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ABSTRACT 

MICROENVIRONMENT-INDUCED PTEN LOSS BY EXOSOMAL 
MICRORNA PRIMES BRAIN METASTASIS OUTGROWTH 

Lin Zhang, B.S. 

Supervisory professor: Dr. Dihua Yu, Ph.D., M.D. 

 

Development of life-threatening cancer metastases at distant organs requires disseminated tumor 

cells’ adaptation to and co-evolution with the drastically different microenvironments of 

metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after 

metastasizing to different organs. Clearly, the dynamic interplay between metastatic tumor cells 

and extrinsic signals at individual metastatic organ sites critically impacts the subsequent 

metastatic outgrowth. Yet, it is unclear when and how disseminated tumor cells acquire the 

essential traits from the microenvironment of metastatic organs that prime their subsequent 

outgrowth. Here we show that primary tumor cells with normal expression of PTEN, an 

important tumor suppressor, lose PTEN expression after dissemination to the brain, but not to 

other organs. PTEN level in PTEN-loss brain metastatic tumor cells is restored after leaving 

brain microenvironment. This brain microenvironment-dependent, reversible PTEN mRNA and 

protein down-regulation is epigenetically regulated by microRNAs (miRNAs) from astrocytes. 

Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting 

miRNAs to metastatic tumor cells, while astrocyte-specific depletion of PTEN-targeting 

miRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain 

metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumor cells leads to 

an increased secretion of cytokine chemokine (C-C motif) ligand 2 (CCL2), which recruits Iba1+ 

myeloid cells that reciprocally enhance outgrowth of brain metastatic tumor cells via enhanced 
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proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN 

expression in metastatic tumor cells in response to different organ microenvironments, 

underpinning an essential role of co-evolution between the metastatic cells and their 

microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic 

and reciprocal cross-talk between tumor cells and the metastatic niche; importantly, they provide 

new opportunities for effective anti-metastasis therapies, especially of consequence for those 

brain metastasis patients who are in dire need. 
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1.1 Metastasis 

Metastasis, the dissemination of cancer cells to second organs, is an important hallmark 

of cancer. About 90% of cancer patient death are caused by metastasis [1]. While therapeutic 

efficacy in the control of primary tumors has improved, effective methods to prevent or treat 

metastatic disease remain rare. Metastasis is an extremely complex process including multiple 

steps: local invasion, escape to the circulation (intravasation), survival and transport in the 

circulation, exit from the circulation to the parenchyma of organ (extravasation), and 

colonization and outgrowth in the distant organs [2, 3] (Fig.1). Understanding the mechanism of 

metastasis will serve as the base of effective prevention and treatment for metastasis. Dr. Joan 

Massague and colleagues sorted the metastatic related genes into three groups: metastasis 

“initiation genes”, “progression genes” and “virulence genes” [3]. Metastasis initiation genes 

regulate cancer cell intravasation. These genes, such as twist family BHLH transcription factor 1 

(TWIST1) and snail family zinc finger 1 and 2 (SNAI1 and SNAI2), promote cell mobility or 

epithelial-mesenchymal transition (EMT). Progression genes control the extravasation of 

disseminated cells, and include prostaglandin G/H synthase 2 (PTGS2), epiregulin (EREG), and 

matrix metalloproteinase 1 (MMP1). Meanwhile, virulence genes modulate the metastatic cells’ 

colonization and growth in the distant organs, and include parathyroid hormone-related protein 

(PTHRP), interleukin-11 (IL-11), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). 

However, these gene categories are not absolutely exclusive. Some genes are involved in 

different steps of metastasis. For example, transforming growth factor-β (TGF- β) is well known 

to promote cell intravasation by EMT [4, 5]. However, TGF- β also contributes to the tumor 

growth in the metastatic organs by inducing angiogenesis and inhibiting immune reactions [6-9]. 

Furthermore, whether a gene has metastasis promoting properties or suppressing properties is 
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largely cancer type-dependent. Nuclear yes-associated protein (YAP) promotes tumor 

progression and metastasis in breast cancer [10, 11], whereas cytosolic YAP restricts the growth 

of colon cancer [12].  

 

 

 

Figure 1. | The multistep process of metastasis. A schematic of the metastatic process 

includes several challenging steps. It begins with local invasion, then tumor cells enter 

the circulation (intravasation) via lymphatics or directly enter the blood vessel, survive 

and transport in the circulation, exit from the circulation to the parenchyma of organ 

(extravasation), followed by colonization and outgrowth in the distant organs. Metastatic 

cells in a distant site progresses might remain dormant for years, and then progressively 

grow to generate macrometastases. Reprinted with permission from Patricia S. Steeg 

“Metastasis suppressors alter the signal transduction of cancer cells.” Nature Reviews 

Cancer 2003. 3: 55-63. 

Figure 1  
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1.1.1 The characteristics of metastasis 

Metastasis has several striking features. First, the pattern of metastasis in distant organs is 

cancer type-specific [3, 13]. For example, prostate cancer predominantly metastasizes to bone, 

whereas pancreatic cancer normally metastasizes to liver and lungs. This phenomenon can be 

partly explained by “seed and soil” hypothesis [14], which suggests that disseminated cancer 

cells can colonize in selective distant organs which have similar growth environment as primary 

organs. The detail of this hypothesis will be discussed later. However, “seed and soil” hypothesis 

does not include the exact mechanism for this organ tropism. The possible mechanism is that a 

subgroup of primary tumor cells might contain genes with tissue-specific metastatic tendency 

[15, 16] or stromal cells educate tumor cells for tissue-specific gene expression [17].  

The second feature for metastasis is that the duration of metastatic dormancy in distant 

organs differs among tumor types. Brain metastasis originating from lung cancer can be detected 

as the same time as the diagnosis of the primary tumor. However, distant metastases of breast 

cancer are often detected several years after the removal of primary tumor. Short latency of 

metastatic relapse might indicate that metastatic cells hold strong competency to colonize, and 

overcome obstacles for growth in the distant organs; long latency of metastatic relapse indicates 

that the distant microenvironment inhibits tumor growth or cell death counterbalance the cell 

proliferation[18]. Although latent metastatic cells do not grow fast for long periods after 

extravasation, they reside there and wait for the “kindling” to generate macro-metastasis.  

Metastasis to different organs requires distinct abilities to infiltrate and colonize. Meanwhile, the 

relatively short latency of metastatic relapse also raises the question about the metastasis model: 

is it linear or parallel evolution? In 2-10% of clinical cases, one or more metastatic sites are 

detected without a clear determined primary site, which is termed as “cancer of unknown 
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primary” (CUP) [19]. Obviously, CUP and the short latency of metastatic relapse oppose the 

traditional model of metastasis, which considers metastasis as a late-arising phenotype in the 

linear progression model. However, metastasis might occur in the early stage of tumorigenesis in 

parallel with the primary tumor regardless of the size of primary tumors [20]. So far, there is not 

a clear picture of the metastasis model, but it seems most likely that linear and parallel models 

co-exist.  

Recently, two other general concepts of metastasis have been challenged. The first 

question is whether EMT is required for metastasis. Generally, EMT was considered to be 

crucial for intravasation of carcinoma, because EMT can reduce the intracellular adhesion of 

epithelial cells, and therefore enhance cancer cells’ motility and invasiveness [21]. However, 

recent studies of breast cancer [22] and pancreatic cancer [23] showed that although EMT 

contributed to drug resistance, it was not necessary for metastasis progression. It was found that 

the majority of metastatic tumors was derived from epithelial-like cells, rather than cells with 

mesenchymal phenotypes. Moreover, inhibition of the EMT-inducing genes did not change 

metastasis rate. As a result the role of EMT in metastasis thereby became controversial and 

should be investigated further. 

The second evolving concept regards the status of cancer cells migrating in the blood 

vessels. The conventional view is that cancer cells migrate clonally or with platelets while 

travelling to the distant organs. However, there is growing evidence supporting that metastatic 

cells migrate collectively as a cluster and the clusters are more efficient than single cell to 

produce metastasis. The different clonal combination in the cluster can promote mutual survival 

and the success of metastasis [24-26].   
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In addition, the influence of tumor micro-environment (TME) on tumor progression and 

metastasis has gained more attention. Cancer associated fibroblasts (CAFs), normal fibroblasts, 

immune cells, and the vascular network all play roles in tumor growth, invasion and metastasis. 

However, their effects can be both pro-tumorigenic and anti-tumorigenic. For example, 

classically activated M1 macrophages exert anti-tumorigenic effect, whereas alternatively 

activated M2 macrophages exert opposite effect to promote tumorigenesis [27, 28]. Generally 

CAF is considered to promote tumor growth and metastasis [29, 30]. However, depletion of α-

smooth muscle actin (αSMA)-positive CAFs in pancreatic ductal adenocarcinoma (PDAC) 

enhanced EMT and tumor progression [31].  Therefore, the individual and integral functions of 

these stromal cells in tumor progression are dynamic and context-dependent. It is a challenge to 

target or re-educate the heterogeneity of TME for tumor treatment, but new avenues for cancer 

therapy could emerge in light of the growing availability of TME-targeting drugs in clinical 

phase [32, 33]. 

In the process of metastasis, organ colonization is the rate-limiting and the least efficient 

step. Most disseminated cells die very soon after they enter the new organs. In my thesis, I focus 

on how the interaction of TME with disseminated tumor cells promotes tumor growth in second 

organs.  

 

1.1.2 The interaction of TME with disseminated tumor cells  

The “seed and soil” hypothesis might be the first theory to explain the relationship 

between tumor cells and tumor microenvironment.  Stephen Paget, a surgeon and pathologist, 

first claimed that metastasis did not occur randomly in 1889. According to his observations, one 

type of cancer prefers to seed at specific secondary distant organs [14, 34]. This hypothesis was 

validated and advanced by Dr. Isaiah Fidler. The “seed” refers to the disseminated cancer cells or 
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cancer stem cells, and the “soil” to the specific TME. Successful metastasis depends not only on 

the intrinsic factors of cancer cells, but also on the “nourishment” that cancer cells can get from 

the microenvironment [14].  Most circulating tumor cells (CTC) and disseminated tumor cells 

(DTC) can invade into secondary organs, but cannot survive nor generate macro-metastasis. This 

indicates that the “soil” is not very welcoming to most of the “seeds,” or most seeds do not 

contain the intrinsic traits to overcome the obstacles for outgrowth in the new “soil” [35, 36].  

How does the microenvironment protect from the invasion of tumor cells? The first 

defense system is immune cells, including cytotoxic T cells, natural killer (NK) cells and Type 1 

T helper cells’ (TH1) cytokines (interferon-γ or interleukin-12) [37]. Depletion of NK cells 

promotes breast cancer liver metastasis [38, 39], breast cancer brain metastasis, and lung cancer 

bone metastasis[40]. Microglia are the most important immune cells in the central nervous 

system. Activated microglia induces cytotoxicity to cancer cells [41]. Second, stromal cells in the 

microenvironment can also defend the disseminate cancer cells. The stromal cells release growth 

inhibitory factors, such TGF-β and bone morphogenetic proteins (BMPs), to hinder the tumor 

growth in lung metastasis or bone metastasis [42-44].  

However, the microenvironment also facilitates the growth of disseminated tumor cells 

under certain circumstances. One good example is in the bone marrow. Bone marrow stromal 

cells prepare a niche for hematopoietic stem cells (HSC)’ seeding through protein interactions 

and secreted cytokines, such as chemokine (C-X-C Motif) ligand 12 (CXCL12), receptor 

activator of nuclear factor kappa-B ligand (RANKL), osteopontin (OPN) or BMPs [45, 46]. 

Likewise, metastatic cells can appropriate the same mechanism to seed into bone marrow [45, 

46].  
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The TME controls the fate of metastatic cancer cells. Reciprocally, cancer cells also 

actively modulate or educate the microenvironment. Breast cancer cells interact with liver 

stromal cells by claudin-2 (CLDN2) to educate hepatocytes to support tumor growth [47]. In the 

MMTV-PyMT mouse model, which expresses the oncogene of polyoma virus middle T antigen 

(PyMT) driven by the mouse mammary tumor virus (MMTV) promoter/enhancer, breast cancer 

lung metastatic cells stimulate the extracellular-matrix protein periostin in lung fibroblast by 

TGF-β. Periostin, together with tenascin C, stimulates the WNT pathway in tumor cells [48, 49], 

thereby promoting tumor colonization in the lung.   

Dormant cancer cells can escape immunosurveillance by the loss of major 

histocompatibility complex class I (MHC I) or latent membrane protein (LMP) expression [50]. 

Cancer cells recruit tumor-associated macrophages (TAMs) or tumor-associated 

lymphomonocytes to evade immunity and enhance tumor growth. TAM or inflammatory 

monocytes mediate breast cancer cell extravasation and outgrowth in the lung [51-53]. 

Prevention of the recruitment of TAM or inflammatory monocytes by the inhibition of colony 

stimulating factor 1 (CSF-1) and its receptor (CSF-1R) [54], or chemokine (C-C motif) ligand 2 

(CCL2) and its receptor (CCR2) [51], can repress tumor growth or metastasis. 

Primary tumors can release systemic signals, such as cytokines or exosomes, and 

therefore prepare metastatic sites, which are called pre-metastatic niches. Recently published 

works endorse the importance of exosome in metastasis. The type of integrins embedded in 

exosomes pre-determine the breast cancer metastatic organ pattern [55]. Melanoma exosomes 

can induce inflammation in the distant organs to build pre-metastatic niches [56]. On the other 

hand, exosomes containing microRNAs (miR-23b, miR-192, or miR-143) can inhibit metastasis 

[57-59].  
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Therefore, the dynamic and bidirectional interplay between disseminate cancer cells and 

metastatic tumor microenvironment is critical to subsequent cancer colonization and outgrowth. I 

will discuss brain microenvironment and brain metastasis later in detail.  

 

1.1.3 Brain metastasis 

In the United States, brain metastasis affects millions of cancer patients each year, at 

numbers ten times more than primary brain tumors [60]. The incidence of brain metastases is the 

highest in patients with lung cancer, with nearly 40-50% of patients with lung cancer developing 

brain metastasis during the course of disease. Breast cancer (25%) and melanoma (20%) have the 

second- and third-highest rates of brain metastases [61, 62]. Other cancers, such as renal cell 

carcinoma, gastrointestinal carcinoma and uterine/vulvar carcinoma, also have the possibility to 

develop brain metastasis [63]. The median survival of all types of brain metastasis is 1 to 2 

months. Even after conventional radiotherapy and chemotherapy, the median survival can only 

be extended to six months [64]. Current treatment for brain metastases are surgery and radiation 

therapy. Surgery is only feasible for very small lesions in accessible regions. Stereotactic 

radiosurgery (SRS) and whole-brain radiotherapy (WBRT) are the common alternative 

treatments for brain metastasis. Unfortunately, both treatments are palliative with severe 

cognitive complications and associated with poor quality of life. Therefore how to diagnose brain 

metastasis early and treat it effectively are two most imposing challenges in the clinic [65].  

Except for lung cancer brain metastasis, brain metastasis normally happens at the 

advanced stage with a long latency before detection. The brain is a special organ with unique 

immune characteristics. One of its important defense systems is the blood-brain barrier (BBB) 

(Fig. 2). The BBB is composed of endothelial cells surrounded by pericytes, a basement 

membrane, and astrocytes. The endothelial cells tightly connect to each other by tight junctions 
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and express active efflux pumps, both of which limit the entrance of large molecules, including 

chemical drugs, and microorganisms, into the brain parenchyma. However, the BBB can be 

compromised by dissemination of cancer cells into the brain. To cross the BBB, cancer cells 

secrete miR-105, cathepsin S (CTSS), cyclooxygenase-2 (COX2), ST6 N-acetylgalactosaminide 

alpha-2,6-sialyltransferase 5 (ST6GaLNac5), heparin-binding EGF-like growth factor (HBEGF), 

matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9 (MMP9), which help break 

the tight joints of the BBB [66-68]. The BBB seems to be intact when tumor is smaller, but the 

dissociation of astrocytes and pericytes with blood vessel happens and the BBB becomes leaky 

when a tumor is larger than 0.25 mm2 [69, 70].  

After extravasation, brain metastatic cells express L1 cell adhesion molecule (L1CAM) 

[71] or integrin β1 [72] for adhesion to brain capillaries. This adhesion seems the key for the 

initiation of tumor growth in the brain. Brain metastasis generally displays neovascularization or 

vascular remodeling [69]. Vascular endothelial growth factor (VEGF) has a vital role in the 

angiogenesis of some brain metastasis [69]. Anti-VEGF treatment inhibits the progressive 

growth of brain metastasis of lung carcinoma, but not those of melanoma, in experimental 

models [69, 73]. 
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Figure 2. | The composition of BBB. The blood-brain barrier (BBB) is a selective 

permitting access to only certain substances in order to protect the normal brain from 

pathogens. It is formed by brain endothelial cells, tightly connected by continuous tight 

junctions. Pericytes and the astrocyte foot cover the surface of endothelial cells by the 

basement membrane. Endothelial cells can actively pumps drugs, microorganisms, or other 

species back into the blood, but lipophilic substance can pass through BBB and diffuse into 

brain. Reprinted with permission from Patricia S. Steeg, Kevin A. Camphausen & Quentin 

R.“Brain Metastases as preventive and therapeutic targets.” Nature Reviews Cancer 

2011.5: 352-363. 

 

Figure 2 
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Indeed, the bidirectional interaction of cancer cells and brain TME is poorly understood 

and understudied (Fig. 3). There are mainly three types of brain stromal cells in the unique brain 

environment: astrocytes, microglia, and neurons. They have both positive and negative effects on 

brain metastasis.  

 

 

Figure 3. | Process of brain metastases and the interaction between brain TME and 

tumor cells. After brain metastatic cancer cells traverse from blood vessel, they attach to the 

outside of vessels. Tumor cells’ extravasation induces gliosis.  Activated microglia or 

macrophage-like cells (shown in yellow) and astrocytes (shown in orange) provide resistance 

or support for tumor cells. As the metastasis expands, the local brain function is damaged, 

including neuronal damage, edema (white halo) and the disruption of the blood–brain barrier 

(shown in dashed black lines). Dormant solitary tumor cells can also reside in the brain, and 

they have the potential to develop additional metastases. Reprinted with permission from 

Patricia S. Steeg, Kevin A. Camphausen & Quentin R.“Brain Metastases as preventive and 

therapeutic targets.” Nature Reviews Cancer 2011.5: 352-363. 

Figure 3 
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Astrocytes originally were considered as a line of defense against tumor cells. Brain 

metastasis causes reactive astrogliosis. Activated astrocytes kill the disseminated cancer cells by 

releasing the proapoptotic cytokine Fas ligand (FasL/FASLG), which is activated by 

plasminogen activator (PA).  However, brain metastatic cells express anti-PA serpins that protect 

cancer cells from the threat of astrocytes [71]. On the other hand, astrocytes can also play an 

active supporting role to tumor cells. Activated astrocytes are recruited by tumor-derived 

cytokines, such as macrophage inhibitory factor (MIF), interleukin-8 (IL-8), and plasminogen 

activator inhibitor 1 (PAI-1), to congregate around the developing metastasis [74, 75]. These 

recruited astrocytes secrete beta-type platelet-derived growth factor receptor (PDGFRβ) [76], IL-

6 [75, 77], interleukin-1 beta (IL-1β), and TNF-α [75], or upregulate JAG-1, the ligand of 

NOTCH 1 receptor, to activate the NOTCH pathway in cancer cells [74], subsequently 

promoting colonization and tumor growth. Astrocytes can be further activated by estrogen to 

promote the proliferation, migration, and invasion of cancer cells by epidermal growth factor 

receptor (EGFR)-S100 calcium-binding protein A1 (S100A) pathway [78]. Recently it was 

reported that tumor cells transferred 2′3′-cyclic GMP-AMP (cGAMP) to astrocytes by gap 

junctions, activating the STING pathway in astrocytes, which in turn released inflammatory 

cytokines (interferon α 1, TNF) to promote brain metastasis growth[79]. Importantly, the 

application of gap junction inhibitor dramatically decreased brain metastasis. Astrocytes also can 

protect tumor cells from chemotherapy [80]. Under paclitaxel treatment, astrocytes induced 

elevated levels of p-AKT and p-MAPK in tumor cells, thereby inhibiting tumor cells’ apoptosis 

and prolong their survival [80].   

Microglia are considered the immune effector cells in the brain, but the role of microglia 

in brain tumor or brain metastasis is not clear. Activated microglia can induce antigen-mediated 
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lymphocyte reaction [81] and produce a variety of chemokines and cytokines, such as 

interleukin-1 (IL-1), IL-6, TNF-α, TGF-β), nitric oxide (NO), and superoxide. NO was revealed 

to be able to kill tumor cells [82-84]. However, it was also reported that activated microglia 

promoted metastasis outgrowth by WNT pathway [85], lead to angiogenesis by VEGF and 

promoted tumor proliferation by epidermal growth factor (EGF) [86, 87]. In addition to resident 

microglia, infiltrating macrophages or monocytes can also have positive roles for tumor growth 

in the brain. M2-polarized TAMs (including microglia) supported the growth of high-grade 

gliomas as inhibiting CSF-1R resulted in drastic tumor regression in one study [88]. Although it 

remains elusive whether this treatment has similar effect on brain metastasis, this study indicates 

microglia have positive impact on the growth of tumor cells. On the contrary, another study 

showed direct depletion of TAM (including microglia) in the tumor promoted glioma tumor 

growth [89]. In this study ganciclovir was injected to deplete macrophages in transgenic mice 

that expressed thymidine kinase under the macrophage/microglia specific CD11b promoter. 

Thus, it seems microglia/macrophages have opposite functions in these two studies, but the 

different consequences in these two studies might have resulted from the different methods and 

time points of depletion of macrophages. 

The relationship between neuron and brain metastasis is rarely studied.  One study 

showed that brain metastatic cells may upregulate γ-aminobutyric acid (GABA) transporters, 

type A GABA receptor (GABAAR), and GABA transaminase to take up and catabolize neuron-

released GABA neurotransmitter as a metabolite, supporting tumor outgrowth in the brain [90]. 

Although the mechanisms of brain metastasis development are being revealed gradually, 

the whole landscape is still under extensive investigation. Several questions still need to be 

addressed: 1) it is not clear that how the quiescent tumor cells in the brain acquire the essential 
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traits from the brain microenvironment that prime their subsequent outgrowth, and what the 

exact function of brain stromal cells is for brain metastasis. Dr. Joan Massague’s group showed 

that latency-competent cancer cells (LCC) maintained their slow-cycling by secretion of WNT 

inhibitor and evading NK-cell-mediated clearance [40], but it is not clear how single or small 

cluster of LCCs generate macro-metastases. The continuous crosstalk between the brain 

microenvironment and LCC at the late stage of latency is essential for tumor growth in the brain. 

2) It is unknown whether brain metastases hijack metabolic mechanism to utilize nutrients from 

the unique brain microenvironment. It was reported that brain tumors had the special ability to 

oxidize acetate in the citric acid cycle to generate the fuel for growth [91]. Breast cancer 

brain metastatic cells can survive and proliferate by gluconeogenesis, or the oxidation of 

glutamine and branched chain amino acids, independent of glucose [92]. However, these reports 

only uncover the tip of the iceberg of the metabolic changes that may benefit brain metastasis. 

We are curious to explore a more complete picture of metabolism utilized by brain metastasis in 

the future. 3) The discovery of lymph vessels in the outer layers of brain [93] provides a new 

insight to study immune responses in the central nervous system (CNS) and the potential to 

explore how brain metastatic cells evade the immune surveillance in the brain.  Several groups 

detected bone marrow-derived macrophages in the brain and studied their function as well [88]; 

however, the functions of other immune cells, such as neutrophils, monocytes, T-cells, and NK-

cells in brain metastasis, remain to be elucidated.   

My project focuses on the crosstalk between the brain TME and tumor cells and attempts 

to answer the question of how the quiescent tumor cells in the brain acquire the essential traits 

from the brain microenvironment to promote their growth. 
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1.2. Exosomes and cancer 

1.2.1 Exosome composition and regulation 

Exosomes, one specific subtype of membrane vesicles, arise from the membranes of 

multi-vesicular body (MVB) [94, 95]. Exosomes are 50-150 nm in diameter. Exosomes can be 

isolated by high speed centrifugation (100,000g) and then floated at sucrose density from 1.13 to 

1.19g/ml. CD63, ALG-2-interacting protein X (Alix), tumor susceptibility gene 101 (Tsg101), 

and proteasome component Hsc10 are highly enriched in the exosomes [96]. Another type of 

membrane-enclosed vesicle is extracellular vesicles (EV), which are also called microvesicles, 

microparticles, ectosomes, or oncosomes. They germinate from plasma membrane (PM), and the 

sizes of these EVs are 100-1000nm in diameter [97]. Although exosomes and EVs come from 

different origins, they have similar abilities to communicate with other cells and modulate 

local/distant microenvironment.  

Exosome biogenesis and formation is generally controlled by the endosomal sorting 

complex required for transport (ESCRT) machinery [98-100]. ESCRT-0, -I, -II, and –III and 

accessory proteins regulate cargo clustering, bud formation, and vesicle scission. Exosome 

secretion is regulated by RAB family, especially RAB27a, RAB27b, RAB11, RAB35 and RAB7 

[101-103]. The RAB proteins in control of exosome secretion can differ in various cell lines. For 

example, RAB27a and RAB27b control the exosome release in Hela cells [101], while RAB7 

regulates the exosome release in MCF-7 breast cancer cells [103]. Soluble NSF-attachment 

protein receptor complex (SNARE) is also involved in exosome release [104, 105] (Fig. 4). 
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Exosomes are secreted by nearly all mammalian cells, and taken up by many cells. For 

example, cancer, fibroblast, and immune cells all have been reported to release or take up 

Figure 4. │Exosome biogenesis and secretion in eukaryotic cells. First exosomes fuse into 

early endosomes and MVBs. ESCRT machinery, lipids, and tetraspanins help exosome 

budding. Late MVBs fuse with plasma membrane to release exosomes or they fuse with 

lysosomes for degradation. RAB proteins (RAB11, RAB27 and RAB35) and SNARE are 

involved in the exosome secretion. On the contrary, EVs (microvesicles) germinate from 

plasma membrane, not from MVBs. Reprinted with permission from Joanna Kowal, 

Mercedes Tkach and Clotilde Thery. “Biogenesis and secretion of exosomes.” Current 

Opinion in Cell Biology. 2014. 29: 116-125. 

Figure 4 
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exosomes [106, 107]. Exosomes carry protein, lipids, and nucleic acid (mRNA, microRNA, and 

DNA) [108-110], as messengers for cell communication (Fig. 5). The protein, lipid, or nucleic 

acid cargo in exosomes is cell-specific [111].  The mechanism of how exosomes selectively 

package their cargo remains largely unknown and is worthy of further exploration. It has only 

been reported that mRNA secreted in exosomes have special sequences for export [112], but it is 

unclear what the criteria for exosomal packaging of protein, lipid, and microRNAs is.  In order to 

demonstrate that mRNA loading in EVs were exchanged between tumor cells in vivo, Zomer and 

the colleagues transfected tumor cells with Cre recombinase (Cre+ cells). After the reporter-

expressing cells took up EVs, their color was changed from pre-labeled red to green by the Cre-

LoxP system [113]. This directly showed that EVs containing mRNA can be transferred to other 

tumor cells. Although the same experiment was not performed with exosomes, it is very likely 

that exosomes have a similar ability to transfer mRNAs between cells.  

Of note, the uptake of exosomes by recipient cells is not random. The interaction involves 

specific receptors on the surface of both exosomes and recipient cells. Several reports indicate 

that selective exosome uptake might be determined by adhesion-associated molecules on the 

surface of exosomes, such as tetrapanins, glycoproteins, integrins and SNAREs [114, 115].  For 

example, CD54+ pancreas cells prefer to take up exosomes expressing tetrapanin 8 (Tspan8) and 

integrin α4 [115]. In light of exosomes being targeted to specific cells, exosomes have become a 

potential mediator to deliver microRNA, siRNAs, proteins, and others for tumor therapy. 
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Figure 5 

Figure 5. │The composition of exosome and EVs.  Exosomes or EVs contain components, 

such as proteins, lipids, and nucleic acids. The cargos of exosomes or EVs are cell-specific. 

Some subtypes of EVs, but not others, take up all the listed components. Big Evs can carry 

histones, proteasome, and ribosome proteins. Reprinted with permission from Marina Colombo, 

Graca Raposo and Clotilde Thery. “Biogenesis, Secretion and Intercellular Interactions of 

Exosomes and Other Extracellular Vesicles.” Annu. Rev. Cell. Dev. Biol. 2014. 30: 255-89. 
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1.2.2 Exosomal function in tumor 

Recently, exosomes have been widely studied for their roles in cell communication, 

especially in tumor progression and metastasis. Exosomes can change cell fate by autocrine 

signaling. Exosomes produced by chronic myeloid leukemia (CML) have an autocrine effect to 

activate anti-apoptotic pathways by TGF-β [116]. More importantly, exosomes mediate 

intercellular interactions and modulate the microenvironment by paracrine mechanisms. 

Exosomes from host cells serve as external stimuli for recipient cells and modulate their 

signaling pathways. Cancer cell-released exosomes are taken up by stromal cells to build tumor-

prone microenvironment; reciprocally, stromal cells in the tumor microenvironment release 

exosomes, which are taken up by cancer cells to facilitate their own growth. Due to the 

heterogeneous nature of cancer cells, exosomes or EVs secreted by tumor cells can change the 

protein expression in their neighboring tumor cells to alter their biological phenotypes. For 

example, glioma cells transferred the oncogenic receptor EGFRvIII by EVs to other glioma cells 

lacking this receptor [117], thereby activating the AKT pathway and promoting anchorage-

independent growth.  

Exosomes can induce drug resistance and modulate angiogenesis. Drug sensitive cells 

become drug resistant because they take up exosomes containing P-glycoprotein from drug 

resistant cells [118]. Exosomes from melanoma and ovarian cancer help tumor cells expel 

cytotoxic drugs [119-122]. Exosomes presenting tetraspanins also promote tumor growth by 

increasing angiogenesis [123]. Tspan8 combined with CD49d enhances endothelial cell 

proliferation and angiogenesis [124]. Notch ligand Delta-like 4 (Dll4) presented by tumor cells’ 

exosomes increases vessel density and branching in vivo [125].  
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Additionally, another important character of exosomes is modulating tumor immune 

response. The evidence of exosome-mediated intercellular antigen transfer was first reported by 

Dr. Clotilde Thery’s group [126, 127]. They showed that Epstein–Barr virus (EBV)-transformed 

B cells released exosomes containing MHC-II and specifically activated CD4+ T cells, while 

dendritic cells (DCs) secreted exosomes containing MHC-I and promoted CD8+ cellular immune 

response in vitro. Such functions expanded to tumor immunity. Tumor-derived exosomes or EVs 

were reported to activate immune response. Exosomes derived from tumor cells present 

neoantigens that are transferred by DC cells to activate the function of T cells, NK cells, or 

macrophages [128-132]. However, the opposite function, that tumor exosomes inhibited anti-

tumor immune response, was also reported [133]. Exosomes derived from tumors can contain 

proteins, such as TGF-β, or C-type lectin-like receptor NKG2D, which inhibit T cell and NK cell 

activation, and promote regulatory T cell (Treg) function or myeloid-derived suppressor cell 

(MDSC) development [132, 134]. Exosomes presenting FAS ligand (FasL) and TNF-related 

apoptosis-inducing ligand (TRAIL) induce the apoptosis of activated T cells [135, 136]. In 

glioma and lung carcinoma tumors, the majority of exosome-recipient cells are MDSCs. After 

taking the exosomes, MDSCs display an enhanced immunosuppressive phenotype [137]. 

Therefore, the exosomes exert both immune active and suppressive functions. Dissecting the 

mechanism of both functions should be helpful for targeting exosomes in cancer treatment.  

 

1.2.3 Exosomes and cancer metastasis 

As mentioned before, exosomes have become a hot topic in cancer biology, partly 

because of their extensive impact on cancer metastasis.  

1.2.3.a  Cell migration and invasion 

https://en.wikipedia.org/wiki/C-type_lectin
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Exosomes control directional cell movement. Sung and colleagues showed exosomes 

were required for the persistent and efficient movement of cancer cells. The mechanism is that 

fibronectin in autocrine-secreted exosomes bound with integrin, and then was converted into an 

adhesive form to promote cell migration [138]. Tumor associated fibroblasts secrete CD81-

containing exosomes to promote breast cancer cell migration and invasion by activating WNT-

planar cell polarity (PCP) signaling in tumor cells [139]. In order to promote cell invasion, 

exosomes derived from different cancer cells modulate the extracellular matrix. For example, 

exosomes derived from gynecological tumors induce extracellular matrix degradation by 

metalloproteinase [140]. Exosomes containing tetraspanins CD151 and Tspan8 derived from the 

rat pancreatic adenocarcinoma line ASML are essential for matrix degradation and tumor 

microenvironment reprogramming [141]. Exosomes also target the tight and adherent junctions. 

Exosomes from breast cancer can open the tight junctions of endothelial cells by transferring 

miR-105 to endothelial cells and therefore inhibiting the expression of ZO-1, a tight junction 

protein. [68]. Exosomes derived from cancer cells activate the EMT program in recipient cells. 

Exosomes contain EMT drivers, such as hypoxia-inducible factor alpha (HIFα), matrix 

metalloproteinase 13 (MMP 13), casein kinase Iiα, annexin A2, and latent membrane protein 1 

(LMP1), and lead to increased migration and invasion of recipient cells [142-145]. Zomer and 

colleagues found that less malignant tumor cells that took up EVs from malignant tumor cells 

displayed enhanced migratory behavior and metastatic capacity by in vivo imaging analysis 

[113].  

 

1.2.3.b  Pre-metastatic niches 
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Exosomes are capable of building pre-metastatic niches for disseminated cancer cells. 

This novel function of exosome has mainly been advanced by Dr. David Lyden and his 

colleagues. Exosomes from melanoma cells educate bone marrow progenitor cells through the 

receptor tyrosine kinase MET, supporting tumor growth [146]. The exosomes from pancreatic 

cancer cells contribute to the formation of pre-metastatic niches in the liver. PDAC exosomes are 

taken up by Kupffer cells. Highly expressed MIF in PDAC exosomes activates TGF-β release 

from Kupffer cells, which in turn increase fibronectin production and recruit bone marrow-

derived macrophages and neutrophils to form a fibrotic microenvironment for tumor growth 

[147]. Breast cancer exosomes that contain different integrins pre-determine the metastatic organ 

pattern. In particular, exosomal integrins α6β4 and α6β1 prime the lungs as the metastatic site, 

while exosomal integrin αvβ5 primes the liver [55]. The effect of exosomes on the pre-metastatic 

niches complements the “seed and soil” hypothesis, where the cancer cells modify the distant 

organs before they arrive by releasing the exosomes. 

 

1.2.4 Exosomes as therapeutic tools and biomarkers 

Exosomes represent a type of bio-vehicles that can be considered natural liposomes. They 

are membrane-permeable, well-tolerated, and can cross the blood-brain barrier. Therefore, 

exosomes have emerged as favorable candidate carriers for therapeutics of cancer and other 

diseases. The first appealing application of exosome is the delivery of drugs, microRNAs, 

siRNAs, and other therapeutic compounds, which stay stable in exosomes [148]. For example, 

exosomes could be used to deliver tumor suppressor microRNAs or siRNAs that knock down 

oncogenes to inhibit tumor growth. As exosomes target specific cell types or tissues, delivery by 

exosomes may also improve efficacy and reduce off-target effects. Synthetic target ligand 

expression on the surface of exosomes can further improve their cell or tissue targeting 



24 
 

specificity. For example, exosomes were engineered to express lysosome-associated membrane 

protein 2b (Lamp2b) with a tumor-targeting integrin to enhance tumor-specific uptake [149]. 

Second, exosomes can be applied for cancer vaccination. Exosomes can deliver tumor-derived 

antigens to induce anti-tumor immune responses. Dendritic cell-derived exosomes induced anti-

tumor immunity and have been used in clinical trials [150-152]. Third, given that cancer-cell 

derived exosomes can modify pre-metastatic niches [55], depleting these exosomes from the 

circulatory system is a possible option for blocking cancer metastasis. Inhibiting exosome 

assembly and release from tumor cells by inhibitors, or eliminating exosomes from cancer 

patients’ circulation by extracorporeal purification, leads to the reduction of exosomes in the 

circulation. In summary, using exosomes as a new venue for cancer therapy is promising despite 

the technical challenges.  

Many investigators have shown evidence supporting the application of exosomes for 

cancer treatment in vitro and in vivo [106]. However, currently only a few clinical trials using 

exosomes in cancer therapy have been implemented. The main challenges of using exosomes in 

cancer therapy include, but are not limited to, 1) how to load exogenous microRNAs, siRNAs, or 

drugs into exosomes and increase cell-specific transfer; 2) how to prevent inflammation and 

immune reactions when developing non-autologous exosomes or bioengineered exosomes; 3) 

how to increase the half-life of exosomes in the body and avoid rapid clearance by liver and 

kidney after injection; 4) when depleting exosomes in the blood of patients, how to prevent the 

loss of normal physiological functions of non-tumor-promoting exosomes; and 5) the cost 

concerns and technological challenges related to isolating large amounts of exosomes required 

for the treatment of patients. Exosomes can partake in both pro- and anti-tumor functions. 
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Therefore, we should thoroughly understand the complexity of exosome biology before widely 

implementing exosomes in clinical trials. 

Significant applications of exosomes include using exosomes as biomarkers for disease 

diagnosis, prognosis, and therapeutics. Exosome biomarkers for diagnosis or prognosis seem to 

be on the fast track, so cancer diagnosis based on exosomes has a bright future. Exosomes can be 

detected in bodily fluid, such as blood, urine, saliva, and cerebrospinal fluid. Therefore, it is an 

ideal non-invasive biomarker for tumor diagnosis. A great example is that exosomes from 

pancreatic cancers were found to be enriched with a cell surface proteoglycan, glypican-1 

(GPC1), which can be used as a highly sensitive and specific biomarker of pancreatic cancer 

[153]. Although GPC1 as a biomarker of pancreatic cancer needs to be validated in larger patient 

cohorts, this finding exemplifies the power of utilizing exosomes for cancer diagnosis. The main 

challenges of using exosomes in cancer diagnosis are sensitivity and specificity. Not every 

exosomal protein serving as a biomarker is as sensitive and specific as GPC1. Many biomarker 

candidates’ sensitivity and specificity are no better than current cancer biomarkers and most of 

them have not shown a clear promise for clinical application. The technical aspects for isolating 

and enriching exosomes from the blood or other bodily fluids also need to be further improved. 

In my project, I explore the function of exosomes in the bio-information communication 

between the brain microenvironment and tumor cells.  
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1.3  PTEN 

PTEN (Phosphatase and tensin homolog deleted on chromosome 10) is considered as one 

of the most important tumor suppressors [154, 155] for several reasons: 1) Germline mutation of 

PTEN exists in the PTEN hamartoma tumor syndromes (PHTS), including Lhermitte-Duclos 

disease, Bannayan-Riley-Ruvalcaba syndrome, Cowden disease, Cowden-like syndrome, and 

Proteus/Proteus-like syndrome [156-158]. 2) Heterozygous Pten+/- mice develop breast cancer, 

endometrial carcinoma, T-cell lymphoma/leukemia, and neoplasms of liver, prostate, 

gastrointestinal tract, thyroid, and thymus [159-161]. 3) PTEN loss is found in many advanced 

cancers, such as prostate cancer, breast cancer, melanoma, glioblastoma, and others [154, 155]. 

While PTEN protein structure, regulation, and function have been studied for twenty years, the 

complexity of PTEN in normal cells or cancers remains to be elucidated.  

 

1.3.1 PTEN structure 

Human PTEN contains 403 amino acids and is composed of three key functional 

domains: a protein tyrosine phosphatase (PTP) domain, a C2-membrane binding domain, and a 

C-terminal tail. The PTP domain is close to the N-terminal. The amino acids 1-185 at N-terminal 

are homologous to tensin and auxilin [154]. The PTP domain of PTEN contains motif C(x)5R, 

the specific feature of the protein tyrosine phosphatase family. The cysteine (C residue) in this 

motif controls the catalytic activity, while the arginine (R residue) controls the substrate binding 

[162]. The C2 domain regulates the binding of PTEN to phospholipid bilayers, thereby 

promoting the binding of PTP domain to its substrates [163]. The C-terminal tail contains PDZ 

(PSD-95, Discs-large, ZO-1)-binding motif, but the exact role of PDZ in PTEN regulation is still 
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elusive. Phosphorylation of C-terminal tail can regulate PTEN function [164], which will be 

addressed later.   

 

1.3.2 PTEN regulation  

PTEN is inactivated in many cancers, but the nature of PTEN loss is dependent on tumor 

type. Within the genetic change, PTEN functional loss is through gene deletion or mutation. 

Germ-line mutations of PTEN frequently occur in the PHTSs, while somatic mutations exist in 

many other cancers [165, 166]. The cancer genome atlas (TCGA) database analysis showed that 

most prostate and ovarian cancers presented PTEN gene deletion, while endometrial carcinomas 

or glioblastomas frequently contained PTEN mutation [167]. Other groups reported loss of 

heterozygosity (LOH) of PTEN also frequently happened in glioma, melanoma, and breast 

cancer [168], while somatic mutations of PTEN were identified in several other types of tumors, 

such as advanced prostate cancer [169] and late stage of bladder cancer, in addition to 

endometrial carcinomas and glioblastomas [168]  (Table 1). The outcome of loss-of-function 

PTEN mutation is similar as that of loss of whole PTEN gene. PTEN mutation frequently lies in 

the PTP domain or C2 domain. Most of mutations in PTP domain are missense mutations, while 

those in C2 domain are frameshift mutations [167]. PTEN loss can be due to epigenetic 

mechanisms too. DNA methylation and histone modification at PTEN gene promoter are 

observed in many types of cancer [168, 170, 171]. 
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Reprinted with permission from M. Christine Hollander, Gideon M. Blumenthal & Phillip A. 

Dennis “PTEN loss in the continuum of common cancers, rare syndromes and mouse 

models.” Nature Reviews. 2011. 11: 289-301. 

Table 1. Summary of PTEN and Pten alteration in specific cancers. 
 

http://www.nature.com/nrc/journal/v11/n4/full/nrc3037.html
http://www.nature.com/nrc/journal/v11/n4/full/nrc3037.html
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PTEN mRNA level is positively controlled by a few transcription factors, such as p53, 

early growth response protein 1 (EGR-1), and peroxisome proliferator-activated receptor γ  

(PPARγ) [172-174]. p53 is a PTEN transcription factor; on the other hand, PTEN stabilizes p53 

by inhibiting p53 degradation [172]. Therefore these two important tumor suppressors have 

positive reciprocity to each other. However, several other transcription factors SNAIL, CBF-1, c-

Jun, and nuclear factor-κB (NF-kβ) negatively regulate PTEN transcription [175-178]. PTEN is 

also regulated by microRNAs, which reduce PTEN mRNA stability and also inhibit the 

translation of PTEN protein. PTEN is targeted by many microRNAs, such as miR-21, miR-25, 

and miR 17-92 cluster [179-182]. In addition, long non-coding RNAs (lncRNAs) control PTEN 

mRNA expression as well. The PTEN pseudogene transcript PTENP1 was reported to sequester 

PTEN-targeting miRNAs, thereby increasing PTEN mRNA expression and protein level [183].  

Post-translational modifications can regulate PTEN expression too. PTEN is frequently 

phosphorylated within C2 domain and C-tails by protein kinases GSK3β, CK2α, ATM, ROCK, 

or Rak [184-190]. The phosphorylated residues in C2 domain activate PTEN function or stabilize 

PTEN protein. Phosphorylation of C-tail interacts with C2 domain to keep C2 domain from cell 

membrane, thereby inhibiting PTEN function. However, C tail can be auto-dephosphorylated and 

allow the functional competence of PTEN [191]. In the PTP domain, oxidation of catalytic site 

Cys124 forms a disulfide bond with Cys71 to inhibit PTEN phosphatase function [192, 193]. 

Catalytic sites Lys125 and Lys128 can be acetylated by acetyltransferase PCAF, thereby 

decreasing PTEN activity [194]. Another important modification is ubiquitination. PTEN is 

ubiquitinated by E3 ubiquitin-protein ligases NEDD4-1, XIAP, and WWP2 for degradation [189, 

195-197]. PTEN is mono-ubiquitinated by NEDD4-1 which is reported to control PTEN nuclear 
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localization [195]. SUMOlyation at Lys254 is also important in determining PTEN nuclear 

localization [198, 199] (Fig. 6). 

 

 

Furthermore, PTEN function is modulated by its binding partners. For example, PTEN 

binds to the sodium-hydrogen exchanger regulatory factor 1 and 2 (NHERF1 and 2) and PH 

domain leucine-rich repeat protein phosphatase 1 (PHLPP1) to form an inhibitory complex for 

phosphatidylinositol-3-kinase (PI3K)/the serine-threonine kinase AKT pathway [200, 201]. p85 

alpha, one subunit of PI3K, also binds with PTEN to stimulate PTEN lipid phosphatase activity. 

It seems paradoxical because p85 alpha generally stimulates the PI3K kinase activity which in 

Figure 6 

Figure 6.│Posttranslational modifications of PTEN. Most of PTEN phosphorylation sites are 

in its C2 and C-tail. PTEN also can be regulated by ubiquitination, oxidation, SUMOylation, 

and acetylation. PTEN-long initiates translation at N-terminal upstream at a CTG codon, 

containing extra 173 amino acids. Reprinted with permission from Carolyn A. Wordy and Jack 

E. Dixon. “PTEN” Annu. Rev.Biochem. 2014. 83:641-69. 
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turn inhibits PTEN function, but it shows the complex role of p85 alpha in PI3K-AKT pathway 

[202].  Meanwhile, several proteins that bind with PTEN inhibit its activity. For example, shank-

interacting protein-like 1 (SHARPIN) and mannosidase alpha class 2C member 1 (MAN2C1) 

interact with PTEN to attenuate PTEN lipid phosphatase function [203, 204].  

 

1.3.3 PTEN function   

PTEN was identified as a tumor suppressor for about twenty years and its lipid 

phosphatase function has been extensively studied.  PTEN dephosphorylates 

phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) to phosphatidylinositol 4,5-bisphosphate 

(PI(4,5)P2), which reverses the effect of PI3K, therefore antagonizing PI3K-AKT-mTOR 

pathway. AKT is one of prominent downstream effector of PI3K. AKT activates cell cycle by 

inhibiting FOXO, p27 and p130 [205, 206], prevents apoptosis by inhibiting pro-apoptotic genes, 

such as Fas-L and Bcl-2 interacting mediator of cell death (Bim) [207, 208]. AKT also promotes 

cell growth by negatively regulating tuberous sclerosis complex 2 (TSC2), thereby inducing 

mTOR pathway [209, 210]. Through antagonizing the PI3K/AKT pathway, PTEN regulates cell 

cycle, cell growth and metabolism, cell motility, and angiogenesis. PTEN also dephosphorylates 

β-Catenin, cAMP response element binding protein (CREB), Src Homology 2 Domain 

Containing (SHC), and SRC [211-214]. Therefore PTEN plays an important role in 

tumorigenesis, as well in the normal cellular function. 

The canonical function of PTEN located at the plasma membrane has been most widely 

studied. Recently, however, the function of nuclear PTEN and long secreted PTEN have 

emerged as new focuses as well. PTEN entering the nucleus depends on cell cycle.  High nuclear 

PTEN expression is observed in G0-G1 phase, and low expression is in S phase [215]. Nuclear 
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PTEN is critical for cell cycle arrest by several mechanisms. First, nuclear PTEN binds p53 and 

increases p53 level thereby inducing p53-mediated G1 arrest [216]. Second, nuclear PTEN 

tightens the association of the anaphase-promoting complex (APC/C) with CDH1, and decreases 

cyclin D1, which leads to cell arrest [217]. Nuclear PTEN also maintains centrosome stability by 

centromeric protein-C (CENP-C) [218] and controls chromosome integrity by binding with H1 

[219]. PTEN upregulates Rad51 expression, which controls DNA double-stranded break repair 

[220]. In summary, nuclear PTEN regulates DNA stability and cell cycle, independent of PI3K-

AKT pathway.  

PTEN-long (PTEN-L) contains an extra 173-amino acid domain compared with the 

classical PTEN. PTEN-L contains a secretion signal sequence so that it can be secreted from cell 

and received by the neighbor cells where it blocks PI3K-AKT pathway [221]. Detectable PTEN-

L in serum or plasm [221] might be a good biomarker for diabetes or other glucose metabolism 

disorders.  

PTEN is a haploinsufficient tumor suppressor, the loss of which induces tumor initiation, 

combined with other genetic deletion or mutation. PTEN loss promotes tumor growth generally 

by the canonical AKT-mTOR pathway. But what is the function of PTEN in tumor metastasis? 

PTEN promoting cell migration in vitro has been suggested for a decade. PTEN controls cell 

motility partly because PIP3 is assembled at the cell’s leading edge while PTEN localization is at 

the opposite side [222]. Another mechanism is that PTEN dephosphorylates focal adhesion 

kinase (FAK) or SHC to modulate cell motility [223]. PTEN overexpression inhibits the 

migration of glioblastoma and fibroblasts in vitro [224, 225]. However, the role of PTEN in 

tumor metastasis, at whole organism level, remains controversial and poorly-defined. In a PDAC 

mouse model, loss of PTEN combined with Kras mutation promoted local, liver, and lung 
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metastasis by activating NF-kB pathway[226]. In a colorectal cancer cell (CRC) mouse model, 

restoring PTEN reduced its metastatic capability [227].  However, in breast cancer, one group 

reported that PTEN loss occurred more often in brain metastasis, especially in HER2-

negative brain metastases, compared with primary tumors [228], while another group reported 

there was no difference in PTEN level between primary breast cancer and metastasis (distant 

nodes, skin, liver, lung, and bone) [229]. Therefore I decided to explore the exact function of 

PTEN in brain metastasis as my thesis project.  
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Chapter 2: Material and Methods 
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2.1 Reagents and cell culture 

 All common chemicals were from Sigma (St. Louis, MO). Pyrrolidinedithiocarbamic 

acid was from Santa Cruz Biotechnology (Santa Cruz, CA). Exo-FBS Exosome-depleted FBS 

was purchased from System Biosciences (SBI) (Mountain View, CA). PTEN (# 9188), p-Akt 

(T308) (#9275), p-Akt (S473) (#4060), Pan Akt (#4691), and Bim (#2933) antibodies were from 

Cell Signaling (Danvers, MA). CD9 (ab92726), Rab27a (ab55667), AMPK (ab3759), CCL2 

(ab9899), MAP2 (ab11267), and p-P70S6K (ab60948) antibodies were from Abcam 

(Cambridge, MA). Tsg101 (14497-1-AP) and Rab27b (13412-1-AP) antibodies were from 

Proteintech (Chicago, IL). CD81 (104901) antibody was from BioLegend (San Diego, CA). 

E2F1 (NB600-210) and CCR2 (NBP1-48338) antibodies were from Novus (Littleton, CO). 

GFAP (Z0334) antibody was from DAKO (Carpinteria, CA). IBA-1 antibody was from WAKO 

(Richmond, VA). Cre (969050) antibody was from Novagen (Madison, WI). NF-kB p65 (SC-

109), CD63 (SC-15363) antibody was from Santa Cruz (Santa Cruz, CA). DMA (sc-202459) 

and CCR2 antagonist (sc-202525) were from Santa Cruz (Santa Cruz, CA). MK2206 (S1078) 

was from Selleckchem (Houston, TX). PDTC (P8765) was from Sigma-Aldrich (St. Louis, MO). 

Human breast cancer cell lines (MDA-MB-231, HCC1954, BT474, and MDA-MB-435) and 

mouse cell lines (B16BL6 mouse melanoma and 4T1 mouse breast cancer) were purchased from 

ATCC and verified by MD Anderson Cancer Center (MDACC) Cell Line Characterization Core 

Facility. Primary glia was isolated as described13. Briefly, after homogenization of dissected 

brain from P0-P2 neonatal mouse pups, all cells were seeded on Poly-D-Lysine coated flasks. 7 

days later, flasks with primary culture were placed on an orbital shaker and shaken at 230 rpm 

for 3 hours. Warm DMEM 10:10:1 (10% of fetal bovine serum, 10% of horse serum, 1% 

Penicillin/streptomycin) were added and flasks were shaken again at 260 rpm overnight. After 
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shaking, fresh trypsin was added into the flask and leftover cells were plated with warm DMEM 

5:5:1 (5% of fetal bovine serum, 5% of horse serum, 1% Penicillin/streptomycin) to establish 

primary astrocyte culture. >90% of isolated primary glial cells were GFAP+ astrocytes. Primary 

cancer associated fibroblasts (CAFs) were isolated by digesting the mammary tumors from 

MMTV-neu transgenic mouse. 231.xenograft CAFs were isolated by digesting the mammary 

tumors from MDA.MB.231 xenograft. For the mixed co-culture experiments, tumor cells were 

mixed with equal number of freshly isolated primary glia or CAFs or NIH3T3 fibroblast cells in 

six-well plate (1:3 ratio). Co-cultures were maintained for 2-5 days before magnetic bead-based 

separation. For the trans-well co-culture experiments, tumor cells were seeded in the bottom well 

and freshly isolated primary glia, CAFs, or NIH3T3 cells were seeded on the upper insert (1:3 

ratio). Co-cultures were maintained for 2-5 days for the further experiments.  Lentiviral-based 

packaging vectors (Addgene, Cambridge, MA), pLKO.1 PTEN-targeting shRNAs and all 

siRNAs (Sigma), Human Cytokine Antibody Array 3 (Ray biotech), and lentiviral-based vector 

pTRIPZ-PTEN and pTRIPZ-CCL2 shRNAs (MDACC shRNA and ORFome Core, from Open 

Biosystems) were purchased. The human PTEN-targeting shRNA sequences in the lentiviral 

constructs were: 5’-

CCGGAGGCGCTATGTGTATTATTATCTCGAGATAATAATACACATAGCGCCTTTTTT-

3’ (targeting coding sequence); 5’-

CCGGCCACAAATGAAGGGATATAAACTCGAGTTTATATCCCTTCATTTGTGGTTTTT-

3’ (targeting 3’-UTR). The human PTEN-targeting siRNA sequences used were: GGUGUAAU 

GAUAUGUGCAU and GUUAAAGAAUCAUCUGGAU. The human CCL2-targeting siRNA 

sequences used were: CAGCAAGUGUCCCAAAGAA and CCGAAGACUUGAACACUCA. 

The mouse Rab27a-targeting siRNA sequences used were: CGAUUGAGAUGCUCCUGGA 
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and GUCAUUUAGGGAUCCAAGA. Mouse pLKO shRNA (shRab27a: TRCN0000381753; 

shRab27b: TRCN0000100429) were purchased from Sigma (St. Louis, MO). For lentiviral 

production, lentiviral expression vector was co-transfected with the third-generation lentivirus 

packing vectors into 293T cells using Lipo293 DNA in vitro Transfection Reagent (SignaGen). 

48 to 72 hours after transfection, cancer cell lines were stably infected with viral particles. 

Transient transfection with siRNA was performed using pepMute siRNA transfection reagent 

(SignaGen). For in vivo intracranial virus injection, lentivirus was harvested from 15cm plates 

48 hours after transfection of packaging vectors. After passing a 0.45μm filter, all viruses were 

centrifuged at 25,000 rpm for 90 min at 4 oC. Viral pellet was suspended in PBS (~200 fold 

concentrated). The final virus titer (~1 × 109 UT/ml) was confirmed by limiting dilution.  

 

2.2 Isolation of tumor cells from co-culture  

Cell isolation was performed based on the magnetic bead-based cell sorting protocol 

according to manufacturer’s recommendation (Miltenyi Biotec Inc., CA).  After preparation of 

single cell suspension, tumor cells (HCC1954 or BT474) were stained with primary EpCAM-

FITC antibody (Catalog #130-098-113) (50 μl per 107 total cells) and incubated for 30 min in the 

dark at 4oC. After washing, the cell pellet was re-suspended and Anti-FITC microbeads (50 μl 

per 107 total cells) were added before loading onto the magnetic column of a MACS separator. 

Column was washed twice and removed from the separator. The magnetically captured cells 

were flushed out immediately by firmly applying the plunger. The isolated and labeled cells 

were analyzed on a Gallios flow cytometer (Beckman Coulter). For EpCAM-negative MDA-

MB-231 tumor cells, FACS sorting (ARIAII, Becton Dickinson) was used to isolate GFP+ 

tumor cells from glia or CAFs.  
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2.3 Isolation of CD11b+ cells from mouse primary glia 

Isolation of primary glia was achieved by homogenization of dissected brain from 

postnatal days 0-2 mouse pups. After 7 days, trypsin was added onto plate and cells were 

collected. After centrifugation and re-suspension of cell pellet to single –cell suspension, cells 

were incubated with CD11b+ microbeads (Miltenyl Biotec) (50 μl per 107 total cells) for 30 min 

at 4 oC. The cells were washed with buffer and CD11b+ cells were isolated by MACS Column. 

CD11b+ cells were analyzed by flow cytometry and immunofluorescence staining.  

 

2.4 Western blotting 

Western blotting was done as previously described. Briefly, cells were lysed in lysis 

buffer (20 mM Tris at pH 7.0, 1% Triton-X 100, 0.5% NP-40, 250 mM NaCl, 3 mM EDTA, and 

protease inhibitor cocktail). Proteins were separated by SDS-PAGE and transferred onto a PVDF 

membrane. After membranes were blocked with 5% milk for 30 min, they were probed with 

various primary antibodies overnight at 4°C, followed by incubation with secondary antibodies 

for 1 hour at room temperature, and visualized with enhanced chemiluminescence reagent 

(Thermo Scientific). 

 

2.5 qRT-PCR  

Briefly, total RNA was isolated using miRNeasy Mini Kit (Qiagen) and then reverse 

transcribed using reverse transcriptase kits (iScript cDNA synthesis Kit, Bio-rad). SYBR-based 

qRT-PCR was performed using pre-designed primers (Life Technologies). miRNA assay was 

conducted using Taqman miRNA assay kit (Life Technologies). For quantification of gene 

expression, real-time PCR was conducted using Kapa Probe Fast Universal qPCR, and SYBR 
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Fast Universal qPCR Master Mix (Kapa Biosystems) on a StepOnePlus real-time PCR system 

(Applied Biosystems). The relative expression of mRNAs was quantified by 2-ΔΔCt with 

logarithm transformation. Primers used in qRT-PCR analyses are: Mouse CCL2: forward, 5’- 

GTTGGCTCAGCCAGATGCA-3’; reverse: 5’-AGCCTACTCATTGGGATCATCTTG-3’. 

Mouse ACTB: forward: 5’-AGTGTGACGTTGACATCCGT3’; reverse: 5’-

TGCTAGGAGCCAGAGCAGTA-3’. Mouse PTEN: forward: 5’-

AACTTGCAATCCTCAGTTTG-3’; reverse: 5’-CTACTTTGATATCACCACACAC-3’. Mouse 

CCR2 primer: Cat: 4351372 ID: Mm04207877_m1 (Life technologies, Grand Island, NY) 

 

2.6 miRNA labeling and transfection 

Synthetic miRNAs were purchased from Sigma and labeled with Cy3 by Silencer siRNA 

labeling kit (Life Technologies). Briefly, miRNAs were incubated with labeling reagent for one 

hour at 37oC in the dark, and then labeled miRNAs were precipitated by ethanol. Labeled 

miRNAs (100 pmoles) were transfected into astrocytes or CAFs in a 10 cm-plate. After 48 

hours, astrocytes and CAFs containing Cy3-miRNAs were co-cultured with tumor cells (at 5:1 

ratio).  

 

2.7 PTEN promoter methylation analysis and luciferase reporter assay 

of PTEN promoter activity   

Genomic DNA was isolated by PreLink genomic DNA mini Kit (Invitrogen), bisulfite 

conversion was performed by EpiTect Bisulfite Kit and followed by EpiTect methylation-

specific PCR (Qiagen). Primers for PTEN CpG island are 5’-

TGTAAAACGACGGCCAGTTTGTTATTATTTTTAGGGTTGGGAA-3’and 5’-
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CAGGAAACAGCTATGACCCTAAACCTACTTCTCCTCAACAACC-3’. Luciferase reporter 

assays were done as previously described27. The wild-type PTEN promoter driven pGL3-

luciferase reporter was a gift from Dr. A. Yung (MD Anderson Cancer Center). The pGL3-

PTEN reporter and a control Renilla luciferase vector were co-transfected into tumor cells by 

Lipofectamine 2000 (Life Technologies). After 48-hours, tumor cells were co-cultured with 

astrocytes or CAFs. Another 48 hours later, luciferase activities were measured by Dual-

Luciferase Report Assay Kit (Promega) on Luminometer 20/20 (Turner Biosystems). The 

PTEN-3’UTRs with various miRNA-binding site mutations were generated by standard PCR-

mediated mutagenesis method and inserted downstream of luciferase reporter gene in pGL3 

vector. The activities of the luciferase reporter with the wild-type and mutated PTEN-3’UTRs 

were assayed as described above. 

 

2.8 Exosome isolation and purification  

Astrocytes or CAFs were cultured in the media with Exosome-depleted FBS for 48-72 

hours and exosomes were collected from their culture media after sequential ultracentrifugation 

as described previously. Briefly, cells were harvested, centrifuged at 300×g for 10 minutes and 

the supernatants were collected for centrifugation at 2000×g for 10 minutes, 10,000×g for 30 

minutes and 100,000×g for 70 minutes. The pellet was washed once with PBS and purified by 

centrifugation at 100,000×g for 70 minutes again. The final pellet containing exosomes was re-

suspended in PBS and used for 1) TEM by fixing exosomes with 2% glutaraldehyde in 0.1 

M phosophate buffer, pH 7.4; 2) measure of total exosome protein content using BCA Protein 

Assay normalized by equal number of primary astrocytes and CAF cells; 3) Western blotting of 
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exosome marker protein CD63, CD81 and Tsg101; and 4) real-time qRT-PCR by extracting 

miRNAs with miRNeasy Mini Kit (Qiagen). 

2.9 Transmission electron microscopy 

Fixed samples were placed on 100 mesh carbon coated, formvar coated nickel grids 

treated with poly-L-lysine for about 30 minutes. After washing the samples on several drops of 

PBS buffer, samples were incubated on drops of buffered 1% gluteraldehyde for 5 minutes, and 

then washed several times on drops of distilled water. Afterwards, samples were negatively 

stained on drops of millipore-filtered aqueous 4% uranyl acetate for 5 minutes. Stain was blotted 

dry from the grids with filter paper and samples were allowed to dry. Samples were then 

examined in a JEM 1010 transmission electron microscope (JEOL, USA, Inc., Peabody, MA) at 

an accelerating voltage of 80 Kv. Digital images were obtained using the AMT Imaging System 

(Advanced Microscopy Techniques Corp., Danvers, MA).  

 

2.10 Flow cytometry analysis of exosome marker proteins, Annexin V and 

CCR2  

For exosome detection, 100 μl exosome isolated from 10 ml conditioned media of 

astrocytes or CAFs were incubated with 10 μl of aldehyde/sulfate latex beads (4 μm-diameter, 

Life Technologies) for 15 min at 4oC.  After 15 min, PBS was added to make sample volume up 

to 400 μl which was incubated overnight at 4oC under gentle agitation. Exosome-coated beads 

were washed twice in FACS washing buffer (1% BSA and 0.1% NaN3 in PBS), and re-

suspended in 400 μl FACS washing buffer, stained with 4 μg of PE-conjugated anti-mouse CD63 

antibody (BioLegend) or mouse IgG (Santa Cruz Biotechnology) for 3 hours at 4oC under gentle 

agitation and analyzed on a FACS Canto II flow cytometer. Samples were gated on bead singlet 
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based on FCS and SSC characteristics (4 μm-diameter). For Annexin V apoptosis assay, after 24 

hrs doxorubicin (2uM) treatment, the cells were collected, labeled by APC-Annexin V antibody 

(Biolegend) and analyzed on a FACS Canto II flow cytometer.  CD11b+ and BV2 cells were 

stained with CCR2 antibody (Novus) at 4 oC overnight; they were then washed and stained with 

Alexa Fluro 488 anti-rabbit IgG (Life Technologies) at room temperature for 1 hour. Then the 

cells were analyzed on a FACS Canto II flow cytometer. 

 

2.11 In vivo experiments 

All animal experiments and terminal endpoints were carried out in accordance with 

approved protocols from the Institutional Animal Care and Use Committee of MDACC. Animal 

numbers of each group were calculated by power analysis and animals are grouped randomly for 

each experiment. No blinding of experiment groups was conducted. Mammary fad pad (MFP) 

tumors were established by injection of 5×106 tumor cells in 100 µl of PBS:Matrigel mixture 

(1:1 ratio) orthotopically into the MFP of 8-weeks old swiss nude mice as done previously28. 

Brain metastasis tumors were established by intracarotid artery (ICA) injection of tumor cells 

(250,000 cells in 0.1ml HBSS for MDA-MB-231, HCC1954, MDA-MB-435, 4T1, B16BL6 and 

500,000 cells in 0.1ml HBSS for BT474.m1 into the right common carotid artery as done 

previously29. Mice (6-8 weeks) were randomly grouped into designated groups. Female mice are 

used for breast cancer experiments, both female and male are used for melanoma experiments.  

Since brain metastasis model does not result in visible tumor burdens in living animal, the 

endpoints of in vivo metastasis experiments are based on the presence of clinical signs of brain 

metastasis, including but not limited to, primary CNS disturbances, weight loss, and behavioral 

abnormalities. Animals are sacrificed upon showing above signs or one to two weeks post-
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surgery based on specific experimental designs. Brain metastasis lesions are enumerated as 

experimental readout.  Brain metastases were counted as micromets and macromets. The 

definition of micromets and macromets are based on a comprehensive mouse and human 

comparison study previously published30. Briefly, ten HE-stained serial sagittal sections (300 

μm/section) through the left hemisphere of the brain were analyzed for the presence of 

metastatic lesions. We counted micrometastases (i.e., those ≤50 μm2) to a maximum of 300 of 

micrometastases per section and every large metastasis (i.e., those >50 μm2) in each section. 

Brain-seeking cells from overt metastases and whole brains were dissected and disaggregated in 

DMEM/F-12 medium using Tenbroeck homogenizer briefly. Dissociated cell mixtures were 

plated on tissue culture dish. Two weeks later, tumors cells recovered from brain tissue were 

collected and expanded as brain-seeking sublines (Br.1). For the astrocyte miR-19 knockout 

mouse model, Mirc1tm1.1Tyj/J mice (Jax lab) (6-8 weeks) were intracranially injected with 

Ad5.GFAP.Cre virus (Iowa University, Gene Transfer Vector Core) 2 μl (MOI ~108 units/μl) per 

point, total 4 points at the right hemisphere (n=9). Control group (n=7) was injected with the 

same dose Ad5.RSVβ-Gluc (Ad.GLuc) at the right hemisphere. All intracranial injections were 

performed by an implantable guide-screw system. One week after virus injection, mice were 

intracarotidlly injected with 2 × 105 B16BL6 tumor cells. After two weeks, whole brains were 

dissected and fixed in 4% formaldehyde, and embedded in paraffin. Tumor formation, 

histological phenotypes of H&E-stained sections, and immunohistochemistry staining were 

evaluated. Only parenchymal lesions, which are in close proximity of adenovirus injection, were 

included in our evaluation. Tumor size was calculated as (longest diameter) × (shortest diameter) 

^ 2 × 0.5. For intracranial tumor model, Mirc1tm1.1Tyj/J mice (Jax lab) (6-8 weeks) were 

intracranially injected as described above. Seven mice were used in the experiment. One week 
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later, these mice were intracranially injected with 2.5 × 105 B16BL6 tumor cells at both sides 

where adenoviruses were injected. After another week, whole brains were dissected and fixed in 

4% formaldehyde, and embedded in paraffin. Tumor formation and phenotype were analyzed as 

above.  

For the Rab27a/b knockdown mouse model, seven C57BL6 mice (Jax lab) (6-8 weeks) 

were intracranially injected with concentrated lentivirus containing shRab27a and shRab27b 

(ratio 1:2) 2 μl per point, total 3 points at the right hemisphere; concentrated control lentivirus 

containing pLKO.1 scramble were injected at the left hemisphere. All intracranial injections 

were performed by an implantable guide-screw system. One week later, mice were intracranially 

injected with 5 × 104 B16BL6 tumor cells at both sides where they had been infected. After one 

week, whole brains were dissected and fixed in 4% formaldehyde, and embedded in paraffin. 

Tumor formation, histological phenotypes of H&E-stained sections, immunohistochemistry 

staining were evaluated. When perform metastases size quantification, only parenchymal lesions 

that in close proximity to adenovirus injection sites were included into analyses.  Tumor size was 

calculated as (longest diameter) × (shortest diameter) ^ 2 × 0.5. For exosome rescue 

experiments, eight C57BL6 mice (Jax lab) (6-8 weeks) were intracranially injected with 

concentrated lentivirus containing shRab27a and shRab27b (ratio 1:2) 2 μl per point, total 3 

points at both hemispheres. One week later, these mice were intracranially injected with 5 × 104 

B16BL6 tumor cells with 10 μg exosome isolated from astrocyte media at right sides where they 

had been injected with lentivirus; 5 × 104 B16BL6 tumor cells with vehicle were injected at left 

sides where lentivirus had been injected. After another week, whole brains were dissected and 

fixed in 4% formaldehyde, and embedded in paraffin. Tumor formation and phenotype were 

analyzed as above. 
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For in vivo extravasation assay, equal number of cells labeled with GFP-control shRNA 

and RFP-PTEN shRNA (Open Biosystems) were mixed and ICA injected. After cardiac 

perfusion, brains were collected and sectioned through coronal plan on a vibrotome (Leica) into 

50 μm slice. Fluorescent cells were then counted. For inducible PTEN expression in vivo, mice 

were given doxycycline (10 μg/kg) every other day. To quantify brain metastasis incidence and 

tumor size, brains were excised for imaging and histological examination at the end of 

experiments. Ten serial sagittal sections every 300 microns throughout the brain were analyzed 

by at least two pathologists who are blinded to animal groups in all above analyses.  

 

2.12 Reverse Phase Protein Array 

Reverse phase protein array (RPPA) of PTEN-overexpressing cells was performed in 

MDACC Functional Proteomics core facility. Briefly, cellular proteins were denatured by 1% 

SDS, serial diluted and spotted on nitrocellulose-coated slides. Each slide was probed with a 

validated primary antibody plus a biotin-conjugated secondary antibody. The signal obtained 

was amplified using a Dako Cytomation–catalyzed system and visualized by DAB colorimetric 

reaction. The slides were analyzed using customized Microvigene software (VigeneTech Inc., 

Carlisle, MA). Each dilution curve was fitted with a logistic model (“Super curve Fitting” 

developed at MDACC) and normalized by median polish. Differential intensity of normalized 

log values of each antibody between RFP (control) and PTEN overexpressed cells were 

compared in GenePattern (http://genepattern.broadinstitute.org).  Antibodies with differential 

expression (p<0.2) were selected for clustering and heatmap. The data clustering was performed 

using GenePattern.  
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2.13 Patient samples 

 Two studies in separate cohorts were conducted. The first one was a retrospective 

evaluation of PTEN in two cohorts. 1) Archived formalin fixed and paraffin-embedded (FFPE) 

brain metastasis specimens (n=131) from patients with a history of breast cancer who presented 

with metastasis to the brain parenchyma and had surgery at MDACC (Supplementary 

information). Tissues were collected under a protocol (LAB 02-486) approved by the 

institutional review board (IRB) at MDACC. 2) Archived unpaired primary breast cancer FFPE 

specimens (n=139) collected under an IRB protocol (Lab 02-312) at MDACC (Supplementary 

information). Formal consent was obtained from all patients. The second study was a 

retrospective evaluation of PTEN, CCL2 and IBA1 in the matched primary breast tumors and 

brain metastatic samples from 35 patients, of which there are 12 HER2-positive, 14 triple-

negative and nine ER-positive tumors according to clinical diagnostic criteria (Supplementary 

information). Formalin-fixed, paraffin-embedded primary breast and metastatic brain tumor 

samples were obtained from the Pathology Department, University of Queensland Centre for 

Clinical Research (Queensland, Australia). Tissues were collected with approval by human 

research ethics committees at the Royal Brisbane and Women’s Hospital (2005/022) and the 

University of Queensland (2005000785). For tissue microarray (TMA) construction, tumor-rich 

regions (guided by histological review) from each case were sampled using 1 mm cores. All the 

archival paraffin-embedded tumor samples were coded with no patient identifiers.  

 

2.14 Immunohistochemistry (IHC) and Immunofluorescence (IF)  

Standard IHC staining was performed as done previously28. Briefly, after de-

paraffinization and rehydration, 4 μm sections were subjected to heat-induced epitope retrieval 
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(0.01 M citrate for PTEN). Slides were then incubated with various primary antibodies at 4°C 

overnight, after blocking with 1% goat serum. Slides underwent color development with DAB 

and hematoxylin counterstaining. Ten visual fields from different areas of each tumor were 

evaluated by two pathologists independently (blind to experiment groups).   Positive IBA1 and 

Ki-67 staining in mouse tumors were calculated as percentage of positive cells per field (%) and 

normalized by the total cancer cell number in each field. TUNEL staining was counted as 

average positive cells/field (10 random fields). We excluded necrotic areas in the tumors from 

evaluation. Immunofluorescence (IF) was performed following the standard protocol 

recommended by Cell Signaling Inc. Briefly, after washing with PBS twice, cells were fixed 

with 4% formaldehyde. Samples were blocked with 5% normal goat serum in PBS for 1 hour 

before incubation with a primary antibody cocktail overnight at 4°C, washed, then incubated 

with secondary antibodies before examination using confocal microscope. Pathologists were 

blinded to the group allocation during the experiment and when assessing the outcome. 

 

2.15 Bioinformatics and statistical analysis  

Publicly available GEO datasets GSE14020 and GSE19184, GSE2603, GSE2034 and 

GSE12276 were used for bioinformatics analysis. The top 2 × 104 verified probes were subjected 

to analysis. Differentially expressed genes between metastases from brain and other sites 

(primary or other metastatic organ sites) were analyzed by SAM analysis in R statistical 

software. The 54 commonly down-regulated genes in brain metastases from GSE14020 and 

GSE19184 were depicted as heat map by Java Treeview. For power analysis, we calculated 

sample size using Pwr package in R environment. For staining of patient samples, we calculated 

the correlation by Fisher’s exact test.  For survival analysis of GSE2603, the patient samples 
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were mathematically separated into PTEN-low and -normal groups based on K-means (K=2). 

Kaplan-Meier survival curves were generated by survival package in R. Multiple group IHC 

scores were compared by Chi-square test and Mantelhaen test in R. All quantitative experiments 

have been repeated using at least three independent biological repeats and are presented as mean 

± s.e.m. or mean ± s.d.. Quantitative data were analyzed either by one-way analysis of variance 

(ANOVA) (multiple groups) or t-test (two groups). P < 0.05 (two-sided) was considered 

statistically significant.   
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Chapter 3: Microenvironment-induced PTEN Loss 

by Exosomal microRNA Primes Brain Metastasis 

Outgrowth 

Most of this work has been published in: 

Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, 

Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, 

Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D.  Microenvironment-

induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. 

Nature. 2015 Nov 5;527(7576):100-4.  
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3.1 Specific PTEN loss in brain metastasis is induced by brain 

microenvironment  

3.1.1 Dramatic PTEN loss in clinical and experimental brain metastases 

To obtain insights into how quiescent tumor cells acquire essential traits from metastatic 

organ microenvironment for their relapse, we set to start from integrated analysis of public 

available gene expression profiles from both clinical metastatic tumors and well-controlled 

experimental metastasis models (Fig. 7a-7c).  Clinical metastases of breast cancer profile 

(Massague dataset, GSE14020) exhibited that 650 genes were significantly down regulated in 

brain metastases compared with bone and lung metastases (Fig.7b). We next compared the 

global gene expression level between experimental metastases and matched primary tumor 

derived from three differential cancer cell lines (human breast cancer cell MDA-MB-231.Br3, 

human prostate cancer cell PC14.Br4 and human melanoma cell A375SM) (Lee dataset, 

GSE19184). Compared with their respective primary site, 2161 genes were commonly down 

regulated in the brain metastases (Fig.7c). PTEN was one of the 54 down regulated genes 

commonly observed in both microarray analyses (Fig. 7a-7c). In order to confirm our finding 

from dataset analysis, we firstly collected 139 cases of primary breast tumors and 131 cases of 

brain metastasis tumor. In this cohort, primary breast tumors and brain metastasis tumor were 

unmatched. Our immunohistochemistry (IHC) analyses of PTEN expression confirmed a 

significantly higher rate of PTEN loss (defined by an immunoreactive score (IRS) of 0–3) [214] 

in brain metastases (71%) than in unmatched primary breast cancers (30%) (Fig. 8a).  We also 

collected 35 cases of primary breast tumors with matched brain metastasis tumor in the second 

patient cohort. PTEN loss was also detected at a significantly higher frequency in brain 

metastases (71%) than in matched primary breast cancers (37%) in this cohort (Fig. 8b). The 

http://www.nature.com/nature/journal/v527/n7576/full/nature15376.html#f1
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result was consistent with the observation of the first unmatched cohort. Above observations 

showed PTEN dramatically low-expressed in clinical brain metastases and reveled a unique role 

of PTEN in the brain-specific metastasis process.  
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Figure 7. | Organ-specific loss of PTEN in brain metastases. a, Schematics of microarray 

analyses. Patients’ brain metastases exhibited a discrete gene expression profile with 650 

genes significantly down-regulated compared to bone or lung metastases (GSE14020). Brain 

metastases derived from three cancer cell lines exhibited 2161 commonly down-regulated 

genes compared to their respective primary tumors (GSE19184). PTEN is one of only 54 

commonly down-regulated genes in brain metastases of both datasets. b, Heat-maps 

showing expression of 54 commonly down-  regulated genes (see a) in clinical brain 

metastases versus lung metastases and bone metastases. c, Heat-maps showing expression of 

the 54 genes commonly down-  regulated genes (see a) in cell line-induced primary tumors 

versus experimental brain metastases. Collaborated with Siyuan Zhang and Jun Yao. 

Figure 7  
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3.1.2 PTEN loss in the subtypes of breast cancer brain metastases  

Clinically, HER2+ and triple negative breast cancers (TNBC) are two major types of 

breast cancer that more frequently metastasize to the brain[230]. Thus, it is conceivable that 

these two types (HER2+ and TNBC) constitute the majority of brain metastasis cases studied 

here. We stained 35 primary breast tumor and matched brain metastasis tissue samples with ER, 

PR, and HER2. Then, we analyzed PTEN expression levels by IHC in each subtype of breast 

cancers in this cohort (Fig. 9a). Based on IHC staining of ER, PR, and HER2, the 35 cases were 

divided into three subtypes: HER2+, triple negative, and hormone receptor (HR)+. Most of the 

primary breast tumors and matched brain metastases were of the same subtypes, but 5 cases of 

Figure 8 

Figure 8. | IHC analysis of PTEN expression in clinical samples. a, Representative IHC 

staining and histograms of PTEN protein levels in primary breast tumors and unmatched 

brain metastases (Chi-square test). b, Histograms of PTEN protein levels in primary breast 

tumors and matched brain metastases from 35 patients (Chi-square test). Collaborated with 

Hai Wang and Qingling Zhang. 
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brain metastases subtypes were different from their primary breast tumors (Fig. 9b). In the 

HER2+ and triple negative groups, PTEN-loss was more prominent in brain metastases (66.7% 

in HER2+ brain metastases vs. 16.7% in HER2+ primary breast cancer; 92.9% in triple negative 

brain metastases vs. 40% in triple negative primary breast cancer). In the HR+ subtype, PTEN-

loss cases in brain metastases were not significantly different to in the primary breast tumor (Fig. 

9a). Although this matched cohort was small, data from the extensive statistical analyses of 

subtypes of patients consistently demonstrated that PTEN-loss in brain metastases was 

significantly more than in primary breast tumors, especially in the HER2+ and triple negative 

subtypes, which generally have higher incidences of brain metastasis.  
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3.1.3 Specific PTEN loss in brain metastases, not other metastatic organs 

To test the hypothesis that PTEN-loss promotes the brain-specific metastasis, we knocked 

down PTEN in breast cancer cells before intracarotid injection to model brain metastasis. To our 

surprise, knocking down PTEN did not enhance the overall brain metastasis incidence nor do 

brain metastases size (Fig. 10a). Furthermore, patients with PTEN-normal or PTEN-loss primary 

tumors had comparable levels of brain-metastasis-free survival, and patients with or without 

brain metastases had similar PTEN levels in their primary tumors (Fig. 10b-10c). Thus, the 

observed PTEN loss in brain metastases was unlikely to be derived from PTEN-low primary 

Figure 9. | PTEN expression in clinical subtypes of matched small cohorts. a, The 

parameter  contingency tables showing the patient tumor  distribution (matched small cohort 

in Fig.8b). Chi-square test was used to compare IHC score in primary breast tumor and 

matched brain metastases. p<0.05 is significant difference. b, The clinical subtype change 

from primary tumor to brain metastases in the matched small cohort. Collaborated with Jodi 

Saunus and Qingling Zhang. 

Figure 9 
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tumors.  This perplexing observation led us to further decipher the intriguing role of PTEN in 

brain metastasis. Accumulating evidence suggests that metastasis tumor microenvironment 

(TME) might regulate gene expression of tumor cells [231].  To investigate whether PTEN loss 

in brain metastasis is a secondary non-genetic event imposed by the brain microenvironment, we 

injected five PTEN-normal breast cancer cell lines (MDA-MB-231, HCC1954, BT474, MDA-

MB-435, 4T1) either into mammary fat pad (MFP) to establish primary xenograft tumor or 

intracarotidly to induce brain metastases respectively. The tumors derived from the same source 

of cells exhibited a striking difference in PTEN expression in the different microenvironments 

(Fig. 11a).  The mammary tumor expressed a similar level of PTEN as the original cultured cells 

before injection, whereas there was a notable PTEN down regulation in brain metastases tumor 

compared to the respective MFP tumors, indicating disseminated tumor cells with normal PTEN 

expression might lose their PTEN expression at brain TME. This was also observed in the 4T1 

syngeneic mouse model (Fig. 11b). It indicated that the specific PTEN-loss in brain metastases 

was independent of immune responses. We also injected MDA-MB-231 and 4T1 (mouse breast 

cancer cell line) into tail veil to generate lung metastases (Fig. 11b). The lung metastases 

expressed the similar level of PTEN as primary tumor, which showed PTEN down regulation 

specifically in brain metastases, not in other metastatic organs. 
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Figure 10. | PTEN loss in brain metastasis is not derived from PTEN-low primary 

tumors. a, PTEN western blots (WB, left) and brain metastasis counts 30 days after 

intracarotid injection (right) of MDA-MB-231Br cells transfected with control or PTEN 

shRNAs. Large Mets: >50 μm in diameter (mean ± s.e.m., Chi-square test). b,  Kaplan–Meier 

survival analyses showing no significant differences in brain metastasis-free survival between 

breast cancer patients with primary tumors expressing normal PTEN or low PTEN mRNA in 

GEO cDNA microarray set GSE2603. c, PTEN mRNA levels detected in primary breast 

tumors from patients with or without brain metastasis relapse. Three GEO cDNA microarray 

datasets (GSE2034, GSE2603 and GSE12276) with clinical annotation were analyzed. 

Relative PTEN expression levels were compared by t-test. Collaborated with Siyuan Zhang 

and Jun Yao. 

Figure 10 
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Figure 11 

Figure 11. | PTEN expression in different metastatic organ microenvironments and in 

vitro culture condition. a, Breast cancer cell lines (MDA-MB-231, HCC1954, BT474, and 

MDA-MB-435) were cultured and injected either to mammary fad pad (MFP) to form primary 

tumor or intracarotidly to form brain metastases. Cells pellets and tumor tissues were stained for 

PTEN expression by immunohistochemistry using anti-PTEN antibodies. b, IHC staining of 

PTEN in brain metastases, paired lung metastases and primary tumor derived from either 

MDA-MB-231 or  4T1 cells. PTEN expression level was analyzed based on IRS scoring 

system. Collaborated with Siyuan Zhang, Hai Wang and Qingling Zhang. 
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3.1.4 Adaptive PTEN-loss at the brain TME 

Breast cancers are heterogeneous. To test whether the marked PTEN-loss in the brain 

metastases resulted from rare PTEN-low cells pre-existed among the heterogeneous cell 

populations, we repeated the injections with cells clonally expanded from single PTEN-normal 

tumor cells. Remarkably, the brain metastases from intracarotid artery (ICA) injection lost PTEN 

expression while MFP tumors remained PTEN-normal (Fig. 12a), suggesting that PTEN-loss 

brain metastases were not selected from pre-existing PTEN-low cells in the primary tumors.  To 

investigate the mechanism of this brain-specific PTEN-loss, we isolated PTEN-low cells from 

brain metastases and established brain-seeking sub-lines in culture (1° Br cells). Unexpectedly, 

the cultured 1° Br cells regained PTEN-normal expressions (protein and mRNA) similar to their 

parental cells before ICA injection (Fig. 12b). Analogously, two in-vivo-selected brain-seeking 

sublines exhibited similar PTEN levels to their matched parental cells in vitro (Fig. 12c). These 

indicate that the brain TME induced the specific PTEN-loss in brain metastasis in vivo. To verify 

this PTEN-loss was not due to gain of genetic alterations during the metastasis process, we re-

injected the cultured PTEN-normal primary brain sublines (1° Br cells) back to mice ICA to 

establish secondary brain metastases (2° Brain Mets) or MFP for primary tumors (Fig.13a). 

Again, we detected a distinct PTEN-loss in the 2° Brain Mets but not in 2° MFP tumors (Fig. 

13b). Then, we re-established 2° Br cell strains from 2° Brain Mets and PTEN mRNA level was 

fully restored in cultured 2° Br cells (Fig. 13b). We repeated this experiment in two models, 

HCC1954 and MBA.MD.231. The results were consistent (Fig. 13c). This reversible PTEN 

expression indicated a non-genetic PTEN loss in the brain tumor microenvironment (TME). 
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Figure 12 

Figure 12. | PTEN loss in brain metastasis happens in vivo, not in vitro. a, PTEN 

IHC staining of tumors derived from clonally expanded of PTEN-normal sublines. ICA: 

intracarotid artery; MFP: mammary fat pad. b, WB and qRT-PCR of PTEN expression 

in the indicated parental (P) and brain-seeking (Br) cells under culture. c, PTEN mRNA 

levels between parental MDA-MB-231 and CN-34 breast cancer cell lines (blue) and 

their brain-seeking sublines (red). Normalized PTEN-specific probe intensity values 

were extracted from cDNA microarray dataset GSE12237. Dot plot shows the mean 

probe intensity derived from independent RNA samples. Collaborated with Siyuan 

Zhang. 
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Figure 13 

Figure 13. | PTEN loss in brain metastasis is reversible when tumor cells leave brain 

microenvironment. a, Schematic of in vivo re-establishment of secondary brain metastasis, 

MFP tumor, and their derived cell lines. b, PTEN qRT-PCR (mean ± s.e.m., t-test) and IHC in 

HCC1954Br secondary tumors and cultured cells. c, PTEN qRT-PCR (mean ± s.e.m., t-test) 

and IHC in MDA.MB.231Br secondary tumors and cultured cells. Collaborated with Siyuan 

Zhang. 
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3.2 Astrocyte-derived exosomal miR-19a silences PTEN expression in tumor 
cells 

3.2.1 Astrocyte is response to PTEN loss in metastatic tumor cells 

To explore how the brain TME regulates PTEN in the metastatic tumor cells, we co-

cultured tumor cells with primary glia (>90% astrocytes) derived from neonatal mouse brain, 

cancer associated fibroblast (CAF) isolated from mammary tumors of MMTV-Neu mice which 

express an activated rat c-neu oncogene under the mouse mammary tumor virus (MMTV) 

promoter, or NIH3T3 fibroblasts. Co-culture with glia led to a significant decrease 

of PTEN mRNA and PTEN protein (Fig. 14a-14b) in all four tumor cells (MDA-MB-231, 

HCC1954, 4T1 and B16BL6), compared to under co-culture with CAF or NIH3T3, or tumor 

cells cultured in media only without any fibroblasts.  In this experiment, it also showed that co-

cultured with the same number (2x105) of fibroblasts (CAF or NIH3T3) as glia did not have a 

higher PTEN level compared to tumor cells cultured in media only without any fibroblasts, so it 

excluded one possible that CAF cells maintained PTEN expression in tumors outside brain. We 

also have extracted primary CAFs from MDA-MB-231 xenograft tumors grown in SCID mice 

which were lack of functional T cells and B cells. Co-culture of tumor cells with these CAFs 

from primary tumors did not significantly change PTEN mRNA expression (Fig. 15a), and 

PTEN protein level in tumor cells (Fig. 15b), but co-culture of tumor cells with primary glia 

significantly suppressed expression of PTEN at both mRNA and protein levels (Fig. 15a-15b). 

These data were consistent with previous observations using CAFs from MMTV-Neu mice, 

further strengthening our conclusion that glia but not CAFs produce inhibitory factors that 

significantly down-regulate PTEN expression in metastatic tumor cells. 

The brain stromal cells contain astrocytes, microglia and oligodentrocytes. We have 

isolated astrocytes by specific GFAP biomarker, which is predominately expressed in reactive 
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astrocytes, but not in mature oligodendrocytes nor in microglia, [232, 233].  We also isolated 

microglia by surface marker CD11b+ beads, oligodentrocyte by A2B5 beads from primary glial 

cells [234, 235]. We then cultured MDA-MB-231 breast cancer cells in media only, with CAFs, 

or with the isolated different cell populations of the brain microenvironment and detected PTEN 

expression in MDA-MB-231 breast cancer cells four days later. PTEN protein levels in tumor 

cells had minimal changes when co-cultured with microglia, or with oligodendrocyte (as with 

CAFs), in contrast to the 50% decrease when co-cultured with astrocytes (Fig. 16). The data 

indicated that our observed PTEN loss phenotype was primarily contributed by astrocytes. 
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Figure 14 

Figure 14. | Co-culture with glia silences PTEN in tumor cells. a, PTEN mRNA in 

the indicated tumor cells after 2-5 days co-culture with GFAP-positive primary glia 

or vimentin (Vim)-positive primary cancer-associated fibroblasts (CAFs) or NIH3T3 

fibroblasts (mean ± s.e.m., t-test). b,  WB of PTEN protein under co-culture as in (a). 

Collaborated with Siyuan Zhang and Ping Li. 
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Figure 16. | Other stromal brain cells, except astrocytes, do not induce PTEN loss in 

tumor cells. WB of PTEN protein expression in MDA-MB-231 cells after 4 days co-

culture with primary cancer-associated fibroblasts (CAFs), microglia, oligodendrocytes 

and astrocytes isolated from primary glial cells. 

Figure 16 

Figure 15 

Figure 15. | MDA-MB-231 xenograft CAF does not silence PTEN in tumor cells. a-b, 

qRT-PCR (a) and western blot (b) analysis of PTEN mRNA expression (mean ± s.e.m., t-

test) or protein expression in MDA-MB-231 cells after co-culture with either primary 

mouse CAFs isolated from MDA-MB-231 xenograft tumors or primary mouse glia 

isolated from mouse brain. 
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3.2.2 Astrocyte-derived microRNA silences PTEN in metastatic tumor cells 

PTEN mRNA can be regulated by transcription [236]  or microRNA (miRNA)-mediated 

degradation [237, 238]. Since PTEN promoter methylation and activities in cancer cells were 

similar under glia versus CAF co-cultures (Fig.17a-17b), this prompted us to examine whether 

astrocytes reduce PTEN mRNA stability through microRNAs (miRNAs).  

 

 

 

Figure 17 

Figure 17. | PTEN promoter methylation and activation do not change under glia 

co-culture. a, Representative methylation-specific PCR of PTEN promoter and 

quantification under co-culture with glia or CAF (mean ± s.e.m., t-test). b, PTEN 

promoter activity measured by luciferase reporter in HCC1954 cells after co-culture with 

either CAF or glia cells for 48 hours (mean ± s.e.m., t-test).   
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Initially, we did look into all miRNAs that potentially regulate PTEN in miRDB 

(http://mirdb.org/miRDB/), which predicted that 189 miRNAs may target PTEN. However, 

among top-ranked predicted miRNAs, very few have been validated functionally. To narrow 

down to important miRNAs that functionally regulate PTEN in our cell system, we have applied 

a 3-tier filtering approach using the following criteria: 1) miRNAs that have been functionally 

validated to regulate PTEN in a biological system in prior literature; 2) miRNAs that have at 

least two consensus binding sites on the 3’UTR of PTEN gene; 3) miRNAs that have available 

knockout mouse model allowing us to test our hypothesis in vivo. Base on the above three 

criteria, miR17-92 cluster emerged as the top hit. Five miRNAs (miR-17, miR-19a, miR-19b, 

miR-20a and miR-92) in the miR-17~92 cluster were functionally demonstrated to 

target PTEN [239-242], and Mirc1tm1.1Tyj/J mice have a floxed miR-17~92 allele[243]. We 

knocked out the miR-17~92 allele in situ inMirc1tm1.1Tyj/J mice by intracranial injection of 

astrocyte-specific Cre adenovirus (Ad-GFAP-Cre), then intracarotidly injected syngeneic mouse 

melanoma B16BL6 cells to form brain metastases (Fig. 18a). Astrocyte-specific depletion 

of PTEN-targeting miRNAs blocked PTEN downregulation (Fig. 18b) in the brain metastasis 

tumor cells and significantly suppressed brain metastasis growth compared to the control group 

(Fig. 18b, 18c), indicating a tumor cell non-autonomous PTEN downregulation by astrocyte-

derived PTEN-targeting miRNAs. Astrocyte-specific depletion of PTEN-targeting miRNAs also 

suppressed intracranially injected tumor cell outgrowth (Fig.19a-19e).  

To examine which PTEN-targeting miRNA primarily mediates the PTEN loss in tumor 

cells when co-cultured with astrocytes, the luciferase activities of the wild-type and mutated 

PTEN 3′-untranslated region (UTR) (containing various miRNA binding site mutations) in tumor 

cells were assessed (Fig.20). Compared with CAF co-culture, astrocyte co-culture inhibited 

http://mirdb.org/miRDB/
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luciferase activity of wild-type PTEN 3′-UTR, which was rescued by the miR-19a binding site 

mutation (position 1), but not by other mutations, indicating the major role of miR-19a in 

astrocyte-mediated PTEN mRNA downregulation in tumor cells. At same time, we compared the 

expression of several miR-19a targets reported for other tumor sites (e.g., AMPK, Bim, and 

E2F1) in brain metastatic tumors of mice with or without miR-17~92 cluster knockout. We did 

not detect significantly different expression of these miR-19a targets in brain metastasis in vivo 

(Fig. 21), suggesting miRNA-19a’s targets in different tumor environment may be different.  

Furthermore, we infected primary astrocytes from Mirc1tm1.1Tyj/J mouse with Cre-

expressing adenovirus (Ad. GFP.Cre) to knockout the miR-17-92 cluster or with βGLuc-

expressing adenovirus (Ad-βGLuc) as controls (Fig. 22a). Compared to co-culture with Ad-

βGLuc-treated astrocytes, co-culture with Ad.GFP.Cre-treated astrocytes significantly decreased 

miR-19a in both HCC1954 and MDA-MB-231 breast cancer cells (Fig. 22b-22e), and 

consequently, increased PTEN mRNA and protein levels (Fig. 22b-22e). These data indicated 

that miRNAs, especially miR-19a, in the astrocytes were dynamically transferred into 

neighboring tumor cells and effectively down-regulated PTEN.  
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Figure 18 

Figure 18. | Astrocyte-deplete miR-17-92 restores PTEN in tumor cells and 

inhibits tumor outgrowth in vivo. a, Schematic of astrocyte-specific miR-17-92 

deletion by GFAP-driven Cre adenovirus (Ad.GFAP-Cre) in Mirc1tm1.1Tyj/J mice. 

Injection of adenovirus (Ad-βGLuc) was control. b, Representative image of tumor 

sizes and PTEN IHC of brain metastases. c, Quantification of brain metastases volume 

(mean ± s.d., t-test). Collaborated with Qingling Zhang and Kenneth Ellis. 
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Figure 19 

Figure 19. | Astrocyte-deplete miR-17-92 suppresses intracranially injected tumor cells 

outgrowth and restores PTEN expression in tumor cells.  a, Schematic of experimental 

design. GFAP-Cre adenovirus (Ad-GFAP-Cre) was injected intracranially to the right 

hemisphere of the Mirc1 mouse, and the control adenovirus (Ad-βGLuc) was injected 

intracranially to contralateral side of the brain. Then B16BL6 cells were injected 

intracranially to both sides. b, IHC analysis of Cre expression in the brain astrocytes. c, IHC 

analysis of PTEN expression in the tumor cells. d, Quantifications of PTEN expression in 

tumor cells (mean ± s.d., t-test). e, Quantification of intracranial tumor outgrowth by volume 

(mean ± s.e.m., t-test). Collaborated with Qingling Zhang and Kenneth Ellis. 
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Figure 20 

Figure 20. | miR-19a binding site 1 mediates PTEN mRNA downregulation in tumor 

cells.  PTEN 3’-UTR- luciferase activity after co-culture (mean ± s.e.m., t-test).  

Collaborated with Siyuan Zhang. 

Figure 21. | Other miR-19a targets, except PTEN, are not changed after depletion of 

miR19-72 in astrocytes.  a, IHC analyses of AMPK, Bim, and E2F1 expression (mean ± s.d, 

t-test) in brain metastasis tumors with/without pre-knocking out (KO) miR-17-92 cluster in 

brain microenvironment. M: brain metastases; B: brain tissue. Collaborated with Qingling 

Zhang. 

Figure 21 
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Figure 22 

Figure 22. | miR-19a is responsible for PTEN loss in tumor cells in vitro.  
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Figure 22. | miR-19a is responsible for PTEN loss in tumor cells in vitro. a, 

Knockout of miR-17-92 allele in cultured primary astrocytes. miR-17~92 cluster is 

flanked by loxP site in Mirc1tm1.1Tyj/J mouse. Primary astrocytes were isolated from 

Mirc1 mouse brain then infected by adenovirus encoding for βGLuc or GFP.Cre 

protein. Concentrated adenovirus particles of indicated volume (same MOI ~108 

units/mL) encoding βGLuc or GFP.Cre proteins were added to 106 astrocytes. Left, 

representative photo showing the infection efficiency. Right: bar diagram showing the 

relative miR-19a expression (one of the five miRNA genes in the miR-17-92 cluster) 

three days after adenovirus infection (mean ± s.e.m., t-test). b, qRT-PCR analyses of 

miR-19a and PTEN mRNA in MDA-MB-231 cells after 48 hour co-culture with 

primary astrocytes from Mirc1tm1.1Tyj/J mice pre-infected (48 hours) by adenovirus (Ad-

βGLuc or Ad.GFP.Cre) (mean ± s.e.m., t-test). c, WB of PTEN protein in MDA-MB-

231 cells co-cultured as in (b). d, qRT-PCR analyses of miR-19a and PTEN mRNA in 

tumor cell HCC1954 after 48 hour co-culture with primary astrocytes from 

Mirc1tm1.1Tyj/J mice pre-infected (48 hours) by adenovirus (Ad-βGLuc or Ad.GFP.Cre) 

(mean ± s.e.m., t-test). e, WB of PTEN protein in the indicated tumor cells co-cultured 

as in (d). 
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3.2.3 Astrocyte-derived exosome transfers miR-19a to metastatic tumor cells 

The astrocyte-dependency of PTEN down-regulation in tumor cells by miR-19a 

prompted us to test whether PTEN down-regulation in tumor cells resulted from intercellular 

transfer of PTEN-targeting miRNAs. We co-cultured HCC1954 tumor cells with Cy3-labelled 

miR-19a-transfected primary astrocytes. Amazingly, the Cy3-miR-19a in the EpCAM-negative 

astrocyte transferred into EpCAM-positive tumor cells after co-culture, as detected by 

fluorescence imaging (Fig. 23a). Compared with CAF co-cultures, there was a significantly more 

Cy3+ epithelial cell adhesion molecule (EpCAM)-positive tumor cells under astrocyte co-culture 

over time than under CAF co-culture by FACS analyses (Fig. 23a-23b), suggesting that miR-19a 

was intercellularly transferred from astrocytes to tumor cells. miRNAs are transferable between 

neighboring cells through gap junctions or small vesicles[244, 245]. Treating tumor cells with a 

gap junction channel inhibitor, carbenoxolone disodium salt, had no significant effect on miR-

19a intercellular transfer (data not shown), while adding astrocyte-conditioned media to tumor 

cells led to an increase in miR-19a levels and a subsequent PTEN downregulation (Fig. 24a-

24d). The result indicated that it was likely that the miR-19a transfer from astrocytes was not 

cell-cell contact-dependent, but mediated by small vehicles. 
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Figure 23 

Figure 23. | Intercellular transfer of PTEN-targeting miR-19a to tumor cells.  a, Intercellular 

transfer of miR-19a. Left: light microscopy and fluorescent images of HCC1954 cells 12 and 60 

hours after co-cultured with astrocytes loaded with Cy3-labeled miR-19a. Right: flow cytometry 

analysis of Cy3-miR-19a in tumor cells 60 hours after co-culture (mean ± s.e.m., t-test). b, Flow 

cytometric detection of Cy3-miR-19a and FITC-EpCAM in tumor cells 60 hours after co-culture 

with Cy3-miR-19a-transfected astrocytes and CAFs.  Collaborated with Siyuan Zhang. 
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Figure 24 

Figure 24. | miR-19a transfer from astrocyte to tumor cell is cell contact- 

independent. a-c, Tumor cells were co-cultured with conditioned media from astrocytes 

or CAFs for 60 hours. RT-PCR analyses of PTEN-targeting miR-19a level (a) and PTEN 

mRNA level in HCC1954 cells (b) and B16Bl6 cells (c) (mean ± s.e.m., t-test). d, 

Western blot detecting PTEN protein levels in HCC1954 cells after culture with 

conditioned media from either astrocytes or CAFs for 60 hours. 



77 
 

The next imposing question is how miR-19a was inter-cellular transferred from 

astrocytes to tumor cells. Recognizing exosomes’ involvement in neuronal function and hypoxic 

response during glioma development [246], we postulated that exosome may mediate miR-19a 

transfer from astrocytes to tumor cells.  Indeed, transmission electron microscopy detected 

spherical, membrane-encapsulated particles between 30 and 100 nm, typical of exosome 

vesicles, in astrocyte-conditioned media [247] (Fig. 25a). Additionally, the astrocyte-conditioned 

media contained significantly more CD63+, CD81+and TSG101+ exosomes[247] than the CAF-

conditioned media (Fig. 25b). FACS analysis and exosome protein measurement demonstrated 

that the astrocyte conditioned media contained significantly higher amount of CD63+ exosomes 

[247]  than the CAF-conditioned media (Fig. 25c-25d). Moreover, the exosomes from astrocytes 

contained 3.5-fold higher levels of miR-19a than those from CAFs (Fig. 25e). In order to test 

miR-19a transferring is dependent on exosome, we firstly labelled miR-19a with Cy3 and 

transfected Cy3-miR-19a into astrocytes. Adding exosomes purified from conditioned media of 

Cy3-miR-19a-transfected astrocytes to tumor cells led us to detect Cy3 in the tumor cells, which 

means miR-19a transferred into cultured tumor cells by exosomes (Fig. 26a). Furthermore, 

treating tumor cells directly with astrocyte-derived exosomes led to a dose-dependent increase of 

miR-19a and a subsequent decrease of PTEN mRNA in tumor cells (Fig. 26b), indicating that 

astrocyte-released exosomes contained miR-19a and can transfer miR-19a into tumor cells to 

inhibit PTEN expression.  To determine whether astrocyte-released exosomes are required for 

miR-19a transfer and PTEN down-regulation, we treated astrocyte with an inhibitor of exosome 

release, dimethyl amiloride (DMA), which reduced exosome secretion into conditioned media 

(Fig.27a). Compared to vehicle-treated astrocytes, DMA-treated astrocytes decreased miR-19a 

transfer into tumor cells (~20%) and, consequently, restored PTEN mRNA level under co-culture 
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conditions (Fig. 27b). Similarly, blocking exosome secretion in astrocytes by knocking-down 

Rab27a, a mediator of exosome secretion [146], with two siRNAs (Fig. 27c-27d) also led to 

decreased miR-19a transfer and recovered PTEN mRNA level in co-cultured tumor cells 

compared to control siRNA-transfected astrocytes (Fig. 27e). Collectively, astrocyte-derived 

exosomes functionally transferred miR-19a into tumor cells leading to PTEN down-regulation.  
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Figure 25 

Figure 25.| Astrocyte conditioned media contains more exosomes than CAF 

conditioned media. a-b, Transmission electron microscopy (a) of exosome vesicles in 

astrocyte-conditioned media that are confirmed by western blot for CD63, CD81, and 

TSG101 exosome markers released by 1 × 106 of CAFs or astrocytes (b). c, Flow 

cytometry detecting CD63+ exosomes extracted from CAF- or astrocyte-conditioned 

media. d, Histogram showing the exosome protein level detected from CAF- and 

astrocyte-conditioned media normalized by cell number (mean ± s.e.m., t-test). e, RT-

PCR analyses of miR-19a level in exosomes extracted from CAF or astrocyte 

conditioned media normalized by equal cell numbers (mean ± s.e.m., t-test).  
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Figure 26 

Figure 26. | Intercellular transfer of miR-19a to tumor cells via astrocyte-derived 

exosomes. a, Representative data showing presence of  Cy3-miR-19a in HCC1954 breast cancer 

cells after adding exosomes purified from Cy3-miR-19a transfected astrocytes for 24 hours. 

Bottom panel: flow cytometry analysis of Cy3-miR-19a-positive HCC1954 cells after treatment 

with supernatant (without exosomes), or exosomes purified from Cy3-miR-19a-transfected 

astrocytes. Negative control is HCC1954 cells without treatment. Positive control is Cy3-miR-

19a-transfected astrocytes. b, Histograms of miR-19a and PTEN mRNA in HCC1954 cells 48 

hours after addition of media, astrocyte supernatant, or exosomes purified from astrocyte-

conditioned media (mean ± s.e.m., t-test). 
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Figure 27 

Figure 27. | Inhibition of exosome release by DMA or Rab27a siRNAs restores PTEN 
expression in tumor cells in vitro. 
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Figure 27. | Inhibition of exosome release by DMA or Rab27a siRNAs restores PTEN 

expression in tumor cells in vitro. a, Exosome-releasing inhibitor (DMA) treatment reduced 

exosome secretion from astrocytes compared to vehicle treated astrocytes. Astrocytes were 

treated with DMA (25μg/ml) or vehicle for 4 hours; exosomes were concentrated from 

astrocyte-conditioned media and total proteins from exosomes were examined by BCA assay 

(normalized to total cell numbers) (mean ± s.e.m., t-test).  b, Histograms of miR-19a and 

PTEN mRNA in HCC1954 cells after 48 hour co-culture in conditioned media from vehicle- 

or DMA-treated (4 hours) astrocytes  (mean ± s.e.m., t-test). c, Knockdown of Rab27a in 

astrocytes by siRNA. Two siRNAs targeting mouse Rab27a were transiently transfected into 

astrocytes and mRNA level of Rab27a was examined by RT-PCR 48 hours after transfection 

(mean ± s.e.m., t-test).  d, Knocking down Rab27a in astrocytes inhibited exosome release. 

48 hours after Rab27a-targeting siRNAs were transfected, exosomes were collected from 

astrocyte-conditioned media and total proteins from exosomes were examined by BCA assay 

(normalized to total cell numbers) (mean ± s.e.m., t-test).  e, Histograms of miR-19a and 

PTEN mRNA in HCC1954 cells after 48 hour co-culture in conditioned media from control- 

or Rab27a-siRNA- transfected (48 hours) astrocytes (mean ± s.e.m., t-test).  
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Furthermore, we intracranially injected Rab27a/b short hairpin RNA (shRNA) 

lentiviruses to block exosome secretion in mouse brain parenchyma (brain metastasis stroma), 

and then inoculated B16BL6 melanoma cells to the same sites (Fig. 28a). Inhibiting Rab27a/b 

(Fig. 28b) reduced exosome release in vitro (Fig. 28c). IHC staining at in vivo samples also 

showed that knock-down Rab27a/b (Fig. 28d) inhibited TSG101+ and CD63+ exosomes (Fig. 

28e- 28f), blocked PTEN downregulation in tumor lesions (Fig. 28e), and significantly decreased 

tumor outgrowth (Fig. 28g).To test the key effect of exosome on PTEN expression, we 

intracranially injected tumor cells with astrocyte-derived exosomes in mouse brain parenchyma 

where exosome secretion was inhibited by Rab27a/b shRNA (Fig. 29a-29b). Co-injection of 

tumor cells with astrocyte-derived exosomes rescued PTEN downregulation in tumor cells (Fig. 

29c- 29d) and metastatic outgrowth (Fig. 29e). Collectively, exosome-mediated miR-19a transfer 

from astrocytes to tumor cells was critical for tumor PTEN downregulation and aggressive 

outgrowth in the brain. 
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Figure 28 
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Figure 28. | Inhibition of astrocyte-derived exosomes restores PTEN expression in tumor 

cells and inhibits tumor outgrowth in vivo. a, Schematics of in vivo experiments. b, 

Histogram showing relevant changes of Rab27a and Rab27b mRNA level in primary 

astrocytes infected with pLKO.shRab27a or pLKO.shRab27b virus (mean ± s.e.m., t-test, 

P<0.001, 3 biological replicates, with 3 technical replicates each). c, Change of exosome 

protein level detected in astrocyte-conditioned media from cells infected by pLKO.shRab27a 

or pLKO.shRab27b virus by BCA assay (normalized to total cell numbers) (mean ± s.e.m., t-

test, P<0.001, 3 biological replicates, with 3 technical replicates each). d-g, IHC analysis 

showing the expression level of Rab27a, Rab27b (d) ,PTEN, exosome marker expression 

TSG101(e), CD63 (f) , and changes of tumor volume (g) (mean ± s.d., t-test) in the brain 

tissue derived from mice injected with control lentivirus or Rab27a/b shRNA lentiviruses and 

subsequently intracranially injected with B16BL6 cells. Collaborated with Min Li, Qingling 

Zhang and Kenneth Ellis. 
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Figure 29  

Figure 29. | Astrocyte-derived exosome induces PTEN loss in tumor cells and promotes 

tumor outgrowth in vivo. 
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Figure 29. | Astrocyte-derived exosome induces PTEN loss in tumor cells and 

promotes tumor outgrowth in vivo. a, Schematics showing in vivo rescue of exosome 

effect by pre-incubation of tumor cells with astrocyte-derived exosomes. b, IHC analysis 

showing the expression level of Rab27a and Rab27b. c-e,  IHC analyses of PTEN and 

exosome marker expression TSG101 (c), CD63 (d) and changes of tumor volume (e) 

(mean ± s.d., t-test) in the brain tissue derived from mice injected with Rab27a/b shRNA 

lentiviruses and subsequently intracranially injected with B16BL6 cells with vehicle or 

B16BL6 cells with astrocyte derived exosomes. Collaborated with Min Li, Qingling 

Zhang and Kenneth Ellis. 
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3.3 PTEN-loss promotes metastatic tumor outgrowth by secreting CCL2, 
which recruits myeloid cells 

3. 3.1 PTEN-loss promotes metastatic tumor outgrowth  

To explore the biological significance of the PTEN-loss in brain metastasis, we first 

transfected subclones of human breast carcinoma cells that selectively metastasize to the brain 

(MDA-MB-231Br) with doxycycline (Dox)-inducible PTEN.shRNAs that significantly down-

regulated PTEN with Dox-treatment but fully restored PTEN expression five days after Dox-

withdraw (Fig. 30a). The inducible PTEN.shRNA.red fluorescent protein (RFP) cells and 

control.shRNA.green fluorescent protein (GFP) cells were mixed (1:1), treated with Dox for 24 

hours in culture, and injected into ICA of Dox-fed mice. PTEN knockdown did not alter tumor 

cell extravasation into the brain parenchyma (Fig. 30b-30c), suggesting PTEN-loss does not 

promote tumor cell extravasation. This also suggested that the observed PTEN-loss in brain 

metastasis tumors (Figs. 7 and 8) happened after tumor cells extravasated into the brain 

microenvironment.  

To test whether restoring PTEN expression after tumor cell extravasation inhibits 

metastatic outgrowth, we transfected MDA-MB-231Br stably with either a doxycycline-

inducible PTEN-coding sequence without the 3′-UTR miRNA binding sites, or RFP controls 

(Fig. 31a-31b). RFP or PTEN expression were induced by feeding mice with Dox daily 

beginning at day 7 post-intracarotid injection (Fig. 31c), which induced strong expressions of 

RFP (Fig. 31b right) and PTEN in brain metastatic tumors in vivo. Restoring PTEN after 

extravasation of tumor cells markedly extended the overall survival of brain metastases-bearing 

mice (p<0.001, log-rank test) (Fig. 31d-31e). Collectively, PTEN loss primes brain metastasis 

outgrowth after tumor cell extravasation and PTEN restoration suppresses the outgrowth. 
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Figure 30 

Figure 30. | PTEN knockdown does not alter tumor extravasation into brain 

parenchyma.  a, Western blot showing PTEN expression levels after treating MDA-MD-231 

cells with doxycycline (Dox). MDA-MD-231 cells were stably infected with inducible 

shRNA expression vectors (pTRIPZ-Control.sh.GFP as control and pTRIPZ.shRNA.RFP for 

PTEN shRNA). Dox (1 μg/ml) was added to induce shRNA expression for five days. As 

indicated, Dox were withdrawn in some samples for another five days before analysis. b, 

Schematics of in vivo extravasation assay. shControl.GFP and shPTEN.RFP cells were mixed 

at 1:1 ratio. Total 200,000 cells were injected intracarotidly into mice. Dox (50 μg/kg) was 

given to mice intraperitoneally daily. Brains were collected 5 days after injection. ICA: 

intracarotid injection. c, Dot-plot of extravasated cell counts five days after intracarotid 

injection of indicated MDA-MB-231 sublines. Tumor bearing brains were collected and 

sectioned into 100 μm brain coronal slices. The extravasated tumor cells were counted under 

the fluorescence microscope (mean ± s.d., t-test). Collaborated with Siyaun Zhang. 
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Figure 31 

Figure 31. | The survival of mice bearing brain metastases is prolonged by restoration of 

PTEN expression after extravasation. a, MDA-MB-231Br single cells were expanded into 

subclones (C12, C14, C18, and C19) which were transfected with Dox-inducible 

pTRIPZ.RFP or pTRIPZ.PTEN. 48 hours after Dox (1μg/mL) treatment, PTEN induction 

was tested by western blotting. C14 clone were used for further in vivo assays. b, Dox-

inducible RFP (left) and PTEN expression (right) in 231Br cells. c, Schematics of brain 

metastasis assay with dox-induced RFP or PTEN expression. d, Overall survival of mice 

bearing brain metastases of 231Br cells with induced PTEN re-expression or RFP expression 

(Log-Rank test). e, Induced PTEN expression in brain metastases. IHC staining of PTEN 

expression levels in brain metastases derived from mice injected with MDA-MB-231Br 

(231Br. RFP or 231Br. PTEN) cells. T: brain metastasis tumors at day 30 post intracarotid 

injection. Collaborated with Siyaun Zhang. 



91 
 

3.3.2 CCL2 is a downstream effector of PTEN loss 

The interactions between disseminated tumor cells and their metastasis 

microenvironment through auto/paracrine signaling play decisive roles in metastasis seeding and 

outgrowth [51, 248, 249]. To dissect how PTEN-loss enhanced brain metastasis outgrowth, we 

explored PTEN-loss-induced changes of secreted factors from tumor cells into brain 

microenvironment using cytokine-array.  Although PTEN restoration only led to a trend of 

reduced Akt and P70S6K phosphorylation (pAkt and pP70S6K, respectively (Fig. 32), cytokine 

array analyses revealed markedly reduced CCL2 secretion in PTEN-expressing tumor cells 

compared to controls (Fig. 33a), whereas PTEN knockdown increased CCL2 expression (Fig. 

33b) in multiple human breast cancer cell lines.   

Various cell types in the brain express CCL2. However, CCL2 expression in brain tissue 

is relatively low based on global gene expression comparison study (Fig. 34a)[250]. Brain 

metastasis tumors expressed a very high level of CCL2 whereas brain tissue positive for the 

neuron-specific marker MAP2 had barely detectable CCL2 levels (Fig. 34b). Together, the data 

indicated that tumor-derived CCL2 was the major source of CCL2 in brain metastasis tumors.   
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Figure 32 

Figure 32. | PTEN restoration leads to a trend of reduced PTEN downstream signaling 

pathway. IHC analysis of phospho-Akt(T308), phospho-Akt(S473) and phospho-

P70S6K(T389+T412) in brain metastases from mice injected with 231Br.RFP versus 

231Br.PTEN cells. Top, dot-plot of IHC data quantification by immuno-reactive score 

(IRS) (mean ± s.d., t-test); bottom, representative IHC staining data. T: brain metastasis 

tumors at day 30 post intracarotid injection. Collaborated with Qinging Zhang. 
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Figure 33 

Figure 33. | CCL2 is a downstream effector of PTEN loss. a, Cytokine array of 231Br 

cells with dox-induced RFP or PTEN expression.  b, Histograms of PTEN and CCL2 

mRNA levels (mean ± s.e.m., t-test) in indicated cancer cell lines 48 hours after transfection 

with control or PTEN siRNAs. Collaborated with Min Li. 
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Figure 34 

Figure 34. | CCL2 expression in normal brain tissue and brain metastatic tumor cells 

in vivo. a, Heat map of relative CCL2 expression across different normal tissue types. b, 

Immunofluorescence staining of brain metastasis tissue derived from MDA-MB-231 and 

HCC-1954 cells. M: metastases; B: brain tissue. MAP2, neuron specific marker: Green. 

CCL2: red. Collaborated with Siyuan Zhang. 
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Considering the important role of CCL2 in lung metastasis [51], we further tested 

whether PTEN down-regulation-induced CCL2 up-regulation enhances outgrowth of 

extravasated tumor cells. Dox-inducible CCL2 knockdown MDA-MB-231 sublines were 

established (Fig. 35a) and injected into ICA of mice for in vivo brain metastases. Knocking-down 

CCL2 significantly extended the overall survival of brain metastases-bearing mice (Fig. 35b- 

35c), decreased proliferation and increased apoptosis of brain metastasis tumors compared to 

controls (Fig 36a- 36b).  Mechanistically, PTEN induction decreased NF-κB p65 

phosphorylation (Fig. 37a-37b) by RPPA analysis, whereas PTEN knockdown by shRNAs 

increased p65 nuclear translocation, an indicator of NF-κB activation, and CCL2 expression 

(Fig. 37c-37d). p65 nuclear translocation is inhibited by the treatment of Akt inhibitor MK2206, 

indicating NF-κB activation in our system is partly through Akt activation (Fig. 37e). 

Furthermore, CCL2 mRNA and CCL2 protein expression in brain-seeking tumor cells was 

inhibited by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) (Fig. 38a-38c), indicating 

that NF-κB activation is crucial for PTEN-loss-induced CCL2 upregulation. 

CCL2 is a chemo-attractant during inflammation[251]. CCL2 receptor (CCR2)-

expressing brain-derived ionized calcium-binding adapter molecule 1-positive (IBA1+) primary 

myeloid cells and BV2 microglial cells (Fig. 39a-39b) migrate towards CCL2, which was 

blocked by CCR2 antagonists[51] (Fig. 39c-39d). Functionally, co-culturing with BV2 cells 

enhanced proliferation and inhibited apoptosis of breast cancer cells (Fig. 40a-40b). In vivo, 

CCL2-knockdown brain metastases had decreased IBA1+/CCR2+ myeloid cell infiltration (Fig. 

40c), corresponding to their reduced proliferation and increased apoptosis (Fig. 36a, 36b).   
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Figure 35 

Figure 35. | CCL2 knockdown prolongs the survival of mice bearing brain metastases. a, 

Histogram showing the inducible CCL2 knockdown. MDA-MB-231Br cells were stably 

infected with pTRIPZ inducible CCL2 shRNAs. 48 hours after Dox (1μg/ml) treatment, CCL2 

mRNA was examined by RT-PCR (mean ± s.e.m., t-test). b, Overall survival of mice bearing 

brain metastases of 231Br cells transfected with control or CCL2 shRNAs (Log-Rank test). c, 

Dox-induced CCL2 knockdown in brain metastases. Mice were ICA injected with MDA-MB-

231Br cells harboring control or CCL2 shRNAs. Dox (50 μg/kg) was given to mice 

intraperitoneally daily after injection. IHC staining of CCL2 expression levels in brain 

metastases derived from MDA-MB-231Br cells. T: brain metastasis tumors at day 30 post 

intracarotid injection.  Collaborated with Frank Lowery and Qingling Zhang. 
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Figure 36 

Figure 36. | CCL2 knockdown reduces proliferation and increases apoptosis of tumor 

cells in vivo. a-b, IHC analyses showing decreased proliferation (a: Ki-67) and increased 

apoptosis (b: TUNEL staining) in brain metastases after shRNA-mediated CCL2 knockdown 

in vivo (mean ± s.e.m., t-test). Collaborated with Hai Wang. 
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Figure 37 
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Figure 37. | PTEN-regulated CCL2 expression is through NF-κB pathway. a, Heatmap 

showing differentially expressed protein markers of Reverse Phase Protein Array (RPPA) 

analysis. Dox-inducible pTRIPZ.RFP or pTRIPZ.PTEN cells. MDA-MB-231Br were stably 

infected with pTRIPZ.RFP or pTRIPZ.PTEN (231Br. RFP or 231Br. PTEN) and induced by 

Dox (1μg/mL) for 48 hours. b, Box chart showing the absolute intensity of PTEN and NF-κB 

p65 (S536). c, WB analysis of NF-κB p65 nuclear translocation after knocking down PTEN. d, 

Histogram showing CCL2 mRNA level after PTEN knockdown detected by qPCR (mean ± 

s.e.m., t-test).  e, Western blot analysis of NF-κB p65 nuclear translocation after Akt inhibitor 

(MK2206) treatment. Cells were treated with MK2206 (10 μg/mL) 24 hours before being 

separated into cytosol (Cyto) and nuclear (Nuc) fraction. Collaborated with Siyuan Zhang, Xiao 

Wang and Ping Li. 
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Figure 38 

Figure 38. | NF-κB activation is crucial for PTEN-loss-induced CCL2 upregulation. 

a, Western blot analysis of NF-κB p65 nuclear translocation after NF-κB inhibitor PDTC 

treatment. Cells were treated with PDTC (0.2 mM) 16hours before being separated into 

cytosol (Cyto) and nuclear (Nuc) fraction. b, Relative CCL2 mRNA expression after NF-

κB inhibitor PDTC treatment analyzed by qPT-PCR (mean ± s.e.m., t-test).  Cells were 

treated with PDTC (0.2 mM) 16 hours.c, Relative CCL2 protein expression after NF-κB 

inhibitor PDTC treatment analyzed by ELISA (mean ± s.e.m., t-test).  Cells were treated 

the same as (b). Collaborated with Xiao Wang. 

 



101 
 

 Figure 39 

Figure 39. | CCL2-CCR2 mediates IBA1+ myeloid cell directional migration in vitro. a, 

Co-expression of IBA1 and CCR2 on myeloid cells freshly isolated from mouse brain by 

CD11b beads. Representative picture of immunofluorescence staining of IBA1 (left). FACS 

analysis of CD11b-positive cells for CCR2 expression. b, Relative CCR2 expression in the 

BV2 microglia cell line compared with NIH 3T3 fibroblasts. CCR2 mRNA level was analyzed 

by qRT-PCR (mean ± s.e.m., t-test) (left) and protein expression was analyzed by FACS (right). 

c, Transwell migration assay examining the directional migration of BV2 cells toward CCL2. 

105 BV2 cells were seeded in the top chamber of the transwell units and CCL2 or BSA 

(20ng/ml) was added into serum-free media in the bottom chamber. The migrated cell numbers 

were counted at 24h.  Next, CCR2 antagonists with different concentrations (10uM, 1uM, 

0.1uM) were added into the top chamber with BV2 cells, and CCL2 (20ng/ml) was added into 

serum-free media in the bottom chamber. The migrated cell numbers were counted at 24h. d, 

Quantification of BV2 cell migration assay (mean ± s.e.m., t-test).  Collaborated with Xiao 

Wang. 
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Figure 40 

Figure 40. | Co-culturing with BV2 cells enhances proliferation and inhibits apoptosis of 

tumor cells. a, Light and fluorescent microscopy images and quantification of mCherry-

labeled tumor cells with or without BV2 microglia co-culture under 2-day serum starvation 

(mean ± s.e.m., t-test). b, FACS analyses of annexinV+ apoptotic zsGreen-labeled 231Br cells 

under doxorubicin treatment with or without BV2 microglia co-culture (mean ± s.e.m., t-test). 

c, Immunofluorescence (IF) staining of IBA1+ myeloid cells in brain metastases of 231Br cells 

containing control or CCL2 shRNAs (mean ± s.e.m., t-test). 
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3.3.3 The correlation between PTEN, CCL2 and CD63 expression in patients’ brain 
metastases and matched primary breast tumors 

IHC staining of human primary breast tumors and matched brain metastases for PTEN 

and CCL2 (Figs 8b and 41a respectively) revealed a significantly (P = 0.027) higher CCL2 

expression in brain metastases than in primary tumors (Fig. 41b). Importantly, severe PTEN loss 

in brain metastases corresponded to higher CCL2 expression (Fig. 41c), which significantly 

correlated with IBA1+ myeloid cell recruitment (Fig. 41d), validating that PTEN downregulation 

in brain metastatic tumor cells contributes to CCL2 upregulation and IBA1+ myeloid cell 

recruitment in clinical brain metastases. 

Furthermore, we have explored the correlation between exosomes and CCL2 in matched 

breast tumors and brain metastases from patients. We stained them for the CD63 exosome 

marker, as well as CCL2 by IHC (Fig. 42a). We found that CD63 and CCL2 expressions are 

significantly higher in the brain metastases, compared with primary breast tumor (Fig. 42b). 

Importantly, CD63 and CCL2 high expression are significantly positively correlated with each 

other (Fig. 42c). We also have already validated that exosomes isolated from primary astrocytes 

contain more miR-19a than that in the exosomes from equal numbers of CAF’s (Fig. 25e). 

Together these data validated the human relevance of our findings that brain stromal 

exosome/microRNA (miR-19a) down-regulates PTEN expression in tumor cells leading to 

CCL2 up-regulation.  
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 Figure 41 

Figure 41. |The association between PTEN, CCL2 expression and recruitment of IBA-

1+ myeloid cells in patients’ brain metastases and matched primary breast tumors.   
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Figure 41. |The association between PTEN, CCL2 expression and recruitment of IBA-1+ 

myeloid cells in patients’ brain metastases and matched primary breast tumors.  a: PTEN 

and CCL2 expression in matched primary breast tumors and brain metastases. Left: 

representative IHC staining of PTEN and CCL2. Right: quantification of PTEN and CCL2 

expression in 35 cases of matched primary breast tumors and brain metastases (mean ± s.d.). b. 

Summary histogram of CCL2 protein levels in primary breast tumors and matched brain 

metastases from 35 patients. Chi-square test was used to compare IHC score in primary breast 

tumors versus matched brain metastases. p<0.05 is defined as significantly different. c, Tables 

showing IHC scores of PTEN and CCL2 expression in primary breast tumors and matched 

brain metastases. d, Representative IHC staining of CCL2 proteins and IBA1+ myeloid cells in 

patients’ brain metastases, and the correlation plot showing the Pearson correlation between 

CCL2 and IBA1 staining in patients’ brain metastases. Collaborated with Qingling Zhang. 
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Figure 42 

Figure 42. |The correlation between CD63 and CCL2 expression in patients’ brain 

metastases and matched primary breast tumors. a, Representative IHC staining of CD63 and 

CCL2 protein levels in primary breast tumors and matched brain metastases. b, The summary 

histogram of CD63 and CCL2 protein levels in primary breast tumors and matched brain 

metastases.(Chi-square test. p<0.05 is significant difference) c, The positive correlation between 

CD63 and CCL2 in brain metastases. Collaborated with Qingling Zhang. 
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Chapter 4: Summary 
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Taken together, our data unveiled a complex reciprocal communication between 

metastatic tumor cells and their TME, which primes the successful outgrowth of cancer cells to 

form life-threatening metastases (Fig. 43). Our study revealed that the apparent PTEN-loss in 

brain metastasis tumors directly resulted from brain microenvironment-induced adaptation of 

tumor cells, but not pre-selection of PTEN-deficient disseminated tumor cells. This PTEN down-

regulation depended on miRNAs derived from astrocyte-derived exosomes in the brain 

microenvironment and led to increased tumor cell secretion of CCL2 that increased myeloid cells 

recruitment to promote metastatic tumor cells’ proliferation, survival, and consequently, 

outgrowth. Our findings bring forward a fundamental concept that metastasis outgrowth results 

from tumor cell and microenvironment reciprocal cross-talks that enable their co-evolution, 

partly by exosome-mediated intercellular miRNA transfer and cytokine secretion. Meanwhile, 

the secondary PTEN-loss at the brain microenvironment and the disseminated PTEN-deficient 

tumor cells from primary site may co-exist in patients’ brain metastases because PTEN-deficient 

cells pre-existed in primary tumors can also give rise to brain metastasis.   

Beyond a tumor cell autonomous view of metastasis, our findings highlighted an 

important plasticity and tissue-dependent nature of metastatic tumor cells, and a bi-directional 

co-evolutionary view of the “seed and soil” hypothesis. Recently a lot of research related to 

“seed and soil” hypothesis has focused on the effect of tumor cells modulating the metastatic 

microenvironment, but the reciprocal function of the organ microenvironment on tumor cells has 

been overlooked. However, our project indicated brain microenvironment has an essential effect 

on the tumor cells for promoting their colonization and outgrowth.  Brain metastasis frequently 

manifests in the late stages, and a long period of dormancy often precedes relapse. This implies 
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that additional epigenetic regulations imposed by the metastatic microenvironment are essential 

for metastatic outgrowth. The question “when and how dormant cancer cells develop the ability 

of colonizing in secondary foreign organs?” has been a puzzle for a long time. In this project, we 

found one mechanism to answer this question: astrocyte-derived miR-19a helps tumor cells 

break dormancy and reinitiate their growth by down-regulating PTEN expression. It shows that 

Figure 43. | PTEN loss induced by astrocyte-derived exosomal microRNA primes brain 

metastasis outgrowth via functional cross-talk between disseminated tumor cells and 

brain metastatic microenvironment. Top: Disseminated tumor cells extravasate into the 

brain. Bottom: a-c, Exosomes secreted by astrocytes in the brain microenvironment transfer 

PTEN-targeting miRNA into extravasated brain metastatic tumor cells leading to PTEN 

down-regulation in tumor cells. c-d, PTEN loss in brain metastatic tumor cells increases 

their CCL2 secretion, facilitating recruitment of IBA1+/CCR2+ myeloid cells at the 

micrometastasis site. d-e, The recruited IBA1+ myeloid cells enhance proliferation and 

inhibit apoptosis of metastatic tumor cells, and promote metastatic outgrowth. Collaborated 

with Siyaun Zhang. 

 

Figure 43 
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dormant metastatic cancer cells acquire essential traits from the metastatic microenvironment for 

their colonization and growth. 

Especially, we also revealed the functions of recruited astrocytes and IBA1+ myeloid 

cells on brain metastasis. As mentioned in the introduction, astrocytes and immune cells have 

both anti- and pro-tumorigenic functions. In our system, both of them showed pro-tumorigenic 

effects: astrocytes cause PTEN downregulation in tumor cells, while recruited IBA1+ myeloid 

cells provide tumor cells growth advantage by increasing proliferation and inhibiting apoptosis. 

Under physiological or pathological conditions, astrocytes can release exosomes containing 

neuroprotective cargo to support neuronal survival [246]. Strikingly, our study is the first to 

report that astrocytes transfer exosomes to metastatic tumor cells to regulate tumor gene 

expression. It is very impressive to explore the role of astrocyte-derived exosomes in brain 

metastasis.  

We identified CCL2 as an important downstream effector of PTEN-loss in the brain 

metastasis tumors, which has several implications. First, PTEN-loss-mediated secretome 

alteration of tumor cells implied a dynamic cross-talk between tumor cells and their immediate 

microenvironment. Our data signified the importance of studying the complex biology of 

metastasis in the context of its in vivo microenvironment. Second, the up-regulated CCL2 

resulting from PTEN-loss may serve as a potential therapeutic target using CCL2-targeting 

agents [252]. Although clinical application of CCL2 inhibitor for metastasis treatment requires 

careful design [253], our findings highlight the potential of anti-CCL2 agents as preventive or 

treatment options for metastatic disease.  
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Chapter 5: Discussion and Future directions 
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Our study reveals a novel mechanism in which astrocytes cause the loss of PTEN in 

disseminated tumor cells by transferring exosomal miR-19a, subsequently priming tumor 

growth. It is a brain metastasis-specific mechanism and represents one of mechanisms that 

activated astrocytes or brain stromal cells can use to promote brain metastasis outgrowth.  Other 

genes could also be downregulated by the similar mechanism. Data analysis (Fig. 7) showed that 

54 genes were specifically downregulated in brain metastasis, compared to primary tumor and 

other metastatic organs. I hypothesize that the expression of other genes among those 54 genes, 

in addition to PTEN, might also be inhibited by activated astrocytes. Additionally, I also propose 

that activated astrocytes can induce the expression of some genes in metastatic tumor cells. In 

order to test my new hypothesis, I will design RNA sequencing to measure the gene expression 

changes of tumor cells under co-culture with activated astrocytes, compared to co-culture with 

CAF, NIH3T3 and tumor cells only. RNA sequencing result will show the upregulated and 

downregulated genes in tumor cells under co-culture with activated astrocytes. Combining RNA 

sequencing result with previous data analysis (Fig.7), I can identify the genes that are specifically 

induced or inhibited by activated astrocytes, and further explore the mechanism.  

The next question is how the activated astrocytes regulate the gene expression in tumor 

cells. As I reported, exosomes can transfer bio-information between astrocytes and tumor cells. 

miR-19a is one mediator in astrocyte-derived exosome to promote brain metastasis. In order to 

study other mediators in astrocyte-derived exosomes that could regulate gene expression in 

metastatic tumor cells, I can isolate exosomes from activated-astrocytes for RNA sequencing or 

next generation sequencing to measure the enrichment of RNAs or microRNAs in the astrocyte-

derived exosomes, compared with exosomes from CAF or tumor cells. I hypothesize that other 

microRNAs, in addition to miR-19a, long non-coding RNAs, mRNAs or proteins would be 
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enriched in astrocyte-derived exosomes and might regulate other gene expressions in tumor cells. 

Other than releasing exosomes, astrocytes can release cytokines [82-84] to regulate the signalling 

in tumor cells. Cytokine array can show us the cytokines released by astrocytes. The mechanism 

of activated astrocytes promoting tumor growth is intriguing and needs to be further studied in 

the future.  

In my project, I focused on brain metastasis of breast cancer and melanoma. I 

hypothesize that the similar mechanism of reversible PTEN loss in brain metastasis might also 

operate in the brain metastases from other primary tumors, such as lung cancer, colon cancer, 

and primary brain tumors such as glioma. Glioma frequently loses PTEN (70% LOH) with 44% 

mutation (Table 1). Interestingly, miR-26a, a miRNA targeting PTEN, is high expressed in 

glioma (Table 1). It was reported that miR-26a is amplified in glioma [237]. However, I wonder 

whether it is possible that miR-26a is transferred from astrocytes to tumor cells in addition to 

miR-26a gene amplification. Primary brain tumors and brain metastases might share some 

mechanisms to prime tumor growth in the brain. The key experiments will be co-culture of 

glioma cells with astrocytes. If miR-26a level increased and PTEN expression downregulated in 

glioma cells when co-cultured with astrocytes, it would support my hypothesis. Furthermore, I 

will test whether depleting miR-16a in astrocyte can rescue the PTEN expression in glioma cells 

in vitro and in vivo. To study if the similar mechanism applies in brain metastasis from lung 

cancer, or colon cancer, I can do ICA injection of lung cancer cells or colon cancer cells to mice 

to establish brain metastasis. I will check PTEN expression in brain metastasis and examine 

whether PTEN loss of brain metastasis is partly induced by brain microenvironment. 

Furthermore, PTEN is required for multiple aspects of neuronal maturation and function 

[254]. PTEN loss has been found in neurological diseases, such as the PTEN 
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hamartoma, Lhermitte–Duclos disease, Parkinson's disease, and Alzheimer’s disease [255, 256].  

My findings on tumor cells’ PTEN loss by astrocyte-derived miRNAs may also provide a new 

paradigm of PTEN loss in general neurological diseases via similar cross-talk between neurons 

and brain microenvironment. The best model is astrocyte-specific miR-19a knockout mouse, 

which can be generated by Mirc1tm1.1Tyj/J mice breeding with transgenic mouse which expresses 

Cre recombinase under the control of GFAP promoter. Observing the biology phenotypes of 

neurologic disorder and measuring the PTEN expression in brain should give me the hints 

whether astrocyte-derived miR-19a also causes PTEN loss in neurological diseases. This mouse 

model is also good for validating the whole mechanism of my project in which astrocytes induce 

PTEN loss in metastatic tumor cells. 

In addition, I have several questions raised from my thesis, which need to be further 

explored in the future.  

 

Q1: How do tumor cells induce astrocytes to secrete exosomes containing miR-19a?  

In my experiment, direct co-culture of tumor cells with astrocytes decreased PTEN 

expression in tumor cells (Fig. 8). However, co-culture of tumor cells with the conditioned media 

of astrocytes also increased miR-19a expression and decreased PTEN expression in tumor cells 

(Fig. 18). Meanwhile, exosomes containing miR-19a were detected in the conditioned media of 

astrocytes (Fig. 19). These data indicated that even without tumor cells, astrocytes also can 

secrete exosomes. In this project, I did not compare the difference of exosomes released from 

astrocytes in physiological condition to those in pathological condition. I hypothesize that 

metastatic cancer cells can induce gliosis and stimulate astrocytes to secrete more exosomes than 

those under its physiological status. Additional experiments can be designed to quantitate 
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exosomes released by active astrocytes co-cultured with tumor cells, and compare them to those 

by the astrocyte only or tumor cells only. In order to separate the exosomes of astrocytes from 

those of tumor cells, it is better to label exosomes in astrocytes firstly.  

Furthermore, it would be interesting to further examine how activated astrocytes induce 

the releasing or package of exosomes. As mentioned in the introduction, the Rab family controls 

exosome release, especially RAB27a and RAB27b. In my in vitro experiment, knockdown of 

RAB27a in astrocytes significantly inhibited exosome production (Fig. 21). However, I found 

RAB27a expression was low, while RAB27b expression was relatively high in normal brain 

tissue by IHC staining. Therefore, I decided to knock down both RAB27a and RAB27b in vivo, 

which resulted in effective inhibition of CD63+/ TSG101+ exosomes (Fig.22). At same time, it 

indicates that the brain has a specific mechanism to regulate exosome release. It is an exciting 

topic to detect the specific molecular mechanism of exosome releasing from astrocytes. For 

example, I am curious to explore the exact function of RAB27b in controlling exosome release 

from astrocytes in vivo. Astrocyte-specific RAB27b knockout mice can help me get the answer. 

In order to study other genes regulating the exosome biogenesis, formation, and secretion in 

activated astrocytes, I will do loss-of-function screen by CRISPR-Cas9 system or siRNA library 

to detect what other genes control exosome packaging or releasing in astrocytes, besides rab27b.  

 

Q2: Can you further validate microRNA carried by exosome, not other EVs or other carries in 

your system? 

My protocol for exosome purification is adapted from previous publications [146, 257]. 

Briefly, astrocytes or CAFs were cultured in media with exosome-depleted FBS for 48-72 hours 

and exosomes were collected from their culture media after sequential ultracentrifugation. As we 
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described in Chapter 2, “Cells were harvested, centrifuged at 300×g for 10 minutes and the 

supernatants were collected for centrifugation at 2000×g for 10 minutes, 10,000×g for 30 

minutes and 100,000×g for 70 minutes. The pellet was washed once with PBS and purified by 

centrifugation at 100,000×g for 70 minutes again.” However, other EVs, large protein complexes 

and lipoprotein have also been reported to be able to deliver miRNAs [258, 259], as exosomes 

do. In order to further validate the role of exosomes in transferring miR-19a in our system, I plan 

to improve the protocol for isolation and purification of exosomes. After centrifugation, I will 

perform sucrose gradient and immuno-isolation to isolate purer exosomes for in vitro 

experiments. To validate our previous conclusion/result, I have designed two new experiments to 

test whether exosomes are responsible for the transferring of miR-19a to tumor cells.  

I will isolate astrocytes from Mirc1tm1.1Tyj/J mice which have a floxed miR-17-92 allele. 

Endogenous miR-19a in the astrocytes will be depleted by the transfection with Ad5.GFAP.Cre 

virus (transfection with Ad5.RSVβ-Gluc virus as control). Then I will isolate exosomes by 

improved protocol from the astrocytes with miR-19a depleted or control astrocytes. The purified 

exosomes from the two groups will be added into tumor cells and then miR-19a and PTEN 

expression in tumor cells will be measured. The result of this experiment will uncover whether 

transferring miR-19a to tumor cells is mediated solely by exosome, or other EV/proteins-

mediated transfer and reveal whether miR-19 that is transferred by exosomes is the key to down 

regulate PTEN expression in tumor cells.  

At the same time, I will re-transfect Cy3-labeled miR-19a into the astrocytes with 

endogenous miR-19a depletion. Purified exosomes from these astrocytes by improved protocol 

will be added to tumor cells and then Cy3 signal expression in tumor cells, as well in purified 
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exosomes, will be measured. The result will further confirm whether miR-19a is transferred by 

exosome.  

However, I have not excluded that other EVs, large protein complexes, and lipoprotein 

can transfer miRNAs to tumor cells. By the several advanced technologies, I can identify these 

components more clearly. To elucidate the function of EVs or lipoprotein in the cell 

communication is an exciting project warranting further investigation.  

 

Q3: Why does clinical application of CCL2 inhibitor for metastasis treatment require careful 

design?  

My data showed CCL2 knockdown reduced microglial cell infiltration, inhibited brain 

metastases proliferation, and prolonged overall survival of brain metastasis-bearing mice. These 

data clearly serve as proof-of-concept that targeting CCL2 can be exploited clinically as a new 

therapeutic option for brain metastasis patients. CCL2 inhibitors are currently being assessed as 

anti-inflammatory agents in a phase II clinical study [260]. Therapies targeting the tumor 

microenvironment (TME) represent a novel treatment for cancer. Anti-CCL2 employs the 

strategy of targeting metastatic microenvironment, and especially in combination with targeting 

tumor cells, potentially may be more effective for treating genetically highly unstable metastatic 

tumors.  

However, I think that clinical application of CCL2 for metastasis treatment should 

applied carefully for the following reasons: 1) humanized monoclonal anti-CCL2 antibody 

(CNTO888) is ineffective to suppress metastatic prostate tumor progression in phase II clinical 

study [261], likely due to the feedback of CCL2 expression. 2) Bonapace and the colleagues 

reported that although anti-CCL2 treatment inhibited tumorigenesis and metastasis in mouse 
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models, discontinuation of anti-CCL2 treatment increased lung metastasis events from primary 

breast tumor [253]. Their study neither refuted the anti-metastasis effect of anti-CCL2 treatment 

nor demonstrated any effect of anti-CCL2 on enhancing brain metastasis. Although this study 

design is different from the experiments in my study, one should be careful of the potential 

clinical complications. Additionally, my findings here should motivate future efforts on 

developing better anti-CCL2 agents, optimization of clinical treatment dosing, scheduling, 

combinations, and application strategy. Therefore, these should be further pursued as a follow-up 

study. 

Another possible strategy is to block CCR2. CCR2 is expressed only in several cell types, 

e.g. monocytes, myeloid cells, and activated NK cells. One phase II clinical trial showed that 

CCR2 antibody (ClinicalTrials.gov ID: NCT01015560) has therapeutic effects on metastatic 

cancer patients[262]. It is also a potential treatment to block CCR2 for brain metastasis by 

reducing recruited myeloid cells. 

 

Q4: Can we use exosome-derived miR-19a as a biomarker of brain metastasis? 

There is a report indicating the strong diagnostic and prognostic potential of detecting 

specific proteins or RNAs in exosomes by liquid biopsy, as mentioned in the introduction [153]. 

In my model, exosomes containing astrocyte-derived miR-19a also might be a good specific 

biomarker for diagnosis and prognosis of brain metastasis, complemented with imaging 

approach. However, I found that miR-19a was transferred to tumor from surrounding astrocytes. 

These exosomes from astrocytes might not enter the blood circulation, but might be detected in 

cerebrospinal fluid (CSF). The challenge to use astrocyte-derived exosomal miR-19a as a 

biomarker for early detection or prognosis of brain metastasis is how to discern specific 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617477/%7E%7E%7EUNKNOWN-EXT-LINK-TYPE%7E%7E%7E
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exosomes derived by astrocytes from those by tumor cells. My hypothesis is that the cargos in 

astrocyte-derived exosomes are different from those in tumor cell exosomes. Comparing the 

complete set of miRNAs and proteins in astrocyte-derived exosomes with that in tumor cell-

derived exosomes, I can discern the astrocyte-derived exosomes by specific protein markers. I 

can also identify other miRNAs or proteins, in addition to miR-19a, in astrocyte-derived 

exosomes, which are relevant to the colonization and outgrowth of brain metastasis. Then I will 

use the specific protein markers of astrocyte-derived exosome combined with miR-19a 

expression as biomarkers for brain metastasis. To investigate the positive correlation between 

astrocyte-derived exosomal miR-19a and progression of brain metastasis, I will extract CSF at 

different stages of brain metastasis in mouse models, purify astrocyte-derived exosomes from 

CSF by specific protein markers and common exosome biomarkers, and isolate RNA from 

exosomes to measure miR-19a expression, compare that with controls. Studying circulating 

exosome in CSF or blood is a novel direction. It could improve the sensitivity and specificity of 

brain metastasis diagnosis when combined with imaging screening. However, as mentioned in 

the introduction, there are still many technical limitations for studying exosome as biomarkers in 

vivo. 

 

Q5: How to distinguish bone-marrow derived myeloid cells from resident microglia? 

In my thesis, I found that PTEN loss induced the secretion of CCL2, which recruited 

bone-marrow derived IBA1+ myeloid cells, mainly monocytes, because one subgroup of 

monocyte expresses CCR2, the specific receptor of CCL2. However, this result raised new 

questions about discriminating infiltrating monocytes and resident microglia in our system, 

because they both express IBA1.  
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The source of microglia has been debated for a long time. The consensus held that 

microglia come from the myeloid lineage, but recent studies showed microglia originate in the 

yolk sac in the early stage of development, and reside in the CNS until adulthood [263]. 

Microglia express several biomarkers, including CD11b/CD45 lo, IBA1, CXCR3, CD68, and 

F4/80, which overlap with several biomarkers of macrophage or monocyte. Therefore, microglia 

is categorized as a specific subgroup of macrophages/monocytes.  

Monocytes are the precursor of macrophages and dendritic cells. Monocytes can be 

separated into two groups: resident monocytes (CD14+/CD16- in human, Ly6Clo CX3CR1+ 

CCR2- in mouse), and inflammatory monocytes CD14+/CD16+ in human, Ly6Chi CX3CR1- 

CCR2+ in mouse) [264, 265]. Saederup and the colleagues [266] generated CCR2-red 

fluorescent protein knock-in mice and revealed that under pathological condition, e.g. 

experimental autoimmune encephalomyelitis, most of infiltrated monocytes are Ly6Chi, CCR2+ 

in the inflammatory brain parenchyma. However, microglia express CX3CR1, rather than CCR2, 

in the healthy or pathological brain [266, 267].  

In fact, it is still a challenge to delineate the resident macrophages from infiltrating 

monocytes or other myeloid cells. A previous study by Saederup and the colleagues [266] 

showed that, of these infiltrated Ly-6Chi monocytes, most express CCR2, but a sub-population 

express both CCR2 and CX3CR1, or CX3CR1 only. This finding indicated that infiltrated 

monocytes might mimic the function of active microglia in pathological conditions. As new 

genetic tools became available, the neuroscience field recently has begun to discern the subtle 

differences of each subtype of phagocytic myeloid cell in CNS. The current studies showed two 

groups of monocytes (CX3CR1+ CCR2- and CX3CR1- CCR2+), serve the distinct functions in 
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healthy or pathological conditions. In contrast to the well-studied CCR2-CCL2 pathway, the 

regulation and function of CX3CR1-CX3CL2 pathway remains to be further studied.  

 In my project, I showed recruited IBA+1 myeloid cells promoted tumor growth by 

inhibiting apoptosis and increasing proliferation. However, the detailed mechanism of how 

myeloid cells help tumor cell growth remains elusive. It is possible that recruited myeloid cells 

release cytokines to activate tumor growth and inhibit immune reactions of macrophages and 

microglia. It will be worthwhile to explore the mechanism by which infiltrated immune cells and 

microglia promote brain metastasis in the future. I can utilize CCR2-knockout mouse or 

CX3CR1 knockout mouse to further check the function of monocytes or microglia in brain 

metastasis respectively.  

 In summary, this project focused on the co-evolution of disseminated tumor cells and the 

brain microenvironment. It also revealed the roles of the exosome-mediated miRNA transfer, 

brain inflammation, and brain immune reaction in brain metastasis growth. More importantly, 

the study showed the potential to directly benefit patients with brain metastasis. To further study 

the detailed mechanism of each step in our system and test our novel mechanism in other cancer 

types would contribute to the clear understanding of the brain metastasis process and benefit 

more patients with brain metastasis or primary brain tumors.  
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