃑ 𝑟 is the angular velocity vector for the rotating frame. Ignoring 𝑇1 and 𝑇2 decay for now for 

simplicity, and combining equations (2.21) and (2.37) leads to: 

 𝑑𝑀⃑⃑ ′

𝑑𝑡
+ 𝜔⃑⃑ 𝑟×𝑀⃑⃑ = 𝛾𝑀⃑⃑ ×𝐵⃑ 𝑒𝑥𝑡 2.38  

Equation (2.38) can be reduced to: 

 𝑑𝑀⃑⃑ ′

𝑑𝑡
= 𝛾 {𝜇 ×(𝐵⃑ 𝑒𝑥𝑡 +

𝜔⃑⃑ 𝑟
𝛾
)} 2.39  

By redefining 
𝜔⃑⃑⃑ 𝑟

𝛾
 as a fictitious B field 31 arising from the coordinate change 

𝜔𝑟⃑⃑ ⃑⃑  ⃑

𝛾
= 𝐵⃑ 𝐹𝑖𝑐𝑡 then the external 

B field can be combined with 𝐵𝐹𝑖𝑐𝑡 to yield an effective B field in the rotating frame 𝐵𝑒𝑓𝑓
31: 

 𝑑𝜇 ′

𝑑𝑡
= 𝛾{𝜇 ×𝐵⃑ 𝑒𝑓𝑓} 2.40  

 
𝐵⃑ 𝑒𝑓𝑓 = 𝐵⃑ 𝑒𝑥𝑡 +

𝜔⃑⃑ 𝑟
𝛾

 2.41  

Notice that if 𝐵𝑒𝑓𝑓 is zero than 
𝑑𝜇⃑⃑ ′

𝑑𝑡
= 0 and the magnetic moment is unchanged. This occurs when: 
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 𝜔⃑⃑ 𝑟
𝛾
= −𝐵⃑ 𝑒𝑥𝑡 2.42  

Or  

 𝜔⃑⃑ 𝑟 = −𝛾𝐵⃑ 𝑒𝑥𝑡 2.43  

Which is the Larmor frequency. Therefore, if a rotating reference frame is chosen to rotate at the 

Larmor frequency then the motion of the system is greatly simplified. A classic analogy for this frame 

shift is the idea of a carousel. The motion of an object on a carousel is quite complex when observed 

from the ground next to the carousel. However, if the observer were to step onto the carousel, the 

motion would be greatly simplified relative to the observer. 

In most cases, to detect the magnetization vector the vector must be excited away from thermal 

equilibrium into the transverse plane. Generally, the perturbation away from the thermal equilibrium is 

provided by a transient magnetic pulse. This will require splitting 𝐵 into a time-invariant component 𝐵0 

and some short-lived component 𝐵1.  Splitting up 𝐵 into these components, equation (2.36) becomes: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 0 + 𝐵⃑ 1(𝑡)}) +

1

𝑇1
(𝑀⃑⃑ 0 − 𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⃑⃑ ⊥ 2.44  

Assuming that 𝐵⃑ 1 is left-handed circularly polarized electromagnetic field rotating about the 𝑧̂ axis with 

a frequency 𝜔 and initial phase 𝜙0 following: 

 𝐵⃑ 1(𝑡) = 𝐵1{cos(𝜔𝑡 + 𝜙0) 𝑥 − sin(𝜔𝑡 + 𝜙0) 𝑦̂} 2.45  

In the rotating frame rotating with an angular frequency 𝜔𝑟𝑒𝑓𝑓, equation (2.45) will become: 

 𝐵⃑ 1
′(𝑡) = 𝐵1 {cos ((𝜔 − 𝜔𝑟𝑒𝑓𝑓)𝑡 + 𝜙0)𝑥 − sin ((𝜔 − 𝜔𝑟𝑒𝑓𝑓)𝑡 + 𝜙0) 𝑦̂} 2.46  

If the reference frame is rotating with the same frequency as the circularly polarized 𝐵⃑ 1(𝑡), or, 𝜔𝑟𝑒𝑓 =

𝜔  then equation (2.46) collapses to: 

 𝐵⃑ 1
′(𝑡) = 𝐵1𝑥 2.47  
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Also assuming that the duration of the magnetic pulse is short compared to the relaxation effects, 

equation (2.44) can then be reduced to: 

 𝑑𝑀′⃑⃑⃑⃑  ⃑

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 0 − 𝛾𝜔𝑟𝑒𝑓𝑓}) + 𝛾(𝑀⃑⃑ ′×𝐵1(𝑡)𝑥) 

2.48  

If the 𝐵1 field also is rotating at the Larmor frequency, then equation (2.48) is further reduced to: 

 𝑑𝑀′⃑⃑⃑⃑  ⃑

𝑑𝑡
= 𝛾(𝑀⃑⃑ ′×𝐵1(𝑡)𝑥̂) 2.49  

Equation (2.49) is in a similar form to equation (2.21) and will create a rotation about an axis. However, 

since the 𝐵1
′  field is along the 𝑥 axis the rotation will also be an angle 𝜃 about 𝑥 given by: 

 𝑀⃑⃑ ′(𝑡) = 𝑀⃑⃑ ′(0)𝑅𝑥(𝜔⃑⃑ 𝑡) 2.50  

 
𝑅𝑥(𝜃) = [

1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos 𝜃

] 2.51  

were 𝜔 = 𝛾𝐵1 and the excitation angle 𝜃 will be discussed later in this section.  

For atomic nuclei, the Larmor frequency is in the radiofrequency range and therefore the 

magnetic pulses used to excite such spin systems are referred to as radiofrequency pulses (RF-pulses). 

When the frequency of the RF-pulse 𝜔 is offset from the Larmor frequency, which will still be considered 

the reference frequency for the rotating frame 𝜔𝑟𝑒𝑓 = 𝜔0, 𝐵1 is no longer constant in time and (2.48) 

becomes: 

 𝑑𝑀′⃑⃑⃑⃑  ⃑

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 1(𝑡) + 𝐵⃑ 0 − 𝛾𝜔⃑⃑ 𝑒𝑓𝑓}) 2.52  

which can be distributed into its three component vectors assuming that the 𝐵⃑ 0 field is along the 𝑧̂ 

direction, and that 𝐵⃑ 1is within the 𝑥𝑦̂ plane and defining Δ𝜔⃑⃑ = 𝛾𝐵0⃑⃑ ⃑⃑ − 𝜔⃑⃑ 𝑟𝑒𝑓𝑓 = 𝛾𝐵⃑ 𝑒𝑓𝑓: 

 

 𝑑𝑀𝑥
′

𝑑𝑡
= 𝑀𝑦

′ Δ𝜔 −𝑀𝑧
′𝛾𝐵1𝑥(𝑡) 2.53  

 𝑑𝑀𝑦
′

𝑑𝑡
= −𝑀𝑥

′Δ𝜔 +𝑀𝑧
′𝛾𝐵1𝑥(𝑡) 

2.54  
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 𝑑𝑀𝑧
′

𝑑𝑡
= −𝛾(𝐵1,𝑥(𝑡)𝑀𝑦

′ +𝐵1,𝑦(𝑡)𝑀𝑥
′ ) 2.55  

Defining the transverse plane as a pair of complex numbers then: 

 𝑀⊥ = 𝑀𝑥 + 𝑖𝑀𝑦 2.56  

 𝐵1,⊥ = 𝐵1,𝑥 + 𝑖𝐵1,𝑦 2.57  

Combining equations (2.53-2.57), a differential equation results: 

 𝑑𝑀⊥
′

𝑑𝑡
= −𝑖Δ𝜔𝑀⊥

′ + 𝑖𝛾𝑀𝑧
′𝐵1,⊥(𝑡) 2.58  

From the solution to this ordinary differential equations some of the excitation behavior of the Bloch 

equation (2.44) becomes clear37: 

 

𝑀⊥
′ (𝑡) = 𝑖𝛾𝑒−𝑖Δ𝜔∫𝑀𝑧

′

𝑡

0

(𝜏)𝐵1,⊥(𝜏)𝑒
𝑖Δ𝜔𝜏𝑑𝜏 2.59  

From inspection, the complex transverse magnetization in the reference frame of the 𝐵1 field will be 

dependent on the frequency relation of the 𝐵1field and the rate of precession. Equation (2.59) governs 

the initial phase of the transverse magnetization similar to 𝜙0 in equation (2.45) as well as the excitation 

angle, 𝜃, defined in (2.51). The idea that the relative frequency between the excitation pulse and the 

Larmor frequency determines the perturbation from equilibrium also agrees with the quantum nature of 

the transition between states and the energy needed briefly mentioned after equation (2.25). 

  In the simplified case of a rectangular envelope pulse matched to the Larmor frequency, 

following equation (2.59), the tip angle 𝜃 will be31: 

 𝜃𝑡𝑖𝑝 = 𝛾𝐵1𝜏 2.60  

where 𝐵1 is the amplitude of the block pulse and 𝜏 is its duration. Additionally, the phase of the 

transverse magnetization will be matched to the phase of the block pulse. While these relationship hold 

for a rectangular pulse, more complicated relationship between the pulse characteristics and the 

resulting excitation angle and phase exist for other pulse shapes. 



24 
 

 

Section 2.5 Summary of the Bloch Equation 

In summary the key aspects of the Bloch equation (2.44) will be restated: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 𝑒𝑓𝑓 + 𝐵⃑ 1(𝑡)}) +

1

𝑇1
(𝑀⃑⃑ 0 − 𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⊥ 

 

2.44 

A uniform ensemble of magnetic moments in the presence of a magnetic field will precess about 

the magnetic field at the Larmor frequency, equation (2.18). Additionally, there is a thermal equilibrium 

magnetization 𝑀0 due to Boltzmann distribution energy states that is caused by the applied field, 

equation (2.22 and 2.26). The magnetization will return to its equilibrium magnetization through energy 

exchange with its lattice with a characteristic spin lattice relaxation time 𝑇1, equation (2.32). Combined 

with the relaxation caused by energy exchange, the coherence of the individual spins that make up the 

magnetization will decay due to interaction between spins. This will cause a reduction in the transverse 

magnetization characterized by the spin-spin relaxation time 𝑇2 equation (2.34). In order to excite the 

magnetization out of its thermal equilibrium, energy must be added at or near the Larmor frequency, 

equation (2.59). This is generally accomplished with a brief radiofrequency pulse or RF-pulse. After 

excitation, the magnetization in the transverse plane will oscillate at the Larmor frequency within a 

decay envelop defined by 𝑇2. This oscillating decaying signal is referred to as the free induction decay 

(FID) and is the fundamental signal detected for all nuclear magnetic resonance phenomenon. The 

solution to equation (2.44) is displayed in figure 2-1. 
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Figure 2-1. Visualization of the Bloch equations. Magnetization vector during a free induction decay 

visualized three different ways. (Left) the components of a magnetization in three space. Note that only 

the 𝑋 and 𝑌 components will be detectable in a conventional magnetic resonance signal. (Center) the 

trajectory of a magnetization vector illustrating the classical corkscrew shape. (Right) a sampling of the 

magnetization vector over time as it follows the trajectory in the center panel. 

 

Section 2.6 Chemical Shift 

The previous sections have all dealt with the effects that magnet fields have on dipole moments 

from nuclear spins. However, the electrons that orbit nuclei generate dipole moments of their own. 

There are two man effects to consider when discussing how orbital electrons interact with external 

magnetic fields34; the effect from the electrons’ inherent spin which gives rise to paramagnetism; and 

the effect that the magnetic field has on orbital motion, which gives rise to diamagnetism. 

Paramagnetism arises in much the same way that nuclear magnetization arises, the electron’s inherent 

spin results in a dipole moment that aligns with the applied field. However, this effect is only dominant 

in particular atoms due to the Pauli exclusion principle for electrons, and even for those atoms it is 

reduced by thermal energy affecting the fraction of alignment. Therefore, paramagnetic effects are 

quite rare and will be ignored. 
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 Diamagnetism, arises from the change in the electron orbital motion due to the applied 

magnetic field and results in an overall reduction of the magnetic field. A quantum mechanical 

derivation of diamagnetism is beyond the scope of this discussion, but for a classical approximations 

readers are directed to reference [34]34.  The reduction of the external magnetic field can be 

conceptualized to result from an induced magnetic field 𝐵𝑖𝑛𝑑 that oppose 𝐵0
34. The reduced magnetic 

field at a nuclei caused by such induced fields is referred to as chemical shielding and is given by: 

 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 𝐵0 − 𝐵𝑖𝑛𝑑  2.61  

Since the induced field 𝐵𝑖𝑛𝑑 is determined by the external magnetic field 𝐵0, equation (2.61) is normally 

simplified to relate 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 to  𝐵0 with a chemical shielding constant 𝜎37: 

 𝐵𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = (1 − 𝜎)𝐵0 2.62  

Chemical shielding will depend only on the chemical structure of the molecule containing the nuclei of 

interest. Chemical shielding will not be similar to the random isotropic fields that gave rise to 𝑇2 decay 

but will be constant and identical for all nuclei in a particular position in a molecule. If there is a 

chemical species-dependent deviation to the magnetic field, then by equation (2.18) there should be a 

shift in Larmor frequency31: 

 𝜔⃑⃑ = −𝛾(1 − 𝜎)𝐵⃑ 0 2.63  

Equation (2.63) relates the frequency of the detectable Larmor precession to the chemical composition 

of the molecules that produce them. Therefore, spectral analysis of the signal resulting from the Larmor 

precession will yield information on the chemical structure of the compounds giving rise to the nuclear 

magnetic resonance signal. 

 

Section 2.7 Fourier Spectroscopy 

 The Fourier transform can be used to spectrally analyze the frequency components of a signal. 

Conceptually the Fourier transform, as it relates to NMR, decomposes a time domain signal into its 
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frequency components. Consider a function of time 𝑔(𝑡) the Fourier transform of the function ℱ{𝑔(𝑡)} 

is defined as37: 

 
𝐺(𝜉) = ℱ{𝑔(𝑡)} ≡ ∫ 𝑔(𝑡)

∞

−∞

𝑒−𝑖2𝜋𝜉𝑡𝑑𝑡 2.64  

When relating 𝜉 and 𝑡 by the Fourier transform as above they are referred to as Fourier conjugates. 

Again, for magnetic resonance spectroscopy the two domains related by the Fourier transform are the 

time domain, normally in units of seconds, and the frequency domain, normally in units of Hz. Fourier 

transforms are invertible and the inverse Fourier transform ℱ−1 will be: 

 
𝑔(𝑡) = ℱ−1{𝐺(𝜉)} ≡ ∫ 𝐺(𝜉)𝑒𝑖2𝜋𝑡𝜉𝑑𝜉

∞

−∞

 2.65  

 Note that by equation (2.64) and (2.65) 𝑔(𝑡) = ℱ−1[ℱ{𝑔(𝑡)}] and that either the time domain or the 

frequency domain signals are sufficient to determine the other. Additionally, equation (2.18) is a 

relationship between the Larmor frequency in units of 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑠𝑒𝑐𝑜𝑛𝑑⁄  and not Hz which is the 

frequency domain defined in equation (2.64). Angular frequency and Hz are easily related by a constant 

of 2𝜋, and the Fourier transform between the time domain and angular frequency is only slightly 

different than equations (2.64) and (2.65). As a final note, the Fourier transforms described above are 

continuous with all possible frequencies or time points in the integral, whereas in practice the data from 

NMR are discrete and therefore the integral is replaced with a sum over all measured time points and 

the corresponding sampling bandwidth. This discrete form of the Fourier transform is called the discrete 

Fourier transform. 

 The FIDs associated with the magnetic resonance signal of a single chemical species will be a 

damped sinusoid as determined by equation (2.44) following: 

 
𝑓(𝑡) = 𝑒

−𝑖𝜔0𝑡−
𝑡
𝑇2   

 

2.66  
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 𝑔(𝜔) = ℱ{𝑓(𝑡)} =
𝑐

1
𝑇2
+ 𝑖(𝜔 + 𝜔0)

 
2.67  

 

where 𝑐 is a constant related to the initial magnitude of 𝑓(𝑡0). Equation (2.67) is the classic Lorentzian 

line shape as seen in figure 2.2.  

 

Figure 2-2. Free induction decay and Lorentzian line shape. The top panel show the real and imaginary 

parts of a FID following equation (2.66) and the resulting Fourier transform. The lower panel shows the 

resulting Lorentzian, equation (2.67), with the same 𝑇2 and 𝜔 as the top panel, as well as the resulting 

inverse Fourier transform. 

 

Equations (2.66 and 2.67) are complex functions and give rise to what are referred to as the 

absorption and dispersion parts of the signal. The relationship between the absorption and dispersion, 

or just the real and imaginary parts of an NMR spectrum is determined by the phase of the signal. The 

phase of the signal relates to the position of the magnetization vector in the transverse plane. If there is 
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a synchronization mismatch between the frequency of the excitation pulse and the frequency reference 

of the receive system there will be a phase shift in the entire signal of a constant value. This is referred 

to as the 0th order phase. Additionally, if there are multiple resonance signals in a single FID, then any 

temporal delay will give rise to an additional 1st order phase shift as each resonance signal will have a 

different resonance frequency and therefore impart a slightly different phase shift over the same timing 

mismatch. Such phase discrepancies can be corrected by adding a phase shift to the FID prior to Fourier 

transform given by: 

 𝑓′(𝑡) = 𝑒−𝑖(𝜙0+𝜙1𝑡) 2.68  

where 𝜙0 and  𝜙1 are the zeroth and first order phase correction terms respectively. Phase correction of 

a NMR signal is shown in figure 2-3. 

 

Figure 2-3. Fourier analysis and phase correction of a fee induction decay. The complex FID (left) is 

decomposed into its spectral components by a Fourier transform. The peaks are then phase corrected 

(right) so its real component (blue) is completely positive. 

 

 Using the Fourier transform the time domain FID can be converted into its corresponding 

frequency components. Relative peak intensities determined by Fourier spectroscopy can be used to 

determine the relative concentrations of chemicals in some sample. This is the fundamental concept 

behind magnetic resonance spectroscopy (MRS). MRS is a powerful tool for determining a substances 

chemical composition non-invasivly37. 
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Section 2.8 Clinical Magnetic Resonance Spectroscopy 

In clinical practice most of the magnetic resonance signal comes from protons in either water or 

some lipid compound. While comparatively much smaller than the water or fat signal, other protons in 

the body will generate magnetic resonance signals. Using magnetic proton resonance spectroscopy to 

non-invasively probe a tissues’ chemical composition is a powerful clinical procedure for specific 

diseases and anatomical locations.  However, MRS is generally signal-limited, making it difficult to 

perform in most of the body. Clinical MRS usually performed on relatively homogeneous organs that are 

either naturally stationary or can be easily immobilized, including the brain and the prostate. This allows 

multiple spectroscopic scans to be performed to allow signal averaging. By averaging the signals from 

repeated measurement, spectral peaks can be enhanced, as they will add coherently while the random 

noise will add incoherently. Even with large numbers of averaged acquisitions clinical MRS focuses on 

only a few compounds that are relatively abundant in some tissue or disease type.  

 The reason clinical MRS is so limited can be found in the Boltzmann distribution equation (2.22). 

With a spin 
1

2
 particle, the probabilities of being in the spin up (𝑃+) and spin down (𝑃−) position given by: 

 
𝑃± =

𝑒±
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

 2.69  

 where 𝑢 =
ℏ𝛾𝐵0

𝑘𝑇
. The number of excess spins (𝑁𝑒𝑥𝑐𝑒𝑠𝑠) will be the difference in the numbers of spin up 

and spin down (𝑁(𝑃+) and 𝑁(𝑃−) respectively)31: 

 𝑁𝑒𝑥𝑐𝑒𝑠𝑠 ≡ 𝑁(𝑃+) −  𝑁(𝑃−) 2.70  

 

𝑁𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑁(
𝑒
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

−
𝑒−
𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

) = 𝑁(
𝑒
𝑢
2 − 𝑒−

𝑢
2

𝑒
𝑢
2 + 𝑒−

𝑢
2

) = tanh (
𝑢

2
) 2.71  
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where N is the total number of spins. Notice that as the term in the exponent approaches zero, normally 

by 𝐵0 approaching zero, 𝑁𝑒𝑥𝑐𝑒𝑠𝑠 also approaches zero, and that as the exponential term gets larger 

𝑁𝑒𝑥𝑐𝑒𝑠𝑠 approaches N. For protons with a clinically reasonable 𝐵0 = 1.5 𝑇 at body temperature (310K), 

𝑢 = 6.6𝑥10−6 then by equation (2.71) the spin excess is nearly 5𝑥10−6 or 5 parts per million (ppm)31. 

Therefore, out of every million protons in the body only about five can give rise to any detectable signal 

by magnetic resonance. This is not catastrophic from compounds such as water or fat, which are 

abundant in the body. However, for other biologic compounds like metabolites there are simply not 

enough molecules in the body to generate a robust magnetic resonance signal with a high signal-to-

noise ratio (SNR) and good spatial resolution. 

 The problems of a weak signal due to the low biologic abundance of compounds is exacerbated 

when nuclei other than protons are considered.  Other nuclei can have a non-zero spin and therefore 

can be detected by magnetic resonance. Table 2.1 briefly summarizes the commonly detected nuclei for 

biologic magnetic resonance spectroscopy.   

Nuclei Natural Abundance Gyromagnetic Ratio Relative Sensitivity 

1H 99.98 % 42.6 MHz/T 100 % 

13C 1.11 % 10.7 MHz/T 1.6 % 

19F 100 % 40.1 MHz/T 83 % 

23Na 100 % 11.3 MHz/T 9.3 % 

31P 100% 17.2 MHz/T 6.63% 

Table 2-1. Properties of nuclei commonly detected by magnetic resonance spectroscopy. 

 

While nuclei other than protons give rise to less relative signal, they additionally tend to be far 

less numerous in the body compared to protons. Carbon, with its central role in organic chemistry, could 
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provide critical information about the biochemical state of tissue. The potential to detect usable 

magnetic resonance signal from 13C containing molecules has driven technical advances seeking to 

increase the excess spin population of 13C nuclei far surpassing its thermal equilibrium magnetization. 

Increasing the excess spin population beyond thermal equilibrium can overcome the signal limitations 

imposed by equation (2.71) and would allow real time MRS of select 13C compounds. 

 

Section 2.9 Dynamic Nuclear Polarization 

A brief outline of dynamic nuclear polarization will be presented followed by a description of a 

few quantitative models38. Dynamic nuclear polarization (DNP) is a process that can transiently increase 

the polarization of a spin population to near unity39-41. This is achieved by mixing a small amount of 

paramagnetic impurities with a diamagnetic material and cooling the mixture well into the solid state. If 

the paramagnetic impurities contin unpaired electrons and the diamagnetic material is a 13C-enriched 

compound, both the electrons and the 13C nucleus will be particles of spin 1/2. Due to a large 

discrepancy in the charge-to-mass ratio between the electron and the carbon nucleus and their 

subsequent gyromagnetic ratios, equation (2.8 and 2.71) shows that electrons are polarized to near 

unity (99.8%) at around 1.4 Kelvin while the 13C nucleus will remain relatively un-polarized (0.13%) at a 

field strength of 3.35 T as shown in figure 2-4.  
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Figure 2-4. Dynamic nuclear polarization. Polarization as a function of temperature at 3.35T as predicted 

by equation (2.71). At 1.4K electrons, protons and 13C polarize to 0.998, 0.00527 and 0.00132 

respectively due to differences in their gyromagnetic ratios. 

 

Consider an isolated electron and 13C nucleus as a dipole pair as shown in figure 2-5. The 

coupled system will have four possible spin states with moments 〈↑𝑒↑𝑛〉, 〈↑𝑒↓𝑛〉, 〈↓𝑒↑𝑛〉, and 〈↓𝑒↓𝑛〉, 

where the electron dipole moment is ↑𝑒 and the nuclear dipole moment is ↑𝑛 and ↑ is aligned with the 

field while ↓ is aligned against. Transitions between these possible energy states will be governed by the 

energy added to the system by 𝑇1 relaxation. Assuming that the electrons are fully polarized, the states 

with spin down electrons will be completely unpopulated leaving just the states 〈↑𝑒↑𝑛〉 and〈↑𝑒↓𝑛〉 as the 

primary states. 
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Figure 2-5. Nucleus electron pair energy diagram. An energy diagram of an electron-nuclear pair in a 

high magnetic field with no di-polar interactions considered. 

 

From these states, there are two possible dipolar interactions. So called flip-flips will completely 

reverse the entire spin state or 〈↑𝑒↑𝑛〉 → 〈↓𝑒↓𝑛〉 and will require energy ℏ(𝜔𝐸 +𝜔𝐶), where 𝜔𝐸 and 𝜔𝐶  

are the Larmor frequencies of the electrons and carbon nuclei, respectively. The other transition, so 

called flip-flops, will be of the form 〈↑𝑒↓𝑛〉 → 〈↓𝑒↑𝑛〉 and will require energy ℏ(𝜔𝐸 −𝜔𝐶). The energy 

required to induce these transitions is supplied by microwave irradiation with a either frequency 𝛺 =

𝜔𝐸 ±𝜔𝐶. If the line width of the electron’s Larmor frequency ∆𝜔𝐸 is much smaller than the resonance 

frequency for carbon, the energy spectrum of flip-flips and flip-flops will not overlap and only flip-flips or 

flip-flops transitions can be driven.  
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Figure 2-6. Nucleus electron energy diagram with flip-flops transitions. Dipole pairs are excited by an 

external microwave source from energy level 2. to level 3. Due to rapid 𝑇1,𝑒 relaxation the electron 

quickly relaxes transitioning the pair from level 3. to 1. At energy level 1. the electron can form a new 

dipole pair with a different carbon nucleus and the new pair would be at energy level 2. 

 

If the driving microwave irradiation is tuned to only excite flip-flop transitions, as shown in 

figure 2-6, then after a flip-flop there will be an electron in the spin down state which could potentially 

induce a reverse flip-flop of the form 〈↓𝑒↑𝑛〉 → 〈↑𝑒↓𝑛〉 . However, due to the interaction strength 

between the electron and the magnetic field, relaxation of an electron back to its low energy state is so 

rapid that the probability of reverse flip-flop transitions becomes vanishingly small. The relaxed spin up 

electron is then able to participate in another flip-flop interaction with a different carbon nucleus driven 

by the microwave irradiation. As this processes continues it becomes clear that over time the high 

polarization of the electrons will eventually be transferred to the carbon nuclei. 
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Thermal interactions between the carbon nuclei and the lattice will be acting to relax them back 

to their thermal equilibrium distribution. An equilibrium carbon polarization will eventually be achieved 

once the lower energy carbon spin population is so large that there are as many low energy carbons 

relaxing by 𝑇1 relaxation as there are dipole flip-flop transitions being induced by the microwave 

irradiation. Qualitatively, the factors that affect this equilibrium value are, the 𝑇1 relaxation times of 

both the carbon nuclei and the electron impurities, the ratio of electron impurities to carbon nuclei, the 

strength of the microwave driver, and the thermal equilibrium polarization of the electrons and carbons. 

Due to the vast difference in gyromagnetic ratio between the carbons and electron impurities, the 𝑇1 

relaxation times of the electrons will be much shorter than carbons, allowing a single electron to induce 

many flip-flop dipolar transitions before the resulting low energy carbons decay back to their thermal 

equilibrium values. Therefore, a single electron can facilitate polarization of many carbons. 

For such an energy structure to exist, the system must be frozen well into the solid state and the 

electrons be spatially limited in the number of carbons they can interact with. The interaction between a 

low energy carbon and an adjacent higher energy carbon somewhat diminishes the effect of spatial 

isolation. A similar flip-flop dipolar transition is possible. However, it will not require any external energy 

because the total energy status of the dipole pair is unchanged. These carbon-to-carbon flip-flop 

transitions, also referred to as spin diffusion, allow relatively small numbers of electron impurities to 

hyperpolarize a large number of carbon nuclei. To hyperpolarize a large number of carbon nuclei with 

great efficiency the electrons need to be evenly distributed throughout the solid lattice. Compounds 

that form structured crystal lattices frequently will not uniformly distribute the electron impurities and 

therefore glassing solids are used for the majority of hyperpolarization preparations.  

If the driving microwave irradiation is shut off, then the equilibrium maintained by the flip-flop 

dipolar transitions will be disrupted. The carbons will decay back to their thermal equilibrium 

distributions with their native 𝑇1
42. Depending on the compound and the relaxation enhancing 
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impurities, this can be on the order of hours in the solid state. A brilliant insight by Ardenkjaer-Larsen 

and others that even in the liquid state a hyperpolarized agent could have a 𝑇1 on the order of tens of 

seconds25,43 has brought hyperpolarization to medical and imaging science. This allows a total lifetime of 

minutes, which is enough time to be used in liquid state magnetic resonance spectroscopy27. In order to 

perform MRS on hyperpolarized agents in the liquid state, the solid state agent must be rapidly heated 

and delivered to the magnetic resonance system that will perform the measurements. In a process 

called dissolution DNP, the solid state system is flushed by a superheated fluid that allows rapid melting 

and delivery to an external system for subsequent measurement. 

 

Section 2.10 Models of Dynamic Nuclear polarization 

A. The Well-Resolved Solid Effect 

The previous section described, in qualitative terms, a model of the nuclear Overhauser effect 

first proposed by Overhauser in 195340 and demonstrated by Slichter in conducting solids the same 

year39. Dynamic nuclear polarization is generally achieved through four theoretical mechanisms38,41, two 

of which apply to clinical and pre-clinical DNP: the well-resolved solid effect44,45 and thermal mixing46,47. 

The derivation of each mechanism requires a full development of spin-temperature theory or density 

matrix formalism that is beyond the scope of this discussion. Additionally, the resulting models require 

assumptions that do not always hold for DNP in practice, and a general theoretical treatment of DNP 

under all conditions is still an area of active study48. With these limitations in mind, some of the 

important components of the classical models will be presented and related to the clinical and 

preclinical use of DNP for 13C nuclei. 
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Figure 2-7. An energy diagram of an electron-nuclear pair with all dipolar interaction. 

 

A two spin system composed of an electron and proton, as shown in figure 2-7, will have a 

Hamiltonian45: 

 ℋ = ℋ𝑧 +ℋℎ𝑓 +ℋ𝑛𝑛 +ℋ𝑒𝑒 +ℋ𝑀𝑊 2.72  

where 𝐻𝑧 corresponds to the Zeeman interactions, 𝐻ℎ𝑓 corresponds to the hyperfine interactions, 𝐻𝑛𝑛 

and 𝐻𝑒𝑒correspond to the dipole interactions for electrons and nuclei respectively, and 𝐻𝑀𝑊 

corresponds interactions driven by an external microwave irradiation. If the microwave source is off 

(𝐻𝑀𝑊 = 0) and equation (2.69)is solved,45 the population, 𝑝𝑖  of states 1-4 in figure 2-7 will be: 

 
𝑝1 = 𝑝2 =

1

2

1

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

 

𝑝3 = 𝑝4 =
1

2

𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

 

2.73  

This assumes that the nuclear Zeeman splitting is negligible compared to the electron splitting. The 

polarization of the nuclei, 𝑃𝑛, and electron, 𝑃𝑒 , will follow: 
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  𝑃𝑛 = (𝑝1 − 𝑝2 + 𝑝3 − 𝑝4) 

𝑃𝑒 = (𝑝1 − 𝑝3 + 𝑝2 − 𝑝4) 
2.74  

 

By combining equations (2.73 and 2.74): 

 𝑃𝑛 ≅ 0 

𝑃𝑒 =
1 − 𝑒−

ℏ𝛾𝑒𝐵0
𝑘𝑇

1 + 𝑒−
ℏ𝛾𝑒𝐵0
𝑘𝑇

= −tanh(−
ℏ𝛾𝑒𝐵0
2𝑘𝑇

) = tanh (
𝑢𝑒
2
) 

2.75  

Essentially at thermal equilibrium the nuclei are completely unpolarized while the electrons follow the 

polarization predicted by equation (2.71).  

In order to drive flip-flop transitions the microwave irradiation would need to provide 

 (𝜔𝑀𝑊 = 𝜔𝑒 −𝜔𝑛). If the power of the microwave source is high enough to saturate the flip-flop 

transition, then 𝑝2(𝑡) = 𝑝3(𝑡), and following equation (2.74): 

 𝑃𝑛 = 𝑃𝑒 = tanh (
𝑢𝑒
2
) 2.76  

If the microwave source was tuned to induce flip-flips  (𝜔𝑀𝑊 = 𝜔𝑒 +𝜔𝑛), then  𝑝1(𝑡) = 𝑝4(𝑡) and 

equation (2.74) shows: 

 𝑃𝑛 = −𝑃𝑒 = − tanh (
𝑢𝑒
2
) 2.77  

Equations (2.76 and 2.77) give rise to classic signatures of the well -resolved solid effect. That is that 

properly tuned narrow band microwave irradiation will give rise to either positive or negative 

enhancement of the nuclear polarization. Additionally, the difference in the frequencies leading to 

enhancement will be twice the Larmor frequency of the nuclei, and they will be centered about the 

electron’s paramagnetic resonance. 

 In practice there are far more interactions than the simplified model described above. Mostly 

they arise from the multitude of nuclei interacting with each electron. Interactions between electrons 

are weak because the well-resolved solid effect tends to occur when the electrons are dilute compared 
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to the nuclei and therefore spaced far apart. These additional nuclear interactions have two primary 

effects on the above results: they broaden the range of frequencies that give rise to enhancement, and 

they serve as an energy sink that reduces the efficiency of each electron to polarize surrounding nuclei45. 

While not derived, the results of reference [38] 38 are shown in figure 2-8 outlining the two classical 

hallmarks of the well-resolved solid effect. 

 

Figure 2-8. Polarization from the well-resolved solid effect. Theoretical polarization build up for an 

arbitrary electron nucleus system (left). Theoretical frequency sweep of the same system showing the 

two polarization peaks offset by 𝜔𝑛 from 𝜔𝑒(right). 

 

B. Thermal Mixing 

While the well-resolved solid effect described by equations (2.72 – 2.77) and outlined in figures 

2.7 and 2.8 can be the dominant effect in theory, the conditions are quite rare in practice. This is 

because situations where the electron spectral resonance line width is much narrower than the Larmor 

frequency of a nuclei are difficult to achieve and often require specific crystal lattices41. It is much more 

common that the electron spectral width will span both the flip-flip and flip-flop transition, leading to 

𝜔𝑛 ≪ Δ𝜔𝑒. Under such conditions, driving a microwave source at any particular frequency near 𝜔𝐸 ±

𝜔𝐶  will induce flip-flips and flip-flops. The overlap of these transitions will degrade the nuclear 
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polarization achievable, and if the electron spectral width is much bigger than the Larmor frequency, 

any significant dynamic nuclear polarization by the solid effect becomes impossible. However, due to 

the interaction between some groups of electrons and some nuclei, it is still possible to achieve dynamic 

nuclear polarization, although the mechanism is different than the well-resolved solid effect. Dynamic 

nuclear polarization when the spread of the electron resonance is much larger than the Zeeman splitting 

of a nuclei is called thermal mixing46,47. 

 Because thermal mixing requires the interaction of a large number of electrons a formalism has 

been developed that draw parallels to statistical mechanics. Spin temperature (𝛽), which was first 

introduced by Redfield49, is defined as: 

 
𝛽 ≡

1

𝑘𝑇
 2.78  

The population of each state defined by the Hamiltonian (ℋ) and the spin temperature given by: 

 
𝑃 =

𝑒−𝛽ℋ

𝐴
 & 1 =∑𝑃 2.79  

where 𝐴 is simply a normalization constant. 

Figure 2-9. Energy diagram of the thermal mixing process. Due to the similar spin temperatures of the 

nuclear Zeeman bath, and the secular electron bath they are considered to be in strong thermal contact 
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(𝛽𝑒𝑆 = 𝛽𝑛𝑍) allowing their population distributions to match. Therefore, when the secular electron bath 

is cooled by interactions with the electron Zeeman bath facilitated by microwave (𝑀𝑊 = 𝜔𝑒 + Δ) 

irradiation that cooling is transferred to the nuclear Zeeman bath. 

 

Dynamic nuclear polarization arises from the interaction of the three spin temperatures that are 

outlined in figure 2-938,46,47. The first two spin temperatures describe the Zeeman splitting of the 

electrons and the nuclei, 𝛽𝑒𝑍 and 𝛽𝑛𝑍 respectively. These spin temperatures give rise to the population 

distributions discussed for the well-resolved solid effect when the microwave irradiation was off, 

equation (2.75). Additionally, now that the ensemble of electrons with a range of resonance frequencies 

is being considered, there is a third spin temperature (𝛽𝑒𝑆) referred to as the secular or non-Zeeman 

spin temperature that needs to be considered. Finally, similar to the solid effect, thermal mixing 

requires microwave irradiation. The frequency of irradiation, by contrast, will be shifted a small amount 

Δ from the electron’s resonance and not necessarily  (𝜔𝑒 ±𝜔𝑛), which was needed for the well-

resolved solid effect. The evolution of all three spin temperatures has been described by Provotorov50: 

 𝑑𝛽𝑒𝑍
𝑑𝑡

= −𝑊(𝛽𝑒𝑍 − 𝛽𝑛𝑍) −
1

𝑇1𝑒
(𝛽𝑒𝑍 − 𝛽′𝑒𝑍) 

𝑑𝛽𝑛𝑍
𝑑𝑡

=
𝑑𝛽𝑒𝑆
𝑑𝑡

= 𝑊(
Δ2

𝐷2
) (𝛽𝑒𝑍 − 𝛽𝑛𝑍) −

1

𝑇1𝑛
(𝛽𝑛𝑍 − 𝛽′𝑛𝑍) 

2.80  

where 𝑊 is the transition probability induced by the microwave irradiation, 𝐷 is the electron linewidth 

and 𝛽′ denotes the Zeeman spin temperatures due to interactions with the external lattice and defines 

thermal equilibrium. Because the spread in the electron resonance linewidth is considered to be 

comparable or large compared to the nuclear Zeeman splitting, the spin temperatures 𝛽𝑒𝑆 and 𝛽𝑛𝑍 are 

considered to be in strong thermal contact38,46 and therefore equal. In the steady state 
𝑑𝛽𝑒𝑍

𝑑𝑡
=
𝑑𝛽𝑛𝑍

𝑑𝑡
= 0 

and the equilibrium value of the nuclear spin temperature is38: 
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𝛽𝑛𝑍 = 𝛽𝑛𝑍
′
𝜔𝑒
Δ

𝑊𝑇1𝑛 (
Δ2

𝐷2
)

(1 + 𝑓)
⁄

1 +𝑊𝑇1𝑒 +
𝑊𝑇1𝑛 (

Δ2

𝐷2
)

(1 + 𝑓)
⁄

 2.81  

where 𝑓 is an additional leakage term. Equation (2.81) yields the two hallmarks of DNP by thermal 

mixing. An antisymmetric response around the electron’s resonance and a linear sloping zero crossing 

seen in figure 2-10.  

 

Figure 2-10. Microwave sweep of thermal mixing. Qualitative comparison of the polarization of 1-13C-

pyruvic acid doped with 15 mM Ox063 Trityl as a function of microwave frequency and polarization as 

predicted by equation (2.81). The theoretical curve does not approach zero as quickly as the measured 

data as the microwave frequency diverges form the electron paramagnetic resonance. This is a 

limitation of the high temperature assumption38 that leads to equation (2.81), for a more rigorous 

treatment of thermal mixing references [42] and [47] should be consulted. 42,47  

 

 Practically, dynamic nuclear polarization of carbon-13 nuclei is performed at temperatures 

below that of liquid helium with field strengths on the order of Tesla. Under these conditions, unpaired 

electrons in the polarizing radicals polarize to near unity. The paramagnetic impurity most commonly 
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used is the unpaired electron on a persistent radical, normally a proprietary triphenylmethyl derivative 

called Ox063. The large structure surrounding the central carbon of Ox063 is sterically crowded and 

therefore cannot easily react. This leaves a single unpaired valence electron radical that is chemically 

stable42. Using mechanisms described above, the high polarization of such radicals can be transferred to 

nuclei. 

 It has been shown that at a temperature of 1.4 K and a field strength of 3.35 T the electron 

linewidth of Ox063 is about 60 MHz, which is caused primarily by g-factor anisotropy when in a solution 

of 1-13C-pyruvic acid at a concentration of 15 mM42. The Larmor frequency of 13C at 3.35 T is 38.55 MHz 

and therefore the solid effect is not a plausible mechanism to polarize 13C. Protons however, have a 

Larmor frequency of 142.7 MHz and could be well polarized by an Ox063 radical using the solid effect42. 

With the C13 Larmor frequency well below the electron line width, thermal mixing will drive effective 

polarization enhancement of the C13. In order to increase polarization via thermal mixing, spin-spin 

interactions between the paramagnetic impurities need to be rapid and numerous. Therefore, the 

distance between the paramagnetic impurities cannot be excessive. As long as the solid state system is a 

glass the distance between the free radicals in Ox063 at 15 mM will be 5 nm, which is close enough to 

allow them to magnetically couple. If there is a crystalline structure in the solid state, the distance 

between the free radicals could be much larger and inhibit polarization. If the solute is not glass-

forming, a glassing agent such as glycerol is often used. Additionally, it has been shown that small 

amounts of a Gd+ compound can increase the steady state dynamic nuclear polarization of 1-C13-Pyruvic 

acid51. This is likely caused by a shortening of the electron’s 𝑇1 while the C13 𝑇1 is unaffected42. This will 

lead to an increased polarization as predicted by equation (2.81). The addition of Gd+ has been shown to 

increase the polarization by a factor of as much as two. However, such effects are reduced at higher 

field strengths52.  
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 In practice, the above considerations lead to the following general hyperpolarized setup. A 

single C13-enriched compound, such as 1-13C-Pyruvic acid, is doped with ~15 mM of a radical and ~0.1 

mM Gd+ chelate. The solution is rapidly cooled below 1.5K and is irradiated via microwaves while under 

a strong magnetic field. Typically build-up times are on the order of an hour, and nuclear polarizations of 

~30% are common43.  

Polarizations of nuclei on the order of tens of percent represent a massive increase in the 

potential NMR signal. However, to be useful clinically, the polarized nuclei need to interact with some 

target biology. This will involve the removal from the microwave irradiation and significant heating to 

reach body temperature. Fortunately, once a polarization level is achieved it will return to thermal 

equilibrium at its 𝑇1 relaxation rate. In the solid state, the 𝑇1 of C13 enriched compounds is on the order 

of hours. However, once heated it is on the order of a minute. Therefore, if the process of heating, 

delivery to target biology and scanning are rapid there will be significant polarization remaining from the 

process of dynamic nuclear polarization. The rapid melting and delivery of highly dynamic nuclear 

polarized agents is referred to as dissolution dynamic nuclear polarization. 

 

Section 2.11: Detection of Magnetic Resonance Signal 

Detecting hyperpolarized agents through magnetic resonance is substantially different than 

conventional magnetic resonance imaging or spectroscopy, even though they operate according to the 

same principles. In conventional magnetic resonance, after excitation the excited spin system will return 

to thermal equilibrium as it interacts with its lattice through the process known as the spin-lattice 

relaxation or 𝑇1 relaxation31. Additionally, there will be some dephasing of the transverse magnetization 

caused by spin-spin interactions, also referred to as the 𝑇2 decay. These effects combine to generate the 

signal depicted in figure 2-11. The net magnetization, 𝑀0 is excited to create a transverse magnetization, 

and longitudinal magnetization is initially reduced but will then recover following 𝑇1 relaxation. The 
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transverse magnetization will oscillate at the Larmor frequency while decaying with time constant 𝑇2 

towards zero. Note that 𝑇2 ≤ 𝑇1 or, the spin-spin relaxation will always be as fast or faster than the spin 

lattice relaxation. If serial excitation is performed faster than a few 𝑇1 times, then a steady state 

magnetization will be achieved as seen in figure 2-11. This steady state magnetization is foundational to 

conventional magnetic resonance spectroscopy or imaging as it imparts contrast and allows the 

assumption of consistency between measurements. 

 

Figure 2-11. A comparison of a conventional magnetic resonance signal (top) and a hyperpolarized 

magnetic resonance signal (bottom). The conventional signal recovers with 𝑇1, eventually reaching a 

steady state signal. The hyperpolarized signal, by contrast, is constantly decaying and no steady state 

signal is achieved. 
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Unlike conventional magnetic resonance, hyperpolarized agents derive their longitudinal 

magnetization from the process of dynamic nuclear polarization. Once the DNP process is terminated 

the hyperpolarized will begin to decay with its inherent spin lattice relaxation time back to thermal 

equilibrium. As in conventional magnetic resonance, excitation of a hyperpolarized spin state will excite 

some or all of the longitudinal magnetization into the transverse plane where it can then be detected by 

a loop receiver coil. However, unlike conventional magnetic resonance, the hyperpolarized longitudinal 

magnetization will not recover after excitation. It will continue to decay. Due to this fundamentally 

transient magnetization, the steady state magnetization which is so often fundamental to conventional 

magnetic resonance is achieved only after longitudinal magnetization has decayed to undetectable 

levels. Therefore, while much of conventional wisdom and techniques associated with magnetic 

resonance do apply to hyperpolarized agents, many do not. A helpful analogy is to conceptualize the 

longitudinal magnetization of a hyperpolarized agent as a diminishing resource. Excitation into the 

transverse plane is necessary for signal detection and the amount of the resource consumed during an 

excitation will directly correlate to the strength of the signal detected. However, if serial measurements 

are to be made, some longitudinal magnetization will have to be conserved to be available for 

subsequent excitations and detection.  

The simplest magnetic resonance study of a hyperpolarized agent is a single spectroscopic 

acquisition. This would be no different than the spectral acquisitions described in section 2.7 except for 

the substantially increased signal due to hyperpolarization. With the massive signal increase made 

possible by dynamic nuclear polarization, it is possible to serially excite the spin system using excitations 

that do not completely consumed the longitudinal magnetization. Such a serial excitation would allow 

for multiple spectral readouts. Each spectral readout could be treated independently using the same 

methods described in section 2.10. The only exception would be that the previous excitation would 
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diminish the remaining longitudinal magnetization for subsequent excitations. This can be partially 

accounted for either by keeping the excitation angles so low that they have negligible effect on future 

excitations compared to 𝑇1 decay, but such low excitation could severely limit the signal. Alternatively, 

the resulting signal could be corrected with a simple scaling factor that accounts for all previous 

excitations or signal losses due to excitation which could be accounted for in quantification methods53,54. 

This fundamental link between the detection strategy and the resulting signal evolution must be well 

characterized if reliable quantification methodologies are to be applied to hyperpolarized studies. 

  



49 
 

 

 Chapter 3. Simulation of Hyperpolarized Studies 

This chapter is intended to address Aim 1. 

Section 3.1: Theory 

Once the hyperpolarized signal is detected it needs to be processed. For hyperpolarized 

pyruvate, the study endpoint of interest is normally some metric of the rate of metabolic conversion of 

pyruvate to lactate26. While some sense of metabolic rate can be determined from a qualitative analysis 

of signal curves from simple dynamic spectroscopy, a quantitative measure of the rate of conversion 

would allow much more specific information on the underlying biology. Many methods have been 

proposed to quantify the rate of conversion of hyperpolarized pyruvate to lactate. Simple methods such 

as the ratio of the pyruvate signal to the lactate signal55, to more advanced methods that attempt to fit 

the signal evolution to some model of conversion53,56-60 have been proposed. Due to the non-renewable 

nature of a hyperpolarized signal, excitation for detection will affect all subsequent measurements. It is 

still unclear to what the extent such perturbations in signal evolution caused by detection alter 

quantitative strategies for detecting metabolic conversion of hyperpolarized pyruvate61. 

  With current technology, the process of generating hyperpolarized pyruvate is lengthy due to 

the need to build up a significant hyperpolarized state. Additionally, due to the hardware and reagent 

requirements, the creation of hyperpolarized pyruvate is still relatively costly compared to other magnet 

resonance agents26. With these practical concerns in mind, exhaustively testing a range of acquisition 

strategies experimentally would be exceedingly expensive and difficult. Additionally, the quantitative 

parameter of interest, the apparent rate constant for chemical conversion, at a minimum will require 

dynamic chemical conversion. These requirements limit the systems available to explore how the 

sequence used in detection affects the quantitative results. Fortunately, there exist well-accepted 
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numeric models for all of the above considerations62. The physics behind the magnetic resonance 

phenomenon is well described using the Bloch equations. The Bloch equations can be adapted to 

account for chemical exchange between two distinct chemical species, in that form, they are referred to 

as the Bloch-McConnell equations63. Delivery of a magnetic resonance contrast agent via endogenous 

vasculature has been described by Tofts in the case of gadolinium64,65 and adapted for hyperpolarized 

agents by Bankson53. By combining all of these models, it should be possible to numerically simulate the 

critical aspects of a realistic magnetic resonance study of hyperpolarized pyruvate. Such a simulation 

platform would be able to explore how detection strategies affect the resulting hyperpolarized signal 

and any subsequent quantization across a wide range of biologic and sequence parameters62.  

 Recall that the Bloch equation described in chapter 2: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 0 + 𝐵⃑ 1(𝑡)}) +

1

𝑇1
(𝑀⃑⃑ 0 − 𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⊥ 2.44 

where 𝑀⃑⃑  is the magnetization vector with longitudinal and transvers components 𝑀⃑⃑ ∥ and 𝑀⊥ 

respectively, 𝛾 is the gyromagnetic ratio, 𝐵⃑ 0 is the static magnetic field, 𝐵⃑ 1(𝑡) is some time varying 

magnetic field, 𝑇1 is the spin lattice relaxation time, 𝑀⃑⃑ 0 is the equilibrium magnetization, and 𝑇2 is the 

spin-spin relaxation time. In the case of hyperpolarized carbon, it is generally assumed that the 

contribution to the signal from thermal polarization is negligible i.e., 𝑀⃑⃑ 0 ≪ 𝑀⃑⃑ (𝑡), even as 𝑀⃑⃑ (𝑡) 

approaches zero due to 𝑇1 relaxation. Therefore, 𝑀⃑⃑ 0 can be neglected and the Bloch equation for 

hyperpolarized 𝐶13 agents then becomes: 

 𝑑𝑀⃑⃑ 

𝑑𝑡
= 𝛾(𝑀⃑⃑ ×{𝐵⃑ 0 + 𝐵⃑ 1(𝑡)}) +

1

𝑇1
(𝑀⃑⃑ ∥) −

1

𝑇2
𝑀⊥ 3.1  

In order to account for multiple chemical species, equation (3.1) needs to be expanded into a matrix 

form. Additionally, with the removal of 𝑀0, the 𝑇1 and 𝑇2 terms can be combined resulting in: 
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𝛿

𝛿𝑡
[

𝑀𝑥
𝑀𝑦
𝑀𝑧

] = 𝛾 [

𝑀𝑦𝐵𝑧 −𝑀𝑧𝐵𝑦
𝑀𝑧𝐵𝑥 −𝑀𝑥𝐵𝑧
𝑀𝑥𝐵𝑦 −𝑀𝑦𝐵𝑥

] +

[
 
 
 
 
 
 
1

𝑇2
0 0

0
1

𝑇2
0

0 0
1

𝑇1]
 
 
 
 
 
 

[

𝑀𝑥
𝑀𝑦
𝑀𝑧

] 3.2  

For simplicity equation (3.2) combines 𝐵0 and 𝐵1(𝑡) into a single 𝐵. With the inclusion of two chemical 

species equation (3.2) becomes: 

 

𝛿

𝛿𝑡

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

= 𝛾

[
 
 
 
 
 
 
(1 − 𝜎𝑎)(𝑀𝑦,𝑎𝐵𝑧 −𝑀𝑧,𝑎𝐵𝑦) 

(1 − 𝜎𝑎)(𝑀𝑧,𝑎𝐵𝑥 −𝑀𝑥,𝑎𝐵𝑧)

(1 − 𝜎𝑎)(𝑀𝑥,𝑎𝐵𝑦 −𝑀𝑦,𝑎𝐵𝑥)

(1 − 𝜎𝑏)(𝑀𝑦,𝑏𝐵𝑧 −𝑀𝑧,𝑏𝐵𝑦)

(1 − 𝜎𝑏)(𝑀𝑧,𝑏𝐵𝑥 −𝑀𝑥,𝑏𝐵𝑧)

(1 − 𝜎𝑏)(𝑀𝑥,𝑏𝐵𝑦 −𝑀𝑦,𝑏𝐵𝑥)]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝑇2,𝑎
0 0 0 0 0

0
1

𝑇2,𝑎
0 0 0 0

0 0
1

𝑇1,𝑎
0 0 0

0 0 0
1

𝑇2,𝑏
0 0

0 0 0 0
1

𝑇2,𝑏
0

0 0 0 0 0
1

𝑇1,𝑏]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

 

3.3  

where 𝜎 is the chemical shielding term and the second subscript 𝑎 or 𝑏 is used to denote the separate 

chemical species. Equation (3.3) is little more than a combination two forms of equation (3.2). Without 

any cross terms, the chemical species 𝑎 and 𝑏 are completely independent. In order to couple the two 

chemical species, some chemical exchange term needs to be added. 

 Chemical exchange between two chemical pools will be given by:66  

 

𝐴
𝑘1
⇄
𝑘2

𝐵 3.4  
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where 𝑘1 and 𝑘2 are the forward and reverse apparent exchange rates respectively.  Equation (3.4) can 

be written in matrix form following: 

 𝜕

𝜕𝑡
[
[𝐴](𝑡)

[𝐵](𝑡)
] = [

−𝑘1 𝑘2
𝑘1 −𝑘2

] [
[𝐴](𝑡)

[𝐵](𝑡)
] 3.5  

where [𝐴] and [𝐵] are the concentrations of 𝐴 and 𝐵 respectively. Equations (3.5) and (3.3) can be 

combined into63,67-69: 

 

𝛿

𝛿𝑡

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

= 𝛾

[
 
 
 
 
 
 
 
 
(1−𝜎𝑎)(𝑀𝑦,𝑎𝐵𝑧−𝑀𝑧,𝑎𝐵𝑦) 

(1−𝜎𝑎)(𝑀𝑧,𝑎𝐵𝑥−𝑀𝑥,𝑎𝐵𝑧)

(1−𝜎𝑎)(𝑀𝑥,𝑎𝐵𝑦−𝑀𝑦,𝑎𝐵𝑥)

(1−𝜎𝑏)(𝑀𝑦,𝑏𝐵𝑧−𝑀𝑧,𝑏𝐵𝑦)

(1 −𝜎𝑏)(𝑀𝑧,𝑏𝐵𝑥−𝑀𝑥,𝑏𝐵𝑧)

(1 −𝜎𝑏)(𝑀𝑥,𝑏𝐵𝑦−𝑀𝑦,𝑏𝐵𝑥)]
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝑇2,𝑎
+ 𝑘1 0 0 −𝑘2 0 0

0
1

𝑇2,𝑎
+ 𝑘1 0 0 −𝑘2 0

0 0
1

𝑇1,𝑎
+ 𝑘1 0 0 −𝑘2

−𝑘1 0 0
1

𝑇2,𝑏
+ 𝑘2 0 0

0 −𝑘1 0 0
1

𝑇2,𝑏
+ 𝑘2 0

0 0 −𝑘1 0 0
1

𝑇1,𝑏
+ 𝑘2

]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

 

3.6  

The coupling between the chemical pools has computational implications when attempting to solve 

equation (3.6) numerically. During times when there is no radiofrequency excitation, 𝐵1(𝑡) = 0, and 

equation (3.2) becomes a well behaved exponential decay in the rotating frame. For most conventional 

sequences, the excitation pulses are short and relatively infrequent compared to times when they are 

not present. This allows a substantial speeding up of computation in the rotating frame by many orders 

of magnitude when physical values for 𝐵0 and 𝛾 are used. Even when there are 𝐵1(𝑡) pulses, if they are 

close to the Larmor frequency then the transformed field 𝐵𝑒𝑓𝑓 will cause only minor deviations from a 

simple exponential decay and the computational burden will be minimal. However, once the two 

chemical pools have been coupled by an exchange term, moving into a rotating frame begins to offer a 
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reduced computational advantage. This is because there are now two Larmor frequencies to account for 

in the frame shift corresponding to each chemical species. If the chemical species are well-separated 

such that there is a few ppm of separation between them, even a moderate magnetic field can result in 

a few kHz of difference in their Larmor frequencies. Solutions with rapid oscillation pose a sizeable 

computational burden when solved numerically. The step size for a numeric computation has to be 

small compared to the frequency of oscillation resulting in step sizes on the order of microseconds for 

well-separated chemical species.   

 Fortunately, under certain conditions, there exists a closed form solution to equation (3.6). In 

order to arrive at the closed form solution to equation (3.6), the cross product terms can be combined 

with the decay terms yielding: 

 

𝛿

𝛿𝑡

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

= 𝐴

[
 
 
 
 
 
 
𝑀𝑥,𝑎
𝑀𝑦,𝑎
𝑀𝑧,𝑎
𝑀𝑥,𝑏
𝑀𝑦,𝑏
𝑀𝑧,𝑏 ]

 
 
 
 
 
 

 3.7  

where: 

 

𝐴 =  𝛾

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑇2,𝑎
− 𝑘1 (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 𝑘2 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
− 𝑘1 −(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 𝑘2 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
− 𝑘1 0 0 𝑘2

𝑘1 0 0 −
1

𝑇2,𝑏
− 𝑘2 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 𝑘1 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
− 𝑘2 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 𝑘1 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
− 𝑘2

]
 
 
 
 
 
 
 
 
 
 
 
 
 

 3.8  

𝐵𝑒𝑓𝑓 is simply the magnetic field in any arbitrary rotating frame, and 𝜎𝑎 and 𝜎𝑏 are the chemical 

shielding terms for the chemical species 𝑎 and  𝑏 respectively. If there is no active radio frequency pulse, 

then 𝐵𝑒𝑓𝑓 is no longer time-dependent and 𝐴 also becomes time independent. The closed form solution 

to equation (3.7) when 𝐴 is constant in time is70: 

 𝑀⃑⃑ (𝑡) = 𝑒𝐴𝑡𝑀⃑⃑ (0) 3.9  
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where, 𝑀⃑⃑  is the combined vector for both chemical species. Note that in equation (3.9) the exponent 

represents matrix exponentiation. If there is some time-varying magnetic field, then equation (3.9) 

breaks down. However, equation (3.6) can still be solved numerically during such times. Therefore, by 

combining a numerical solver with the analytical solution, a large reduction in computation time can be 

achieved when the radio frequency pulses do not occupy a majority of the calculation time. By solving 

equation (3.7) or its closed form under the right conditions, equation (3.9), it is possible to simulate the 

chemical exchange of a hyperpolarized agent. 

 The simplest model for pyruvate delivery would be to assume instantaneous delivery as a delta 

function bolus, or that all of the pyruvate that will arrive during the study does so at 𝑡 = 0. This 

approximation is little more than a boundary condition on equation (3.7) and does not represent a good 

model of perfusion. A second model would be to allow a driving input function for the pyruvate or 

lactate magnetizations over time, 𝑏⃑ (𝑡). This would change equation (3.7) to: 

 𝛿𝑀⃑⃑ 

𝛿𝑡
= 𝐴𝑀⃑⃑ + 𝑐𝑏⃑ (𝑡) 3.10  

 where 𝑐 is an exchange constant between the vascular delivery and the system of interest. Equation 

(3.10) also has a closed form solution given by70: 

 
𝑀⃑⃑ (𝑡) = 𝑒𝐴𝑡𝑀⃑⃑ (0) + 𝑐∫ 𝑒𝐴𝜏𝑏⃑ (𝜏)

𝑡

0

𝑑𝜏 3.11  

Equation (3.11) has a computational consideration as the integral will need to be evaluated numerically. 

However, for most cases the computation of a single definite integral will be much more efficient than 

numerically solving a rapidly oscillating system, and therefore equation (3.11) still represents a 

significant speedup over (3.10).  Note there are some forms of 𝐴 that run into discretization issues when 

computed. The decay terms in 𝐴 act as forcing functions that drive any magnetization, either transverse 

or longitudinal, eventually to zero over a long enough time. These forcing terms eventually become so 

large, that, depending on the programing language used, they can result in infinite numbers that destroy 
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computational fidelity. However, under these unstable conditions it is generally safe to assume that 

there is no signal, as the initial signal would have to have been huge in order to be able to outlast a 

forcing function that pushed the discretization limits of a system. It would have to be so large that it 

would likely have its own discretization issues. Therefore, simply replacing any poorly defined numeric 

results in the computation of the integral in equation (3.11) with zeros sufficiently resolves this issue. 

Alternatively, computation intervals that are long enough to push the forcing terms to their 

discretization limits can also be split and recalculated. By combining such splitting with a recursive 

algorithm, it is possible to solve for an arbitrarily long time interval using equation (3.11). 

 If a more complicated model of perfusion is to be implemented, equation (3.11) needs to be 

altered. Tofts has proposed a multi-compartment model for perfusion of magnetic resonance imaging 

contrast agents64,65 that was adapted for hyperpolarized agents by Bankson53. Following these models, a 

tissue is divided into two spatially separated compartments; the vascular space, and the extravascular 

space, although additional compartments could be considered. When the agent is injected 

intravenously, it arrives to the tissue via the vasculature, and thus the concentration of the agent follows 

a vascular input function that is a function of the vascular system and the injection bolus. Once in the 

vasculature, the agent would move across the vessel walls with a transfer constant 𝐾𝑣𝑒. The rate at 

which the agent crossing from the blood into the extravascular space will simply be the 𝐾𝑣𝑒 divided by 

the volume fraction of the extravascular-extracellular space 𝑣𝑒. With these constants, the transfer of an 

agent out of the vasculature would be given by: 

 
𝛿

𝛿𝑡
[
𝐶𝑣
𝐶𝑒𝑣
] =

[
 
 
 −
𝐾𝑣𝑒
𝑣𝑒

𝐾𝑣𝑒
𝑣𝑒

𝐾𝑣𝑒
𝑣𝑒

−
𝐾𝑣𝑒
𝑣𝑒 ]
 
 
 

[
𝐶𝑣
𝐶𝑒𝑣
] 3.12  

where 𝐶𝑣 and 𝐶𝑒𝑣 are the agent concentrations in the vasculature and extravascular spaces respectively. 

Note that equation (3.12) assumes that the rate constant for transfer of an agent from the vascular 

space to the extravascular-extracellular space is the same as the reverse transfer constant, that is to say 
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there is no biological preference for uptake or clearance of the agent across the vasculature in the tissue 

of interest. 

Notably only the pyruvate in the cytosol would be converted into lactate as the enzyme lactate 

dehydrogenase is confined in the cytosol. To account for this, the extravascular space could be divided 

into two compartment, the cellular compartment and an extravascular extracellular space. Such 

compartmentalization requires a three-step transport from the vasculature to the cells involving not 

only leakage from the vasculature but cellular uptake which would likely be mediated by MCT-1. If 

cellular uptake is so quick that the two spatially separated pools can be considered to be in quasi-

equilibrium, than all pyruvate outside of the vascular pool can be assumed to be available for conversion 

into lactate. Indeed, initial modeling results suggest that the simpler, two physical pool model of 

perfusion is sufficient to model in vivo delivery of pyruvate and its subsequent conversion to lactate53. 

With the assumption of two physical pools and two chemical pools, equation (3.12) can be combined 

with equation (3.10) to yield:53,62 

 𝛿𝑀⃑⃑ 

𝛿𝑡
= 𝑣𝑒 {𝐴𝑒𝑣𝑀⃑⃑ 𝑒𝑣 +

𝑘𝑣𝑒
𝑣𝑒
𝑀⃑⃑ 𝑣} + (1 − 𝑣𝑒)𝐴𝑣𝑀⃑⃑ 𝑣 

𝐴𝑒𝑣 =  𝛾

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑇2,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 𝑘2 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 𝑘2 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
− 𝑘1 −

𝑘𝑒𝑣
𝑣𝑒

0 0 𝑘2

𝑘1 0 0 −
1

𝑇2,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 𝑘1 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 𝑘1 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
− 𝑘2 −

𝑘𝑒𝑣
𝑣𝑒 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐴𝑣 =  𝛾

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑇2,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) 0 0 0

(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) 0 0 0

−(1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑎)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑎
−
𝑘𝑒𝑣
𝑣𝑒

0 0 0

0 0 0 −
1

𝑇2,𝑏
−
𝑘𝑒𝑣
𝑣𝑒

(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡)

0 0 0 (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑧(𝑡) −
1

𝑇2,𝑏
−
𝑘𝑒𝑣
𝑣𝑒

−(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡)

0 0 0 −(1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑦(𝑡) (1 − 𝜎𝑏)𝐵𝑒𝑓𝑓,𝑥(𝑡) −
1

𝑇1,𝑏
−
𝑘𝑒𝑣
𝑣𝑒 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.13  

where 𝑀𝑒𝑣⃑⃑ ⃑⃑ ⃑⃑  ⃑ is the magnetization in the extravascular pool, and 𝑀𝑣⃑⃑ ⃑⃑  ⃑ is the magnetization in the vascular 

pool. Equation (3.13), assumes a closed vascular system, which is not the case for perfused tissue. In 
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perfused tissue, the vascular compartment will contain rapidly flowing blood and therefore the signal 

from that compartment, and it should be modeled differently than the extravascular pool. A vascular 

input function is commonly used to model the signal from an agent in the blood71. The rapid flow in the 

vascular pools allows some simplifications of 𝑀𝑣⃑⃑ ⃑⃑  ⃑. First, since any agents in the vascular pool rapidly 

leave the tissue, agent washout from the extravascular space can be modeled as a loss term with no 

increase in the signal in the vascular compartment. Additionally, since agents in the vascular pool are 

constantly being supplied by fresh flowing blood, the local signal loss terms such as 𝑇1 and 𝑘𝑣𝑒 can be 

ignored. As a consequence of these assumptions, the signal from the vascular pool is governed solely by 

the concentration in the total blood pool defined by the vascular input function, 𝑀⃑⃑ 𝑣 ≡ 𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑  ⃑(𝑡). 

Following this assumption, equation (3.13) reduces to: 

 𝛿𝑀⃑⃑ 

𝛿𝑡
= 𝑣𝑒 {𝐴𝑒𝑣𝑀⃑⃑ 𝑒𝑣 +

𝑘𝑣𝑒
𝑣𝑒
𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑  ⃑(𝑡)} + (1 − 𝑣𝑒){𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑  ⃑(𝑡)} 3.14  

 

 When there is not time varying 𝐵 field there is a closed form solution to equation (3.14) given by53: 

 
𝑀⃑⃑ (𝑡) = 𝑣𝑒 {𝑒

𝐴𝑒𝑣(𝑡)𝑀⃑⃑ 0 +
𝑘𝑣𝑒
𝑣𝑒
∫ 𝑒𝐴(𝑡−𝜏)𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑  ⃑(𝑡)𝑑𝜏
𝑡

0

} + (1 − 𝑣𝑒){𝑉𝐼𝐹⃑⃑⃑⃑⃑⃑  ⃑(𝑡)} 3.15  

 

Equation (3.15) accounts for the basic physics behind magnetic resonance, as well as the chemical 

exchange taking place in an isolated extravascular compartment that is fed by the vasculature via 

exchange across vessel walls. Both the vascular and extravascular compartments contribute to the 

detected magnetic resonance signal in amounts that depend on their volume fractions of the tissue of 

interest. Inspection of equation (3.15) reveals that the terms from the Bloch equation are exclusively in 

the extravascular compartment and do not affect the vascular compartment. As a result, the 

magnetization vectors in the vascular pool would be unaffected by an excitation pulses would not 

contribute detectable magnetic resonance signal. If the magnetization in the vascular pool were 
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sensitive to excitation, it could contribute a signal but could be significantly reduced below the vascular 

input function, a violation of the assumption leading to equation (3.14). In order to account for this 

discrepancy, it can be assumed that the excitation pulses are short compared to the flow rate in the 

vascular compartment. Under a short excitation assumption, the effects of perfusion and excitation can 

be considered separately. If there is no time-varying magnetic field, then the intravascular longitudinal 

magnetization can be set to a value defined by the vascular input function in order to preserve fidelity 

with the perfusion model. Additionally, since it is assumed that perfusion of transverse magnetization is 

negligible, the transverse components of the magnetization can evolve according to the Bloch 

equations. During excitation, perfusion can be ignored, again because the duration of the pulse is so 

short compared to the perfusion timescale. This allows the longitudinal magnetization in the vascular 

pool to be excited into the transverse plane where it will be detected as a signal without needing to 

account for blood flow. Once the pulse has played out, the longitudinal magnetization is returned to the 

value dictated by the vascular input function while the transverse magnetization will continue to evolve 

according to the Bloch equations. Such modifications to the VIF allows the signal from the blood pool to 

be accounted for without the need to model complex flow of blood in an arbitrary vasculature. If the 

radiofrequency pulses are long, or significantly affect the vascular input function, then non-negligible 

errors in the perfusion model would be introduced by this assumption. 

Section 3.2: Implementation 

 Equation (3.15) and its underlying differential equation were coded in Matlab (The MathWorks 

Natick MA). The basic structure of the object-oriented architecture is displayed in figure 3-1 and 

documented in detail in Appendix B. Instantiation of the simulation environment is performed by a 

singleton72 world object which stores references to all the information about the spin systems and the 

pulse sequence. The pulse sequence is a series of gradient and radiofrequency pulses that are stored as 

arbitrary 𝑏(𝑡) allowing any pulse shape to be used. To assist in usability, helper functions have been 
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created for the construction of the most standard gradient and RF-pulse waveforms that are used in 

MRI/MRS. Spin groups logically represent an isochromat and differ based on the underlying assumptions 

about which model they follow. Once a world system has been populated with both a pulse sequence 

and a set of spins, it is then calculated and finally evaluated to yield a set of free induction decays or 

echoes. 

 

Figure 3-1. Outline of the simulation architecture. The World stores an array of voxels and a single pulse 

sequence. The Pulse Sequence stores a list of radio frequency pulses and gradient pulses and has logic to 

more efficiently organize them for rapid query of the magnetic field as a function of time, as well as flags 

for when the analytic solution (equation 3.15) does not hold. Voxel stores arrays of spin groups and has 

functions to calculate their solutions, which are stored for fast evaluation at arbitrary times. Spin Groups 

store all the biophysical parameters and the details of the underlying model. Spin models must be of the 

form in equation (3.7) and need to have a valid analytical solution and the logic to determine if it 

applies.  

 

 The calculation simply solves equation (3.14) and other preceding equations based on the spin 

groups present in the simulation. When there are no excitation pulses, the analytical solution can be 
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used. During the calculation step the analytical solution is defined as a function of 𝑡 over a time frame 

that is determined by the pulse sequence. If, however, there is a time varying magnetic field, then the 

closed form solution that was presented above does not hold and the differential equation must be 

solved numerically.  The simplest way to solve an ordinary differential equation such as equation (3.8) is 

known as Euler’s method70: 

 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ 𝑦𝑛
′ (𝑡𝑛) 3.16  

 where the derivative, 𝑦′, of a function 𝑦 is calculated at a particular time 𝑡𝑛 and then advanced by some 

small Δ𝑡 to another time point 𝑡𝑛+1 to find an approximate solution 𝑦𝑛+1.This process is repeated until 

the solution has been found for all time points of interest. This method is rarely used in practice for two 

main reasons (i) it is not very stable, that is, if there are regions of the solution that are changing rapidly 

than the derivative will be large and therefore the step can be quite large leading to sizeable errors and 

(ii) it is normally slower than other methods with the same accuracy when variable step sizes are used. 

If, however, a “trial” step or steps are used in between each step, the error in the function can be 

minimized. If these trial steps are based on reducing the error order in a Taylor series expansion they are 

referred to as Runge-Kutta methods70. These trial points allow for a better sampling of the function 

along its solution, and since the location of their evaluation is derived from the Taylor series expansion 

they are generally more efficient than the brute force Euler method with a similar number of function 

calls. This increased efficiency normally allows for larger step sizes with the same accuracy as with lower 

order methods for most practical problems, and with larger steps sizes comes faster evaluation. The 

most commonly used Runge-Kutta method uses four test points and is general faster and more accurate 

than Eulers method or even a Runge-Kutta method with only a single additional trial point70. A 

comparison of the different methods is shown in figure 7-2.  

Once the numeric solutions have been calculated, they are stored along with the analytical 

solution in a series of objects that allow for evaluation at arbitrary time points within the calculated 
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solution space. This set of solutions can then be evaluated at the desired sampling time points to yield a 

series of free induction decays or echoes. This series of free induction decays can then be evaluated 

using any processing methods that are applicable to real magnetic resonance data sets, as will be 

discussed in Chapter 4. 

Figure 3-2. A comparison of numerical methods for solving ordinary differential equations. The black line 

is the actual function 𝑦(𝑡) = 𝑒
−𝑡

𝑏 ∗ sin (𝑎𝑡) with a derivative of the form 
𝑑𝑦

𝑑𝑡
= −

1

𝑏
𝑒
−𝑡

𝑏 ∗ sin(𝑎𝑡) + 𝑎𝑒
−𝑡

𝑏 ∗

cos (𝑎𝑡). The red dots are the sample points used in a Runge-Kutta 4th order solution. The blue line is the 

sample point used in an Euler’s method solution with a step size tat was set to ensure the same number 

of sample points as the 4th order Runge-Kutta. The cyan asterisks are the evaluation points used in a 

Euler’s method solution with a step size that was set to ensure the same number of function evaluations 

as the 4th order Runge-Kutta. Within the same computational burden, the 4th order Runge-Kutta shows 

superior accuracy. 
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Section 3.3: Verification 

To ensure consistency between equations (3.14) and (3.15), a system consisting of two 

exchanging spins was evaluated using both the analytic solution, equation (3.15), and using an adaptive 

4th order Runge-Kutta method to solve equation (3.14). The differences between the results were many 

orders of magnitude lower than the solution values as seen in figure 3-3. As the error tolerance for the 

Runge-Kutta method was tightened, the difference between the two separate solutions was reduced, as 

was the L2 norm, which is also depicted in figure 3-3. 

 

Figure 3-3.  A comparison of the analytical and numerical solutions for a system of two spins coupled by 

chemical exchange. The top series of plots are the resulting free induction decay signals using either 

equation (3.14) or (3.15) and the difference between the solutions using a relatively high error tolerance 

of 1×10−6 and the lower plot series is identical plots but with the error tolerance reduced to 1×10−12. 

The plot to the far right is the L2 norm of the difference between the analytical and numerical solvers as 

a function of the error tolerance of the Runge-Kutta method. 

 

 More than providing higher numeric precision, the analytical solution also results in better 

computational efficiency. As shown in figure 3-4, the computational time for two isolated spins is 

independent of their chemical shifts. The independence of isolated spins is possible because they can 

have separate reference frames for calculation and can avoid the computational burden of Larmor 
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precession via a frame shift. If the two spins are coupled by chemical exchange, it becomes impossible 

to completely remove the oscillatory motion with a frame shift. The computational burden imposed by 

the oscillatory motion will be directly related to the difference in chemical shift of the coupled spins, 

with larger differences in chemical shift resulting in faster oscillatory motion and therefore, longer 

computational times as shown in figure 3-4. By utilizing the analytical solution, the computational 

impacts associated with oscillatory motion are removed as the solution is not found iteratively, and 

computation time is independent of chemical shift just like the isolated spins that are also illustrated in 

figure 3-4.  

 

Figure 3-4.  The computational performance of two spins that are either isolated or are coupled by 

chemical exchange as a function of the difference in their chemical shifts. The blue line shows the 

computational time for two isolated spins and is stable at 1.5 seconds. The red line shows the increasing 

computational time for two coupled spins when solved numerically as the difference between the two 

chemical shifts is increased. The yellow line shows that using the analytical solution removes any 

dependence on the chemical shift and returns the computation to a stable 1.5 second. 
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 In order to verify that the chemical exchange between two spin groups is computationally 

sound, a pair of coupled spin groups were simulated in the absence of any excitation into the transverse 

plane. The resulting longitudinal magnetization was fit to equation (3.15) using a least squares method 

and only fitting for chemical exchange. As seen in figure 3-5 the fit exchange rate matches the simulated 

exchange rate with good numeric fidelity across a range of exchange rates. 

 

Figure 3-5. Exchange rate fitting for the longitudinal magnetization of two exchanging spin groups. Good 

qualitative agreement between the fitting function and the simulated longitudinal magnetization with 

an exchange rate of 0.1 𝑠𝑒𝑐−1 as seen in the left-most plot. In the center plot the fitted exchange rates 

are plotted against the simulated exchange rates showing good quantitative agreement with both the 

slope and 𝑅2 equal to unity. In the right-most plot the residual of the fit for a range of exchange terms is 

shown. 

  

Similar fitting of the longitudinal magnetization was performed to assess fidelity of the perfusion 

parameters. A single spin was simulated using the two physical compartment model described by 

equation (3.12). The resulting longitudinal magnetization was fit with a least squares method allowing 

both 𝑘𝑣𝑒 and 𝑣𝑒 as fit parameters for a range of values as seen in figure 5-6. The fit results matched the 

simulated longitudinal magnetization with good qualitative and quantitative accuracy. 
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Figure 3-6. Perfusion fitting for the longitudinal magnetization of a single perfused spin group assuming 

two spatial compartments. In the top left plot good qualitative fitting is shown between the simulated 

longitudinal magnetization and the fitting function with 𝑘𝑣𝑒 = 0.02 and 𝑣𝑒 = 0.9. The bottom left and 

right plots show strong correlation between the simulated 𝑘𝑣𝑒 and 𝑣𝑒 and the resulting fit values with 

slope and 𝑅2 equal to unity. The top right plot shows the fit residual as a function of the 𝑘𝑣𝑒 

 

In order to asses that radiofrequency excitations were being properly modeled, a single isolated 

spin was simulated with a simple pulse acquire experiment. The spin parameters were set to match 

those of C13 Urea doped with Gd+ with 𝛿 = 173.5 ppm, 𝑇1 = 3 sec and 𝑇2 = 20 msec. The pulse 

sequence, both simulated and actual, used a 1500 msec block pulse and a 900 excitation angle. A 5 kHz 

readout bandwidth with 2048 points was used. The center frequency of the pulse was swept from -25 

ppm to 25 ppm with a full 15 seconds between each excitation to ensure complete 𝑇1 recovery. Finally, 

the simulated data were corrected to match the initial phase of the on-resonance excitation with an 

identical correction factor used for all off-resonance excitations. All dynamic spectroscopy was 

performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp., Billerica, MA) using B-GA12SHP 
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gradients and a dual-tuned 1H/13C volume coil (72-mm ID, Bruker Biospin MRI). Figure 3-7 shows good 

agreement between the simulated magnitude and phase of the signal as a function of the center 

frequency of the excitation pulse and the measured data. This suggests that excitation pulses are indeed 

well modeled in the simulation architecture. 

 

Figure 3-7.  Comparison of excitation profiles for doped C13 urea. The top two plots show the measured 

phase and magnitude of a C13 urea bulb as a function of the center frequency of the excitation pulse.  

The lower two plots show the simulation phase and magnitude using an identical simulation pulse 

sequence. 

 

Finally, simulated dynamic spectroscopy was qualitatively compared to phantom studies. Free 

induction decays acquired by dynamic spectroscopy of a dynamic enzyme phantom,68,73 which will be 

described in chapter 5 are compared to the simulation results with matching chemical and sequence 

parameters in figure 3-8. There is strong qualitative agreement between the simulated data and that 

acquired from a phantom. The only minor sources of disagreement are slightly different noise factors, 

minor peak splitting in the phantom data caused by imperfect shimming not modeled in the system and 
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the presence of pyruvate-hydrate in the phantom data. Pyruvate hydrate is normally a small metabolic 

inactive signal that is generally ignored and therefore is not simulated. 

 

  

Figure 3-8. A comparison between dynamic spectroscopy data acquired from a phantom (top) and data 

resulting from a simulation using the same physical and sequence parameters. 

  

These verification studies demonstrate that the simulation architecture is mathematically 

consistent with the models outlined, specifically equations (3.8) and (3.14). With such a numerically 

sound platform more complicated biology or sequences can be explored to ensure that measured 

exchange rates are not skewed by detection methods.   
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 Chapter 4. Quantitative Accuracy of Dynamic Spectroscopy 

This Chapter is based upon  

Walker, C. M., Chen, Y., Lai, S. Y. & Bankson, J. A. A novel perfused Bloch-McConnell simulator for 

analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 43, 854, doi:10.1118/1.4939877 

(2016). 

Copyright © 2016 American Association of Physicists in Medicine. Reproduced with permission of 

American Association of Physicists in Medicine. 

This chapter is intended to address Aim 2. 

Section 4.1 Introduction and Theory 

Equation (3.14) can be used to generate a single free induction decay or a series of them. After 

processing as described in chapter 2, a series of time value curves that represent the relative signal 

intensities of the distinct chemical species can be generated. If hyperpolarized pyruvate is the agent of 

interest for the simulation study, then the expected downstream product would be hyperpolarized 

lactate. In that case, the signal curves would show some initial pyruvate signal or early pyruvate 

perfusion followed by its subsequent conversion to lactate. Eventually, due to wash out or 𝑇1 decay and 

excitation losses, all of the signal will dissipate. In order to quantify the rate of conversion of pyruvate to 

lactate a model similar to the equations described in chapter 3 can be fit to the resulting curves. The 

equations will be slightly different as the fitting will only address two relative signal intensities and not a 

series of magnetization vectors in 3-space. 

 Assuming no perfusion, referred to as a closed system approximation, the signal curves will 

follow62,68: 

 𝛿

𝛿𝑡
𝑃𝑦𝑟(𝑡) =  −(

1

𝑇1,𝑃𝑦𝑟
+
cos(𝜃)

𝑇𝑅
+ 𝑘′𝑝𝑙)𝑃𝑦𝑟(𝑡) 4.1  
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𝛿

𝛿𝑡
𝐿𝑎𝑐(𝑡) = −(

1

𝑇1,𝐿𝑎𝑐
+
cos(𝜃)

𝑇𝑅
)𝐿𝑎𝑐(𝑡) + 𝑘𝑝𝑙

′ 𝑃𝑦𝑟(𝑡) 

where 𝑃𝑦𝑟(𝑡) and 𝐿𝑎𝑐(𝑡) are the pyruvate and lactate signal magnitudes respectively, 𝑇1,𝑃𝑦𝑟 and 𝑇1,𝐿𝑎𝑐 

are the longitudinal relaxation times for pyruvate and lactate respectively, 𝜃 is the excitation angle, 𝑇𝑅 

is the repetition time, and 𝑘𝑝𝑙
′  is the apparent exchange rate between pyruvate and lactate. Note that 

𝑘𝑝𝑙
′  is not the same term as 𝑘1 in equations (3.4-13); 𝑘1 describes a physical exchange of chemical 

species between two pools, 𝑘𝑝𝑙
′  describes the evolution of the signal resulting from 𝑘1 exchange. The 

distinction is subtle, but important. Ideally 𝑘𝑝𝑙
′  would relate to 𝑘1 in some logical way, or even be 

identical to it. A final note on 𝑘𝑝𝑙
′ , 𝑘𝑝𝑙

′  is an apparent exchange rate, or it is the observed rate exchange 

of the hyperpolarized signal and might not be identical to the actual rate of conversion of metabolites. 

Therefore, 𝑘𝑝𝑙
′  is independent of the underlying process as long as the resulting signal curves are the 

same. No conversion from lactate to pyruvate is assumed, e.g. 𝑘2 = 0. However, that can be added to 

equation (4.1) without much more complexity. Additionally, note that 𝑇1 decay and excitation losses will 

be combined into a single term28,53. This assumes that excitation losses can be averaged over the entire 

repetition time as opposed to being accounted for during the short time interval that the excitation 

pulse is interacting with the spin system. This assumption has a few conditions under which it is 

accurate; the excitation angles are not changing during the acquisition, the repetition time is constant 

throughout the acquisition and the excitation pulse is small. If these conditions are not met, there is a 

good chance that numerical solutions to equation (4.1) will have reduced accuracy. Additionally, the 

analytical solution with averaged signal loss will require the excitation angle to be uniform for all 

excitations. It is possible to account for excitation pulses instantaneously and thus to remove the 

dependence on such assumptions. Such an instantaneous loss modeling strategy will be presented at 

the end of this section. 
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 Accounting for perfusion following using a model similar to Toft’s model 53,64,65 requires an 

adaptation of equation53,62 (4.1): 

 𝛿

𝛿𝑡
𝑃𝑦𝑟𝑒(𝑡) =  −(

1

𝑇1,𝑃𝑦𝑟
+
cos(𝜃)

𝑇𝑅
+ 𝑘′𝑝𝑙 +

𝑘𝑣𝑒
𝑣𝑒
)𝑃𝑦𝑟𝑒(𝑡) +

𝑘𝑣𝑒
𝑣𝑒
𝑃𝑦𝑟𝑣(𝑡) 

𝛿

𝛿𝑡
𝐿𝑎𝑐(𝑡) = −(

1

𝑇1,𝐿𝑎𝑐
+
cos(𝜃)

𝑇𝑅
+
𝑘𝑣𝑒
𝑣𝑒
)𝐿𝑎𝑐(𝑡) + 𝑘𝑝𝑙

′ 𝑃𝑦𝑟(𝑡) +
𝑘𝑣𝑒
𝑣𝑒
𝐿𝑎𝑐𝑣(𝑡) 

𝑃𝑦𝑟𝑣(𝑡) = 𝑏𝑃(𝑡) 

𝐿𝑎𝑐𝑣(𝑡) = 𝑏𝐿(𝑡) 

4.2  

where the subscripts 𝑒 and 𝑣 are used to denote the vascular and extravascular spaces. Generally, it is 

assumed that lactate is not carried into the tumor via vasculature, and under these conditions all the 

𝐿𝑎𝑐𝑣(𝑡) terms would be removed. The vascular input term for pyruvate 𝑏𝑃(𝑡) was modeled as a gamma 

variate71: 

 
𝑃𝑦𝑟𝑣(𝑡) = Γ(𝑡) = 𝑡

𝛼𝑒𝑥𝑝 (
−𝑡

𝛽
) 4.3  

where 𝛼 and 𝛽 are shape terms. 

Under these assumptions equations (3.14) and (4.2) reduce to: 

 𝜕𝑀𝑃𝑒𝑣
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

𝜕𝑡
= 𝛾(𝑀𝑃𝑒𝑣

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ×𝐵⃑ ) − (RP⃑⃑⃑⃑  ⃑ + kpl +
kve
ve
)MPev
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ +

kve
ve
MPv
⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

𝜕𝑀𝐿𝑒𝑣
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝜕𝑡
= 𝛾(𝑀𝐿𝑒𝑣

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑×𝐵) − RL⃑⃑ ⃑⃑  MLev
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + kplMLev

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

𝑀𝑃𝑣
⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝛤(𝛼, 𝛽, 𝑡) 

4.4  

 𝜕𝑃𝑦𝑟𝐸(𝑡)

𝜕𝑡
= −(

𝑘𝑣𝑒
𝑣𝑒
+ 𝑘𝑝𝑙̂ + 𝑅𝑃𝑦𝑟) 𝑃𝑦𝑟𝐸(𝑡) +

𝑘𝑣𝑒
𝑣𝑒
𝑃𝑦𝑟𝑣(𝑡) 

𝜕𝐿𝑎𝑐𝐸(𝑡)

𝜕𝑡
= 𝑘𝑝𝑙̂𝑃𝑦𝑟𝐸(𝑡) − 𝑅𝐿𝑎𝑐𝐿𝑎𝑐𝐸(𝑡) 

𝑃𝑦𝑟𝑣(𝑡) = Γ(𝛼, 𝛽, t) 

4.5  
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Equation (4.4 and 4.5) implicitly assume that the signal losses due to excitation can be 

approximated by effectively reducing the 𝑇1 by a factor 
cos(𝜃)

𝑇𝑅
, which essentially averages the excitation 

losses over the entire repetition time. In reality a closer approximation would be to track the transverse 

and longitudinal magnetization even though only the transverse magnetization can be detected. By 

relating the longitudinal magnetization to the detected signal it becomes possible to treat signal 

excitation as an instantaneous event. Creating a discontinuity in the non-detectable longitudinal 

magnetization which will subsequently affect the transverse magnetizations. If the excitation losses are 

not averaged over the entire repetition time but are modeled as instantaneous losses equations (4.5) 

would be modified to: 

 
[
𝑀𝑃,𝑖
′

 

𝑀𝐿,𝑖
′ ] = [

𝑀𝑃,(𝑖−1)
𝑀𝐿,(𝑖−1)

] 𝑒𝐴∗(𝑡𝑖−1−𝑡𝑖) +
𝑘𝑣𝑒
𝑣𝑒
∫ 𝑒𝐴(𝑡𝑖−1−𝜏)

𝑏𝑃(𝜏)

𝑏𝐿(𝜏)
𝑑𝜏

𝑡𝑖

𝑡𝑖−1

 

𝐴 =  

[
 
 
 
 −

1

𝑇1,𝑃
− 𝑘𝑝𝑙 −

𝑘𝑣𝑒
𝑣𝑒

𝑘𝑙𝑝

𝑘𝑝𝑙 −
1

𝑇1,𝐿
− 𝑘𝑙𝑝

]
 
 
 
 

 

[
𝑆𝑝𝑦𝑟,𝑖
𝑆𝑙𝑎𝑐, 𝑖

] =
sin(𝜃𝑝𝑦𝑟,𝑖)

sin(𝜃𝑙𝑎𝑐,𝑖)
∗ {𝑣𝑒 [

𝑀𝑃,𝑖
′

 

𝑀𝐿,𝑖
′ ] + (1 − 𝑣𝑒)

𝑏𝑃(𝑖 ∗ 𝑇𝑅)

𝑏𝐿(𝑖 ∗ 𝑇𝑅)
} 

[
𝑀𝑃,𝑖
𝑀𝐿,𝑖

] =
cos(𝜃𝑝𝑦𝑟,𝑖)

cos(𝜃𝑙𝑎𝑐,𝑖)
[
𝑀𝑃,𝑖
′

 

𝑀𝐿,𝑖
′ ] 

 

4.6  

where 𝑀𝑃,𝑖′  and 𝑀𝐿,𝑖′  are the longitudinal magnetizations for pyruvate and lactate before the 𝑖th 

excitation, 𝑇1,𝑃 and 𝑇1,𝐿 are the longitudinal relaxation times for pyruvate and lactate respectively, 𝑘𝑝𝑙  

and 𝑘𝑙𝑝 are the forward and reverse exchange rates between pyruvate and lactate respectively, 𝑏𝑃(𝑡) 

and 𝑏𝐿(𝑡) are the vascular input functions for pyruvate and lactate respectively, 𝑘𝑣𝑒 and 𝑣𝑒 are the 
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extravasation rate and extravascular volume fraction respectively as described by Tofts65 and 𝑡𝑖 is the 

time of the 𝑖𝑡ℎ RF excitation. 

Section 4.2 Methods 

The above Bloch-McConnell equations were numerically solved in a custom-built simulation 

environment developed using the MATLAB computing language (MathWorks, Natick, MA) as outlined in 

chapter 3.  Specifically, a perfectly homogeneous B0 of 7 Tesla was assumed with a radiofrequency 

excitation pulse modeled as a five-lobed sinc pulse with 5-kHz bandwidth centered halfway between the 

lactate and pyruvate resonances.  The spectral readout had a 4096-Hz bandwidth and 2048 points.  

Excitation angles were varied from 5° to 80°, and repetition times (TRs) ranging from 1-s to 10-s were 

tested. All simulations were carried out for 100 seconds, which ensured that all of the hyperpolarized 

signal had decayed below the noise floor. For the closed system, equation (3.7) assuming a single 

physical compartment was used to generate the signal curves with some initial pyruvate signal at the 

beginning of the acquisition and no additional signal entering the system. To simulate a perfused tissue 

equation (3.14) was used, and the initial pyruvate was assumed to be zero and that all of the pyruvate 

was assumed to have arrived in ro the system via perfusion. High and low driving model exchange rate 

constants of 0.1-s-1 and 0.02-s-1, respectively, were used. The T1 values used for pyruvate and lactate 

were assumed to be 43-s and 33-s respectively following the results in74, and T2* was set to 20-ms for 

both metabolites75. In the perfused system, the vascular input function was modeled as a gamma-

variate; the shape terms for pyruvate’s gamma variate were 𝛼 = 2.8 and 𝛽 = 4.5; the extravasation 

rate (kve) was assumed to be 0.02-s-1,76 and ve = 0.91. Total SNR for these dynamic data sets was defined 

as the sum of the half-height full-width area of noise-free spectral peaks over all time points divided by 

the standard deviation of the Gaussian noise that was subsequently added. The average signal-to-noise 

ratio per excitation for each combination of parameter values was calculated as the total SNR divided by 

the number of excitations.  
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Gaussian noise was added to noise-free simulation results to achieve a total SNR of ~1,000 for 

the perfused and closed systems under reference conditions with 20° excitations and TR = 2-s. This 

yielded metabolite curves that are consistent with our prior observations in vivo.  The same noise 

amplitude was added to simulation results for all other parameter combinations.  After Fourier 

transformation, phase correction was applied and the full-width at half-max (FWHM) area of the 

spectral peaks was calculated for each point in time.  The resulting dynamic curves were fit to equations 

(4.1), (4.5) or (4.6) by minimizing the mean square error using a trust region reflective algorithm. For this 

analysis, only the fit exchange term 𝑘𝑝𝑙̂ was allowed to vary; all other parameters in the analysis model 

equation (4.1), (4.5) or (4.6) were assumed to be identical to those used in the driving model equation 

(4.4). This process was repeated 20 times for all parameter combinations, and the average apparent fit 

exchange rate resulting from the analysis was compared with the driving exchange rate used by the 

driving model.  

Parameter Symbol Value 

Gyromagnetic Ratio 𝜸 
𝟔𝟕. 𝟐𝟔𝟐×𝟏𝟎𝟔

𝒓𝒂𝒅

𝒔𝒆𝒄 ∗ 𝑻
 

Vascular extravasation rate 𝒌𝒗𝒆 𝟎. 𝟎𝟐 𝒔𝒆𝒄−𝟏 

Extravascular volume fraction 𝒗𝒆 𝟎. 𝟗𝟏 

Pyruvate T1 Relaxation Time 𝑻𝟏,𝑷𝒚𝒓 𝟒𝟑 𝒔𝒆𝒄 

Lactate T1 Relaxation Time 𝑻𝟏,𝑳𝒂𝒄 𝟑𝟑 𝒔𝒆𝒄 

𝑻𝟐
∗Relaxation Time for both 

Pyruvate and Lactate 

𝑻𝟐
∗  𝟐𝟎 𝒎𝒔𝒆𝒄 

Vascular Input Function 𝚪(𝒕) 
𝒕𝟏.𝟖𝒆𝒙𝒑 (

−𝒕

𝟒. 𝟓
) 
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Table 4-1. Parameters used for simulation and fitting. 

  This workflow is represented schematically in Fig. 4-1 and the set of constants used for 

simulation are summarized in Table 4-1. A similar process was used to explore contrast, which we define 

as the difference between the two exchange rates observed using identical acquisition parameters. To 

assess fit quality, the squared 2-norm of each fit was calculated and averaged for each of the 20 fitting 

repetitions. The squared 2-norm of the fits was normalized for the total number of excitations to 

remove dependence on the number of data points. 

 

Figure 4-1. Workflow of simulation, processing and fitting: The Bloch-McConnell equations coupled with 

perfusion were solved for a range of sequence parameters. Noise was added to the resulting free 

induction decay signals. The signal of each metabolite was estimated via FWHM integration of the 

spectral peak at each time point. The signal evolution curves were fit using a two-site model to 

determine fit exchange. The fitted 𝑘𝑝𝑙
′  was then compared to the assumed (driving) value to determine 

the accuracy of the exchange rate measurements for a given combination of sequence parameters.  
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Section 4.3 Results 

Heat maps of the percent error for each combination of excitation angle and TR for the closed 

system are shown in Figure 4-2. A wide range of excitation angle and TR combinations resulted in 

accurate measurement of exchange rates, nominally with errors less than about 10% of the driving 

exchange rate.  The range of sequence parameters that resulted in accurate fits was larger when a 

higher apparent exchange rate was used in the driving model.  Estimates of the driving exchange rate 

began to result in inaccurate rate constants at very low and relatively high excitation angles, with a 

weaker dependence on TR.  Accurate fit exchange rates were achieved with excitation angles of 10° to 

40° for nearly all TRs at both high and low simulation exchange rates. Notably, the accuracy of analysis 

degrades precipitously for combinations with low exchange and large excitation angles as excitation 

losses suppressed the entire hyperpolarized signal before a significant lactate signal could be produced.   

 

Figure 2-2. Percent error plots of driving versus fit exchange rates for the closed system approximation. 

Left, high simulation exchange rate of 0.1 s-1; right, low simulation exchange rate of 0.02 s-1. Errors 
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ranged from 1% to greater than 250%. A wide range of sequence parameters provided accurate 

estimations of 𝑘𝑝𝑙̂, especially for the high simulation exchange rate data. 

 

When perfusion was included, the accuracy of these measurements (Figure 4-3) at the lower 

driving exchange rate did not deteriorate to the same extent as was seen in the closed system.  

Generally, a more limited range of sequence parameter combinations yielded accurate observations 

though the maximum overall error was reduced. Regarding the high driving exchange rate, accuracy of 

measurements begins to degrade along a boundary extending approximately from an excitation angle of 

30° and TR of 2 seconds to an excitation angle of 70° and TR of 10 s. Data assuming a lower driving 

exchange rate resulted in substantial error (~30% or greater) except over a narrow band from excitation 

angle 20o and TR of 2 to excitation angle 30o and TR of 10 as the limited lactate signal produced by slow 

exchange was more sensitive to the effects of excitation on signal evolution.   

 

 

Figure 4-3. Percent error plots of driving versus fit exchange rates for the perfused system 

approximation. Left, high simulation exchange rate of 0.1 s-1; right, simulation exchange conversion rate 
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of 0.02 s-1. The errors ranged from 1% to over 200%. Generally, the errors were less drastic than those 

for the closed system. However, there were fewer combinations of sequence parameters that yielded 

highly accurate exchange rate estimations. 

 

Total SNR and average SNR per excitation were used as metrics of signal quality. The effects of 

excitation angle and TR on these metrics are summarized in Figures 4-4 and 4-5. The total SNR is 

maximized at fast repetition times and relatively low excitation angles for the closed system (Figure 4-4). 

In contrast to the closed system, a wider range of excitation angles resulted in maximal total SNR for the 

perfused system likely due to vascular delivery of fresh pyruvate offsetting the signal losses at higher 

excitation angles. The average SNR per excitation, in contrast, peaks at higher excitation angles with 

longer TRs (Figure 4-5). It is important to note that the sequence parameter combinations that result in 

very low total SNR (Figure 4-4) or average SNR per excitation (Figure 4-5) do not correspond well to 

regions of high fit error (Figures 4-2 and 4-3) except at the lowest excitation angles. 

 

Figure 4-4. Relative total SNR of each study for the high driving exchange rate for both closed and 

perfused system. The total SNR peaks at a moderate excitation angle and short repetition time for the 
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closed system as opposed to the perfused system where the total SNR is relatively independent of 

excitation angle except at the lowest excitation angles. The results are similar for lower driving exchange 

(data not shown). 

 

Figure 4-5. Average SNR per excitation for the closed and perfused systems with a high driving exchange 

rate. The average SNR is greater at higher excitation angles and longer TRs. Additionally, the SNR of the 

perfused system has a weak dependence on TR for higher excitation angles. Average SNR plots are 

similar for lower driving exchange (data not shown). 

 

To explore the cause of fitting errors, we considered fit residual as a metric of fitting 

performance. The normalized square-2 norm of the fits for the high conversion rate (Figures. 4-2a, 4-3a) 

are shown in Figure 4-6. For the closed system, the norm increases with larger excitation angles with a 

slight dependence on TR. In contrast, the perfused system shows fairly low and uniform residuals. 

Higher fit norms (Figure 4-6) do not correlate with parameter combinations that resulted in inaccurate 

fitting of the exchange rate (Figures 4-2a, 4-3a), which implies that fit quality alone cannot explain 

inaccurate fitting results. 
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Figure 4-6. Normalized Square-2 norms of the fits for both closed and perfused systems, with a high 

driving kpl. The norms for the closed system rise rapidly at higher excitation angles. In contrast, the 

norms for the perfused system are uniformly lower. The norms of both closed and perfused systems 

have limited dependence on TR. Similar results were observed with a lower driving exchange (data not 

shown). 

 

Because of a fundamental motivating interest in the detection of changes in metabolism by MRS 

of hyperpolarized (HP)-pyruvate, we sought to determine which set of sequence parameters would 

provide the most accurate measurement of differences between high and low driving exchange rates. 

Maps for the error in the observed differences, or contrast error, for the closed and perfused systems 

are shown in Figure 4-7.  In general, regions of sequence parameter values that result in the most 

accurate measurement of contrast closely match the corresponding regions for data reflecting the 

higher driving exchange rates.  This is not true at the highest excitation angles, where very large errors in 

analysis of low driving exchange rate more significantly affect the differences that were observed.  
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Figure 4-7. Contrast error maps for the closed (left) and perfused (right) system approximations. The 

errors ranged from 1% to more than 100%. The large discrepancy between the simulation exchange 

rates in the two systems led to accuracy plots that closely matched the higher exchange rate plots. 

 

Using instantaneous excitation loss modeling in equation (4.6), figures 4-2 and 4-3 were 

recalculated. The results in figures 4-8 and 4-9 show a slight but meaningful divergence from the results 

modeled with excitation losses averaged over the entire repetition time. Generally, fitting with the 

instantaneous excitation losses allowed for more accurate 𝑘𝑝𝑙 measurement at longer repetition times 

and larger excitation angles and had little effect on accuracy for smaller excitation angles. This illustrates 

the limitations of the averaged excitation loss model and highlights the importance of calculating the 

basic physics modeled by the Bloch simulator. The errors introduced by the modeling assumptions, i.e., 

the differences between 4-8 and 4-9 vs 4-2 and 4-3, can be found by processing the same simulation 

data with different modeling assumptions. 
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Figure 4-8. Percent error plots of driving versus fit exchange rates for the closed system approximation. 

These are similar to Figure 4-2 but are fit with equation (4.6). Left, high simulation exchange rate of 0.1 

s-1; right, low simulation exchange rate of 0.02 s-1. 
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Figure 4-9. Percent error plots of driving versus fit exchange rates for the perfused system. These are 

similar to Figure 4-3 but are fit with equation (4.6). Left, high simulation exchange rate of 0.1 s-1; right, 

low simulation exchange rate of 0.02 s-1. 

 

The results in figure 4-2 demonstrated that in a closed system, sequence parameters have a 

limited effect on the accuracy of exchange rate measurements, and only become a significant source of 

error at extreme TR, excitation angles, or lower limits of chemical exchange. The closed system model 

best represents a phantom environment, but it does not realistically model all the characteristics of 

biological systems. In a perfused system (Figure 4-3), which applies to in vivo studies, sequence 

parameters can more significantly impact the measured exchange rates. As shown in figure 4-4 and 4-5, 

errors are unlikely to be a result of poor SNR except under relatively extreme conditions of very low 

excitation angles where the low total SNR does correspond to a region of inaccurate exchange rate 

fitting.  The quality of the fit is also not a primary source of these errors. If poor fit quality were the 

dominate cause of inaccurate fitting results, correlation between higher fit residuals and error in kpl 

would be expected. However, as shown in Figure 4-6, fit residuals are either uniform or do not 

correspond with sequence combinations that result in large kpl errors in the fit (Figures 4-2 and 4-3).  

 

Section 4.4 Discussion 

This work develops the computational structure needed to begin designing and optimizing 

hyperpolarized acquisition strategies to be simulated. Hyperpolarized magnetic resonance is sensitive to 

a wide array of parameters, many of which add to its usefulness, such as chemical exchange, while 

others likely serve as confounders, such as sequence parameter dependence, sensitivity to agent 

delivery, decay constants’ dependence on tissue type, etc. With such a complicated parameterization, as 
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well as multiple proposed models, the ability to rapidly and meaningfully simulate hyperpolarized 

studies allows quick and efficient exploration of these parameter spaces.  

Using the simulation architecture, sensitivity to acquisition design and modeling assumptions 

was found for even the simplest dynamic spectroscopy studies of hyperpolarized pyruvate. Sequence 

parameters will have different effects on the accuracy of the results for perfused versus closed system 

assumptions. Therefore, optimization of sequences under a particular assumption may not apply under 

different delivery conditions.  

Many physical and biologic processes affect the signal evolution in HP-MRS measurements. 

Since the acquisition strategy itself perturbs the system and affects subsequent measurements, it is 

critical that the acquisition strategy is not itself a confounder. If the parameter of interest is chemical 

exchange, the sampling strategy must sample the most critical information pertaining to the exchange 

rate. This work shows that properly tuned sequences result in more accurate estimation of the exchange 

rate than if less relevant data were sampled, such as exhaustive sampling before significant exchange 

has occurred.  

At the extreme ranges of exchange rates, excitation angles, and TRs, the effects on fitting error 

are exacerbated in the closed system. A single 80° pulse reduces the entire signal of all of the 

subsequent measurements by 83%. If significant exchange of HP-pyruvate to lactate has yet to take 

place, then accurate estimation of the exchange rate is unlikely. This is likely to be the source of high 

error rates in excess of 250% in the situations with the low simulation exchange rates and high 

excitation angles as shown in Figure 4-3. If the chemical conversion is fast enough, rapid use of the 

signal from high excitation angles can still result in accurate exchange modeling, as significant lactate 

buildup will occur during the first few pulses.  This explains the increased accuracy of results at high 

excitation angles and high simulation exchange rates. Perfusion enables fresh HP-pyruvate to flow into 

the tissue over time, reducing the attenuating effect of high excitation angles on the total SNR (Figure 4-
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5), and may account for the reduced severity of the errors at high excitation angles and low simulation 

exchange rates shown in Figure 4-4. Additionally, all data sets exhibited accurate fit estimates at long 

TRs. This likely resulted from exact matching of the HP-pyruvate delivery in the analysis and driving 

models. In practice, pyruvate arrival time will not be known exactly as it is not detectable until after 

excitation. Very long TRs will then correspond to larger uncertainty in the pyruvate delivery time and will 

likely drive errors in the analysis. The effect of uncertain delivery could degrade the relatively accurate 

estimations of fit exchange at the longer TRs. 

When attempting to detect a difference in the exchange rate of HP-pyruvate to lactate, 

investigators must take great care in selecting the sequence parameters, as the biases imposed by their 

sampling strategies may completely obscure any underlying rate differences. Attempting to find a single 

best-case sampling strategy for multiple pyruvate-to-lactate exchange rates may not always be possible 

and some sequence parameter bias could be unavoidable. Additionally, the sequence parameter effects 

on measurement will need to be accounted for when comparing rate measurements made with 

different sequence parameter values. 

Although the exchange rate constants we considered represent the extremes of realistic 

metabolism, one of the strengths of using hyperpolarized pyruvate is the relatively large change in 

exchange rates that can be detected. Therefore, it is not unreasonable to have a study that attempts to 

detect a change in exchange rate of nearly an order of magnitude, as was simulated in this work. This 

large difference in exchange rates biased the contrast error to more closely match errors associated 

with the high simulation exchange rate. This is expected, as an error rate of 10% for an exchange rate of 

0.1 will have a greater effect on the contrast than will the same percent error for an exchange rate of 

0.02.  Sequence parameter combinations that are accurate for the high simulation exchange rate data 

begin to degrade in terms of contrast accuracy at higher excitation angles for the closed approximation. 

This is because errors in the low simulation exchange become large enough to approach errors at the 
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higher exchange rate. Additionally, there were some sequence parameter combinations that resulted in 

extremely accurate detection of contrast with reduced accuracy for detection of either the high or low 

exchange rate data (Figures 4-4 and 4-8). This implies that the biases from those sequence parameters 

offset each other allowing for an accurate difference from two less accurate measurements. 

The results of the perfused studies suggested the use of higher excitation angles than generally 

used. Conservative sampling strategies are used to ensure that the signal is not completely consumed 

before significant exchange of HP-pyruvate to lactate can progress. If fresh HP-pyruvate is constantly 

flowing into the voxel or slice over some time frame, such conservative sampling is no longer necessary. 

If the excitation pulse significantly impacts the bulk of the HP-pyruvate pool, such as in sampling of the 

heart or whole-body excitation, the assumption that fresh HP-pyruvate is flowing into the voxel would 

begin to breakdown and conservative sampling would likely be needed. Additionally, higher excitation 

angles will cause more sensitivity to errors in excitation angle and will require even more careful 

measurement of excitation profiles and calibration of excitation pulses. 

High excitation angle schemes may not be effective for magnetic resonance spectroscopic 

imaging studies in which many more excitations are needed to encode spatial information. We 

anticipate that similar simulation-based studies of imaging sequences will highlight opportunities for 

optimization to improve image quality and quantitative accuracy.  

In this study we assumed that every variable used in the analysis model aside from the exchange 

rate was known exactly.  Future studies will be able to determine how sampling strategies affect 

estimates of pyruvate-to-lactate exchange rates with more unknowns in the analysis model. A critical 

examination of the propagation of errors for acquisition strategies that include prior information will 

also be crucial.   

Although MRI and MRS of HP-agents have demonstrated amazing promise as a non-invasive 

clinical probe of metabolism, there are still many challenges ahead. Care must be taken to ensure that 
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this technique is optimally used as it moves toward clinical use, including a good understanding of 

circumstances that may lead to bias or error. This work shows that even the most simplistic pulse 

sequences and modeling strategies can result in estimates of chemical exchange that are dependent on 

acquisition parameters. Investigators must take great care in acquiring, processing, and comparing 

results from dynamic studies with HP-agents to ensure that sequence parameter effects are accounted 

for. Moreover, simulation studies such as these are imperative as increasingly advanced techniques are 

employed for acquisition, processing, or modeling of MRI and MRS of HP-agents. To that end, the 

modified Bloch-McConnell equations described herein will serve as powerful tools to characterize the 

complex relationships among detection methods and quantification of MRI and MRS of HP-agents.  
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This chapter is intended to address Aim 3. 

 

Section 5.1 Introduction and Theory 

The simulation results outlined in the previous chapter need to be validated in physical systems. 

Using in vivo models will allow for inherent chemical conversion of pyruvate to lactate as well as delivery 

via endogenous vasculature. However, in vivo models have many practical limitations. Living systems are 

constantly changing and the assumption that the same study performed on the same living system at a 

different time point will yield the same measurement value, particularly in murine models of cancer 

does not generally hold. This is exacerbated by the amount of pyruvate that is generally delivered, which 

can be quite large in order to have sufficient signal and thus can alter the metabolism after injection. 
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Additionally, very little pyruvate is converted into lactate in healthy tissue and therefore, tumor models 

are normally used for hyperpolarized studies. Tumors introduce additional temporal heterogeneity as 

they are rapidly growing and the assumption that the same cellular and physiologic status remain across 

multiple days cannot be relied upon. It is also impossible to know the exact biologic and physical 

parameters in living systems, and therefore the determination of the accuracy of the quantization of 

said parameters is at best an approximation for living systems. These inherent limitations are coupled 

with the practical constraints on the use of living systems, such as cost, sensitivity to diet and 

anesthesia, etc. Initial validation of the simulation system would be simpler using a more controllable 

and repeatable model than those offered by living systems. 

Fortunately, the conversion of pyruvate to lactate is a relatively simple reaction involving a 

single enzyme catalyst and coenzyme and can be readily performed in solution77. This allows fine-tuned 

control over the rate and extent of the reaction that is more controllable and repeatable than a living 

system. Performing this reaction in a controlled buffer alters the delivery of pyruvate into the system as 

compared to living systems which have endogenous vasculature. Therefore, in a dynamic enzyme 

phantom, pyruvate will be delivered in a nearly instantaneous bolus and these results will be a closer 

match to the closed system results from the previous chapter.  

Pyruvate is specifically converted into lactate by the enzyme lactate dehydrogenase (LDH) and 

coenzyme nicotinamide adenine dinucleotide (NADH): 

 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝑁𝐴𝐷𝐻 
𝐿𝐷𝐻
↔  𝑁𝐴𝐷+ +  𝐿𝑎𝑐𝑡𝑎𝑡𝑒 5.1 

This ordered ternary complex is modeled using classical enzyme kinetics57,78-80 to derive reaction 

velocities (Mol/s) of the reaction as a function of constituent concentrations as shown in Appendix A. 

The enzyme LDH is a relatively stable protein and can be mixed with NADH up to fairly high 

concentrations in a buffer. This enzyme mixture is then able to convert pyruvate into lactate, and if 

some of the pyruvate is hyperpolarized then the signal evolution can be measured using dynamic 
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spectroscopy. In order to measure such conversion, the phantom system needs to be positioned in the 

sensitive volume of the scanner and therefore some delivery system will be required. Additionally, 𝐵0 

homogeneity is critical for high quality magnetic resonance spectroscopy, and therefore interfaces 

between the buffer system and a substance with a different magnetic susceptibility, such as air or 

plastic, need to be reduced. Finally, the delivery and mixing of the hyperpolarized pyruvate with the 

enzyme system must be rapid to ensure that the pyruvate arrives in an instantaneous bolus and then 

reacts to form lactate as assumed for the closed system simulations. With such a phantom system, it will 

be possible to run multiple studies with the same conversion rate allowing for reliable measurement of 

a rate constant under specific sequence conditions. Multiple excitation angles and repetitions times can 

be used to ensure that the biases predicted by simulation for the closed system are measured in a 

physical system. 

The perfused system assumes delivery via native vasculature that is difficult to emulate in 

phantom systems. Additionally, cellular metabolism is complex, and multiple processes are involved to 

maintain the cellular concentration of NADH and pyruvate, which are not replicated in an isolated 

buffer. Therefore, simulation studies were compared to a set of measurements made in a mouse model 

of thyroid cancer to demonstrate that the simulation predictions that most closely model living tissue 

are confirmed in vivo. 

  

Section 5.2 Methods 

A. Hyperpolarization 

 13 mg of [1-13C]-pyruvic acid with 7.5 mM OX063 (GE Healthcare) and 0.375 mM Prohance 

(Bracco Diagnostics) were hyperpolarized in a HyperSense DNP system (Oxford Instruments) as 

described previously25,81. The sample was dissolved in 4 mL of buffer consisting of 40 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 94 mM NaOH, 30 mM NaCl, and 50 mg/L EDTA 
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with a pH of 12.5. Once the dissolution process was complete, 0.15 mL of HP [1-13C]pyruvate (nominally 

30% polarization) was drawn into a syringe for injection into the phantom.   

B. Dynamic Spectroscopy Repeatability 

 The enzyme phantom consisted of 2 mL of buffer containing 2 mM hyperpolarized [1-13C]-

pyruvate, 40 mM lactate, 3.92U/mL LDH, and 4 mM Β-NADH. Phantom concentrations were optimized 

to reduce reaction rate sensitivity to variabilities in the concentrations of its components, ensure that 

the reaction had run to competition before the hyperpolarized signal had decayed below the threshold 

of detectability, and had progressed at a rate consistent with previous in vivo observations. Special 

consideration was given to reducing the sensitivity due to pyruvate concentration and LDH activity, as 

these were assumed to be the least reproducible characteristics of the phantom system. While LDH is a 

remarkably stable enzyme, it is still a delicate protein and is sensitive to many environmental conditions 

such as temperature and pH. Since the injection into the phantom system was performed by hand, the 

volume of pyruvate, and therefore its delivered concertation, would be more difficult to control than the 

concentration of any of the other reagents. A custom phantom container was machined out of a cylinder 

of Ultem resin stock, which matches the susceptibility of water, and fitted with a 1m long, 3.175 mm 

diameter polyethylene catheter (Coilhose Pneumatics, East Brunswick, NJ) for remote injection into the 

cavity when it is located at the isocenter of the magnet. The rectangular cavity was 1×1×3 cm with the 

injection catheter connecting to the front as shown in Figure 5-1. LDH and NADH were thawed from 

aliquoted solutions that had been stored at -80°C and were mixed in a 5 mL syringe shortly before the 

pyruvate finished polarizing. NADH was mixed with buffer to a concentration of 5mM and then froze in 

200 𝜇𝐿 aliquots while LDH aliquots of 200 𝜇L at 250 U/mL in buffer. Once polarization of the pyruvate 

was complete, the HP pyruvate was injected into the phantom followed by the enzyme substrate 

mixture to fill the phantom cavity. The nominal final concentrations were 2 mM hyperpolarized 13C-

Pyruvate, 40 mM Lactate, 3.92U/m LDH (Worthington), and 4 mM Β-NADH (Sigma Aldrech) in the Tris 
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buffer (81.3 mM trisma preset crystals pH 7.2, 203.3 mM NaCl) (Sigma Aldrech).  The phantom was held 

at 28°C with a final pH of 7.2 and a 3-mL final volume.  

 

Figure 5-1. A schematic view of the dynamic chemical phantom structure. The injection and discharge 

ports were fitted with catheters to facilitate rapid mixture of reagents at the isocenter. A thin acrylic 

sheet was attached to the top to seal the fill cavity. This top could be removed to allow cleaning after 

injection. The phantom rested on a sled that allowed convenient removal and insertion of the phantom 

and included warm circulating water to maintain a constant temperature. 

 

Dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp., 

Billerica, MA) using B-GA12 gradient (120-mm inner diameter (ID), Gmax = 400 mT/m) and a dual-tuned 

1H/13C volume coil (72-mm ID, Bruker Biospin MRI).  Dynamic 13C spectra were acquired with a 2.5 kHz 

bandwidth, 4098 points, 10° excitations, 2-sec TR, with 60 repetitions over a 3-min scan time beginning 

at dissolution and triggered by the HyperSense system. To evaluate performance and repeatability, the 

measurement was repeated seven times using an identical reagent concentration. 
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 The signal from each metabolite at each TR was determined by integrating the full-width at half-

maximum (FWHM) of each metabolite peak.  Signal amplitudes were normalized to account for 

variations in the amount of polarized pyruvate that is present at the onset of scanning.  Two quantitative 

parameters were used to characterize the reaction rate for each measurement: total lactate signal 

normalized to the total carbon signal, and kPL for the closed system model described by equations (4.1).   

C. Spectroscopic Phantom Imaging 

 To demonstrate the usefulness of the enzyme phantom for evaluating spatial sequence 

performance, a 10-mL standard imaging phantom was drained and fitted with the same injection 

catheter described above.  A slightly lower concentration of NADH (2 mM) was used among an 

otherwise identical mixture due to the increased phantom volume. A custom-built dual-tuned 1H/13C 

linear birdcage coil with a  35 mm  ID  was used in conjunction with B-G6 gradients (60-mm ID, Gmax = 

1000 mT/m, Bruker Biospin Corp.) . The phantom was scanned with a radial echo planar spectral imaging 

(EPSI) sequence82. This was a single image and consume the entire hyperpolarized signal to acquire a 

single set of spectroscopic imaging data. The acquisition was started ~40 seconds after all components 

were combined in the phantom, and the data were acquired with a repetition time of 60 ms, an initial 

echo time of 5.5 ms, and a 1.3 msec echo spacing to form a 32-point echo train. A variable flip angle was 

used to ensure equal sampling of the longitudinal magnetization83. The spectral bandwidth was 23.8 kHz 

with a 744 Hz or 9.85 ppm spectral width. Fifty spatial projections were taken with 32 readout points 

over a 4 cm by 4 cm field of view and a 2 cm slice thickness. 

 

D. Dynamic Spectroscopy Sequence Parameter Dependence 

Slightly altered phantom concentrations of 2 mM hyperpolarized [1-13C]-pyruvate, 40 mM 

lactate, 4U/mL LDH, and 4 mM Β-NADH were used to assess and validate the simulation results for the 

closed system. A slightly altered phantom enclosure was used where the cavity was 1x1x2 cm is size. 
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Dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker Biospin Corp., Billerica, 

MA) using B-GA12SHP gradient and a dual-tuned 1H/13C volume coil (72-mm ID, Bruker Biospin MRI). 

Simulation results for the closed system slow exchange, figure 4-2, suggested that dynamic spectroscopy 

acquired at TR=2-s, 𝜃 = 20𝑜 and TR=7-s, 𝜃 = 60𝑜 would not bias the measurement and should result in 

a similar 𝑘𝑝𝑙
′  measurement while using TR=2-s, 𝜃 = 60𝑜 would result in a significant underestimation of 

𝑘𝑝𝑙
′ . Dynamic 13C pulse-acquire spectroscopy was performed at 4096 Hz bandwidth over 2048 spectral 

points, and three combinations of excitation angle and repetition time (TR=2s, 𝜃 = 20o; TR=2s, 𝜃 = 60o; or 

TR = 7s, 𝜃 = 60o) were used, with a total scan duration of 3-min beginning 20 seconds before dissolution. 

Each parameter combination was repeated three times. 

The dynamic spectroscopy signal was analyzed using the same process as had been used for the 

simulated data to generate dynamic curves. The curves were fit with T1s for pyruvate and lactate of 61 

and 35 sec respectively as consistent with previous measurements. The exchange rate was fit with the 

closed system model using the signal values at the time of the peak of thepyruvate signal as an initial 

condition. The studies were grouped based on the sequence parameters and a two-tailed t-test 

assuming unequal variances was used to detect any differences between the groups. 

 

E. Dynamic Spectroscopy in Vivo 

Nude mice bearing orthotopic xenografts of anaplastic thyroid cancer84 were anesthetized and 

placed prone on an imaging sled. 2% isoflurane in oxygen was delivered through a nose cone under 

observation using a commercial small-animal physiological monitoring system (Small Animal 

Instruments, Inc., Stony Brook, New York). 200 µL of HP [1-13C] pyruvate (nominally 30% polarization) 

was administered to the animals via a tail-vein catheter. All animal procedures were approved by our 

Institutional Animal Care and Use Committee, which is accredited by the Association for the Assessment 

and Accreditation of Laboratory Animal Care International. 
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Imaging and dynamic spectroscopy was performed on a 7-T/30-cm Biospec System (Bruker 

Biospin Corp., Billerica, MA) using B-GA12SHP gradient and a dual-tuned 1H/13C volume coil (40-mm ID, 

Bruker Biospin MRI). Simulation of the high exchange rate perfused data, figure 4-3, also predicted a 

significant underestimation of 𝑘𝑝𝑙
′  at TR=2-s, 𝜃 = 60𝑜 and no bias at TR=2-s, 𝜃 = 20𝑜 and TR=7-s, 𝜃 =

60𝑜. Therefore, slice selective dynamic 13C pulse-acquire spectra were acquired with a 10-mm slice 

centered over the tumors, a 5 kHz bandwidth over 2048 spectral points, and three combinations of 

excitation angle and repetition time (TR=2s, 𝜃=20o; TR=2s, 𝜃=60o; or TR=7s, 𝜃=60o), with a total scan 

duration of 3-min beginning at dissolution and triggered by the HyperSense system.  

Signals from in vivo dynamic spectroscopy were analyzed using the same process as was used 

for the simulated data to generate dynamic curves. The unknowns that were determined by analysis of 

the dynamic curves included kpl, the shape terms for the gamma variate VIF, the injection time, and the 

excitation angle. The fitting results for the excitation angle never differed by more than 8% from the 

prescribed excitation angle and mainly served as an internal control. The studies were grouped based on 

the sequence parameters and a two-tailed t-test assuming unequal variances was used to detect any 

differences between groups. 

Section 5.3 Results 

A. Repeatability Studies 

The phantom system, shown in Figure 5-1, was assembled and tested (N=7 replicates), 

demonstrating reproducible conversion of hyperpolarized tracer as summarized in Figure 5-2 and table 

5-1.  After a brief delay between the start of data acquisition and the injection of the polarized tracer, 

the pyruvate signal peaked quickly as it filled the chamber.  The pyruvate signal decayed due to 

relaxation, signal excitation, and chemical conversion to undetectable levels in less than two minutes.  

The lactate signal rose until the growth of the HP lactate pool, from chemical exchange, was reduced 

below the losses due to relaxation and signal excitation at which point it similarly decayed.  The 
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coefficient of variation for common measures of this reaction, including the ratio of total lactate to total 

13C signal and the forward reaction rate (kPL) were 14.5% and 19.0%, respectively, as summarized in 

Table 4-1. This level of variability is less than the average within-group variation of approximately 28% in 

9 animal studies16,85-92 that was reported recently in the literature, and is summarized in Table 5-2.   

 

Figure 5-2. Dynamic signal evolution across (seven) injections into enzyme phantom. The mean signal 

for lactate and pyruvate, normalized to the peak carbon signal for each injection, is displayed with error 

bars that indicate the minimum and maximum values at each time over all injections. The total HP 13C 

was estimated by summing the signal from HP 13C Lactate and HP 13C Pyruvate. The average linewidth 

for pyruvate and lactate peaks were 19±5 Hz and 17±5 Hz, respectively. 
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Table 5-1. The mean, standard deviation and coefficient of variation for all repetitions (N = 7) of the 

dynamic phantom 

 

Reference Location Disease Parameter 

No. 

Animals 

Coeff. of 

Variation 

Albers85 Prostate Cancer Metabolite SNR 5,4,3,3, 25% 

Day16 Subcutaneous Lymphoma Kpl 8 17% 

Laustsen86 Kidney Diabetes Lac/Total 13C 

Signal 

10,6 40% 

Thind88 Thorax Radiation Injury Lac/Pyr 6,4,5 36% 

Bohndiek91 Subcutaneous Colorectal Cancer Lac/Pyr N/A 24% 

Park92 Brain Glioblatoms Lac/Pyr 7,9 54% 

Bohndiek Subcutaneous Lymphoma Kpl 10,7,7, 37% 

Matsumoto Subcutaneous Squamous Cell 

Carc. 

Lac/Total 13C 

Signal 

5,4 12% 

Laustsen86 Heart Normal Lac/Total 13C Signal   11,6 28% 

Average     29% 

Table 5-2. Survey of HP parameter variation in recent animal studies 
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To test the feasibility for such a reaction to be conducted inside a phantom with the spatial 

details that are necessary to validate spectroscopic imaging sequences, a standard MRI quality 

assurance phantom was drained and refilled with a similar catalytic mixture.  Snapshot spectroscopic 

imaging shows a relatively homogeneous mixture of components and distribution of the agent and 

metabolite 40s after initiation of the reaction.  Images of HP pyruvate and lactate, alone and in overlay 

over reference proton images, can be seen in Figure 5-3. While the resolution of the MRSI sequence is 

significantly lower than that of the proton image, it is possible to resolve features within the 

spectroscopic images for both individual metabolites.  No significant spatial distortions are seen, but 

importantly, artifacts, specifically interpolation artifacts can seen as thin black lines on the pyruvate and 

lactate images. They can be identified and could be characterized through the use of this phantom 

system and minimized to reduce the likelihood of interference in subsequent measurements made in 

vivo.  
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Figure 5-3. Spectroscopic images of the reaction carried out in a standard imaging phantom. Proton 

imaging (top left) shows the phantom structure in high resolution. Spectroscopic imaging data acquired 

using a radial EPSI sequence allow metabolite-specific visualization of the agent distribution (bottom 

row). Spectroscopic data can be intrinsically registered to high-resolution proton images (top center and 

top right). 

 

B. Closed System Parameter Dependence 

Due to poor heating of the second phantom structure, the rate of chemical exchange of the third set 

of phantoms studies was much lower than those of the prior two studies. This system was much closer 

to the low conversion rate system seen in figure 4-2. To test for the large error in 𝑘𝑝𝑙
′  at high excitation 

angles and short repetition time predicted by figure 4-2, three excitation angles were used (N=3 
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replicates). As seen in figure 5-4, the mean 𝑘𝑝𝑙
′  low excitation angle (TR=2-s, 𝜃 = 20𝑜) closely matched 

those at the longer repetition times (TR=7-s, 𝜃 = 60𝑜) and no significant difference was detected, 

p=0.737. When the excitation angle was high and the repetition time was short (TR=2-s, 𝜃 = 60𝑜) there 

was no detectable lactate peak and the only signal detected at 183.1 was likely due to noise or spillover 

from the sizable pyruvate or pyruvate hydrate peaks. As predicted by simulation, the average 𝑘𝑝𝑙
′  

detected at TR=2-s, 𝜃 = 60𝑜 was significantly lower than TR = 2-s, 𝜃 = 20𝑜 and TR = 7-s, 𝜃 = 60𝑜 with p 

= 0.002 and 0.003 respectively. Qualitatively, the predicted and measure signal curves show agreed 

remarkably well. 

  

Figure 5-4. Comparing simulated to dynamic phantom data for the closed system. A qualitative 

comparison of the closed system signal curves predicted by the simulation at various excitation angles 

and repetition times to the measured signal curves in the dynamic phantom system. Additionally, the 

fitted 𝑘𝑝𝑙
′  values are compared in both the simulation and the phantom. 
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B. In Vivo Studies 

To examine the correspondence between these simulations and measurements in vivo, a cohort of 

mice were scanned using protocols with parameter combinations that the simulations suggested would 

introduce varying levels of measurement bias.  The results (Fig. 5-5) show that when TR=2-s and 𝜃=60o, 

exchange is significantly underestimated compared to TR=2=s, 𝜃 =20o (P=0.035), where relatively 

accurate measurements are expected. Interestingly, the exchange measured with TR=2-s and 𝜃 =60o 

was ~50% lower than the values measured at TR=2-s and 𝜃 =20o. This closely matches the predicted bias 

of ~60% seen in Figure 4-3. Additionally, bias is reduced again with TR=7-s and 𝜃 =60o which also agrees 

Figure 4-3. Notably the variance is higher under these conditions, which is likely due at least in part to 

the increased uncertainty in the injection time due to the longer sampling intervals. 

Figure 5-5. Comparison of in vivo vs. simulated kinetic data analysis from data acquired using different 

acquisition parameter combinations.  a) Anatomical image of a mouse bearing an anaplastic thyroid 

tumor and the slice used for dynamic HP spectroscopy. b) Dynamic metabolite curves of the same 

animal scanned with excitation TR=2-s and 𝜃 =20o (top), TR=2-s and 𝜃 =60o (middle), and TR=7-s and 𝜃 
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=60o (bottom).  c) kpl values from animals scanned with TR=2-s and 𝜃 =20o (n=3), TR=2-s and 𝜃 =60o 

(n=4), and TR=7-s and 𝜃 =60o (n=4). Data acquired with TR=2-s and 𝜃 =60o significantly underestimates 

kpl compared to the other two groups (P<0.035). 

  

Section 5.4 Discussion 

These simulation results are of limited use in isolation and require validation in physical systems. 

However, physical systems for repeated controlled hyperpolarized studies are not yet well developed 

and some inherent challenges remain. When the study endpoint is the characterization of chemical 

exchange, a dynamic chemical reaction will be needed. Additionally, the system will need to be able to 

repeatedly carry out the reaction of interest in some controllable manner. These two requirements 

make working in living systems practically challenging. In order to move away from living systems, a 

novel dynamic chemical exchange phantom was developed where exchange rates could be controlled. It 

demonstrated an improved repeatability over in vivo systems. This system was used to validate 

simulation predictions that did not assume pyruvate delivery by native vasculature. 

This phantom system provides new capabilities for experimental development and validation 

with distinct advantages over single-tracer injections, static multi-compartment thermal equilibrium 

phantoms, and in-vivo models. The platform provides dynamic evolution of HP tracer signals through 

chemical exchange in a manner that is consistent with that observed in target biology and can be tuned 

to mimic different disease conditions.  The spatial characteristics of the phantom are known a priori, 

allowing rigorous evaluation of data encoding, acquisition, and reconstruction algorithms.  This is 

especially important when considering data reduction strategies that are designed to address key 

limitations in the measurement of hyperpolarized tracers but that blur traditional definitions of spatial 

and temporal resolution in the observation of dynamic processes.  Static phantoms are useful for 

confirming some functionality, but do not create the dynamic conditions that could lead to artifacts in 
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reconstruction algorithms that are based to any extent on the assumption of a stationary subject.  

Assessment using in vivo models is challenging because of biological heterogeneity and the evolution of 

target processes in diseases such as cancer that can progress rapidly and increase within-group 

variations even in a matter of days. With this platform, acquisitions can be readily repeated, at arbitrary 

intervals, to extract statistical measures of image properties.  The system has a known distribution of 

metabolites, and could be designed with multiple compartments73 with reaction rates tuned to simulate 

different tissues or disease states in parallel.  This platform is ideal for exploration of thresholds for 

detectability of pathologies that may not be evident in 1H MRI, for early testing of new sequences to 

ensure preservation of spatial and temporal accuracy, and even for regular quality assurance scans to 

confirm that similar acquisition, reconstruction, and analysis parameters lead to similar data over time 

both within and between laboratories and institutions. 

 Hyperpolarized contrast agents are relatively new, and research into the best practices for signal 

acquisition, reconstruction, and analysis is ongoing. This dynamic phantom will enable robust, 

reproducible, and tunable baseline measurements, providing a benchmark through which experimental 

strategies can be compared and optimized. This system catalyzes the final step in aerobic glycolysis, the 

conversion of pyruvate into lactate, without the need for animal subjects, human subjects, or cell 

suspensions that can increase the cost and the variability of technical measurements.  The 14.5-19% 

variation that we observed is a result of many factors. LDH is sensitive to a range of experimental factors 

77;  small variations in temperature, pH, or even time from thawing to injection can affect the enzyme 

activity and therefore the rate of the reaction. To ensure that the reaction progresses to completion, 

which is truest to in vivo studies, NADH has to be in excess and thus the rate of the reaction will depend 

on pyruvate concentration.  In this work, the injection of a small amount of hyperpolarized pyruvate was 

performed by hand, potentially leading to unnecessarily high variations in the final concentration of 
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pyruvate.  This variability can be reduced by utilizing automated injections that are currently under 

development.  

 A crucial step in the translation of powerful new imaging technologies into routine preclinical 

and clinical use is the establishment of well-defined reference standards93 to provide a common 

reference against which experimental circumstances can be compared. This reference can be used to 

ensure comparable results across platforms, laboratories, and institutions, and to aid in study design 

and execution. This dynamic single enzyme phantom helps fill this critical need. The physical structure of 

the phantom can be tailored to more closely approximate preclinical or clinical applications, and the rate 

of the reaction can be controlled through multiple compartments in a spatially-dependent manner to 

simulate a wide range of disease states. This phantom platform represents a flexible and powerful tool 

to aid in the development, optimization, validation, and certification of techniques, processes, and 

instrumentation that are crucial to ensure the successful and efficient clinical translation of powerful 

new imaging capabilities afforded by MRSI of hyperpolarized tracers such as [1-13C]-pyruvate. 

Using the phantom system, the simulation prediction from chapter 4, namely that a low rate of 

conversion, high excitation angles and rapid repetition times would suppress the apparent production of 

hyperpolarized lactate, was confirmed. Tuning the phantom system to match the low conversion rate 

used in the simulations showed a remarkable correlation in the expected mean 𝑘𝑝𝑙
′  measured and the 

signal evolution curves. This shows that the dynamic enzyme phantom system was an ideal model to 

validate the simulation architecture in the simplest case, where endogenous vasculature delivery is 

ignored. Additionally, the in vivo studies show strong agreement with the simulation predictions 

demonstrating the validity of the simulation architecture to account for perfusion. In aggregate, these 

results serve as a strong validation of the simulation architecture and support the dual ideas that 

simulation of hyperpolarized studies is a useful method for developing and optimizing acquisitions. 
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Chapter 6. Conclusion and Future Work 

  Magnetic resonance spectroscopy of hyperpolarized agents, specifically pyruvate, is a powerful 

tool in characterizing tissue. However, to be fully realized as a clinical biomarker, HP-pyuvate must 

directly relate to metabolism in a well characterized quantitative manner. To ensure that clinical 

endpoint is robust enough to be used in clinical decision making, the verification, validation and 

optimization tools that were outline in this work will be critical. The parameter space associated with 

hyperpolarized MRI is extensive, with acquisition design, tissue characteristics like perfusion, and 

cellular processes such as uptake and redox status all playing a role. The Bloch simulator developed in 

this work overcomes the computational burdens associated with modeling hyperpolarized signal 

evolution to allow rapid exploration of the parameter space associated with hyperpolarized pyruvate. 

Additionally, because it is a simulation platform, the underlying values of parameters of interest are 

known. Therefore, the accuracy and reproducibility of data processing and modeling strategies can be 

evaluated with a fidelity that is not possible in physical systems.  

Using this simulation architecture, it was shown that the excitation angle and repetition time 

that are used for dynamic spectroscopy can significantly bias the measurement of the exchange rate for 

hyperpolarized pyruvate. Stated generally, rapidly pulsing with high excitation angles leads to a 

significant underestimation of the exchange rate while no underestimation was observed for rapid, 

small excitation or slow, large excitation. This bias was demonstrated across a range of metabolic 

parameters, perfusion models and data processing strategies. The bias did not correlate with sequences 

that lead to poor quality fits or to a low SNR suggesting that the bias imposed is inherent in the 

acquisition and is not caused by poor data quality or modeling. The sequences tested represent the 

most simplistic hyperpolarized studies, and their inherent dependence on the acquisition parameters 

stresses the critical need for all hyperpolarized acquisition and processing strategies, especially the more 
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complicated methods that have been proposed for hyperpolarized imaging, to be thoroughly 

characterized and validated using systems such as the Bloch simulator developed in this work.  

 In order to extend the simulation result into a physical system, exchange rates were measured 

in an isolated phantom that showed superior reproducibility to current in vivo work in the field. The 

phantom system was then used to show that rapid large, excitation schemes do significantly 

underestimate the measure exchange rate as compared to rapid, low excitation or slow, large excitation 

schemes. The phantom system designed in this work is more than a tool to validate simulation results; it 

represents the necessary structure for validation of any hyperpolarized study where exchange 

measurement is the endpoint. Additionally, the phantom platform will serve as an ideal standard for 

quality assurance and validation as hyperpolarization moves into routine clinical care. 

 While the phantom system reproducibly converts HP-pyruvate to HP-lactate, it doesn’t fully 

mimic living systems. Using a mouse model of thyroid cancer, the simulation results for a perfused 

system were confirmed, showing that even in living systems the acquisition parameters can significantly 

alter exchange rate quantification. These results show that quantitative measurement of hyperpolarized 

exchange rates is sensitive to the acquisition parameters. The computational and physical platforms 

developed in this work are ideal tools for careful validation and optimization of such acquisitions. 

 

B. Future Directions for the Simulation Architecture 

 The strength of this platform is understood by considering its future directions. The equations 

presented in this project do not account for spatial dimensions. However, incorporating three-

dimensional space is fairly straightforward. The only real complexity comes in the form of the 

computational burden, as the incorporation of three spatial dimensions greatly increases the number of 

spins that must be independently calculated. Preliminary spectroscopic imaging sequences75 have been 

developed for this simulation platform. Example images acquired using radial multi-band frequency 
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encoding are displayed75 in Figure 6-1. These images are “snap-shot” images and attempt to 

characterize the spectral and spatial aspects of a system as a single time point or over some time 

window at the cost of the entire hyperpolarized signal. These snap shot images, while useful as shown 

by their use in the first clinical28 trial with hyperpolarized pyruvate, are not the absolute end goal of 

hyperpolarized studies. The ability to monitor a metabolic process with hyperpolarized pyruvate makes 

the loss of temporal resolution unacceptable in most cases. However, in order to encode the spectral, 

spatial, and temporal aspects of a hyperpolarized signal requires either spectrally selective excitation 

pulses94-97 or advanced reconstructions53,75,98-101. Additionally, if properly carried out, dynamic spectral 

spatial studies can be processed to yield an exchange rate constant which can then be quantitatively 

compared to the actual exchange rate used in the imaging voxel. This direct method of comparison to a 

physical parameter allows straightforward determination of accuracy with methods that are very similar 

to this work. Finally, spectroscopic imaging tends to require many more excitations than dynamic 

spectroscopy and a similar, if not exacerbated, dependence on sequence parameters is likely.  Both 

spectral-spatial pulse based imaging and advance constrained reconstructions are presently being added 

to the simulation architecture to ensure its continued utility to the field of hyperpolarized magnet 

resonance as it moves from dynamic spectroscopy to dynamic spectral imaging. 
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Figure 6-1. Simulated radial multi-band frequency-encoded snap shot image of a square of perfused 

tissue converting pyruvate to lactate. The images were simulated with 64 voxels (an 8x8 grid for 10x10 

mm area) containing identical spins.  

 

C. Future Directions for the Dynamic Phantom 

 Finally, the dynamic phantom developed to validate these studies represents a powerful 

paradigm for not only validation of hyperpolarized acquisition and processing but also as a reference 

standard for quality assurance which will be greatly needed as hyperpolarized imaging moves into 

routine clinical use. The initial phantoms that we have described have some limitations. Most 

paramount relates to the use of enzymes that are sensitive to a plethora of reaction conditions as well 

as to storage and age. We have considered an alternative reaction, requiring only simple chemical 

compounds. As shown in figure 6-2, when mixed with hydrogen peroxide, pyruvate is broken down into 
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acetate and 𝐶𝑂2
102. This reaction involves no delicate enzymes or coenzyme and can be tuned by the 

concentration of either pyruvate or hydrogen peroxide. As shown in figure 6-2, this reaction can proceed 

in solution with rates similar to the lactate-to-pyruvate exchange rate seen in-vivo. Therefore, for the 

simple chemical conversion of pyruvate into some downstream product, the far more robust conversion 

to acetate is maybe a preferred choice. However, if the specific chemical shifts of the metabolites or the 

method of exchange are critical to the detection process then the full enzyme system will be needed. 

This will be true for excitation schemes that are specific to lactate’s and pyruvate’s resonance 

frequencies or if the readout band is tuned precisely to a particular set of chemical shifts. 

 

Figure 6-2. The reaction schematic of pyruvate and peroxide (left). The total spectrum of hyperpolarized 

2-C13-Pyruvate reacting with peroxide in a phantom monitored with magnetic resonance spectroscopy 

(center). The dynamic signal curves of hyperpolarized pyruvate and acetate showing the initial arrival of 

pyruvate and its subsequent reaction to acetate (right). 

 

 Additional work is underway to better characterize the enzyme rate constants for LDH so that 

the heuristic concentrations used in this phantom design can be altered to account for different 

concentrations, enzyme activity or even temperature. Ideally a set of experimental constraints, the 

desired reaction rate, and the enzyme kinetics outlined in appendix A would be used to calculate the 

exact phantom concentrations to be used. Measurement of the physical constants needed for such a 
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system are currently being invetigated. Additionally, the phantom enclosure itself is being further 

refined. Multiple chambers have been developed to allow for the exchange rate contrast to be explored 

in a single study73, and the capability to automatically deliver a fixed amount of pyruvate over a 

repeatable time frame is under developments. 

 In summary, this work aimed at developing a robust simulation platform for hyperpolarized 

magnetic resonance spectroscopy. The simulation platform was leveraged to show that sequence 

parameters significantly bias the measured exchange rates. Such bias was validated in a novel phantom 

system designed to approximate the chemical conversion of pyruvate to lactate observed in vivo while 

offering improved repeatability and practicality. Finally, that sequence parameter imposed bias 

predicted for perfused tissue was validated in a mouse cohort. These initial validation studies show that 

sequence parameters will affect the exchange rate quantification for hyperpolarized pyruvate. 

Additionally, no significant bias in exchange rate measurements was detected using sequence 

parameters designed by simulation to avoid such bias.  
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 Appendix A: Hyperpolarized Exchange Kinetics 

Section A.1 Label Exchange 

 Practically hyperpolarized nuclei will never make up the entirety of the nuclei for a specific 

chemical species in a sample. Therefore, hyperpolarized nuclei can be considered as a label that is 

placed on a fraction of the nuclei in a system67. This fractional labeling can be modeled as: 

 [𝐴] = [𝐴 ∙ 𝑋] + [𝐴 ∙ 𝑋∗] A.1 

where [𝑨] is the total concentration of the chemical species 𝑨, [𝑨 ∙ 𝑿] is the concentration of 𝑨 without 

a hyperpolarized nuclei and [𝑨 ∙ 𝑿∗] is the concentration of 𝑨 with a hyperpolarized nucleus. If 𝑨 is 

exchanging with a separate chemical species 𝑩 following equation (3.4): 

 
[𝐴]
𝑘1
⇄
𝑘2

[𝐵] 

[𝐴 ∙ 𝑋] + [𝐴 ∙ 𝑋∗]
𝑘1
⇄
𝑘2

[𝐵 ∙ 𝑋] + [𝐵 ∙ 𝑋∗] 

A.2 

Then the rate of change of the labels will simply be the rate of exchange between the two pools 

multiplied by the probability that an exchanging compound will be labeled: 

 𝑑[𝐴 ∙ 𝑋∗]

𝑑𝑡
= 𝑉𝑟

[𝐵 ∙ 𝑋∗]

[𝐵]
− 𝑉𝑓

[𝐴 ∙ 𝑋∗]

[𝐴]
  

𝑑[𝐵 ∙ 𝑋∗]

𝑑𝑡
= 𝑉𝑓

[𝐴 ∙ 𝑋∗]

[𝐴]
−𝑉𝑟

[𝐵 ∙ 𝑋∗]

[𝐵]
 

A.3 

where 𝑉𝑓and 𝑉𝑟are the forward and reverse velocity of the reaction respectively. Note the net change in 

reaction is 𝑉𝑓 − 𝑉𝑟. Under the conditions outlined in equation A.2 the forward and reverse velocities will 

be: 

 𝑉𝑓 = 𝑘1[𝐴]  

𝑉𝑓 = 𝑘2[𝐵] 

A.4 
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Substituting A.4 into A.3 yields: 

 𝑑[𝐴 ∙ 𝑋∗]

𝑑𝑡
= 𝑘2[𝐵]

[𝐵 ∙ 𝑋∗]

[𝐵]
− 𝑘1[𝐴]

[𝐴 ∙ 𝑋∗]

[𝐴]
= 𝑘2[𝐵 ∙ 𝑋

∗] − 𝑘1[𝐴 ∙ 𝑋
∗]   

𝑑[𝐵 ∙ 𝑋∗]

𝑑𝑡
= 𝑘1[𝐴]

[𝐴 ∙ 𝑋∗]

[𝐴]
− 𝑘2[𝐵]

[𝐵 ∙ 𝑋∗]

[𝐵]
= 𝑘1[𝐴 ∙ 𝑋

∗] − 𝑘2[𝐵 ∙ 𝑋
∗] 

A.5 

Therefore, assuming first order kinetics, the rate of change of the labeled compound is determined 

solely by the concentration of the labeled compounds and the exchange terms. The rate of change is 

independent of any net exchange of the total compound. The equivalence of equations A.5 and A.3 is 

show in in figure A-1. 

 

Figure A-1. Comparison of label exchange modeling. A comparison of a full modeling of label exchange, 

equation (A.3) vs the reduced form equation (A.5) under both net flux conditions (top) and equilibrium 

exchange (bottom) 
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Section A.2 Enzyme Flux Kinetics  

In the case of hyperpolarized pyruvate, it is converted to lactate via an enzyme catalyzed 

reaction and equation A.2 might not strictly hold. The conversion of lactate to pyruvate has been shown 

to follow a Theorell-Chance mechanism103 outlined schematically in figure A-2 and is given by66: 

 
𝐸 +𝑁𝐴𝐷𝐻

𝑘1
⇌
𝑘2

𝐸 ∙ 𝑁𝐴𝐷𝐻 

𝐸 ∙ 𝑁𝐴𝐷𝐻 + 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 
𝑘3
⇌
𝑘4

𝐸 ∙ 𝑁𝐴𝐷+ + 𝐿𝑎𝑐𝑡𝑎𝑡𝑒  

𝐸 ∙ 𝑁𝐴𝐷+ 
𝑘5
⇌
𝑘6

 𝐸 + 𝑁𝐴𝐷+    

A.6 

where E is free enzyme, 𝐸 ∙ 𝑁𝐴𝐷𝐻 and 𝐸 ∙ 𝑁𝐴𝐷+ is enzyme bound to 𝑁𝐴𝐷𝐻 or 𝑁𝐴𝐷+ respectively, and 

the 𝑘𝑖 terms are the rate constants for the 𝑖𝑡ℎ reaction step. 
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Figure A-2. A schematic of the Theorell-Chance mechanism for lactate dehydrogenase. Free enzyme is 

bound by either 𝑁𝐴𝐷𝐻 or 𝑁𝐴𝐷+, and these enzyme complexes are then able to convert pyruvate to 

lactate. The binding, conversion and disassociation of either pyruvate or lactate are so rapid that they 

are considered as a single step with a single rate constant pair. Such an approximation is known as a 

Theorell-Chance mechanism. 

 Assuming that enzyme concentration is low enough that there is little change in the 

concentration of the enzyme complexes over the majority of the reaction, known as the steady state 

assumption66: 

 𝑑𝐸

𝑑𝑡
=
𝑑𝐸 ∙ 𝑁𝐴𝐷+

𝑑𝑡
=
 𝑑𝐸 ∙ 𝑁𝐴𝐷𝐻

𝑑𝑡
= 0 

𝐸𝑇 = 𝐸 +  𝐸 ∙ 𝑁𝐴𝐷
+ + 𝐸 ∙ 𝑁𝐴𝐷𝐻 

A.7 

where 𝐸𝑇 is the total enzyme concentration. Under the steady state assumption, the method outlined 

by Fromm104 can be used to determine the forward and reverse velocities of the reaction. Initially the 

concentrations of the individual enzyme species are determined based on the reagent concentrations. 

For LDH this would be: 

 [𝐸] =  𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃] 

[𝐸 ∙ 𝑁𝐴𝐷𝐻] = 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+] 

[𝐸 ∙ 𝑁𝐴𝐷+] = 𝑘2𝑘6[𝑁𝐴𝐷
+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷

+] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] 

[𝐸𝑇] = 𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃] + 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻]

+ 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+] + 𝑘2𝑘6[𝑁𝐴𝐷

+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷
+]

+ 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] 

A.8 

Because the concentration of the enzyme species is not changing, the velocity of each step must be the 

same for each direction. Therefore, the forward velocity will be: 

 𝑉𝑓 = 𝑘3[𝑃][𝐸 ∙ 𝑁𝐴𝐷𝐻] A.9 
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It is difficult to determine the concentration of the particular enzyme complexes. However, the total 

enzyme concentration is often known. Multiplying equation (A.9) by 
[𝐸𝑇]

[𝐸𝑇]
  and substituting equation (A.8) 

for [𝐸 ∙ 𝑁𝐴𝐷𝐻] yields:  

 
𝑉𝑓 =

𝐸𝑇𝑘3[𝑃](𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+])

𝑑𝑒𝑛𝑜𝑚
 

𝑑𝑒𝑛𝑜𝑚 =  𝑘2𝑘5 + 𝑘2𝑘4[𝐿] + 𝑘5𝑘3[𝑃] + 𝑘1𝑘4[𝐿][𝑁𝐴𝐷𝐻] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻]

+ 𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+] + 𝑘2𝑘6[𝑁𝐴𝐷

+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷
+]

+ 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] 

A.10 

Similarly, the reverse velocity would be given by: 

 
𝑉𝑟 =

𝐸𝑇𝑘4[𝐿](𝑘2𝑘6[𝑁𝐴𝐷
+] + 𝑘3𝑘6[𝑃][𝑁𝐴𝐷

+] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻])

𝑑𝑒𝑛𝑜𝑚
 A.11 

Therefore, the net change in the reaction would follow: 

 
𝑣 ≡

𝑑[𝐿]

𝑑𝑡
=
−𝑑[𝑃]

𝑑𝑡
= 𝑉𝑓 − 𝑉𝑟 A.12 

The 𝐸𝑇𝑘3𝑘4𝑘6[𝐿][𝑃][𝑁𝐴𝐷
+] and 𝐸𝑇𝑘1𝑘3𝑘4[𝐿][𝑃][𝑁𝐴𝐷𝐻] appear in both 𝑉𝑓 and 𝑉𝑟 and will cancel 

leaving: 

 
𝑣 =

𝐸𝑇(𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻] − 𝑘2𝑘4𝑘6[𝐿][𝑁𝐴𝐷
+])

𝑑𝑒𝑛𝑜𝑚
 A.13 

If only the initial rate is considered80, then [𝐿] = [𝑁𝐴𝐷+] = 0 and equation (A.13) reduces to: 

 𝑣

𝐸𝑡
=

𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘5 + 𝑘5𝑘3[𝑃] + 𝑘1𝑘5[𝑁𝐴𝐷𝐻] + 𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]
 A.14 

Multiplying by 
1 𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]⁄

1 𝑘1𝑘3𝑘5[𝑃][𝑁𝐴𝐷𝐻]⁄⁄  to cancel out the top terms yields: 

 𝑣

𝐸𝑡
=

1

𝑘2
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]
⁄ + 1 𝑘1[𝑁𝐴𝐷𝐻]

⁄ + 1 𝑘3[𝑃]
⁄ + 1 𝑘5

⁄
 A.15 

Inverting results in the initial rate of the reaction, which has been shown to match the rates that were 

measured in LDH isolated from rabbit muscle 57,79,80. Note that the exchange rate diagram used in those 
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references assume that the conversion of lactate to pyruvate is the forward reaction and the exchange 

constants, 𝑘𝑖, are in reverse order than this derivation. 

 𝐸𝑡
𝑣
=

𝑘2
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]

+
1

𝑘1[𝑁𝐴𝐷𝐻]
+

1

𝑘3[𝑃]
+
1

𝑘5
 A.16 

If the products [𝐿] and [𝑁𝐴𝐷+] are present, then equation (A.16) needs to be modified following the 

procedure outlined in 4,105, and accounting for product and substrate inhibition104 equation (A.16) is 

modified to:  

 
[𝐸]𝑡
𝑣
=
(1 +

[𝑃]
𝑘𝑖
)

𝑘5
+

1

𝑘1[𝑁𝐴𝐷𝐻]
+
(1 +

[𝐿]
𝑘𝑖𝑖
) (1 +

𝑘5[𝐿]
𝑘4

)

𝑘3[𝑃]
+
𝑘2 (1 +

𝑘5[𝐿]
𝑘4

) 

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻]
 

A.17 

This matches the initial reaction velocity of pyruvate conversion in lysed lymphoma cells57.  

 

Section A.3 Enzyme Exchange Kinetics  

If just the forward velocity is to be considered, then only equation (A.9) needs to be considered. 

By inspection of figure A-2 the relation: 

 
[𝐸 ∙ 𝑁𝐴𝐷𝐻] =

𝑘1[𝐸][𝑁𝐴𝐷𝐻]

𝑘2
 A.18 

is apparent. Substituting equation (A.16) into (A.9) yields: 

 
𝑉𝑓 =

𝑘3𝑘1
𝑘2

[𝑃][𝐸][𝑁𝐴𝐷𝐻] A.19 

In order to remove the [𝐸] terms they are be replaced with [𝐸𝑇]. Combining equation (A.8) with 

equation (A.18) and noting relations similar to equation (A.18) by inspection of figure A-2, then: 

 
[𝐸 ∙ 𝑁𝐴𝐷+] =

𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4
 A.20 

   

 
[𝐸𝑇] = [𝐸] {1 +

𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4
} 

A.21 
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Note that equation (A.20) could have been written as a function of [𝑁𝐴𝐷+] and [𝐿] but this increases 

the number of concentrations that need to be considered. Multiplying equation (A.19) by 
𝐸𝑇

𝐸𝑇
 to remove 

the [𝐸] term and substituting equation (A.21) leaves: 

 

𝑉𝑓 = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝐸][𝑃][𝑁𝐴𝐷𝐻]

𝑘2𝑘4

 A.22 

Finally, accounting for inhibitory complexes equation (A.22) is expanded to: 

 

𝑉𝑓 = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻](1 +

[𝑃]
𝐾𝑖
)

𝑘2𝑘4

 
A.23 

Equation (A.23) has been show to model the exchange of hyperpolarized pyruvate to lactate in murine 

lymphoma cells57.  

 

Section A.3 Enzyme Exchange Kinetics of Hyperpolarized Pyruvate  

Relating equation (A.23) to equation (A.5) assuming no reverse exchange results in: 

 
𝑑[𝑃∗]

𝑑𝑡
= 𝐸𝑇

(
𝑘3𝑘1
𝑘2
[𝑁𝐴𝐷𝐻]) [𝑃]

1 +
𝑘3𝑘1
𝑘2
[𝑃][𝑁𝐴𝐷𝐻] +

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] (1 +
[𝑃]
𝐾𝑖
)

𝑘2𝑘4

 ×
[𝑃∗]

[𝑃]

= 𝐸𝑇

(
𝑘3𝑘1
𝑘2
[𝑁𝐴𝐷𝐻]) [𝑃∗]

1 +
𝑘3𝑘1
𝑘2
[𝑃][𝑁𝐴𝐷𝐻] +

𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻] (1 +
[𝑃]
𝐾𝑖
)

𝑘2𝑘4

  

A.24 

For the pseudo first-order kinetics that are assumed in equation (3.4), (3.5) and (A.2), all the terms 

except [𝑃∗] must remain relatively constant. If that condition is met, then: 
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𝑘𝑝𝑙
′ = 𝐸𝑇

(
𝑘3𝑘1
𝑘2

[𝑁𝐴𝐷𝐻])

1 +
𝑘3𝑘1
𝑘2

[𝑃][𝑁𝐴𝐷𝐻] +
𝑘1𝑘3[𝑃][𝑁𝐴𝐷𝐻](1 +

[𝑃]
𝐾𝑖
)

𝑘2𝑘4

 
A.23 

This implies that the apparent exchange rate measured by hyperpolarized pyruvate is simply the rate 

constant that defines the enzymatic exchange rate as a function of pyruvate concentration. If, however, 

there was some reverse conversion of lactate to pyruvate, or the substrate concentration were time 

dependent, then the apparent exchange rate would be a more complicated parameter and unlikely to 

be constant over time. 
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 Appendix B: Source Code for HypWright 

 In this section the source code for the perfused Bloch-McConnell simulator is present along with 

a brief discussion of the functionality of the code. Discussion of particular design decisions will be 

outlined along with alternative approaches and areas for planned future development 

Section B.1 Higher Level Structures 

World Class 

 The World object follows a singleton pattern. Logically, there should never be more than a single 

world and therefore enforcing a singleton pattern ensures that user errors such as multiple worlds 

operating simultaneously can be avoided. This may be an issue for batch processing and the removal of 

the singleton framework may need to be considered for future studies. 

 The world object is first initialized which clears out any old world properties leaving a fresh 

world to be populated with the simulation parameters. The world stores the strength of the static 

magnetic field, which is assumed to be ever present and homogenous. If more complicated 𝐵0 

interaction need to be accounted for, a separate scanner object may need to be developed and 

incorporated into the pulse sequence objects. The pulse sequence object is the logical structure that 

stores all of the sequence information and is described in section B.2. Aside from the pulse sequence 

and 𝐵0 the final simulation parameter stored in the world object is an array of voxels. Voxels represent a 

volume of space and are described after the world object.  

 The world object additionally stores the value of the last time point at which a solution was 

calculated. Attempting to evaluate the simulation past this point will result in an error. Finally, there is 

memory allocated for solutions to be stored on the world level. However, current implementation stores 

the solution at the voxel level. Lower level storage of the solution structure allows easier access to the 
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solution values but is vulnerable to user errors such as the addition of a voxel after calculation which will 

not have a defined solution. 

 An attempt has been made to parallelize this code with respect to voxels since they are assumed 

to be independent. However, storing and mixing the magnetization from multiple parallel voxels was 

non-trivial, and more work will be needed to ensure proper parallelization. Once functional, a similar 

parallelization algorithm should work for the calculation step, and will likely be simpler as calculation 

result are stored on the voxel level and do not need to be aggregated. 

classdef (Sealed) World < handle 

    %WORLD: Hello World! 

    %   storage for global system states, this is a singleton and golbal 

    %   PROPERTIES 

    %   B0 - The main magnetic field of the scanner 

    %   pulseSequence - The MR pulse sequence 

    %   Voxels - all of the active voxels 

    %   init - logical for weather or not the world has been initiated 

    %   calEndTime - the last timepoint for which a solution has been found 

    %   METHODS 

    %   B0 - The main magnetic field of the scanner, default 3T 

    %   PulseSequence - The MR pulse sequence 

    %   Voxels - all of the active voxels 

    %   init - logical for weather or not the world has been initiated 

    %   Methods 

    %   setB0(B0) - sets the static B field to B0 

    %   setPulseSequence(pulseSequence) - sets the sroted pulse sequence 

    %   to the input PulseSequence 

    %   initWorld() initializes the world and sets B0 to its default and 

    %   initializes an empty pusle sequence 

    %   initWorld(B0) - initializes the world with some input B0 that 

    %   should be a 3x1 column vector of the form [x;y;z] 

    %   addVoxel(voxelList) - adds all the voxels in voxelList to the 

    %   world 

    %   calculate(times) - claculates the MR signal for all the time points 

    %   specifed by (time) 

    %   evaluate(time) - returns a M vector for each time point in the 

    %   time vector t 

    %   *Note M is only defined from 0 to the end time passed in to 

    %   calulate, and will only reflect the system state at the last 

    %   calculate. This function will sort the time vector and remove any 

    %   points outside of the range [0, calEndTime] as well as removing 

    %   any redundent time points  rounding to the nearest picosecond 

    properties 

    end 

    properties (SetAccess = private) 

        B0; % The main magnetic field of the scanner 
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        pulseSequence;  % The MR pulse sequence 

        Voxels; % all of the active voxels 

        init; % logical for weather or not the world has been initiated 

        calEndTime % the last timepoint for which a solution has been found 

        solutions; % a cell of enums that stores the calculated solutions 

    end 

    properties (Constant) 

        voxelSize = 1e-15; % The voxel size, I am not sure if this is used 

    end 

 

    methods (Access = private) 

        function self = World 

            % CONSTRUCTOR: Starts the Bloch Simulator. Initializes a pulse 

            % sequence 

            self.init = false; 

        end 

    end 

    methods (Static) 

        function singleObj = getWorld 

            persistent localObj 

            if isempty(localObj) || ~isvalid(localObj) 

                localObj = HypWright.World; 

            end 

            singleObj = localObj; 

        end 

    end 

    methods 

        function value = getB0(self),value = self.B0; end 

        function setB0(self,B0),self.B0 = B0;end 

        function value = getPulseSequence(self),value = self.pulseSequence;end 

        function setPulseSequence(self,pulseSequence),self.pulseSequence = pulseSequence;end 

        function b = getB(self,x,y,z,t) 

            % Gets the combined magnetic field from all sources at a 

            % position (x,y,z) and a time t. 

            b = repmat(self.B0,1,length(t))+self.pulseSequence.B(x,y,z,t); 

        end 

        function initWorld(self,varargin) 

            % INITWORLD: initializes the a new empty world. 

            % initWorld() initializes the world and sets B0 to its default and 

            % initializes an empty pusle sequence and clears out any voxel 

            % initWorld(B0) - initializes the world with some input B0 that 

            % should be a 3x1 column vector of the form [x;y;z] 

            p = inputParser; 

            p.addParameter('B0',[0;0;3.0],@isnumeric); 

            p.parse(varargin{:}) 

            self.B0 = p.Results.B0; 

            self.pulseSequence = []; 

            self.solutions = []; 

            self.calEndTime = 0; 

            self.clearVoxels(); 

            self.init = true; 

        end 
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        function addVoxel(self,voxelList) 

            % ADDVOXEL -  adds a voxel to the world 

            % addVoxel(voxelList) - adds all the voxels in voxelList to the 

            % world. They are added in the order they were passed in. 

            % Currently there is not great for managing and manipulating 

            % multiple voxels, this should probably be addressed if more 

            % complicated voxel geometries are to be used, probably a 

            % factory object. 

            for i = 1:numel(voxelList) 

                self.Voxels = [self.Voxels,voxelList(i)]; 

            end 

        end 

        function clearVoxels(self) 

            % CLEARVOXELS - removes all voxels from the world 

            self.Voxels = []; 

        end 

        function calculate(self,timeRange) 

            % CALCULATE - calculates the MR signal from all voxels over 

            % some time range, assumes a start time of zeros if only one 

            % number is passed in 

 

            % Compiles the pulse sequence for efficency. Need to add a 

            % check to make sure the sequence has not already been 

            % compiled. 

            self.pulseSequence.compile(); 

            % Generate temporary variables for clarity 

            tmpEndTime = timeRange(end); 

            tmpPS = self.pulseSequence; 

            tmpB0 = self.B0; 

            tmpSolutions = cell(numel(self.Voxels),1); % Allocate space for the solutions 

            % Let each voxl calculate it's own solution, 

            for i = 1:numel(self.Voxels) 

                tmpSolutions{i} = self.Voxels(i).calculate(tmpEndTime,tmpPS,tmpB0); 

            end 

            self.solutions = tmpSolutions; % store the solutions an replace any old solutions 

            % stores the end time of the calculated range 

            self.calEndTime = tmpEndTime; 

        end 

        function [signal, freqAxis, timeAxis,M] = evaluate(self,times,varargin) 

            % EVALUATE - returns the complext MR signal for the time points 

            % passed in. The world needs to be calculated before it can be 

            % evaluated. 

            % [signal, freqAxis, timeAxis] = evaluate(times) - 

            % evaluate(time) - returns a M vector for each time point in the 

            % time vector t 

            % *Note M is only defined from 0 to the end time passed in to 

            % calulate, and will only reflect the system state at the last 

            % calculate. This function will sort the time vector and remove any 

            % points outside of the range [0, calEndTime] as well as removing 

            % any redundent time points  rounding to the nearest picosecond 

            times = (unique(round(times.*10e12)))./10e12; 

            times = sort(times); 

            p = inputParser; 
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            p.addOptional('ref',0,@isnumeric) 

            p.addOptional('verbose',0,@islogical) 

            p.parse(varargin{:}) 

            tmpB0 = self.B0; 

            tmpRef = p.Results.ref; 

            tmpM = zeros(numel(self.Voxels),3,length(times)); 

            tmpVoxels = self.Voxels; 

            for i = 1:numel(self.Voxels) 

                tmpM(i,:,:) = tmpVoxels(i).getM(times,tmpRef,tmpB0); 

            end 

            % Attempt to parrallelize Not working 

%             tic 

%             tmpSolutions = self.solutions; 

%             tmpM = zeros(numel(self.Voxels),... 

%                 size(tmpSolutions{i}.functions,2),length(times),3); 

%             parfor i = 1:numel(self.Voxels) 

%                 for j = 1:size(tmpSolutions{i}.functions,2) 

%                     density = tmpSolutions{i}.spinDensity{j}; 

%                     omegaRef = tmpSolutions{i}.frameFreq{j}(tmpB0); 

%                     for k = 1:length(times) 

%                         iSolution = find(times(k)<tmpSolutions{i}.pulseTimes,1,'first'); 

%                         if isempty(iSolution) 

%                             iSolution = numel(tmpSolutions{i}.pulseTimes); 

%                         end 

%                         theta = times(k)*omegaRef; 

%                         if tmpSolutions{i}.useAnalytical(iSolution,j) 

%                              tmpMFrame = tmpSolutions{i}.functions{iSolution}(times(k)); 

%                         else 

%                             tmpMFrame = deval(... 

%                                 tmpSolutions{i}.functions{iSolution},(times(k))); 

%                         end 

%                         MSum = [0;0;0]; 

%                         for m = 1:3:size(tmpMFrame,1) 

%                             MSum = MSum+density*... 

%                                 [cos(theta),-sin(theta),0;... 

%                                 sin(theta),cos(theta),0;... 

%                                 0,0,1]*tmpMFrame(m:m+2); 

%                         end 

%                         tmp1(i) = MSum(1); 

%                         tmp2(i) = MSum(2); 

%                         tmp3(i) = MSum(3); 

%                     end 

%                 end 

%             end 

% %             tmpM = [tmp1;tmp2;tmp3]; 

%             toc 

%             keyboard 

            M = squeeze(sum(tmpM,1)); 

            signal = M(1,:)+1i*M(2,:); 

            signal = signal.'; 

            BW = 1/(times(2)-times(1)); 

            freqAxis = linspace(-BW/2,BW/2,length(times)); 

            timeAxis = times; 
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            if (p.Results.verbose) 

                figure 

                subplot(2,1,1),plot(times,real(signal),'r',times,imag(signal),... 

                    'b') 

                xlabel('Time (seconds)') 

                FTSig = fftshift(fft(fftshift(signal))); 

                subplot(2,1,2),plot(freqAxis,real(FTSig),'r',freqAxis,... 

                    imag(FTSig),'b',freqAxis,abs(FTSig),'k') 

                xlabel('Frequency (HZ)') 

            end 

        end 

    end 

 

end 
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Voxel Class 

 The voxel class is the main working object of the simulation structure. Nearly all calculation and 

evaluation is done in this class. Logically, it represents some arbitrary volume of space that is best 

described by a single point in space as the extent of the voxel is currently poorly defined. A more 

rigorous definition of a voxel may be necessary as more complicated numeric phantoms are considered. 

However, adding much more complexity to the voxel will start pushing this simulator into finite element 

methodologies. 

 The voxel is packed with an arbitrary number of spin objects. The density property that is 

inherent to each spin controls how much of the signal that spin contributes to the voxels’ signal. The 

solutions are calculated using two methods as outline in Section 3. Spins must store a function that will 

return their time derivative at a position and time, as well as some initial condition that is assumed to 

exist at time 0. This is used for the iterative solver that utilizes an adaptive 4th order Runge-Kutta 

method. If applicable, an analytical solution can also be defined. To use the analytical solution, the voxel 

checks with both the spin object and the pulse sequence to ensure that the analytical solution is valid. If 

so, the analytical solution is defined by the spin object and then stored in the voxel. This level of 

abstraction allows for a wide variety of ordinary differential equations to be solved and the solution 

space stored for subsequent evaluation with arbitrary temporal precision. Additionally, all the 

implementation details are stored in the spin objects themselves, so as long as the spin objects have a 

valid interface with the voxel they can be properly solved. 

 Additionally, it should be noted that the analytical solution is evaluated for each time point 

independently. This can lead to some redundancy when time integrals are part of the solution. 

Independent evaluations of such integrals can lead to significant duplication of calculation as the same 

integral is calculated over very similar time frames. It is likely that a cumulative sum approach that 



125 
 

utilizes the previous evaluation points would remove this overhead and greatly speed up the analytical 

solution for perfused systems. 

classdef Voxel < handle 

    %VOXEL Represents a volume of space 

    %   A voxel represents a voulme of space that contains some set of spins. 

    %   once the calculate method has been run the voxel stores a solution 

    %   describing the evolution of the total magnetization vector up to some 

    %   time. this can be evaluated with the getM method. 

    %   Properties 

    %   position - Vector defining the position of the Voxel 

    %   Methods 

    %   Voxel(position) - initializes an empty voxel at the coordinates 

    %   defined by position 

    %   Voxel(position, spinList)- initializes a Voxel at the coordinates 

    %   defined by position and fills it with any spin groups in the 

    %   optional variable spinList 

    %   addSpin(spin) - adds the input spin to the voxel 

    %   calculate(endTime) -  runs the solvers to the specified end time 

    %   getM(t) - returns the magnetization vector for all time points in 

    %   the vector t 

 

    properties 

        position % Vector defining the position of the Voxel 

        sol = {}; % list of all the solution structurs defing the time evolution of M 

        anlyticSol = {}; %functions for all the analytic solutions 

        debug = false; %switches on debug mode (will save the Mz of the spin) 

        solTimes % the time ranges each solution structure spans 

    end 

    properties (SetAccess = private) 

        solution % cell that stores all the data needed to solve for this Voxel 

    end 

    properties (Access = private) 

        spinGroups % list of all spins in the voxel 

    end 

    properties (Constant) 

        T2Star = 2e-14; % determins B0 inhomogenaety thus T2 star in thsis voxel 

        numSubSpins = 1^3; % Defines the number of spin groups in this voxel 

    end 

 

    methods 

        function self = Voxel(position,varargin) 

            % CONSTRUCTOR - initializes the voxel at some position 

            % Voxel(position) - initializes an empty voxel at the coordinates 

            % defined by position 

            % Voxel(position, spinList)- initializes a Voxel at the coordinates 

            % defined by position and fills it with any spin groups in the 

            % optional variable spinList 

            p = inputParser(); 

            p.addOptional('spinList',[]) 

            p.parse(varargin{:}) 
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            self.position = position; 

            for i = 1:numel(p.Results.spinList) 

                self.spinGroups = {p.Results.spinList(i)}; 

            end 

        end 

        function addSpin(self,spin) 

            % ADDSPIN - adds spins to the Voxel 

            % addSpin(spin) - adds the input spin to the voxel 

            self.spinGroups{end+1} = spin; 

        end 

        function solution = calculate(self,endTime,PS,B0) 

            % CALCULATE - calculates the time dependent magnetization vector for 

            % this voxel 

 

            pulseTimes = PS.eventTimes(1,:); % Times when B changes in the Pulse sequence 

            pulseTimes = pulseTimes(find(pulseTimes>0,1,'first'):end); 

            pulseTimes = pulseTimes(pulseTimes<=endTime); 

            pulseTimes = [0,pulseTimes,endTime]; 

            pulseTimes = sort(pulseTimes); 

            pulseTimes = unique(round(pulseTimes.*1e9))./1e9; 

            pulseTimes = unique(pulseTimes); 

            self.solTimes = pulseTimes; 

            solution.pulseTimes = pulseTimes; 

            % initialize the storage for the solutions 

            self.anlyticSol = cell(length(pulseTimes)-1,numel(self.spinGroups)); 

            self.sol = cell(length(pulseTimes)-1,numel(self.spinGroups)); 

            % generate and stor the solutions for each pulse time 

            for i = 1:length(pulseTimes)-1 

                tSpan = [pulseTimes(i),pulseTimes(i+1)]; 

                x = self.position(1); 

                y = self.position(2); 

                z = self.position(3); 

                t = mean(tSpan); 

                tmpSpinGroups = self.spinGroups; 

                if(i>1) 

                    tmpAnlyticSol2 = tmpAnlyticSol; 

                    tmpSol2 = tmpSol; 

                else 

                    tmpAnlyticSol2 = self.anlyticSol(i,:); 

                    tmpSol2 = self.sol(i,:); 

                end 

                tmpAnlyticSol = self.anlyticSol(i,:); 

                tmpSol = self.sol(i,:); 

                ODEBool = PS.solver(tSpan); 

                %tic 

                for j = 1:numel(tmpSpinGroups) 

                    % callculate current M 

                    if i == 1, 

                        tmpM = tmpSpinGroups{j}.M; 

                    else 

                        if isempty(tmpSol2{j}) 

                            tmpFun = tmpAnlyticSol2{j}; 
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                            tmpM = tmpFun(tSpan(1)); 

                        else 

                            tmpFun = tmpSol2{j}; 

                            tmpM = deval(tmpFun,tSpan(1)); 

                        end 

                    end 

                    if(ODEBool || ~tmpSpinGroups{j}.useAnalytical()) 

                        % used ODE solver when PS is changing 

                        odefun = @(M,t)tmpSpinGroups{j}.dM(x,y,z,M,t,PS,B0); 

%                       figure 

%                       ode45(odefun,tSpan,tmpM) 

                        tmpSol{j} = ode45(odefun,tSpan,tmpM); 

                        solution.functions(i,:) = tmpSol; 

                        solution.useAnalytical(i,:) = false; 

                    else 

                        B = B0+PS.B(x,y,z,t); 

                        tmpAnlyticSol{j} = ... 

                            @(t)tmpSpinGroups{j}.analytical(... 

                            x,y,z,tSpan(1),tmpM,t,PS,B0,B); 

                        tmpSol{j} = {}; 

                        solution.functions(i,:) = tmpAnlyticSol; 

                        solution.useAnalytical(i,:) = true; 

%                         odefun = @(M,t)tmpSpinGroups{j}.dM(x,y,z,M,t,PS,B0); 

%                       figure 

%                       ode45(odefun,tSpan,tmpM) 

%                       pause(waitforbuttonpress) 

                        %tmpsol{i,j} = ode45(odefun,tspan,tmpM); 

                    end 

                end 

                for j = 1:numel(tmpSpinGroups) 

                    solution.frameFreq{j} = @(B0)... 

                        self.spinGroups{j}.calculationFrame(B0); 

                    solution.spinDensity{j} = self.spinGroups{j}.density; 

                end 

                self.anlyticSol(i,:) = tmpAnlyticSol; 

                self.sol(i,:) = tmpSol; 

                %toc 

            end 

        end 

        function M = getM(self,t,ref,B0) 

            % GETM -  retuns the magnetization vector over some time vector 

            % getM(t) - returns the magnetization vector for all time points in 

            % the vector t 

            % set up sub spins within this voxel 

            B0inHomogFact = 0;% normrnd(0,self.T2Star,self.numSubSpins,1)*self.T2Star; 

            while std(B0inHomogFact) > 1.3*self.T2Star 

                B0inHomogFact = normrnd(0,self.T2Star,self.numSubSpins,1); 

            end 

            M = zeros(3,length(t)); 

            % Break up the time vector into chunks that mach the diffrent 

            % solutions 

            start = find(t(1)<self.solTimes,1,'first'); 
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            devalTimes = 1; 

            if self.debug 

            tmp = {}; 

            save('tmp','tmp') 

            end 

            for j = start:numel(self.solTimes) 

                devalTimes(end+1) = find(t<self.solTimes(j),1,'last'); 

                tmp = find(t>=self.solTimes(j),1,'first'); 

                if isempty(tmp) 

                    break; 

                else 

                    devalTimes(end+1) = tmp; 

                end 

            end 

            devalTimes(end+1) = length(t); 

            devalTimes = sort(devalTimes); 

            for n = 1:2:numel(devalTimes)-1 

                tDeval = t(unique(devalTimes(n):devalTimes(n+1))); 

                % find wich solution to use for this time 

                j = find(self.solTimes>tDeval(1),1,'first'); 

                if isempty(j), j = length(self.solTimes); end 

                j = j-1; 

                tmpM = zeros(3,numel(tDeval)); 

                for i = 1:numel(self.spinGroups) 

                    % calculate M0 for a spin group at the passed in time 

                    if isempty(self.sol{j,i}) 

                        % Calculat with analytical 

                        %tmp = self.anlyticSol{j,i}(tDeval(1)); 

                        Mframe = self.anlyticSol{j,i}(tDeval); 

                        if self.debug 

                        load('tmp.mat') 

                        tmp{j,i} = Mframe; 

                        save('tmp','tmp') 

                        end 

                    else 

                        % calculate woth ode 

                        Mframe = deval(self.sol{j,i},tDeval); 

                        if self.debug 

                        load('tmp.mat') 

                        tmp{j,i} = Mframe; 

                        save('tmp','tmp') 

                        end 

                    end 

                    % account for sub spins 

                    for m = 1:self.numSubSpins 

                        for p = 1:numel(tDeval) 

                            % rotate to refrence frame 

                            theta = (self.spinGroups{i}.calculationFrame(B0)+ref)*... 

                                (1+B0inHomogFact(m))*tDeval(p); 

                            %loop over all the spins in a group 

                            for k = 1:3:size(Mframe,1) 

                                tmpM(:,p) = tmpM(:,p)+self.spinGroups{i}.density*... 

                                    [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;... 



129 
 

                                    0,0,1]*Mframe(k:k+2,p); 

                            end 

                        end 

                    end 

                end 

                M(:,unique(devalTimes(n):devalTimes(n+1))) =... 

                    tmpM./self.numSubSpins; 

            end 

        end 

    end 

end 
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Section B.2: Pulse Sequence 

Pulse Sequence Class 

The pulse sequence class takes an assembly of gradient and radiofrequency pulses and compiles 

them into a magnetic vector that is a function of time. A fair amount of logic is used to optimize the 

sequence before calculation, as the state of the magnetic field at a particular time is called with great 

frequency during analytical and numerical calculation, and performance profiling has found that 

interaction with the pulse sequence is a major source of computational burden. 

During calculation, multiple solvers can be used, and since the solver to be used can depend on 

the pulse sequence, any time the pulse sequence is changed an event is stored. Events are merely flags 

that are used by the pulse sequence compiler and the voxel class as points where the solvers need to re-

evaluate which method to use. 

Gradient and radiofrequency pulses are sorted and compiled separately. However, they are 

eventually combined to yield a single magnet field vector as a function of time and position. Pulses are 

added to the end of the storage array and can be removed by their index in the array. A more robust 

structure for the addition and removal of pulses would likely be beneficial. With the current 

implementation it is best to build the correct sequence the first time.  

The ADC represents the analog-to-digital converter that can be used to define evaluation points. 

However, this is not required. 

Compilation of gradients currently has logic to account for slew rates. However, this has not 

been rigorously test and should be used with great care. RF pulses are not allowed to overlap in time 

and should be combined into a single waveform if overlapping is required. 

The display function has been overridden to show a sequence diagram. The methodology for 

how repetition time and RF pulses are displayed in the sequence diagram should probably be 

reconsidered and textual information about the sequence should be included. 
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classdef PulseSequence < handle 

    %PULSESEQUENCE Classrepresenting a MRI pusle sequence 

    %   Detailed explanation goes here 

    properties 

        ADC = []; % A vector storing start, stop time and bandwidth of the ADC 

    end 

    properties (SetAccess = private) 

        rfPulses = {} % Vector of rf Pulses in the sequence 

        gradientPulses = {} % Vector of rf Pulses in the sequence 

        time = {} 

        eventTimes % vector defining when pulses are on or off 

        slewRate = 1e9 % maximal gradient slope in T/(m*sec) 

        gradientVect % The gradient amplitudes 

        RFVect % Grid Containg the Times for each RF Pulse 

    end 

    properties (Constant) 

        maxSize = 1e4; % Maximum number of points used for displaying pulses 

    end 

    properties (Dependent) 

       timeStep % Not sure whatthis does 

 

    end 

    methods 

        function compile(self) 

            if (isempty(self.gradientPulses)) 

                self.gradientVect = [0,1e9;0,0;0,0;0,0]; 

            else 

                self.compileGrads(); 

            end 

            if(isempty(self.rfPulses)) 

                self.RFVect = [0,1e9;0,0]; 

            else 

                self.compileRF(); 

            end 

            self.updateTime() 

        end 

        function val = get.timeStep(self) 

            % timeStep: not quite sure whatthis does 

            val = 1; 

           for i = 1:length(self.eventTimes)-1 

               if(self.eventTimes(i+1)-self.eventTimes(i)<val) 

                   val = self.eventTimes(i+1)-self.eventTimes(i); 

               end 

           end 

        end 

        function b = B(self,x,y,z,t) 

            % B: retuns the Bfield at some point defined by (x,y,z) at some time 

            % t 

            b = zeros(3,length(t)); 

            RFPulses = interp1(self.RFVect(1,:),self.RFVect(2,:),t,'nearest','extrap'); 

            for i = 1:length(t) 

                if RFPulses(i) ~= 0 
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                    b(:,i) = [real(self.rfPulses{RFPulses(i)}.B(x,y,z,t(i)));... 

                        imag(self.rfPulses{RFPulses(i)}.B(x,y,z,t(i)));0]; 

                end 

            end 

            % Old implementation 

%             for i = 1:numel(self.rfPulses) 

%                 if(t>=self.rfPulses{i}.startTime && t<=self.rfPulses{i}.endTime) 

%             b = b + [real(self.rfPulses{i}.B(x,y,z,t));... 

%                 imag(self.rfPulses{i}.B(x,y,z,t));zeros(1,length(t))]; 

%                 end 

%             end 

            if(size(self.gradientVect,2) >1 ) 

            b = b + self.BGrad(x,y,z,t); 

            end 

        end 

        function b = BGrad(self,x,y,z,t) 

            % B: retuns the Bfield of just the gradient fields at some time t 

            % and some location x,y,z 

            b = zeros(3,length(t)); 

            b(3,:) = interp1(self.gradientVect(1,:),self.gradientVect(2,:),t,... 

                'nearest','extrap')*x + ... 

                interp1(self.gradientVect(1,:),self.gradientVect(3,:),t,... 

                'nearest','extrap')*y + ... 

                interp1(self.gradientVect(1,:),self.gradientVect(4,:),t,... 

                'nearest','extrap')*z; 

%             b = zeros(3,length(t)); 

%             for i = 1:numel(self.gradientPulses) 

%                 b = b + self.gradientPulses{i}.B(x,y,z,t); 

%             end 

        end 

        function addPulse(self,Pulse) 

            % ADDPULSE: adds a pulse to the Pulse Sequence 

            RFPulseList = {'HypWright.SincPulse','HypWright.BlockPulse',... 

                'HypWright.BlockPulseSpatial','HypWright.SincPulseSpatial'}; 

            GradientPulseList = {'HypWright.GradientPulse',... 

                'HypWright.LinearGradientPulse'}; 

            if(find(ismember(class(Pulse),RFPulseList))) 

                self.rfPulses{length(self.rfPulses)+1} = Pulse; 

            else if(find(ismember(class(Pulse),GradientPulseList))) 

                    self.gradientPulses{length(self.gradientPulses)+1} = Pulse; 

                else error(['Pulse passed in not a recognized pulse type.'... 

                        'Consider updating the pulse lists in the PS object']) 

                end 

            end 

        end 

        function removePulse(self,n) 

            % REMOVEPULSE: removes the nth pulse in the pulse sequence 

            if(~(length(self.rfPulses) > n || n > 0 || isscalar(n))) 

                disp('Error! Pulse index selected to delete not in the sequence') 

                return 

            end 

            self.rfPulses(n) = []; 

        end 
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        function addADC(self,startTime,bandwidth,nPoints) 

            % ADDADC: adds a virtual ADC to record the MR data. 

            % addADC(self,StartTime,Bandwidth,nPoints) (StartTiem), sampling rate (Bandwidth) and 

number of 

            % points (nPoints). The lenght of time the ADC is on is defined by 

            % nPoints/Bandwidth 

            endTime = startTime+nPoints*(1/bandwidth); 

            self.ADC(end+1,:) = [startTime,endTime,bandwidth]; 

        end 

        function removeADC(self,n) 

            % REMOVEADC - removes an ADC 

            % removeADC(n) - removes the nth (n) ADC from the pulse sequence 

           self.ADC(n,:) = []; 

        end 

        % TODO this seems like an old method and should be removed 

        function [value,isterminal,direction] = events(self,t) 

            % EVENTS: uses the stored pollynomilas to tell the solver when RF 

            % pulses turn on and off 

            value = polyval(self.eventTimes,t); 

            isterminal = 1; 

            direction = 0; 

        end 

        % TODO: it is not very intuitive to remove pulses based on some arbitray 

        % number assigned when they were created. need a beeter method to 

        % identify pulses 

        function clearRFPulses(self) 

            %CLEARPULSES: Clear all pulses from the pulse sequence 

            self.rfPulses = []; 

            self.updateTime(); 

        end 

        % TODO: rework the ADC display feature to have ADC be accounted for in 

        % the sampling time 

        function display(self,varargin) 

            % DISPLAY - displays all the RF,aand gradient pulses as well as when 

            % ADCS are on 

            % display() - displays in a new figure with thedefault time range ) 

            % to 100 seconds 

            % display([startTime,endTime]) displays in a new figure from the 

            % start time to the end time 

            % display([startTime,endTime], figure) same as above but plots in 

            % the passed in figure 

            self.compile(); 

            p = inputParser(); 

            p.addOptional('timeRange',[0,self.eventTimes(end)]) 

            p.addOptional('figure',[]) 

            p.parse(varargin{:}) 

            if(isempty(p.Results.figure)) 

                figure('units','normalized','outerposition',[0.25 0 0.5 1]); 

            else 

                figure(p.Results.figure); 

            end 

            for i = 1:numel(self.time) 

                if self.time(i)> p.Results.timeRange(1) &&... 
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                        self.time(i)< p.Results.timeRange(2) 

                dispTime(i) = self.time(i); 

                end 

                if self.time(i)> p.Results.timeRange(2) 

                    break 

                end 

            end 

            if dispTime(1) > self.time(1) 

                dispTime = [self.time(1),dispTime]; 

            end 

            if dispTime(1) > p.Results.timeRange(1) 

                dispTime = [p.Results.timeRange(1),dispTime]; 

            end 

            if dispTime(end) < p.Results.timeRange(2) 

                dispTime = [dispTime,p.Results.timeRange(2)]; 

            end 

            x=0;y=0;z=0; 

            RFDisp = zeros(size(dispTime)); 

            GXDisp = zeros(size(dispTime)); 

            GYDisp = zeros(size(dispTime)); 

            GZDisp = zeros(size(dispTime)); 

            ADCDisp = zeros(size(dispTime)); 

            for i = 1:numel(dispTime) 

                for j = 1:numel(self.rfPulses) 

                    RFDisp(i) = RFDisp(i)+self.rfPulses{j}.B(x,y,z,dispTime(i)); 

                end 

            end 

            for i = 1:numel(dispTime) 

                for j = 1:numel(self.gradientPulses) 

                    if(dispTime(i) < self.gradientPulses{j}.endTime && ... 

                            dispTime(i) > self.gradientPulses{j}.startTime) 

                        tmpGVect = self.gradientPulses{j}.slope; 

                        GXDisp(i) = GXDisp(i) + tmpGVect(1); 

                        GYDisp(i) = GYDisp(i) + tmpGVect(2); 

                        GZDisp(i) = GZDisp(i) + tmpGVect(3); 

                    end 

                end 

            end 

            for i = 1:numel(dispTime) 

                for j = 1:length(self.ADC) 

                    if (dispTime(i) > self.ADC(j,1) &&... 

                            dispTime(i) < self.ADC(j,2)) 

                        ADCDisp(i) = ADCDisp(i) + 1; 

                    end 

                end 

            end 

            subplot(6,1,1),plot(dispTime,real(RFDisp),... 

                'b',dispTime,imag(RFDisp),'r',dispTime,abs(RFDisp),'k') 

            xlabel('Time (seconds)'),ylabel('RF Magnitude'),title('RF Pulses') 

            legend('Real','Iamginary','Magnitude') 

            subplot(6,1,2),plot(dispTime,GXDisp,'k') 

            xlabel('Time (seconds)'),ylabel('Gradient Slope') 

            title('X Gradient'), 
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            subplot(6,1,3),plot(dispTime,GYDisp,'k') 

            xlabel('Time (seconds)'),ylabel('Gradient Slope') 

            title('Y Gradient') 

            subplot(6,1,4),plot(dispTime,GZDisp,'k') 

            xlabel('Time (seconds)'),ylabel('Gradient Slope') 

            title('Z Gradient') 

            subplot(6,1,5), plot(dispTime,ADCDisp) 

            xlabel('Time (seconds)'),ylabel('Number of ADCs on') 

            title('ADC') 

            axis([dispTime(1),dispTime(end),min(ADCDisp)-0.5,max(ADCDisp)+0.5]) 

            subplot(6,1,6), plot(self.eventTimes(:,1),self.eventTimes(:,2)) 

            xlabel('Time (seconds)'),ylabel('Using Analytic Solution') 

            title('Solver Type') 

        end 

        function S = solver(self,eventTimes) 

            % SOLVER - returns the time dependency in the pulse sequence 

            S = false; 

            for i = 1:numel(self.rfPulses) 

                if (self.rfPulses{i}.startTime - eventTimes(1)) < 1e-8 &&... 

                        (self.rfPulses{i}.endTime - eventTimes(2)) > -1e-8 

                    S = S || self.rfPulses{i}.timeDependence; 

                end 

            end 

        end 

    end 

    methods (Access =  private) 

        function compileGrads(self) 

            %A sub function that Converts the Gradien Pulses into a single 

            % 4 by n vector that has the valuse for each gradient direction and 

            % the times those valuse change 

            %Initialize the gradient vector with the first gradient pulse 

            % Calculate the slew time 

            slewTime = max(abs(0-self.gradientPulses{1}.slope(:)))/self.slewRate; 

            % Fill the time vectors for the pulse 

            tmpVect(1,1) = self.gradientPulses{1}.startTime; 

            tmpVect(1,2) = self.gradientPulses{1}.startTime+slewTime; 

            tmpVect(1,3) = self.gradientPulses{1}.endTime-slewTime; 

            tmpVect(1,4) = self.gradientPulses{1}.endTime; 

            % Fill the gradient slopes for the pulse 

            tmpVect(2:4,1) = 0; 

            tmpVect(2:4,2) = self.gradientPulses{1}.slope(:); 

            tmpVect(2:4,3) = 0; 

            tmpVect(2:4,4) = -self.gradientPulses{1}.slope(:); 

            % Add the rest of the gradient to the pulse 

            for i=2:numel(self.gradientPulses) 

                % get the gradent slope valuse at the begining and end of  the 

                % pulse 

                startSlope = [interp1(tmpVect(1,:),tmpVect(2,:),... 

                    self.gradientPulses{1}.startTime,'nearest','extrap');... 

                    interp1(tmpVect(1,:),tmpVect(3,:),... 

                    self.gradientPulses{1}.startTime,'nearest','extrap');... 

                    interp1(tmpVect(1,:),tmpVect(4,:),... 

                    self.gradientPulses{1}.startTime,'nearest','extrap')]; 
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                endSlope = [interp1(tmpVect(1,:),tmpVect(2,:),... 

                    self.gradientPulses{1}.endTime,'nearest','extrap');... 

                    interp1(tmpVect(1,:),tmpVect(3,:),... 

                    self.gradientPulses{1}.endTime,'nearest','extrap');... 

                    interp1(tmpVect(1,:),tmpVect(4,:),... 

                    self.gradientPulses{1}.endTime,'nearest','extrap')]; 

                % Calculate the slew times 

                slewTimeStart = max(abs(startSlope... 

                    -self.gradientPulses{1}.slope(:)))/self.slewRate; 

                slewTimeEnd = max(abs(endSlope... 

                    -self.gradientPulses{1}.slope(:)))/self.slewRate; 

                j = (i-1)*4+1; % counter for tmpVect 

                % Fill the time vectors for the pulse 

                tmpVect(1,j) = self.gradientPulses{i}.startTime; 

                tmpVect(1,j+1) = self.gradientPulses{i}.startTime+slewTimeStart; 

                tmpVect(1,j+2) = self.gradientPulses{i}.endTime-slewTimeEnd; 

                tmpVect(1,j+3) = self.gradientPulses{i}.endTime; 

                % Fill the gradient slopes for the pulse 

                tmpVect(2:4,j) = 0; 

                tmpVect(2:4,j+1) = self.gradientPulses{i}.slope(:); 

                tmpVect(2:4,j+2) = 0; 

                tmpVect(2:4,j+3) = -self.gradientPulses{i}.slope(:); 

                [~,I]=sort(tmpVect(1,:)); % Sort Times 

                tmpVect = tmpVect(:,I); % match slopes to Times 

                % Combine duplicates 

                tmpI = 1; 

                sumI = 1; 

                trashI = []; 

                for k = 2:size(tmpVect,2) 

                    % grab all the slop changes at a particular time 

                    if (tmpVect(1,k) == tmpVect(1,tmpI)) 

                        sumI = [sumI,k]; % cant think of a way to pre-allocate this 

                        % sum all identical slope changes then move to next time point 

                    else 

                        tmpVect(2:4,sumI(1)) = sum(tmpVect(2:4,sumI),2); 

                        trashI = [trashI,sumI(2:end)]; 

                        tmpI = k; 

                        sumI = k; 

                    end 

                end 

                tmpVect(:,trashI) = []; 

            end 

            tmpBSlope = zeros(3,1); 

            self.gradientVect = zeros(size(tmpVect)); 

            for i=1:size(tmpVect,2) 

                self.gradientVect(1,i) = tmpVect(1,i); 

                tmpBSlope = tmpBSlope+tmpVect(2:4,i); 

                self.gradientVect(2:4,i) = tmpBSlope; 

            end 

            % Debug Plotting 

%             figure('Position',[700,200,1100,800]) 

%             subplot(3,1,1),plot(self.gradientVect(1,:),self.gradientVect(2,:)); 

%             title('Slope X'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)') 
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%             subplot(3,1,2),plot(self.gradientVect(1,:),self.gradientVect(3,:)); 

%             title('Slope Y'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)') 

%             subplot(3,1,3),plot(self.gradientVect(1,:),self.gradientVect(4,:)); 

%             title('Slope Z'),xlabel('Time (seconds)'),ylabel('Gradient Slope (T/m)') 

        end 

        function compileRF(self) 

            self.RFVect = [-1,1e3;0,0]; 

            for i = 1:numel(self.rfPulses) 

                % Store which pulse is on 

                % note a 2 pico second buffer is added to each pulse. this will 

                % result in an error if a pulse starts at the exact time one 

                % ends 

                self.RFVect = [self.RFVect,[self.rfPulses{i}.startTime-1e-12;0]]; 

                self.RFVect = [self.RFVect,[self.rfPulses{i}.endTime+1e-12;0]]; 

                % Store 0 for when pulse is off 

                self.RFVect = [self.RFVect,[self.rfPulses{i}.startTime;i]]; 

                self.RFVect = [self.RFVect,[self.rfPulses{i}.endTime;i]]; 

            end 

            [~,I] = sort(self.RFVect(1,:)); 

            self.RFVect = self.RFVect(:,I); 

            for i = 1:2:size(self.RFVect,2) 

                if self.RFVect(2,i) ~= self.RFVect(2,i+1) 

                    error('RF Pulses %d and %d are overlapping with times %d, %d and %d, 

%d\n',... 

                        self.RFVect(i,1),self.RFVect(i+1,1),... 

                        self.rfPulses{i}.startTime,self.rfPulses{i}.endTime,... 

                        self.rfPulses{i+1}.startTime,self.rfPulses{i+1}.endTime) 

                end 

            end 

        end 

        function updateTime(self) 

            % UPDATETIME: iterates through the pulse sequence and stores the 

            % times that pulses are turned on or off for use by the solver 

            allPulses = [self.rfPulses,self.gradientPulses]; 

            pointsPerPulse = self.maxSize/length(allPulses); 

            self. time = 0; 

            self.eventTimes = []; 

            for i = 1:length(allPulses) 

                self.time = [self.time,linspace(allPulses{i}.startTime,... 

                    allPulses{i}.endTime,pointsPerPulse)]; 

                self.eventTimes(end+1) = allPulses{i}.startTime; 

                self.eventTimes(end+1) = allPulses{i}.endTime; 

            end 

            % stores the on and off times for each pulse as a root to a 

            % polynomial 

            self.time = sort(self.time); 

            self.eventTimes = unique(self.eventTimes); 

            self.eventTimes = sort(self.eventTimes); 

%             self.eventTimes = []; 

%             for i = 1:size(self.RFVect,2) 

%                 if(self.RFVect(2,i)) 

%                     self.eventTimes = [self.eventTimes,[self.RFVect(1,i);1]]; 

%                 else 
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%                     self.eventTimes = [self.eventTimes,[self.RFVect(1,i);0]]; 

%                 end 

%             end 

%             for i = 1:size(self.gradientVect,2)-1 

%                 if(sum(self.gradientVect(2:4,i))~=sum(self.gradientVect(2:4,i+1))) 

%                     self.eventTimes = [self.eventTimes,[self.gradientVect(1,i+1);1]]; 

%                 else 

%                     self.eventTimes = [self.eventTimes,[self.gradientVect(1,i+1);0]]; 

%                 end 

%             end 

%             [~,I] = sort(self.eventTimes(1,:)); 

%             self.eventTimes = self.eventTimes(:,I); 

%             I = find(diff(self.eventTimes(1,:))<=0); 

%             self.eventTimes(2,I+1) = max([self.eventTimes(2,I);self.eventTimes(2,I+1)]); 

%             self.eventTimes(:,I) = []; 

        end 

    end 

end 
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RF Pulse Class 

 The RF class represents an arbitrary radiofrequency pulse and should be mostly used as a parent 

object, yet full abstraction seemed too extreme. All RF pulses must have a duration and a center time. 

Memory is allocated for a carrier frequency to mix the RF pulse to near the Larmor frequency. However, 

this is not required and can be set to zero. For this high level class, the magnetic field is stored as a 

function of location and time.  

 The display function has been overridden to show the pulse shape and the mixed waveform. The 

textual information about each pulse should probably be in the children classes. 

classdef RFPulse < handle 

    %RFPULSE The base Class or Radio frequency Pulses 

    %   Properties 

    %   Bfun: function pointer defining the pulse 

    %   center: the center of the pulse 

    %   durration: the length of the pulse (truncates Bfun otherwise) 

    %   omega: carrier frequency of the pulse 

    %   Name: a (hopefully) unique name for the pulse 

    %   startTime: start time of the pulse (truncate Bfun before this point) 

    %   endTime: end time of the pulse (truncates Bfun after this point) 

    %   Methods 

    %   RFPulse(center, durration,omega, name) initializes center time (center), 

    %   pulse durration (durraton), carrier frequency (omega), and name 

    %   display(self) displays in a new figure 

    %   display(self,h) displays in a passed in figure h 

    %   B1(x,y,z,t) returns a 3D vector defining B1 for this pulse at 

    %   the passed in postion (x,y,z) and time (t) 

    properties (SetAccess = protected) 

        Bfun % function pointer defining the pulse 

        center % the center of the pulse 

        durration % the length of the pulse (truncates Bfun otherwise) 

        omega % carrier frequency of the pulse 

        name % a (hopefully) unique name for the pulse 

    end 

    properties (Dependent) 

        startTime % start time of the pulse 

        endTime % end time of the pulse 

    end 

    properties (Constant) 

        timeDependence = true; 

    end 

    methods (Abstract = true, Access = protected) 

        calB(self) % returns a pointer to the function defining the pulse 

    end 
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    methods 

        function setCenter(self,center),self.center = center; end 

        function setDurration(self,durration), self.durration = durration; end 

        function setOmega(self,omega), self.omega = omega; end 

        function val = get.startTime(self),val=self.center-self.durration/2;end 

        function val = get.endTime(self),val=self.center+self.durration/2;end 

        function self = RFPulse(center,durration,omega,name) 

            % CONSTRUCTOR - Base Constructo for all RFPulse subclasses 

            % RFPulse(center, durration,omega, name) initializes center time, 

            % durration, carrier frequency omega, and name 

            self.center = center; 

            self.durration = durration; 

            self.omega = omega; 

            self.name = name; 

        end 

        function display(self,varargin) 

            % DISPLAY - Displays the RF pulse evelope, in both frequency and 

            % time domaines 

            % display(self) displays in a new figure 

            % display(self,h) displays in a passed in figure h 

            p = inputParser(); 

            p.addOptional('figure',[]) 

            p.parse(varargin{:}) 

            N = 2^10; 

            t = linspace(-self.durration/2,self.durration/2,N); 

            B1 = zeros(length(t),1); 

            x = 0; y = 0; z = 0; 

            for i = 1:length(t) 

                B1(i) = self.Bfun(x,y,z,t(i)); 

            end 

            FT = fftshift(fft(fftshift(B1))); 

            freqAxis = linspace(1/(t(2)-t(1))/length(t),1/(t(2)-t(1)),... 

                length(t)); % Calculate frequency axis 

            if(isempty(p.Results.figure)) 

                figure; 

            else 

                figure(p.Results.figure); 

            end 

            subplot(2,1,1),plot(t,real(B1),'k',t,imag(B1),'r',t,abs(B1),'b') 

            xlabel('Time (seconds)') 

            ylabel('B1 (Tesla)') 

            legend('X','Y','Magnitude') 

            subplot(2,1,2),plot(freqAxis,real(FT),'k',freqAxis,imag(FT),'r',... 

                freqAxis,abs(FT),'b') 

            xlabel('Frequency (Hz)') 

            ylabel('Magnitude (arb)') 

            legend('real','Imaginary','Magnitude') 

        end 

        function B1 = B(self,x,y,z,t) 

            % B1: gives the B1 of this pulse at a time and location 

            % B1(x,y,z,t) returns a 3D vector defining B1 for this pulse at 

            % the passed in postion (x,y,z) and time (t) 

            B1 = zeros(1,length(t)); 
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            pulseOnTimes = find(self.startTime < t & t < self.endTime); 

            if ~isempty(pulseOnTimes) 

                B1(pulseOnTimes) = self.Bfun(x,y,z,t(pulseOnTimes)-self.center)... 

                    .*exp(1i*self.omega*(t(pulseOnTimes))); 

            end 

        end 

    end 

end 
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Block Pulse Class 

 A Block Pulse is a block-shaped waveform that is then mixed up to a particular carrier frequency. 

The amplitude should be set to 
𝜃

𝛾∗𝜏
. The duration of the block pulse will determine the width of the sinc 

excitation profile and the carrier frequency omega will determine the center frequency of the sinc 

profile. A child class that incorporates spatial variability has been written, but will not be documented in 

this text. 

classdef BlockPulse < HypWright.RFPulse 

    %SINCPULS Sinc Enveloped RF Pulse 

    %   Properties 

    %   bandwidth: Bandwidth of the sinc pulse 

    %   amplitude: Amplitude of the Sinc 

    %   lobes: number of lobes in the sinc envelope default(5) 

    %   Methods 

    %   SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the 

    %   center time (center), the pulse bandwidth (bandwidth), the pulse 

    %   amplitude (amplitude) and the carrier frequencey (omega) Will set 

    %   the name to a random number and the number of lobes to 5 

    %   SinPulse(...,lobes) - same as above but accepts a posotive integer 

    %   as the number of lobes in this pulse 

    %   SinPulse(...,name) - same as above but the last argument will be 

    %   set as the pulses' name, to use the default value (5) for the 

    %   number of lobes just pass in [] as the 5th argument 

    %   setDurration(self,durration) -  does nothing and warns the user note 

    %   that for a sinc pulse the durration is a function of the bandwidth 

    properties 

    end 

    properties(SetAccess = private) 

        amplitude % Amplitude of the Pulse 

    end 

    methods 

        function self = BlockPulse(center,durration,omega,amplitude,varargin) 

            % CONSTRUCTOR - Initializes the Block pulse 

            % BlockPulse(center,bandwidth,amplitude,omega,varargin) - sets the 

            % center time (center), the pulse durration (durration), the pulse 

            % amplitude (amplitude) and the carrier frequencey (omega) 

            % BlockPulse(...,name) - same as above but the last argument will be 

            % set as the pulses' name 

            p = inputParser(); 

            p.addOptional('name',sprintf('Pulse%d',int16(rand(1)*10000)),@isstr) 

            p.parse(varargin{:}) 

            self = self@HypWright.RFPulse(center,durration,omega,p.Results.name); 

            self.amplitude = amplitude; 

            self.calB(); 

        end 
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        function setDurration(self,value) 

            % SETDurration - sets the amplitude of the pulse 

            self.durration = value; 

            self.calB(); 

        end 

        function setAmplitude(self,value) 

            % SETAMPLITUDE - sets the amplitude of the pulse 

            self.amplitude = value; 

            self.calB(); 

        end 

    end 

    methods (Access = protected) 

        function calB(self) 

            % CALB - re-calculates the function that defines the envelope for 

            % this sinc pulse 

            self.Bfun = @(x,y,z,t)self.amplitude; 

        end 

    end 

end 
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Sinc Pulse Class 

 The sinc pulse class builds  a n-lobed sinc pulse with a set excitation bandwidth, and an 

amplitude set to 
𝜃

𝛾
. The carrier frequency omega will determine the center of the excitation band and 

the center time defines the center of the pulse. The pulse duration and therefore, the start and end 

times will depend on the pulse bandwidth and on the number of lobes and are properties that can be 

returned, but not set. 

classdef SincPulse < HypWright.RFPulse 

    %SINCPULS Sinc Enveloped RF Pulse 

    %   Properties 

    %   bandwidth: Bandwidth of the sinc pulse 

    %   amplitude: Amplitude of the Sinc 

    %   lobes: number of lobes in the sinc envelope default(5) 

    %   Methods 

    %   SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the 

    %   center time (center), the pulse bandwidth (bandwidth), the pulse 

    %   amplitude (amplitude) and the carrier frequencey (omega) Will set 

    %   the name to a random number and the number of lobes to 5 

    %   SinPulse(...,lobes) - same as above but accepts a posotive integer 

    %   as the number of lobes in this pulse 

    %   SinPulse(...,name) - same as above but the last argument will be 

    %   set as the pulses' name, to use the default value (5) for the 

    %   number of lobes just pass in [] as the 5th argument 

    %   setDurration(self,durration) -  does nothing and warns the user note 

    %   that for a sinc pulse the durration is a function of the bandwidth 

    properties 

    end 

    properties(SetAccess = private) 

        bandwidth % Bandwidth of the sinc pulse 

        amplitude % Amplitude of the Sinc 

        lobes % number of lobes in the sinc envelope 

    end 

    methods 

        function self = SincPulse(center,bandwidth,amplitude,omega,varargin) 

            % CONSTRUCTOR - Initializes the Sinc pulse 

            % SincPulse(center,bandwidth,amplitude,omega,varargin) - sets the 

            % center time (center), the pulse bandwidth (bandwidth), the pulse 

            % amplitude (amplitude) and the carrier frequencey (omega) Will set 

            % the name to a random number and the number of lobes to 5 

            % SinPulse(...,lobes) - same as above but accepts a posotive integer 

            % as the number of lobes in this pulse 

            % SinPulse(...,name) - same as above but the last argument will be 

            % set as the pulses' name, to use the default value (5) for the 

            % number of lobes just pass in [] as the 5th argument 

            function val = lobeTest(x) 
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                if isempty(x) 

                    val = 1; 

                else 

                    val = (mod(x,1) == 0 && x > 0); 

                end 

            end 

            p = inputParser(); 

            p.addOptional('lobes',5,@lobeTest) 

            p.addOptional('name',sprintf('Pulse%d',int16(rand(1)*10000)),@isstr) 

            p.parse(varargin{:}) 

            self = self@HypWright.RFPulse(center,0,omega,p.Results.name); 

            self.amplitude = amplitude; 

            self.bandwidth = bandwidth; 

            if isempty(p.Results.lobes) 

                self.lobes = 5; 

            else 

                self.lobes = p.Results.lobes; 

            end 

            self.durration = ((self.lobes))*2/self.bandwidth; 

            self.calB(); 

        end 

        function setDurration(self,durration) 

            % SETDURRATION - overloaded for a nLobed sincPulse as it should not 

            % be changeable. Durration is a function of bandwidth 

            % setDurration(self,durration) -  does nothing and warns the user 

            disp(['the durration of this pulse is a function of bandwidth and'... 

                ' should bealtered by changing thebandwidth']); 

        end 

        function setAmplitude(self,value) 

            % SETAMPLITUDE - sets the amplitude of the pulse 

            self.amplitude = value; 

            self.calB(); 

        end 

        function setBW(self,newBW) 

            % SETBW - Sets the bandwidth of the pulse 

            % SetBW(self, newBW) - sets thebandwidth to some ne wbandwidth 

            % (newBW) 

            self.functionBW = newBW; 

            self.durration = ((self.lobes)-1)*2/self.bandwidth; 

            self.calB(); 

        end 

    end 

    methods (Access = protected) 

        function calB(self) 

            % CALB - re-calculates the function that defines the envelope for 

            % this sinc pulse 

            self.Bfun = @(x,y,z,t)self.amplitude.*self.bandwidth.*... 

                sinc(self.bandwidth.*t).*... 

                interp1(-self.durration/2:self.durration/100:self.durration/2,... 

                blackman(... 

                length(-self.durration/2:self.durration/100:self.durration/2))... 

                ,t); 

        end 
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    end 

end 
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Gradient Pulse Class 

 A gradient pulse class is very similar to the RF pulse class, as it is mostly intended to be used as a 

parent class to define an interface, but not so strictly as to be abstracted. A gradient pulse stores a 

duration and center time from which the start and end times are calculated. Otherwise, it stores an 

arbitrary function to define the magnetic field vector as a function of position and time. The main 

distinction is that gradient pulses do not have the logic to use a carrier frequency like RF pulses. 

 Gradient pulses have overridden the display function to show the gradient as a vector field. 

classdef GradientPulse < handle 

    %GRADIENTPULSE Class to represent a gradient field 

    %   Detailed explanation goes here 

    properties 

        center 

        durration 

        name 

    end 

    properties (Abstract, Access = protected) 

        bFun 

    end 

    properties (Dependent) 

        startTime 

        endTime 

    end 

    methods 

        function self = GradientPulse(center, durration, name) 

            % CONSTRUCTOR - initializes  a gradient pulse objects 

            % GradientPulse(startTime, endTime, slope, magnitude) initializes a 

            % gradient pulse with a start time, end time, magnitude, and slope, 

            % will give the pulse a randome name 

            % GradientPulse(...,name) - same as above but will give the puse a 

            % specified name 

            self.center = center; 

            self.durration = durration; 

            self.name = name; 

        end 

        function val = get.startTime(self),val=self.center-self.durration/2;end 

        function val = get.endTime(self),val=self.center+self.durration/2;end 

        function bOut = B(self,x,y,z,t) 

            % B: returns the gradient Bfied at some point and time 

            % bOut = B(x,y,z,t) returns the B-filed(bOut) ate somepoint (x,y,z) 

            % some time t 

            if length(t) == 1 

                if ((t > self.startTime)&&(t < self.endTime)) 

                    bOut = self.bFun(x,y,z,t); 
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                else 

                    bOut = zeros(3,1); 

                end 

            else 

            bOut = zeros(3,length(t)); 

            pulseOnTimes = find(self.startTime -t < 1e-9 & t < self.endTime); 

            if ~isempty(pulseOnTimes) 

            bOut(:,pulseOnTimes) = self.bFun(x,y,z,t(pulseOnTimes)); 

            end 

            end 

        end 

        function display(self,varargin) 

            p = inputParser(); 

            p.addOptional('axis',[]) 

            p.parse(varargin{:}) 

            if isempty(p.Results.axis) 

                figure 

                curAxis = gca; 

            else 

                curAxis = p.Results.axis; 

            end 

            span = -1:0.3:1; 

            [X,Y,Z] = meshgrid(span,span,span); 

            U = zeros(size(X)); 

            V = zeros(size(Y)); 

            W = zeros(size(Z)); 

            centerTime = (self.startTime+self.endTime)/2; 

            for i = 1:numel(span) 

                for j = 1:numel(span) 

                    for k = 1:numel(span) 

                        tmpVect = self.B(i,j,k,centerTime); 

                        U(i,j,k) = tmpVect(1); 

                        V(i,j,k) = tmpVect(2); 

                        W(i,j,k) = tmpVect(3); 

                    end 

                end 

            end 

            quiver3(curAxis,X,Y,Z,U,V,W) 

        end 

    end 

    methods (Access =  private) 

        function calB(self) 

            % CALB: recalculates the function defining the gradiaent pulse 

            self.bFun = @(x,y,z,t)[0,0,0;0,0,0;self.slope]*[x;y;z]; 

        end 

    end 

end 
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Linear Gradient Pulse 

 The linear gradient pulse class represents a gradient that has a linear spatial dependence. The 

slope of the gradient is stored in a vector 𝑠𝑙𝑜𝑝𝑒 = [𝑠𝑙𝑜𝑝𝑒𝑥 , 𝑠𝑙𝑜𝑝𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒𝑧]. 

classdef LinearGradientPulse < HypWright.GradientPulse 

    %GRADIENTPULSE Class to represent a gradient field 

    %   Detailed explanation goes here 

    properties (SetAccess = private) 

        slope 

    end 

    properties (Access = protected) 

        bFun 

    end 

    properties (Constant) 

        timeDependence = false; 

    end 

    methods 

        function self = LinearGradientPulse(center, durration, slope,varargin) 

            % CONSTRUCTOR - initializes  a gradient pulse objects 

            % GradientPulse(startTime, endTime, slope, magnitude) initializes a 

            % gradient pulse with a start time, end time, magnitude, and slope, 

            % will give the pulse a randome name 

            % GradientPulse(...,name) - same as above but will give the puse a 

            % specified name 

            p = inputParser(); 

            p.addOptional('name',sprintf('GradPulse%d',int16(rand(1)*10000)),... 

                @isstr) 

            p.parse(varargin{:}) 

            self = self@HypWright.GradientPulse(center,durration,p.Results.name); 

            self.slope = slope; 

            self.calB(); 

        end 

        function setSlope(self,slope) 

           self.slope = slope; 

           self.calB(); 

        end 

    end 

    methods (Access =  private) 

        function calB(self) 

            % CALB: recalculates the function defining the gradiaent pulse 

            self.bFun = @(x,y,z,t)[0,0,0;0,0,0;self.slope]*[x;y;z]; 

        end 

    end 

end 
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Section B.3: Spin Groups 

SpinGroups represent a set of spins that follows one of the models outlined in chapter 3. They 

store all of the parameters and logic to define their interactions with a pulse sequence following the 

interface needed to be calculated and evaluated by a voxel object. 

Spin Group Class 

 The SpinGroup class in an abstract class that defines the interface for spin groups. It is abstract 

and therefore can never be instantiated. All spin groups should inherit from this class. Its current form 

requires that a spin group store some function that returns the derivative of the magnetization as a 

function of position, time, initial magnetization and 𝐵0. Also the frequency of the calculation is required 

to ensure proper frame shifting to the rotating frame is performed. Additional functions for the 

analytical solution should probably be added as they are expected in the voxel class. Also the dM 

function interface needs to be updated. Fortunately, due to Matlab’s inheritance rules, these changes 

are merely housekeeping measures and will not affect the performance of the other classes. 

classdef (Abstract) SpinGroup < handle 

    %SPINGROUP The parent class for all spin groups 

    %   defines the interface of a spin group 

 

    properties (Abstract) 

    end 

 

    methods (Abstract) 

        dm = dM(self,position,M,time,PS,B0) 

        % dM(self,position,M,time) - calulates the dm of the spin at some 

        % position and time in the calculation frame defined by the spin. 

        val = calculationFrame(self,B0) 

        % calculationFrame the vector defining the angular momentum of the 

        % calculation frame dm is defined in. remember to create a get method 

        % for this variable in in inherited classes 

    end 

 

end 
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Isolated Spin Group Class 

 The isolated spin group class represents a single magnetization vector with an initial position M, 

equilibrium position 𝑀0, 𝑇1 and 𝑇2 values, gyromagnetic ratio 𝛾, chemical shift 𝑝𝑝𝑚 and a density. The 

density is simply a scaling factor that will be applied to the magnetization. It allows the signal 

contribution of each spin group to be controlled. The analytical solution builds the A matrix used in 

equation (3.7) but for a single spin. The solution is then defined by equation (3.9). Note that equations 

(3.7) and (3.9) requires 𝑀0 to be zero and as of yet no analytical solution for a spin with a nonzero 

magnetization has been written into this simulation code.  

classdef IsolatedSpinGrp < HypWright.SpinGroup 

    %ISOLATEDSPINGRP a class that represents a set of isolated spins 

    %   Detailed explanation goes here 

    %   Properties 

    %   M - magnetization vector 

    %   M0 - Equilibrium magnetization 

    %   T1 - T1 decay constant 

    %   T2 - T2 Decay constant 

    %   gamma - gyromagnetic ratio 

    %   ppm -  ppm shift of the spin 

    %   density - relative number of spins in this group 

    %   Methods 

    %   IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin 

    %   group with an initial magnetization (M), equilibrium magentization 

    %   (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) 

    %   some chemical shift (ppm) and, spin density (density) 

    %   calculationFrame() -  returns the frequencty of the rotating 

    %   refrence frame that dm is calculated in 

    %   dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

    %   (t), and some initial magnetization M ([Mx;My;Mz]) 

 

    properties 

        M % magnetization vector 

        M0 % Equilibrium magnetization 

        T1 % T1 decay constant 

        T2 % T2 Decay constant 

        gamma % gyromagnetic ratio 

        ppm %  ppm shift of the spin 

        density % relative number of spins in this group 

    end 

    methods 

        function self = IsolatedSpinGrp(M,M0,T1,T2,gamma,ppm,density) 

            % Constructor - initializes the spin group 

            % IsolatedSpinGrp(M,M0,T1,T2,gamma,ppm,density) - initializes the spin 
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            % group with an initial magnetization (M), equilibrium magentization 

            % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma), 

            % some chemical shift (ppm) and, spin density (density) 

            self.M = M; 

            self.M0 = M0; 

            self.T1 = T1; 

            self.T2 = T2; 

            self.gamma = gamma; 

            self.ppm = ppm; 

            self.density = density; 

        end 

        function val = calculationFrame(self,B0) 

            % CALCULATIONFRAME -  returns the frequencty of the rotating 

            % refrence frame that dm is calculated in 

            tmp = [0;0;1].*B0*self.gamma*(1+self.ppm); 

            val = tmp(3); 

        end 

        function dm = dM(self,x,y,z,t,M,PS,B0) 

            % DM: returns the delta m at some time and location and given M 

            % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

            % (t), and some initial magnetization M ([Mx;My;Mz]) 

            dm = self.getA(x,y,z,t,PS,B0)*M+1/self.T1*self.M0; 

        end 

        function A = getA(self,x,y,z,t,PS,B0,varargin) 

            % GETA - gets the matrix that defines dm 

            if ~isempty(varargin) == 1 

                B = varargin{1}; 

            else 

                B = repmat(B0,1,length(t))+PS.B(x,y,z,t); 

            end 

            theta =  -self.calculationFrame(B0)*t; 

            Beff = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;0,0,1]*B-... 

                [0;0;1].*B0; 

            A = self.gamma*... 

                [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0] + ... 

                [-1/self.T2,0,0;0,-1/self.T2,0;0,0,-1/self.T1]; 

        end 

 

        function ret = useAnalytical(self) 

            %USEANALYTICAL: determins if the Analytical Soultion shouldbe used 

            %for the given spin group under the given conditions 

            ret = all(self.M0 == 0); 

        end 

        function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin) 

            % ANALYTICAL: retun a function handle to the analytical soluton 

            A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:}); 

            vals = cell2mat(arrayfun(@(t2)expm(A*(t2-t0))*M,... 

                t,'UniformOutput',false)); 

        end 

    end 

end 
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Two-Site Exchange Group Class 

 A two-site exchange group class is similar to an isolated spin group. However, it contains terms 

for chemical exchange between two chemical pools, kab and kba. The magnetization vectors will be 6x1 

with each three rows representing a spin group. Density and gamma are identical for each spin. The 

logic for defining default values can probably be compressed. 

classdef TwoSiteExchangeGroup < HypWright.SpinGroup 

    % TwoSiteExchangeGroup a class that represents a set of isolated spins 

    %   Detailed explanation goes here 

    %   Properties 

    %   M - magnetization vector 

    %   M0 - Equilibrium magnetization 

    %   T1 - T1 decay constant 

    %   T2 - T2 Decay constant 

    %   gamma - gyromagnetic ratio 

    %   density - relative number of spins in this group 

    %   Methods 

    %   IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin 

    %   group with an initial magnetization (M), equilibrium magentization 

    %   (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and 

    %   spin density (density) 

    %   calculationFrame() -  returns the frequencty of the rotating 

    %   refrence frame that dm is calculated in 

    %   dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

    %   (t), and some initial magnetization M ([Mx;My;Mz]) 

 

    properties 

        M % magnetization vector 

        M0 % Equilibrium magnetization 

        T1a % T1 decay constant for spin a 

        T2a % T2 Decay constant for spin a 

        ppma % chemical shift for spin a 

        T1b % T1 decay constant for spin b 

        T2b % T2 Decay constant for spin b 

        ppmb % chemical shift for spin b 

        gamma % gyromagnetic ratio 

        density % relative number of spins in this group 

        kab % a to be exchange rate 

        kba % b to a exchange rate 

    end 

    methods 

        function self = TwoSiteExchangeGroup(varargin) 

            % Constructor - initializes the spin group 

            % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin 

            % group with an initial magnetization (M), equilibrium magentization 

            % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and 

            % spin density (density) 
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            p = inputParser(); 

            p.addOptional('M',[0;0;1;0;0;1],@isnumeric) 

            p.addOptional('M0',[0;0;0;0;0;0],@isnumeric) 

            p.addOptional('T1a',56,@isnumeric) 

            p.addOptional('T2a',0.02,@isnumeric) 

            p.addOptional('ppma',171*1e-6,@isnumeric) 

            p.addOptional('T1b',30,@isnumeric) 

            p.addOptional('T2b',0.02,@isnumeric) 

            p.addOptional('ppmb',185*1e-6,@isnumeric) 

            p.addOptional('gamma',67.262e6,@isnumeric) 

            p.addOptional('density',1,@isnumeric) 

            p.addOptional('kab',0.3,@isnumeric) 

            p.addOptional('kba',0.0,@isnumeric) 

            p.parse(varargin{:}) 

            if ~isempty(p.Results.M), self.M = p.Results.M; 

            else self.M = [0;0;1;0;0;1];end 

            if ~isempty(p.Results.M0),self.M0 = p.Results.M0; 

            else self.M0 = [0;0;0;0;0;0];end 

            if ~isempty(p.Results.T1a),self.T1a = p.Results.T1a; 

            else self.T1a = 56;end 

            if ~isempty(p.Results.T2a),self.T2a = p.Results.T2a; 

            else self.T2a = 0.02;end 

            if ~isempty(p.Results.ppma),self.ppma = p.Results.ppma; 

            else self.ppma = 171*1e-6;end 

            if ~isempty(p.Results.T1b),self.T1b = p.Results.T1b; 

            else self.T1b = 30;end 

            if ~isempty(p.Results.T2b),self.T2b = p.Results.T2b; 

            else self.T2b = 0.02;end 

            if ~isempty(p.Results.ppmb),self.ppmb = p.Results.ppmb; 

            else self.ppmb = 185*1e-6;end 

            if ~isempty(p.Results.gamma),self.gamma = p.Results.gamma; 

            else self.gamma = 67.262e6;end 

            if ~isempty(p.Results.density),self.density = p.Results.density; 

            else self.density = 1;end 

            if ~isempty(p.Results.kab),self.kab = p.Results.kab; 

            else self.kab = 0.3;end 

            if ~isempty(p.Results.kba),self.kba = p.Results.kba; 

            else self.kba = 0.0;end 

        end 

        function val = calculationFrame(self,B0) 

            % CALCULATIONFRAME -  returns the frequencty of the rotating 

            % refrence frame that dm is calculated in 

            tmp = [0;0;1].*B0*self.gamma*... 

                (1+mean([self.ppma,self.ppmb])); 

            val = tmp(3); 

        end 

        function dm = dM(self,x,y,z,t,M,PS,B0) 

            % DM: returns the delta m at some time and location and given M 

            % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

            % (t), and some initial magnetization M ([Mx;My;Mz]) 

            Recovery(1:3) = 1/self.T1a*self.M0(1:3); 

            Recovery(4:6) = 1/self.T1b*self.M0(4:6); 

            dm = self.getA(x,y,z,t,PS,B0)*M+Recovery.'; 
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        end 

        function A = getA(self,x,y,z,t,PS,B0,varargin) 

            if ~isempty(varargin) == 1 

                B = varargin{1}; 

            else 

                B = repmat(B0,1,length(t))+PS.B(x,y,z,t); 

            end 

            theta =  -self.calculationFrame(B0)*t; 

            Beff(1:3) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;... 

                0,0,1]*B-[0;0;1].*B0*... 

                (1+mean([self.ppma,self.ppmb])-self.ppma); 

            Beff(4:6) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;... 

                0,0,1]*B-[0;0;1].*B0*... 

                (1+mean([self.ppma,self.ppmb])-self.ppmb); 

            A = zeros(6); 

            A(1:3,1:3) = self.gamma*... 

                [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0]+... 

                [-1/self.T2a,0,0;0,-1/self.T2a,0;0,0,-1/self.T1a]; 

            A(4:6,4:6) = self.gamma*... 

                [0,-Beff(6),Beff(5);Beff(6),0,-Beff(4);-Beff(5),Beff(4),0]+... 

                [-1/self.T2b,0,0;0,-1/self.T2b,0;0,0,-1/self.T1b]; 

            A = A+[-self.kab,0,0,self.kba,0,0;... 

                0,-self.kab,0,0,self.kba,0;... 

                0,0,-self.kab,0,0,self.kba;... 

                self.kab,0,0,-self.kba,0,0;... 

                0,self.kab,0,0,-self.kba,0;... 

                0,0,self.kab,0,0,-self.kba]; 

        end 

        function ret = useAnalytical(self) 

            %USEANALYTICAL: determins if the Analytical Soultion shouldbe used 

            %for the given spin group under the given conditions 

            ret = all(self.M0 == 0); 

        end 

        function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin) 

            % ANALYTICAL: the anylitical solution for this spin over some 

            % time range (tSpan) and some initial condition (M) 

            A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:}); 

            vals = cell2mat(arrayfun(@(t2)expm(A*(t2-t0))*M,t,... 

                'UniformOutput',false)); 

        end 

    end 

 

end 
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Two-Site Perfusion Exchange Group Class 

 A Child Class of Two site exchange group but with logic to account for perfusion. This class will 

represent the extravascular space and should be paired with a Bankson spin group class to represent the 

vascular space. The only additional parameters are the kve (which should be normalized for ve) and the 

VIF with a variable b, which should return the VIF magnetization as a function of time.  

classdef TwoSitePerfusionExchangeGroup < HypWright.TwoSiteExchangeGroup 

    % TwoSiteExchangeGroup a class that represents a set of isolated spins 

    %   Detailed explanation goes here 

    %   Properties 

    %   M - magnetization vector 

    %   M0 - Equilibrium magnetization 

    %   T1 - T1 decay constant 

    %   T2 - T2 Decay constant 

    %   gamma - gyromagnetic ratio 

    %   density - relative number of spins in this group 

    %   Methods 

    %   IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin 

    %   group with an initial magnetization (M), equilibrium magentization 

    %   (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and 

    %   spin density (density) 

    %   calculationFrame() -  returns the frequencty of the rotating 

    %   refrence frame that dm is calculated in 

    %   dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

    %   (t), and some initial magnetization M ([Mx;My;Mz]) 

 

    properties 

        b % input function 

        kve % extravisation fraction 

    end 

    methods 

        function self = TwoSitePerfusionExchangeGroup(varargin) 

            % Constructor - initializes the spin group 

            % IsolatedSpinGrp(M,M0,T1,T2,gamma,density) - initializes the spin 

            % group with an initial magnetization (M), equilibrium magentization 

            % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma) and 

            % spin density (density) 

            p = inputParser(); 

            p.addOptional('M',[0;0;1;0;0;1],@isnumeric) 

            p.addOptional('M0',[0;0;0;0;0;0],@isnumeric) 

            p.addOptional('T1a',56,@isnumeric) 

            p.addOptional('T2a',0.02,@isnumeric) 

            p.addOptional('ppma',171*1e-6,@isnumeric) 

            p.addOptional('T1b',30,@isnumeric) 

            p.addOptional('T2b',0.02,@isnumeric) 

            p.addOptional('ppmb',185*1e-6,@isnumeric) 

            p.addOptional('gamma',67.262e6,@isnumeric) 



157 
 

            p.addOptional('density',1,@isnumeric) 

            p.addOptional('kab',0.3,@isnumeric) 

            p.addOptional('kba',0.0,@isnumeric) 

            p.addOptional('kve',1.0,@isnumeric) 

            p.addOptional('b', @(t)zeros(6,1)) 

            p.parse(varargin{:}) 

            if ~isempty(p.Results.M), self.M = p.Results.M; 

            else self.M = [0;0;1;0;0;1];end 

            if ~isempty(p.Results.M0),self.M0 = p.Results.M0; 

            else self.M0 = [0;0;0;0;0;0];end 

            if ~isempty(p.Results.T1a),self.T1a = p.Results.T1a; 

            else self.T1a = 56;end 

            if ~isempty(p.Results.T2a),self.T2a = p.Results.T2a; 

            else self.T2a = 0.02;end 

            if ~isempty(p.Results.ppma),self.ppma = p.Results.ppma; 

            else self.ppma = 171*1e-6;end 

            if ~isempty(p.Results.T1b),self.T1b = p.Results.T1b; 

            else self.T1b = 30;end 

            if ~isempty(p.Results.T2b),self.T2b = p.Results.T2b; 

            else self.T2b = 0.02;end 

            if ~isempty(p.Results.ppmb),self.ppmb = p.Results.ppmb; 

            else self.ppmb = 185*1e-6;end 

            if ~isempty(p.Results.gamma),self.gamma = p.Results.gamma; 

            else self.gamma = 67.262e6;end 

            if ~isempty(p.Results.density),self.density = p.Results.density; 

            else self.density = 1;end 

            if ~isempty(p.Results.kab),self.kab = p.Results.kab; 

            else self.kab = 0.3;end 

            if ~isempty(p.Results.kba),self.kba = p.Results.kba; 

            else self.kba = 0.0;end 

            if ~isempty(p.Results.kve),self.kve = p.Results.kve; 

            else self.kve = 1.0;end 

            if ~isempty(p.Results.b),self.b = p.Results.b; 

            else self.b = @(t)zeros(6,1);end 

        end 

        function A = getA(self,x,y,z,t,PS,B0,varargin) 

            if ~isempty(varargin) == 1 

                B = varargin{1}; 

            else 

                B = repmat(B0,1,length(t))+PS.B(x,y,z,t); 

            end 

            theta =  -self.calculationFrame(B0)*t; 

            Beff(1:3) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;... 

                0,0,1]*B-[0;0;1].*B0*... 

                (1+mean([self.ppma,self.ppmb])-self.ppma); 

            Beff(4:6) = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;... 

                0,0,1]*B-[0;0;1].*B0*... 

                (1+mean([self.ppma,self.ppmb])-self.ppmb); 

            A = zeros(6); 

            A(1:3,1:3) = self.gamma*... 

                [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0]+... 

                [-1/self.T2a,0,0;0,-1/self.T2a,0;0,0,-1/self.T1a]; 

            A(4:6,4:6) = self.gamma*... 



158 
 

                [0,-Beff(6),Beff(5);Beff(6),0,-Beff(4);-Beff(5),Beff(4),0]+... 

                [-1/self.T2b,0,0;0,-1/self.T2b,0;0,0,-1/self.T1b]; 

            A = A+[-self.kab-self.kve,0,0,self.kba,0,0;... 

                0,-self.kab-self.kve,0,0,self.kba,0;... 

                0,0,-self.kab-self.kve,0,0,self.kba;... 

                self.kab,0,0,-self.kba,0,0;... 

                0,self.kab,0,0,-self.kba,0;... 

                0,0,self.kab,0,0,-self.kba]; 

        end 

        function dm = dM(self,x,y,z,t,M,PS,B0) 

            % DM: returns the delta m at some time and location and given M 

            % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

            % (t), and some initial magnetization M ([Mx;My;Mz]) 

            Recovery(1:3) = 1/self.T1a*self.M0(1:3); 

            Recovery(4:6) = 1/self.T1b*self.M0(4:6); 

            dm = self.getA(x,y,z,t,PS,B0)*M+Recovery.'+self.kve*self.b(t); 

        end 

        function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin) 

            % ANALYTICAL: retun a function handle to the analytical soluton 

            warning('off','MATLAB:integral:NonFiniteValue') 

            warning('off','MATLAB:trapz:NonFiniteValue') 

            A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:}); 

            if length(t) == 1 

                ForceFunIntegral = integral(@(t2)expm(-A*(t2-t0))*self.kve*self.b(t2),... 

                    t0,t,'ArrayValued',true); 

                ForceFunIntegral(isnan(ForceFunIntegral)) = 0; 

                vals = expm(A*(t-t0))*(M+ForceFunIntegral); 

            else 

                vals = zeros(length(M),length(t)); 

                tmpT = t0-0.001:0.001:t(end)+0.001; 

                tmpVals = cell2mat(arrayfun(@(t2)expm(-A*(t2-t0))*... 

                    self.kve*self.b(t2),tmpT,'UniformOutput',false)); 

                tmpIntelgral = cumtrapz(tmpT,tmpVals,2); 

                ForceFunIntegral = interp1(tmpT,tmpIntelgral.',t).'; 

                ForceFunIntegral(isnan(ForceFunIntegral)) = 0; 

                for i = 1:length(t) 

                    vals(:,i) = expm(A*(t(i)-t0))*(M+ForceFunIntegral(:,i)); 

                end 

            end 

            if (any(isnan(vals(:))) || any(isinf(vals(:)))) 

                fprintf('Warning still have a NaN or INF in the solution') 

                tmp = self.analytical(self,x,y,z,t0,M,t(1:floor(end/2)),PS,B0,varargin); 

                tmp2 = 

self.analytical(self,x,y,z,t0,tmp(end),t(floor(end/2))+1:end,PS,B0,varargin); 

                vals = [tmp,tmp2]; 

%                 odefun = @(M,t)self.dM(x,y,z,M,t,PS,B0); 

%                 tmpSol = ode45(odefun,[t0,t(end)],M); 

%                 vals = deval(tmpSol,t); 

            end 

            warning('on','MATLAB:integral:NonFiniteValue') 

            warning('on','MATLAB:trapz:NonFiniteValue') 

        end 

    end 
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end 
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Bankson Spin Group Class 

 A Bankson spin group represents the vascular pool of a voxel. It will switch between defining 𝑀𝑧 

as the VIF or allowing it to follow the Bloch equations when an RF pulse is on. Instead of taking an 

arbitrary VIF, it assumes a gamma variate and therefore defines the shape terns 𝛼 and 𝛽, 𝑡0 and a 

scaling factor as properties. Note that the switching for 𝑀𝑧 is dependent on the analytical solution with 

the numerical solution ignoring the VIF. Therefore, if 𝑀0 ≠ 0 and the analytical solution is never used, 

then the VIF will never be used. 

classdef BanksonSpinGrp < HypWright.SpinGroup 

 

 

    properties 

        M % magnetization vector 

        M0 % Equilibrium magnetization 

        T1 % T1 decay constant 

        T2 % T2 Decay constant 

        gamma % gyromagnetic ratio 

        ppm %  ppm shift of the spin 

        density % relative number of spins in this group 

        shapeTerms % terms that define the gamma pdf 

        t0 %injection delay 

    end 

    methods 

        function self = BanksonSpinGrp(M,M0,T1,T2,gamma,ppm,density,shapeTerms,t0) 

            % Constructor - initializes the spin group 

            % v(M,M0,T1,T2,gamma,ppm,density) - initializes the spin 

            % group with an initial magnetization (M), equilibrium magentization 

            % (M0), T1 decay (T2), T2 Decay (T2), gyromagnetic ratio (gamma), 

            % some chemical shift (ppm), spin density (density), and shape terms 

            % for the gamma pdf (shapeTerms) 

            self.M = M; 

            self.M0 = M0; 

            self.T1 = T1; 

            self.T2 = T2; 

            self.gamma = gamma; 

            self.ppm = ppm; 

            self.density = density; 

            self.shapeTerms = shapeTerms; 

            self.t0 = t0; 

            % War user if the use analytical will always be true, if so 

            % this spin group will not account for perfusion 

            if(~useAnalytical(self)) 

                warning('The Analytical Solution of a Bankson Spin group will no be used. Any 

Perfusion in that spin group will be ignored\n') 
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            end 

        end 

        function val = calculationFrame(self,B0) 

            % CALCULATIONFRAME -  returns the frequencty of the rotating 

            % refrence frame that dm is calculated in; 

            tmp = [0;0;1].*B0*self.gamma*(1+self.ppm); 

            val = tmp(3); 

        end 

        function dm = dM(self,x,y,z,t,M,PS,B0) 

            % DM: returns the delta m at some time and location and given M 

            % dM(x,y,z,t,M) - returns a dm at some position (x,y,z), some time 

            % (t), and some initial magnetization M ([Mx;My;Mz]) 

            dm = self.getA(x,y,z,t,PS,B0)*M+1/self.T1*self.M0; 

        end 

        function A = getA(self,x,y,z,t,PS,B0,varargin) 

            % GETA - gets the matrix that defines dm 

            if ~isempty(varargin) == 1 

                B = varargin{1}; 

            else 

                B = repmat(B0,1,length(t))+PS.B(x,y,z,t); 

            end 

            theta =  -self.calculationFrame(B0)*t; 

            Beff = [cos(theta),-sin(theta),0;sin(theta),cos(theta),0;0,0,1]*B-... 

                [0;0;1].*B0; 

            A = self.gamma*... 

                [0,-Beff(3),Beff(2);Beff(3),0,-Beff(1);-Beff(2),Beff(1),0] + ... 

                [-1/self.T2,0,0;0,-1/self.T2,0;0,0,-1/self.T1]; 

        end 

        function ret = useAnalytical(self) 

            %USEANALYTICAL: determins if the Analytical Soultion shouldbe used 

            %for the given spin group under the given conditions 

            ret = all(self.M0 == 0); 

        end 

        function vals = analytical(self,x,y,z,t0,M,t,PS,B0,varargin) 

            % ANALYTICAL: retun a function handle to the analytical soluton 

            A = self.getA(x,y,z,t0+1e-9,PS,B0,varargin{:}); 

            vals = cell2mat(arrayfun(@(t2)[subsref(expm(A*(t2-t0))*M,... 

                struct('type','()','subs',{{1:2,1}}));... 

                self.shapeTerms(3)*gampdf(... 

                t2-self.t0,self.shapeTerms(1),self.shapeTerms(2))],t,... 

                'UniformOutput',false)); 

        end 

    end 

end 
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Section B.4 Signal Curve Modeling and Fitting. 

 The modeling architecture is slightly more advanced than the spin group logic and many of the 

features in the modeling classes should be translated to the spin group objects to improve their 

flexibility. Additionally, the new version of the modeling has not been written for averaged excitation 

loss which needs to be done. All models are abstract, which means that they cannot be instantiated. 

Conceptually they represent a model or set of equations that applies to some data. Therefore, each 

model must have passed in to it all of the parameters that it needs in order to evaluate any results. 

Finally, there is practically no input validation for parameters, as it was seen as too burdensome for the 

least squares fitting procedure. 

MultiPool Class 

 The multi-pool model represents any system of N exchanging spins. The exchange process is 

defined by the ExchangeTerms matrix, which must be NxN, and by the exchange term 𝑘𝑟𝑐 representing 

the exchange from chemical species number in the row to the chemical species number in the column. 

For pyruvate and lactate, with 𝑘𝑝𝑙 = 0.1 and 𝑘𝑙𝑝 = 0.001; 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑇𝑒𝑟𝑚𝑠 =  [
0 0.1

0.001 0
]. The 𝑇1 

values are also passed in for each chemical species in an Nx1 vector. A list of excitation times is also 

passed in as a vector. Finally, excitation angles (in degrees) for each chemical species at each excitation 

angle is passed in as an NxnTR matrix. For constant excitation angles only an Nx1 vector is needed and 

all TRs will be filled in with the same excitation angle. With these parameters defined, an arbitrary 

system of exchanging spins can be built and will interact with the series of excitation pulses. Parameters 

are passed in as a structure with name-value pairs for each parameter. A similar structure is used for 

fitting. Fitting options can be set, as well as the fitting limits for a least squares fitting. 

classdef MultiPool 

    %TWOPOOL A simple chemical exchange model assuming no inpu functions 

    %   parameters Values 
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    %   * ExchangeTerms - A Matrix defining chemical Exchange. Defalt: 0 

    %   * T1s - A row vector of T1 decay terms. Default: 100 

    %   * FaList - A matrix of excitation angles. Default: 0 

    %   * TRList - A matrix of excitation times. Default: 0 

    %   * fitOptions - A matlab fit option structure. Default: optimset(''lsqcurvefit'') 

    %   There is NO imput validation for the parameters passed in, for more 

    %   detail on the assumed data structur of these parameters use the 

    %   defaults function 

 

    properties 

    end 

 

    methods (Static) 

        function defaults() 

            % DEFAULTS explains the default values for each parameter 

            names = {'ExchangeTerms','T1s','FaList','TRList','fitOptions'}; 

            discriptions = {'A  NxN Matrix of Exchange Terms, where N is the number of chemical 

pools. The From pools should be along the rRows With the To pool along the Columns. Diagnal 

elemets will be set to zero'... 

                ' A  Row vector of T1 decay times for each chemical pool.'... 

                ' A  NxM of matrix of flip angles in radians, where N is the number of 

excitations and M is the number of chemical Pools'... 

                ' A  NxM of Excitation Times in seconds, where N is the number of excitations and 

M is the number of chemical Pools'... 

                ' Matlab FitOptions object'}; 

            defaultsVals = {'0','100','0','0','optimset(''lsqcurvefit'')'}; 

            for i = 1:numel(names) 

                fprintf('''%s'': %s\n Default Vaule: %s\n',... 

                    names{i},discriptions{i},defaultsVals{i}); 

            end 

        end 

        function paramsOut = parseParams(paramsIn) 

            % parseParams: a function to fill default param values if they are 

            % not defined 

            default = struct('ExchangeTerms',0,'T1s',100,'FaList',0,... 

                'TRList',0,'fitOptions', optimset('lsqcurvefit')); 

            tmpNames = fieldnames(default); 

            paramsOut = paramsIn; 

            for i = 1:numel(tmpNames) 

                if ~isfield(paramsOut,tmpNames{i}) 

                    paramsOut.(tmpNames{i}) = default.(tmpNames{i}); 

                end 

            end 

            % Fill all flip angles with a value if only one flip angle is passed in 

            if size(paramsOut.FaList,2)==1 

                paramsOut.FaList = repmat(paramsOut.FaList(:,1),... 

                    1,length(paramsOut.TRList)); 

            end 

%             % Assuming input validation will put too much computational burdon on the fitting 

%             % Hopeing user will supply valid input! 

%             % Validte input 

%             if (size(params.ExchangeTerms,1)~=size(params.ExchangeTerms,1)) 

%                 error('Exchange matrix not square.') 
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%             end 

            N = size(paramsIn.ExchangeTerms,1); 

            K = triu(paramsIn.ExchangeTerms)+tril(paramsIn.ExchangeTerms); 

            T1 = paramsIn.T1s; 

            A = zeros(N); 

            for i = 1:N 

                for j = 1:N 

                    if(i == j) 

                        A(i,i) = -sum(K(i,:))-1/T1(i); 

                    else 

                        A(i,j) = K(j,i); 

                    end 

                end 

            end 

            paramsOut.A = A; 

        end 

        function [TRList,Mxy,Mz] = compile(M0,params) 

            % EVALUATE: runs the model based on some input parameters 

            params = HypWright.Models.MultiPool.parseParams(params); 

            A = params.A; 

            FaList = params.FaList; 

            TRList = params.TRList; 

            [TRList, Mxy, Mz] = HypWright.Models.MultiPool.evaluate(... 

                TRList,FaList,M0,A); 

        end 

        function [x,resultParams,allParams,resnorm,residual,exitflag,output,lambda,jacobian]... 

                = fitData(params,guess,xdata,ydata,varargin) 

            p = inputParser(); 

            p.addOptional('lb',[]) 

            p.addOptional('ub',[]) 

            p.parse(varargin{:}) 

            xNames = fieldnames(guess); 

            j = 1; 

            xIndex = cell(size(xNames)); 

            for i = 1:numel(xNames) 

                iFits = ~isnan(guess.(xNames{i})); 

                xIndex{i} = find(iFits==1); 

                for k = 1:numel(xIndex{i}) 

                    x0(j) = guess.(xNames{i})(xIndex{i}(k)); 

                    j = j+1; 

                end 

            end 

            params = HypWright.Models.MultiPool.parseParams(params); 

            Y0 = ydata(:,1)./sin(params.FaList(:,1)); 

            fun = @(x,xdata)HypWright.Models.MultiPool.fitFunction(... 

                params,x,xNames,xIndex,Y0); 

            opts = params.fitOptions; 

            [x,resnorm,residual,exitflag,output,lambda,jacobian] = ... 

                lsqcurvefit(fun,x0,xdata,ydata,... 

                [p.Results.lb],[p.Results.ub],opts); 

            resultParams = guess; 

            allParams = params; 

            j = 1; 
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            for i = 1:numel(xNames) 

                for k = 1:numel(xIndex{i}) 

                    resultParams.(xNames{i})(xIndex{i}(k)) = x(j); 

                    allParams.(xNames{i})(xIndex{i}(k)) = x(j); 

                    j = j+1; 

                end 

            end 

        end 

        function [TRList, Mxy, Mz] = evaluate(TRList,FaList,M0,A) 

            % EVALUATE: runs the model based on some input parameters 

            fun = @(t,y)A*y; 

            Mz = zeros(size(FaList)); 

            Mxy = zeros(size(FaList)); 

            Mz(:,1) = M0.*cos(FaList(:,1)); 

            Mxy(:,1) = (M0.*sin(FaList(:,1))); 

            for i = 2:length(TRList) 

                [~,Y] = ode45(fun,[TRList(i-1),TRList(i)],Mz(:,i-1)); 

                Mz(:,i) = Y(end,:).'; 

                Mxy(:,i) = sin(FaList(:,i)).*Mz(:,i); 

                Mz(:,i) = cos(FaList(:,i)).*Mz(:,i); 

            end 

        end 

        function DataCompare(A,params,M0,xdata,ydata) 

            M0 = M0./sin(params.FaList(:,1)); 

            [TRList,Mxy,~] = A.compile(M0,params); 

            figure 

            for i = 1:size(Mxy,1) 

                tmpLine = plot(TRList,Mxy(i,:)); 

                hold on 

                plot(xdata,ydata(i,:),'o','MarkerEdgeColor',tmpLine.Color); 

            end 

            hold off 

            xlabel('Time (sec)') 

            ylabel('Signal (arb)') 

        end 

    end 

 

    methods (Access = private, Static) 

    function Y = fitFunction(params,x,xNames,xIndex,Y0) 

            % fitFunction packs the parameter in params and x up and evaluates 

            % using the evaluate funnction over some time (tSpan) with some 

            % initial value (Y0) 

            j = 1; 

            for i = 1:numel(xNames) 

                for k = 1:numel(xIndex{i}) 

                    params.(xNames{i})(xIndex{i}(k)) = x(j); 

                    % Check if fitting flip angle (there mus be a better 

                    % way to do this 

                    if strcmp(xNames{i}, 'FaList') 

                        params.(xNames{i}) =... 

                            repmat(x(j),size(params.(xNames{i}))); 

                    end 

                    j = j+1; 
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                end 

            end 

            [~, Y, ~] = HypWright.Models.MultiPool.compile(Y0,params); 

    end 

    end 

end 
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MultiPool Tofts Class 

 Similar to the Multipool function, but allows for perfusion using the two physical pool model. 

Signals from the vascular and extravascular spaces are combined automatically. The exchange terms 

need to be an Nx1 matrix representing 𝑘𝑣𝑒 for each chemical species. Finally, the VIF is an abstract 

function that should return an Nxt matrix for the 𝑀𝑧 of the VIF. Note that the abstract nature of the VIF 

does not allow it to be fit. 

classdef MultiPoolToffts 

    %TWOPOOLTOFFTS Summary of this class goes here 

    %   Detailed explanation goes here 

 

    properties 

    end 

 

    methods (Static) 

        function defaults() 

            % DEFAULTS explains the default values for each parameter 

            names = {'ExchangeTerms','T1s','FaList','TRList',... 

                'PerfusionTerms','volumeFractions','VIF','fitOptions'}; 

            discriptions = {'A  NxN Matrix of Exchange Terms, where N is the number of chemical 

pools. The From pools should be along the rRows With the To pool along the Columns. Diagnal 

elemets will be set to zero'... 

                ' A  Row vector of T1 decay times for each chemical pool.'... 

                ' A  NxM of matrix of flip angles in radians, where N is the number of 

excitations and M is the number of chemical Pools'... 

                ' A  NxM of Excitation Times in seconds, where N is the number of excitations and 

M is the number of chemical Pools'... 

                ' A Row Vector of perfusion Exchange Constnats for each chemical pool.'... 

                ' A Row Vector of volme fraction for each chemical pool. Only one value can be 

use if all pools have the same volume fraction.'... 

                ' A function of a time variable (t) in seconds that returns a Row vector for the 

VIF of each chemical pool at the time t.'... 

                ' Matlab FitOptions object'}; 

            defaultsVals = {'0','100','0','0','0','1','@(t)0','optimset(''lsqcurvefit'')'}; 

            fprintf('*Note* all terms must be a vector of size 1 x N where N is the number of 

chemical Pools\n') 

            for i = 1:numel(names) 

                fprintf('''%s'': %s\n Default Vaule: %s\n',... 

                    names{i},discriptions{i},defaultsVals{i}); 

            end 

        end 

        function paramsOut = parseParams(paramsIn) 

            % parseParams: a function to fill default param values if they are 

            % not defined 

            default = struct('ExchangeTerms',0,'T1s',100,'FaList',0,... 

                'TRList',0,'PerfusionTerms',0,'volumeFractions',1,'VIF',@(t)0,... 
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                'fitOptions', optimset('lsqcurvefit')); 

            tmpNames = fieldnames(default); 

            paramsOut = paramsIn; 

            for i = 1:numel(tmpNames) 

                if ~isfield(paramsOut,tmpNames{i}) 

                    paramsOut.(tmpNames{i}) = default.(tmpNames{i}); 

                end 

            end 

            % Fill all flip angles with a value if only one flip angle is passed in 

            if size(paramsOut.FaList,2)==1 

                paramsOut.FaList = repmat(paramsOut.FaList(:,1),... 

                    1,length(paramsOut.TRList)); 

            end 

%             % Assuming input validation will put too much computational burdon on the fitting 

%             % Hopeing user will supply valid input! 

%             % Validte input 

%             if (size(params.ExchangeTerms,1)~=size(params.ExchangeTerms,1)) 

%                 error('Exchange matrix not square.') 

%             end 

            N = size(paramsIn.ExchangeTerms,1); 

            K = triu(paramsIn.ExchangeTerms)+tril(paramsIn.ExchangeTerms); 

            T1 = paramsIn.T1s; 

            kve = paramsIn.PerfusionTerms; 

            if(length(paramsIn.volumeFractions)==1) 

                ve = zeros(N,1)+paramsIn.volumeFractions; 

            else 

                ve = paramsIn.volumeFractions; 

            end 

            A = zeros(N); 

            for i = 1:N 

                for j = 1:N 

                    if(i == j) 

                        A(i,i) = -sum(K(i,:))-1/T1(i)-kve(i)/ve(i); 

                    else 

                        A(i,j) = K(j,i); 

                    end 

                end 

            end 

            paramsOut.A = A; 

            paramsOut.b = paramsIn.VIF; 

            paramsOut.kve = paramsIn.PerfusionTerms; 

            paramsOut.ve = paramsIn.volumeFractions; 

        end 

        function [TRList,Mxy,Mz] = compile(M0,params) 

            % EVALUATE: runs the model based on some input parameters 

            params = HypWright.Models.MultiPoolToffts.parseParams(params); 

            A = params.A; 

            b = params.b; 

            FaList = params.FaList; 

            TRList = params.TRList; 

            [TRList, Mxy, Mz] = HypWright.Models.MultiPoolToffts.evaluate(... 

                TRList,FaList,M0,A,b,params); 

        end 
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        function [TRList, Mxy, Mz] = evaluate(TRList,FaList,M0,A,b,params) 

            % EVALUATE: runs the model based on some input parameters 

            kve = params.kve; 

            ve = params.ve; 

            fun = @(t,y)A*y+(kve/ve).'.*b(t); 

            Mz = zeros(size(FaList)); 

            Mxy = zeros(size(FaList)); 

            Mz(:,1) = M0.*cos(FaList(:,1)); 

            Mxy(:,1) = (params.ve*M0+(1-params.ve)*params.b(TRList(1))).*sin(FaList(:,1)); 

            for i = 2:length(TRList) 

                [~,Y] = ode45(fun,[TRList(i-1),TRList(i)],Mz(:,i-1)); 

                Mz(:,i) = Y(end,:).'; 

                Mxy(:,i) = sin(FaList(:,i)).*(params.ve.*Mz(:,i)+... 

                    (1-params.ve).*b(TRList(i))); 

                Mz(:,i) = cos(FaList(:,i)).*Mz(:,i); 

            end 

        end 

        function DataCompare(A,params,M0,xdata,ydata) 

            M0 = M0./sin(params.FaList(:,1)); 

            [TRList,Mxy,~] = A.compile(M0,params); 

            figure 

            for i = 1:size(Mxy,1) 

                tmpLine = plot(TRList,Mxy(i,:)); 

                hold on 

                plot(xdata,ydata(i,:),'o','MarkerEdgeColor',tmpLine.Color); 

            end 

            hold off 

            xlabel('Time (sec)') 

            ylabel('Signal (arb)') 

        end 

    end 

end 
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MultiPool Tofts Gamma VIF Class 

 A child class MultiPool Tofts Class that simply defines the VIF as a gamma variate. It allows the 

VIF amplitude and the shape terms to be fit. In order to zero out the VIF for a particular species, it is best 

to zero out its VIF scale factor. Zeroing the shape terms is a risky choice. 

classdef MultiPoolTofftsGammaVIF < HypWright.Models.MultiPoolToffts 

    %MULTIPOOLTOFFTSGAMMAVIF A chemical exchange model assuming two pooled 

    %Tofts model of perfusion 

    %   parameters Values 

    %* ExchangeTerms - A Matrix defining chemical Exchange. Defalt: 0 

    %* T1s - A row vector of T1 decay terms. Default: 100 

    %* FaList - A matrix of excitation angles. Default: 0 

    %* TRList - A matrix of excitation times. Default: 0 

    %* t0 - A row vector for delivery delay of each metabolite. Default: 0 

    %* gammaPdfA - A row vector for shape term alpha of each metabolite. Default: 2.8 

    %* gammaPdfB - A row vector for shape term beta of each metabolite. Default: 4.5 

    %* ScaleFactor - A row vector for each metabolite's VIF scale factor. Default: 1 

    %* fitOptions - A matlab fit option structure. Default: optimset(''lsqcurvefit'') 

    %* PerfusionTerms - A row vector for each metabolite's extravisation rate. Default: 0 

    %* volumeFractions - A row vector for each metabolite's volume fraction. Default: 1 

    %   There is NO imput validation for the parameters passed in, for more 

    %   detail on the assumed data structur of these parameters use the 

    %   defaults function 

    properties 

    end 

    methods (Static) 

        function defaults() 

            % DEFAULTS explains the default values for each parameter 

            names = {'t0','gammaPdfA','gammaPdfB','scaleFactor'}; 

            discriptions = {'A  Row vector of time delays for each metabolite'... 

                ' A  Row vector of shape term Alpha, set this to zero to have no VIF for a 

chemical pool'... 

                ' A  Row vector of shape term Beta, this cannot be zero and will be set to 1e-40 

if zero is used'... 

                ' A  Row vector of Scale Factor to be applied to the VIF'}; 

            defaultsVals = {'0','2.8','4.5','1'}; 

            fprintf('*Note* all terms must be a vector of size 1 x N where N is the number of 

chemical Pools\n') 

            for i = 1:numel(names) 

                fprintf('''%s'': %s\n Default Vaule: %s\n',... 

                    names{i},discriptions{i},defaultsVals{i}); 

            end 

            defaults@HypWright.Models.MultiPoolToffts(); 

        end 

        function paramsOut = parseParams(paramsIn) 

            % parseParams: Parses the input shape terms of a gamma variate 

            % for the VIF, each term should be a vector with shape terms 

            % for each chemical species 
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            % Fill Default Values 

            default = struct('t0',0,'gammaPdfA',2.8,... 

                'gammaPdfB',4.5,'scaleFactor',1); 

            tmpNames = fieldnames(default); 

            paramsOut = paramsIn; 

            for i = 1:numel(tmpNames) 

                if ~isfield(paramsOut,tmpNames{i}) 

                    paramsOut.(tmpNames{i}) = default.(tmpNames{i}); 

                end 

            end 

            % Build VIF 

            paramsOut.VIF = @(t)paramsIn.scaleFactor.*... 

                gampdf(t-paramsIn.t0,paramsIn.gammaPdfA,paramsIn.gammaPdfB); 

            % Fill in parent Class defaults 

            paramsOut = parseParams@HypWright.Models.MultiPoolToffts(paramsOut); 

        end 

        function [TRList,Mxy,Mz] = compile(M0,params) 

        % EVALUATE: runs the model based on some input parameters 

        params = HypWright.Models.MultiPoolTofftsGammaVIF.parseParams(params); 

        [TRList,Mxy,Mz] = compile@HypWright.Models.MultiPoolToffts(M0,params); 

        end 

        function [x,resultParams,allParams,resnorm,residual,exitflag,output,lambda,jacobian]... 

                = fitData(params,guess,xdata,ydata,varargin) 

            p = inputParser(); 

            p.addOptional('lb',[]) 

            p.addOptional('ub',[]) 

            p.parse(varargin{:}) 

            xNames = fieldnames(guess); 

            j = 1; 

            xIndex = cell(size(xNames)); 

            for i = 1:numel(xNames) 

                iFits = ~isnan(guess.(xNames{i})); 

                xIndex{i} = find(iFits==1); 

                for k = 1:numel(xIndex{i}) 

                    x0(j) = guess.(xNames{i})(xIndex{i}(k)); 

                    j = j+1; 

                end 

            end 

            params = HypWright.Models.MultiPoolTofftsGammaVIF.parseParams(params); 

            Y0 = ydata(:,1)./sin(params.FaList(:,1)); 

            fun = @(x,xdata)HypWright.Models.MultiPoolTofftsGammaVIF.fitFunction(... 

                params,x,xNames,xIndex,xdata,Y0); 

            opts = params.fitOptions; 

            [x,resnorm,residual,exitflag,output,lambda,jacobian] = ... 

                lsqcurvefit(fun,x0,xdata,ydata,... 

                [p.Results.lb],[p.Results.ub],opts); 

            resultParams = guess; 

            allParams = params; 

            j = 1; 

            for i = 1:numel(xNames) 

                for k = 1:numel(xIndex{i}) 

                    resultParams.(xNames{i})(xIndex{i}(k)) = x(j); 
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                    allParams.(xNames{i})(xIndex{i}(k)) = x(j); 

                    j = j+1; 

                end 

            end 

        end 

    end 

    methods (Access = private, Static) 

        function Y = fitFunction(params,x,xNames,xIndex,tSpan,Y0) 

            % fitFunction packs the parameter in params and x up and evaluates 

            % using the evaluate funnction over some time (tSpan) with some 

            % initial value (Y0) 

            j = 1; 

            for i = 1:numel(xNames) 

                for k = 1:numel(xIndex{i}) 

                    params.(xNames{i})(xIndex{i}(k)) = x(j); 

                    j = j+1; 

                end 

            end 

            params.TRList = tSpan; 

            [~, Y, ~] = HypWright.Models.MultiPoolTofftsGammaVIF.compile(Y0,params); 

        end 

    end 

 

end 
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Gamma Bankson Model Class 

 The Gamma Bankson Model Class is a sample of the old modeling system that averages 

excitation losses over the repetition time. It behaves similarly to the abstract modeling above. However, 

the number of chemical species is defined to be two and therefore no matrices are used as parameters. 

classdef GammaBanksonModel < HypWright.Models.BanksonModel 

    %BANKSONMODEL model for a two site excange system with perfused by a 

    %vascular pool. b defines the vascular input function wich is assumed to be 

    %uneffected. 

    %   This is the basic two site exchange model. This model has a linear flip 

    %   angle correction and will not work for non-linear sampling. 

    %   The parameters for this model follow 

    %   Kab - exchange reate from pool a to b: default 0 

    %   Kba - exchange reate from pool b to a: default 0 

    %   T1a - T1 decay constant for pool a: default 56 

    %   T1b - T1 decay constant for pool b: default 31 

    %   flipAngle - excitation angle in radians: default 0 

    %   TR - repetition time (again this is a linear TR model): default 1 

    %   kve - vascular extraction fraction: default 0.122 

    %   ve - vascular volume fraction: defaul 0.91 

    %   b - input function, some function of time that returns a change in 

    %   pool a and b must return a 2 row vector: default [0;0] 

    properties (Access = private) 

    end 

    methods (Static) 

        function [Y,T,sol] = evaluate(params,tSpan,Y0) 

            % EVALUATE: solves this model over some time span (tSpan), with an 

            % initial Y (Y0) and some parameters (params). 

            % Params is a struct with the values 

            % Kab - exchange reate from pool a to b: default 0 

            % Kba - exchange reate from pool b to a: default 0 

            % T1a - T1 decay constant for pool a: default 56 

            % T1b - T1 decay constant for pool b: default 31 

            % flipAngle - excitation angle in radians: default 0 

            % TR - repetition time (again this is a linear TR model): default 1 

            % kve - vascular extraction fraction: default 0.122 

            % ve - vascular volume fraction: defaul 0.91 

            % b - input function, some function of time that returns a change in 

            % poola and b must return a 2 row vector: default [0;0] 

            params = HypWright.Models.GammaBanksonModel.parseParams(params); 

            A = [-(params.kve/params.ve+params.Kab+... 

                1/params.T1a+((1-cos(params.flipAngle))/params.TR)),... 

                params.Kba; params.Kab,... 

                -(params.Kba+1/params.T1b+((1-cos(params.flipAngle))/params.TR))]; 

            % Analytic Solution (VERY SLOW!) 

%             fun = @(t)expm(A*(t-tSpan(1)))*Y0+integral(... 

%                 @(t2)expm(A*(t-t2))*params.kve/params.ve*params.b(t2),... 

%                 tSpan(1),t,'ArrayValued',true); 
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%             Y = zeros(length(Y0),length(tSpan)); 

%             for i = 1:length(tSpan) 

%                 Y(:,i) = (1-params.ve)*fun(tSpan(i))+params.ve*params.b(tSpan(i)); 

%             end 

            T = tSpan; 

            bfit = @(t)params.scaleFactor*padarray(gampdf(... 

                t,params.gammaPdfA,params.gammaPdfB),1,'post'); 

            fun = @(t,y)A*y+params.kve/params.ve*bfit(t-params.t0); 

            sol = ode45(fun,tSpan,Y0); 

            if length(T) == 2, T = sol.x; end 

            Y = params.ve*deval(sol,T)+(1-params.ve)*bfit(T-params.t0); 

        end 

        function [x,resultParams,resnorm,residual,exitflag,output,lambda,jacobian] = 

fitData(params,guess,... 

                xdata,ydata,varargin) 

            % FITDATA: fits some data set (xdata, ydata) with some constant 

            % parameters (params) and variable parameters (guess) using the 

            % perfused two site exchange model. Which ever parameters are in the 

            % guess struct will be fit, any parameters in the params struct will 

            % be held constant, any parameters not specfied will be set to their 

            % defaults and held constant. The fit will return one more argument 

            % than the number of guesses. The last number is a scaling factor 

            % applied to the fit data, to better match the magnitude og the 

            % input 

            % Params is a struct with the values 

            % Kab - exchange reate from pool a to b: default 0 

            % Kba - exchange reate from pool b to a: default 0 

            % T1a - T1 decay constant for pool a: default 56 

            % T1b - T1 decay constant for pool b: default 31 

            % flipAngle - excitation angle in radians: default 0 

            % TR - repetition time (again this is a linear TR model): default 1 

            % kve - vascular extraction fraction: default 0.122 

            % ve - vascular volume fraction: defaul 0.91 

            % b - input function, some function of time that returns a change in 

            % pool a and b must return a 2 row vector: default [0;0] 

            p = inputParser(); 

            p.addOptional('lb',[]) 

            p.addOptional('ub',[]) 

            p.parse(varargin{:}) 

            xNames = fieldnames(guess); 

            x0 = zeros(numel(xNames),1); 

            for i = 1:numel(xNames) 

                params.(xNames{i}) = guess.(xNames{i}); 

                x0(i) = guess.(xNames{i}); 

            end 

            params = HypWright.Models.GammaBanksonModel.parseParams(params); 

            Y0 = ydata(:,1); 

            fun = @(x,xdata)HypWright.Models.GammaBanksonModel.fitFunction(... 

                params,x,xNames,xdata,Y0); 

            opts = params.fitOptions; 

            [x,resnorm,residual,exitflag,output,lambda,jacobian] = ... 

                lsqcurvefit(fun,x0,xdata,ydata,... 

                [p.Results.lb],[p.Results.ub],opts); 
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            resultParams = params; 

            for i = 1:numel(xNames) 

                resultParams.(xNames{i}) = x(i); 

            end 

        end 

        function dataCompare(params,xdata,ydata,varargin) 

            % DATACOMPARE: displays the model with the parameters parameters 

            % (params) against the data (xdata, ydata). optiona 4th argument for 

            % a figure axis in which to draw the plot 

            % Params is a struct with the values 

            % Kab - exchange reate from pool a to b: default 0 

            % Kba - exchange reate from pool b to a: default 0 

            % T1a - T1 decay constant for pool a: default 56 

            % T1b - T1 decay constant for pool b: default 31 

            % flipAngle - excitation angle in radians: default 0 

            % TR - repetition time (again this is a linear TR model): default 1 

            % kve - vascular extraction fraction: default 0.122 

            % ve - vascular volume fraction: defaul 0.91 

            % b - input function, some function of time that returns a change in 

            % pool a and b must return a 2 row vector: default [0;0] 

            % axis - axis handle to plot data 

            p = inputParser(); 

            p.addOptional('axis',[]) 

            p.parse(varargin{:}) 

            Y0 = ydata(:,1); 

            Y = HypWright.Models.GammaBanksonModel.evaluate(params,xdata,Y0); 

            resNorm = sum(sum((Y-ydata).^2)); 

            if(isempty(p.Results.axis)) 

                figure; 

                curAxis = gca; 

            else 

                curAxis = p.Results.axis; 

            end 

            plot(curAxis,xdata,Y(1,:)','g',xdata,Y(2,:),'b',... 

                xdata,ydata(1,:),'go',xdata,ydata(2,:),'bo') 

            xlabel('Time') 

            ylabel('Signal Intensity') 

            legend('Model Pool A','Model Pool B') 

            title('Comparison of data with two site exchage model') 

            fprintf('The norm of the residual is: %d\n',resNorm) 

        end 

    end 

    methods (Static, Access = protected) 

        function paramsOut = parseParams(paramsIn) 

            % parseParams: a function to fill default param values if they are 

            % not defined 

            default = struct('Kab',0,'Kba',0,'T1a',56,'T1b',31,'flipAngle',0,... 

                'TR',1,'kve',0.02,'ve',0.91,'t0',0,'gammaPdfA',2.8,... 

                'gammaPdfB',4.5,'scaleFactor',1,'fitOptions', optimset('lsqcurvefit')); 

            tmpNames = fieldnames(default); 

            paramsOut = paramsIn; 

            for i = 1:numel(tmpNames) 

                if ~isfield(paramsOut,tmpNames{i}) 
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                    paramsOut.(tmpNames{i}) = default.(tmpNames{i}); 

                end 

            end 

            paramsOut.b = @(t)paramsOut.scaleFactor*[... 

                gampdf(t-paramsOut.t0,paramsOut.gammaPdfA,paramsOut.gammaPdfB);0]; 

        end 

        function Y = fitFunction(params,x,xNames,tSpan,Y0) 

            % fitFunction packs the parameter in params and x up and evaluates 

            % using the evaluate funnction over some time (tSpan) with some 

            % initial value (Y0) 

            for i = 1:numel(xNames) 

                params.(xNames{i}) = x(i); 

            end 

            % Uses the last value of x as a scaling factor. 

            Y = HypWright.Models.GammaBanksonModel.evaluate(params,tSpan,Y0); 

        end 

    end 

end 
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Section B.5 Example Scripts 

Example Script for Simulating and Processing single pulse dynamic spectroscopy 

function [raw,t,freqAx] =  PerfusedCalc(base) 

import HypWright.* 

import HypWright.Models.* 

Initialize variable 

if ~exist('base','var') 

    base = struct(); 

end 

% Default Values, empy fields are only used in the fitting and not need for 

% this function, however then still are checked when looking for 

% superfalice variables 

Default = struct('gamma', 67.262e6, 'readBandwidth', 4096, 'rfBandwidth', 5000,... 

    'nPoints', 2048,'t0',0,'endTime', 100, 'T1a', 56, 'T2a', 0.02, 'T1b', 30,... 

    'T2b', 0.02, 'kve', 0.02, 'vb', 0.09, 've', .91, 'ppma', -7e-6,... 

    'ppmb', 7e-6,'gammaPdfA',2.8,'gammaPdfB',4.5,'scaleFactor',1,... 

    'Kab', 0.1, 'flipAngle', 20, 'TR', 2,'verbose', false,... 

    'FWHMRange', [], 'A', [],'noiseLevel', [],... 

    'nAverages', [], 'lb',[],'ub',[],'centers',[],'fitOptions',[],... 

    'B0',3.0); 

% Check that there are no unsed variables in base; 

tmpNames = fieldnames(base); 

for i = 1:numel(tmpNames) 

    if ~isfield(Default,tmpNames{i}) 

        warning('WARNING! the field "%s" was passesed in but does not match any of the default 

names.\n',tmpNames{i}); 

        warning('This variable wont be used!\n') 

    end 

end 

tmpNames = fieldnames(Default); 

for i = 1:numel(tmpNames) 

    if ~isfield(base,tmpNames{i}) 

        base.(tmpNames{i}) = Default.(tmpNames{i}); 

    end 

end 

base.flipAngle = base.flipAngle*pi/180; 

gamma = base.gamma; 

readBandwidth = base.readBandwidth; 

rfBandwidth = base.rfBandwidth; 

nPoints = base.nPoints; 

endTime = base.endTime; 

t0 = base.t0; 

T1a = base.T1a; 

T2a = base.T2a; 
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T1b = base.T1b; 

kve = base.kve; 

vb = base.vb; 

ve = base.ve; 

ppma = base.ppma; 

ppmb = base.ppmb; 

b = @(t)base.scaleFactor*padarray(padarray(... 

    gampdf(t-t0,base.gammaPdfA,base.gammaPdfB),2),1,'post'); 

Kab = base.Kab; 

flipAngle = base.flipAngle; 

TR = base.TR; 

verbose = base.verbose; 

Mz = []; 

B0 = base.B0; 

%TODO add input validation; 

Initialize World 

world = HypWright.World.getWorld; 

world.initWorld() 

world.setB0([0;0;B0]) 

Spin = TwoSitePerfusionExchangeGroup([0;0;0;0;0;0],[0;0;0;0;0;0],... 

    T1a,T2a,ppma,T1b,T2a,ppmb,gamma,ve,Kab,[],kve/ve,b); 

Spin2 = BanksonSpinGrp([0;0;0],[0;0;0],T1a,T2a,gamma,ppma,vb,... 

    [base.gammaPdfA,base.gammaPdfB,base.scaleFactor],t0); 

V = Voxel([0;0;0],Spin); 

V.addSpin(Spin2); 

if (verbose) 

V.debug = true; 

end 

world.addVoxel(V); 

Build Pulse Sequence 

PS = PulseSequence; 

t = 0:TR:endTime; 

ADC = zeros(nPoints,length(t)); 

for i = 1:length(t) 

    Pulse = SincPulse(t(i),rfBandwidth,flipAngle/(gamma),gamma*B0,[],... 

        sprintf('Excitation%d',1)); 

    PS.addPulse(Pulse) 

    ADC(:,i) = Pulse.endTime:1/readBandwidth:Pulse.endTime+(nPoints-1)/readBandwidth; 

end 

world.setPulseSequence(PS) 

Calculate 

world.calculate(t(end)+10); 

if (verbose) 
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V.debug = true; 

tMz = 0:0.1:endTime; 

world.evaluate(tMz); 

load('tmp') 

evSpace = []; 

vSpace = []; 

for i = 1:size(tmp,1) 

evSpace = [evSpace,tmp{i,1}]; 

vSpace = [vSpace,tmp{i,2}]; 

end 

M(1:3,:) = ve*evSpace(1:3,:)+vb*vSpace; 

M(4:6,:) = ve*evSpace(4:6,:); 

MzPyr = M(3,:); 

MzLac = M(6,:); 

V.debug = false; 

end 

FID = zeros(nPoints,length(t)); 

for i = 1:length(t) 

    [FID(:,i), freqAx] = world.evaluate(ADC(:,i).',-gamma*B0); 

end 

raw = FID; 

t = linspace(ADC(floor(end/2),1),ADC(floor(end/2),end),size(ADC,2)); 

if (verbose) 

    figure 

    surf(t,freqAx,abs(fftshift(fft(FID,[],1),1))); 

    drawnow 

    figure('Name',sprintf('Kab: %.4f Flip Angle %2f Repetition Time %.4f',... 

    Kab,flipAngle,TR),'NumberTitle','off','Position',[660 50 1040 400]) 

    plot(tMz,MzPyr,'go',tMz,MzLac,'bo') 

    legend('Simulated Pyruvate Mz','Simulated Lactate Mz'); 

        % Display model and Mz 

end 

end 

function [ fits, fitErr, SNR, exitflag ] = PerfusedFit( base,fitParams,raw,t,freqAxis) 

import HypWright.* 

import HypWright.Models.* 

import HypWrightRunners.* 

Initialize variable 

if isempty(base) 

    base = struct(); 

end 

if isempty(fitParams) 

    error('No initial guesses were passed in for any fit parameters'); 

end 

Default = struct('gamma', 67.262e6, 'readBandwidth', 4096, 'rfBandwidth', 5000,... 

    'nPoints', 2048,'t0',0,'endTime', 100, 'T1a', 56, 'T2a', 0.02, 'T1b', 30,... 

    'T2b', 0.02, 'kve', 0.02, 'vb', 0.09, 've', .91, 'ppma', -7e-6,... 
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    'ppmb', 7e-6,'gammaPdfA',2.8,'gammaPdfB',4.5,'scaleFactor',1,... 

    'Kab', 0.1, 'flipAngle', 20, 'TR', 2,'verbose', false,... 

    'FWHMRange', [], 'A', MultiPoolTofftsGammaVIF(),'noiseLevel', 0,... 

    'nAverages', 1, 'lb',0,'ub',100,'centers',[],'fitOptions',... 

    optimset('lsqcurvefit'),'B0',7,'autoVIFNorm',false); 

tmpNames = fieldnames(base); 

for i = 1:numel(tmpNames) 

    if ~isfield(Default,tmpNames{i}) 

        fprintf('WARNING! the field %s was passesed in but does not match any of the default 

names. This variable wont be used!\n',tmpNames{i}) 

    end 

end 

% Fill with defaults 

tmpNames = fieldnames(Default); 

for i = 1:numel(tmpNames) 

    if ~isfield(base,tmpNames{i}) 

        base.(tmpNames{i}) = Default.(tmpNames{i}); 

    end 

end 

% calc FWHM range if needed 

if isempty(base.FWHMRange) || isempty(base.centers) 

    [I, ~, peakI] = FWHMRange(freqAxis, sum(abs(fftshift(fft(raw,[],1),1)),2)); 

    base.FWHMRange = I; 

    base.centers = peakI; 

end 

IFWHM = base.FWHMRange; 

A = base.A; 

bfit = @(t)padarray(gampdf(t,base.gammaPdfA,base.gammaPdfB),1,'post'); 

base.b = bfit; 

Kab = base.Kab; 

noiseLevel = base.noiseLevel; 

nAverages = base.nAverages; 

lb = base.lb; 

ub = base.ub; 

centers = base.centers; 

verbose = base.verbose; 

% Correct for VIF normilization if needed 

if base.autoVIFNorm 

    base.scaleFactor = 0.021614001850489*base.flipAngle+1.312872065860338e+03; 

end 

Fit data 

fits = zeros(nAverages,length(fieldnames(fitParams))); 

fitErr = zeros(nAverages,1); 

for j = 1:nAverages 

    if(noiseLevel ~= 0) 

        [noiseyData, SNR] = ApplyNoise(raw, noiseLevel,freqAxis,... 

            IFWHM,centers); 

        FTData = fftshift(fft(noiseyData,[],1),1); 

    else 
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        FTData = fftshift(fft(raw,[],1),1); 

        SNR = inf; 

    end 

peakMax = zeros(size(centers)); 

phases = zeros(size(centers)); 

signals = zeros(size(raw,2),size(centers,2)); 

PhaseData = zeros([size(FTData),length(centers)]); 

% Phase correct and FWHM integrate each peak 

%for m = 1:length(centers) 

for m = 1:length(centers) 

    if(centers(m) == 0) 

        continue 

    end 

    [~,peakMax(m)] =  max(abs(FTData(centers(m),:))); % fint the maximal peak location 

    phases(m) = angle(FTData(centers(m),peakMax(m))); % find the phase at the above point 

    for n = 1:length(t) 

        % FWHM integrate the Phased signal 

        PhaseData(:,n,m) = real(exp(-1i*(phases(m)))*FTData(:,n)); 

    end 

    [signals(:,m)] = SignalIntegration(freqAxis, squeeze(PhaseData(:,:,m)), IFWHM(m,:)); 

end 

nLac = sum(abs(signals(:,2)))/sum(sum(abs(signals))); 

flipAngles(1,:) = base.flipAngle*pi/180;%zeros(1,size(raw,2))+base.flipAngle*pi/180; 

flipAngles(2,:) = base.flipAngle*pi/180;%zeros(1,size(raw,2))+base.flipAngle*pi/180; 

Model Results 

tmpNames = fieldnames(fitParams); 

fitConstants = base; 

for i = 1:numel(tmpNames) 

    if isfield(fitConstants,tmpNames{i}) 

        fitConstants = rmfield(fitConstants,tmpNames{i}); 

    end 

end 

params = struct('ExchangeTerms',[0,base.Kab;0,0],'T1s',[base.T1a,base.T1b],... 

    'TRList',t,'FaList',flipAngles,'PerfusionTerms',[base.kve,0],... 

    'volumeFractions',[base.ve],'t0',[0;0],'gammaPdfA',[base.gammaPdfA;1],... 

                'gammaPdfB',[base.gammaPdfB;1],'scaleFactor',[base.scaleFactor;0],... 

    'fitOptions',base.fitOptions); 

[fits(j,:),resultParams,allParams,resnorm(j),residual,exitflag,output,lambda,jacobian]... 

    = A.fitData(params,fitParams,t,signals.',lb,ub); 

end 

if(verbose) 

    % Display Model accuracy 

    A.DataCompare(A,allParams,signals(1,:).',t,signals.') 

    drawnow 

end 

end 
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 Example Script for a Multiband Frequency Encode Snapshot 

clear all 

close all 

clear classes 

clear imports 

clc 

import HypWright.* 

% Init World 

world = HypWright.World.getWorld; 

world.initWorld() 

% init Variable 

%Change These 

FOV = 0.04; 

nSpins = 4^2; 

nBands = 2; 

nProj = 40; 

Tr = 0.1; 

flipAngle = 10; 

nSamp = 64; 

xStart = 0.0; 

xEnd = 0.01; 

yStart = 0.0; 

yEnd = 0.01; 

protonResolution = 0.001; 

 

%Maybe dont change these 

gamma = 67.262e6; 

sinoShift = -2; 

deltaPPM = 15e-6; 

singleBandwidth = gamma*world.B0(3)*deltaPPM; 

maxSlope = 0.5*singleBandwidth/(gamma*FOV); 

rewindTime = 0.001; 

totalBW = singleBandwidth*nBands/(2*pi); 

samplingTime = 1/totalBW*nSamp; 

resolution = FOV/nSamp; 

goldenAngle = pi*(3-sqrt(5)); 

projAngles = 0:goldenAngle:(nProj-1)*goldenAngle; 

projAngles = mod(projAngles,pi); 

xPos = linspace(xStart,xEnd,sqrt(nSpins)); 

yPos = linspace(yStart,yEnd,sqrt(nSpins)); 

 

% Build Phantom 

for i = 1:length(xPos) 

    for j = 1:length(yPos) 

        Spin = TwoSiteExchangeGroup([0;0;1;0;0;0.5],... 

            [],[],[],-7e-6,[],[],7e-6,gamma,[],0,[]); 

        V = Voxel([xPos(i);yPos(j);0],Spin); 

        world.addVoxel(V); 

    end 
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end 

% Build Pulse Sequence 

FID = zeros(nProj,nSamp); %init memory for FID 

readGrad = LinearGradientPulse.empty(nProj,0); %init memory for readGrad 

PS = PulseSequence; 

for i = 1:nProj 

S = SincPulse(Tr*(i-1),5000,flipAngle*pi/180/gamma,gamma*3.0,[],sprintf('RF90%d',1)); 

PS.addPulse(S) 

xSlope = cos(projAngles(i))*maxSlope; 

ySlope = sin(projAngles(i))*maxSlope; 

xRewind = -xSlope/2; 

yRewind = -ySlope/2; 

reWindGrad = LinearGradientPulse(S.endTime+rewindTime/2,rewindTime,[xRewind,yRewind,0]... 

    ,sprintf('RewindGrad%d',0)); 

PS.addPulse(reWindGrad) 

readGrad(i) = 

LinearGradientPulse(reWindGrad.endTime+samplingTime/2,samplingTime,[xSlope,ySlope,0]... 

    ,sprintf('ReadGrad%d',0)); 

PS.addPulse(readGrad(i)) 

end 

world.setPulseSequence(PS) 

% Calculate 

disp('Calculation Time') 

tic 

world.calculate(readGrad(end).endTime); 

toc 

% Evaluate 

for i = 1:nProj 

tic 

FID(i,:) = world.evaluate(linspace(readGrad(i).startTime,readGrad(i).endTime,nSamp),-gamma*3.0); 

toc 

end 

% Recon Image 

FTData = fftshift(fft(fftshift(FID,2),[],2),2); 

pyrBand = circshift(FTData,sinoShift,2); 

pyrBand = pyrBand(:,1:32); 

lacBand = circshift(FTData,sinoShift+33,2); 

lacBand = lacBand(:,1:32); 

figure('name','Sinogram') 

imagesc(abs(FTData)); 

figure('Position',[200,350,1250,500],'name','C13 Images') 

im = iradon(abs(pyrBand).',projAngles*180/pi); 

im = flipud(im); 

xRes = linspace(-FOV/2,FOV/2,size(im,1)); 

yRes = linspace(-FOV/2,FOV/2,size(im,2)); 

subplot(1,2,1),imagesc(xRes,yRes,im); 

set(gca,'YDir','reverse'); 

title('Pyruvate') 

im = iradon(abs(lacBand).',projAngles*180/pi); 

im = flipud(im); 

subplot(1,2,2),imagesc(xRes,yRes,im); 

title('Lactate') 

% Make 1H image 
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[X,Y] = meshgrid(-FOV/2:protonResolution:FOV/2,-FOV/2:protonResolution:FOV/2); 

protonImage = zeros(size(X)); 

I = X>=xStart&X<=xEnd&Y>=yStart&Y<=yEnd; 

protonImage(I) = 1; 

figure('name','Proton Image'); 

imagesc(X(1,:),Y(:,1),protonImage); 

colormap gray 
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