
Spike Trains in Spiking Neural P Systems

Gheorghe Păun
Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania, and
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Mario J. Pérez-Jiménez
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: marper@us.es

Grzegorz Rozenberg
Leiden Institute of Advanced Computer Science, LIACS

University of Leiden, Niels Bohr Weg 1
2333 CA Leiden, The Netherlands, and

Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309-0430, USA
E-mail: rozenber@liacs.nl

Abstract. We continue here the study of the recently introduced spiking
neural P systems, which mimic the way that neurons communicate with
each other by means of short electrical impulses, identical in shape (volt-
age), but emitted at precise moments of time. The sequence of moments
when a neuron emits a spike is called the spike train (of this neuron); by
designating one neuron as the output neuron of a spiking neural P system
Π, one obtains a spike train of Π. Given a specific way of assigning sets of
numbers to spike trains of Π, we obtain sets of numbers computed by Π. In
this way, spiking neural P systems become number computing devices. We
consider a number of ways to assign (code) sets of numbers to (by) spike
trains, and prove then computational completeness: the computed sets of
numbers are exactly Turing computable sets. When the number of spikes
present in the system is bounded, a characterization of semilinear sets of
numbers is obtained. A number of research problems is also formulated.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/80296255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The idea of spiking neurons, much investigated in the last time in neural computing
(see, e.g., [3], [5], [6]), was recently incorporated in membrane computing, [4], with the
resulting devices being called spiking neural P systems, in short, SN P systems.

The structure of an SN P system has a form of a directed graph with nodes rep-
resenting neurons, and edges representing synapses. A neuron (node) sends signals
(spikes) along its outgoing synapses (edges). We use a reserved symbol/letter a to rep-
resent a spike. Each neuron has its own rules for either sending spikes (firing rules) or
for internally consuming spikes (forgetting rules). In the initial configuration a neuron
σ stores the initial number of spikes, and at any time moment the currently stored
number of spikes in σ (current contents of σ) is determined by the initial contents of σ
and the history of functioning of σ (the spikes it received from other neurons, the spikes
it sent out, and the spikes it internally consumed/forgot. For each firing rule r there
is a set of numbers, Sr enabling this rule: i.e., if the current contents σ is in Sr, then
r is enabled. When r is enabled, it can fire, i.e., initialize the process of transmitting
a spike (spiking) by σ along all synapses outgoing from σ) – as explained below, the
spiking can take place either at the same moment of time or at a later moment. Each
firing is coupled with a consumption of a fixed number cr of spikes, which is fixed for
each firing rule, where cr ≤ z for each z ∈ Sr. Thus, if the current contents of σ is n
and n ∈ Sr, rule r fires and consumes cr spikes so that n− cr spikes remain.

Each firing rule r in σ has its delay number dr which determines the delay between
the firing of r, and the spiking by σ.

If dr = 0, then σ will spike (using r) at the same moment that r fires. However,
if dr > 0, then σ will spike (using r) t moments after r fires. Moreover, σ becomes
blocked through the time interval q, q + 1, . . . , q + (t − 1), becoming unblocked again
at time moment q + t (when it spikes). When σ is blocked, no input spike enters σ,
i.e., if a neuron σ′ sends a spike to σ along the synapse (edge) from σ′ to σ, then this
spike is “wasted” as it does not enter σ.

There is no delay along synapses: if σ spikes at a time moment t along a synapse to
a neuron σ′, then σ′ (if not blocked) will receive this spike at the same time moment t.

The whole system is timed by a central global clock which determines the same
passage of time moments for all neurons.

The firing rules are given in the form E/ac → a; d, where E is a regular expression
over {a}. If a neuron σ contains such a rule, then E specifies the enabling set Sr, c
specifies the consumption cost, c = cr, and d specifies the time delay, d = dr.

As mentioned already, besides firing rules, a neuron σ can also have forgetting rules
which are of the form as → λ. Such a rule is enabled at a moment of time t, if the
current contents of σ at t equals s. When an enabled rule is applied, then its effect is
just an “internal consumption” of s spikes, refereed to as forgetting.

To complete the description of the functioning of an SN P system, we need to
describe the order of activities for any neuron σ at a given time moment t, which is as
follows. First of all, the current contents of σ at t, denoted conσ(t), is the number of
spikes determined by the whole “history” of σ up to and including the time moment
t− 1 (if t = 0, then conσ(t) is its initial contents).

2

If σ is blocked at t, then nothing happens to σ at t, and so conσ(t + 1) = conσ(t).
If σ is not blocked and no rule of σ is enabled by conσ(t), then neither firing nor

forgetting will take place. Consequently, conσ(t) will be equal to conσ(t) increased by
the number getσ(t), of spikes that σ receives during t.

If σ is not blocked and at least one rule of σ is enabled, then (non-deterministically)
exactly one rule r of σ is chosen to act. If r is a firing rule E/ac → a; d with d = 0,
then conσ(t+1) = conσ(t)−c+getσ(t), and σ spikes at t (along all outgoing synapses);
if the rule has d > 0, then conσ(t + 1) = conσ(t) − c, and σ spikes at t + d (along all
outgoing synapses).

If r is a forgetting rule as → λ, then conσ(t + 1) = conσ(t)− s + getσ(t).
The reader may have noticed already the similarities between the above described

structure and the functioning of a network of neurons connected by synapses and
membrane systems (see, e.g., [8]), or, more specifically, tissue and neural membrane
systems. Neurons become just elementary membranes containing evolution rules (con-
sisting of firing and forgetting rules) and multisets of molecules, where there is only
one molecule, a, in the whole system. The firing rules are used to send molecules out
of elementary membranes into the neighboring elementary membranes, and forgetting
rules are purely internal evolution rules. However, there are also basic differences be-
tween tissue or neural membrane systems and our networks of spiking neurons. For
instance, in the tissue membrane systems the rules are used in parallel, making evolve
molecules of several kinds, while in neural membrane systems one both uses molecules
of several types and states associated with the neurons.

Thus, SN P systems should be seen as extending the framework of membrane
computing so as to account for some computational principles present in spiking neural
networks.

SN P systems can be used in many ways for the purpose of computing. Because of
the one letter “spike” alphabet {a}, it is natural to use them as generators of sets of
numbers. This has been done in [4] already, and for this purpose one also designates
one of the neurons as the output neuron by providing it with an “outgoing edge”: each
time that this neuron spikes, a spike is sent to the environment of the system which is
a natural place to collect the output.

In the current paper we continue this line of research by investigating in a systematic
fashion a number of mechanisms/methodologies that allow to use SN P systems for
computing sets of numbers. The basic notion behind these mechanisms as well as
behind the mechanism considered in [4] is the notion of spike train, which comes from
spiking neural networks. Intuitively speaking, a spike train is the sequence of spikes
emitted by the output neuron, where for each spike the time unit when it is emitted
is indicated. Then, as a set of numbers associated with a spike train we can consider
the times t1, t2, . . . when the spikes are emitted by the output neuron, or the distances
between spikes, t2 − t1, t3 − t2, . . ., with two possibilities: considering all spikes of a
spike train or only the first k, for a prescribed k. There also are other possibilities
which we will present in Section 4.

For all these ways of defining sets of natural numbers computed by an SN P system,
we prove here two types of results, thus extending the results from [4]: (i) SN P systems
without a bound on the number of spikes present in their neurons characterize the

3

computing power of Turing machines, but, (ii) if a bound is imposed on the number of
spikes present in the neurons of SN P systems, then the power of our systems decreases
drastically, and we obtain a characterization of semilinear sets of numbers.

In the next section we introduce the few computability notions and notations we
need in the sequel, then (Section 3) we recall from [4] the definition of spiking neural
P systems and fix the notation we use. In Section 4 we introduce the various sets of
numbers we associate with an SN P system, and in Section 5 we illustrate the definitions
with three examples. The equivalence of SN P systems with non-restricted contents of
neurons with Turing machines used for computing sets of numbers is proved in Section
6, while in Section 7 we give a characterization of semilinear sets of numbers in terms
of SN P systems with a bound on the number of spikes present in their neurons. The
paper ends with a series of open problems and research topics discussed in Section 8.

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory, as
well as with basic membrane computing. Thus we recall here only some notions that
we will use in order to establish the notation for this paper. For a comprehensive
reference to formal language theory and membrane computing, we refer the reader to
[10] and [8], respectively (and to [11] for the most updated information about membrane
computing).

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V , the
empty string is denoted by λ, and the set of all nonempty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|.

We also consider infinite sequences of symbols over a given alphabet V ; their set is
denoted by V ω. When V = {a}, we write aω instead of {a}ω. Throughout the paper,
we use “string” to refer to finite strings and “infinite strings/sequences” to refer to the
elements of V ω.

The family of recursively enumerable languages (of finite strings) is denoted by RE
and the family of Turing computable sets of natural numbers is denoted by NRE (it
is the family of length sets of languages in RE). Similarly, the family of semilinear
sets of natural numbers is denoted by NREG (this is the family of the length sets of
regular languages.

A regular expression over an alphabet V is defined by: (i) λ and each a ∈ V
is a regular expression, (ii) if E1, E2 are regular expressions over V , then (E1)(E2),
(E1) ∪ (E2), and (E1)

+ are regular expressions over V , and (iii) nothing else is a
regular expression over V . Clearly, we assume that the parentheses are not in V ;
as a matter of fact, we will often omit “unnecessary parentheses”. Also, E+

1 ∪ λ
can be written as E∗

1 . With each expression E we associate its language L(E) as
follows: (i) L(λ) = {λ}, L(a) = {a}, for a ∈ V , (ii) L((E1)(E2)) = L(E1)L(E2),
L((E1) ∪ (E2)) = L(E1) ∪ L(E2), and L((E+

1)) = L(E1)
+, for all regular expressions

E1, E2.
The operations used here are the standard union, concatenation, and Kleene +. We

4

also need below the operation of right derivative of a language L ⊆ V ∗ with respect to
a string x ∈ V ∗, which is defined by

L/x = {y ∈ V ∗ | yx ∈ L}.

The universality proof from [4] uses the characterization of NRE by register ma-
chines (see [7]). We will invoke this proof below, but we do not give here the definition
of a register machine. Instead, we recall that such a machine M has a finite set of
labeled instructions, which can be ADD instructions (increasing the value of registers
by one), SUB instructions (decreasing the value of nonempty registers by one), or the
HALT instruction (for ending the successful computations). A number n is generated
by M if, starting with all registers empty and executing the instruction with label l0,
the machine reaches the HALT instruction with all registers being empty again, with
the exception of register 1, which holds n.

Also, we do not recall any general concept from the membrane computing area,
although what follows is related to the so-called neural-like P systems – see details in
Chapter 6 of [8].

We close this section by establishing the following convention: when evaluating
the power or comparing two number generating/accepting devices, we ignore zero;
this corresponds to a frequently made convention in grammars and automata theory,
where the empty string λ is ignored when comparing two language generating/accepting
devices.

3 Spiking Neural P Systems

We recall now from [4] the computing device which we investigate here, without men-
tioning again the neural motivation, but recalling informally the basic ideas, those
which make an essential difference from usual membrane systems: we work with only
one object, denoting a spike, a quanta of energy sent by a neuron along its axon to
all neurons with which it is linked through a synapse; this means that we have these
neurons (single membranes) placed in the nodes of an arbitrary graph, with one of the
neurons called the output one; depending on their contents (number of spikes accumu-
lated), the neurons either fire – and immediately or at a subsequent step spike, sending
a spike to the neighboring neurons –, or forget the spikes they have; as a result, in
the environment we get a sequence of spikes, leaving the system (its output neuron)
at specific moments of times. This is called spike train, and this is the support of
information the computation of the system provides.

Formally, a spiking neural membrane system (abbreviated as SN P system), of
degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);

5

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained in σi;

b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →
a; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (i.e., σi0 is the output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied as
follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule E/ac →
a; d can be applied. The application of this rule means consuming (removing) c spikes
(thus only k− c remain in σi), the neuron is fired, and it produces a spike after d time
units (as usual in membrane computing, a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized). If d = 0,
then the spike is emitted immediately, if d = 1, then the spike is emitted in the next
step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1
the neuron is closed (this corresponds to the refractory period from neurobiology, [1]),
so that it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then the spike is lost). In step t+d, the neuron spikes and
becomes again open, so that it can receive spikes (which can be used in step t+ d+1).

The rules of type (2) are forgetting rules, and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used, meaning
that all s spikes are removed from σi.

In each time unit, if a neuron σi is enabled (i.e., one of its rules can be used), then
a rule from Ri must be used. Since two firing rules, E1/a

c1 → a; d1 and E2/a
c2 → a; d2,

can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and then one of them is chosen non-deterministically. Note however that if a
firing rule is applicable, then no forgetting rule is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other. It is important to notice that the applicability
of a rule is established based on the total number of spikes contained in the neuron.
Thus, e.g., if a neuron σi contains 5 spikes, and Ri contains the rules (aa)∗/a → a; 0,
a3 → a; 0, a2 → λ, then none of these rules can be used: a5 is not in L((aa)∗) and not
equal to a3 or a2. However, if the rule a5/a2 → a; 0 is in Ri, then it can be used: two
spikes are consumed (thus three remains in σi), and one spike is produced and sent
immediately (d = 0) to all neurons linked by a synapse to σi.

The initial configuration of the system is described by the numbers n1, n2, . . . , nm,
of spikes present in each neuron. During a computation, the “state” of the system

6

is described by both by the number of spikes present in each neuron, and by the
open/closed condition of each neuron: if a neuron is closed, then we have to specify
when it will become open again.

Using the rules as described above, one can define transitions among configurations.
A transition between two configurations C1, C2 is denoted by C1 =⇒ C2. Any sequence
of transitions starting in the initial configuration is called a computation. A computa-
tion halts if it reaches a configuration where all neurons are open and no rule can be
used. With any computation (halting or not) we associate a spike train, the sequence
of zeros and ones describing the behavior of the output neuron: if the output neuron
spikes, then we write 1, otherwise we write 0.

In the spirit of spiking neurons, as the result of a computation, in [4] one takes the
number of steps between two spikes sent out by the output neuron, and, for simplicity,
one considers as successful only computations whose spike trains contain exactly two
spikes. We will generalize this in the next section, also giving more precise definitions
and notations for the result of a computation.

4 Considering Spike Trains

Let us place our discussion in the general framework of SN P systems which can spike
a non-bounded number of times along a computation (in particular, the computation
can be non-halting), and let us take into consideration all spikes emitted by the output
neuron during the computation.

Let Π = (O, σ1, . . . , σm, syn, i0) be an SN P system and let γ be a computation in
Π, γ = C0 =⇒ C1 =⇒ C2 =⇒ . . . (C0 is the initial configuration, and Ci−1 =⇒ Ci is
the ith step of γ). In some steps a spike exits the (output neuron of the) system, in
other steps it does not. The spike train of computation γ is the sequence of steps i
such that Ci emits a spike out. We denote by st(γ) the sequence of emitting steps, and
we write it in the form st(γ) = 〈t1, t2, . . .〉, with 1 ≤ t1 < t2 < The sequence can
be finite (this happens if the computation halts, or if it sends out only a finite number
of spikes) or infinite (then, of course, the computation does not halt). The set of all
spike trains (over all computations) of Π is denoted by ST (Π). If Π is deterministic,
that is, in each step at most one rule can be used in each neuron, then there is only
one computation in Π, and so ST (Π) is a singleton.

We will use COM(Π) to denote the set of all computations of Π, and HCOM(Π)
to denote the set of all halting computations of Π.

Of course, the set ST (Π) itself can be considered as the result of the evolution
of Π, thus placing the investigation in the framework of infinite sequence processing,
considering the spike trains as sequences t1, t2, . . . of natural numbers or as binary
sequences, with 1 written in moments t1, t2, . . ., and 0 in all intermediate moments.
This latter possibility is investigated in [9]. Here we adhere to a more classic framework,
considering SN P systems as computing devices, which compute sets of natural numbers
(this was also done in [4]).

One can associate a set of numbers with ST (Π) in several ways. Perhaps the
simplest is to take the set of all numbers t1, t2, . . . from all spike trains. Formally, we

7

get T (γ) = {t1, t2, . . . | st(γ) = 〈t1, t2, . . .〉} and T (Π) =
⋃

γ T (γ), where γ ranges over
all computations with respect to Π. Then, T h(Π) is the subset of T (Π) resulting from
all sets T (γ) such that γ is a halting computation. We will not investigate this case
in what follows (interesting connections with so-called time constructible functions [2]
can probably be made).

Then, like in [4], we can consider the intervals between consecutive spikes as num-
bers computed by a computation, with several alternatives:

• Taking into account only the first two spikes:

N2(Π) = {t2 − t1 | γ ∈ COM(Π) and st(γ) = 〈t1, t2, . . .〉}.
• Generalizing to the first k ≥ 2 spikes:

Nk(Π) = {n | n = ti − ti−1, for 2 ≤ i ≤ k, γ ∈ COM(Π),

st(γ) = 〈t1, t2, . . .〉, and γ has at least k spikes}.
Clearly, N2(Π) is a particular case of Nk(Π), but we have formulated it separately
because it was considered on its own in [4].

• Taking into account all spikes of computations with infinite spike trains:

Nω(Π) = {n | n = ti − ti−1, for i ≥ 2, γ ∈ COM(Π) with st(γ) infinite}.
• Taking into account all intervals of all computations:

Nall =
⋃

k≥2

Nk(Π) ∪Nω(Π).

For Nk(Π) we can consider two cases, the weak one, where, as above, we take into
consideration all computations having at least k spikes, or the strong case, where we
take into consideration only the computations having exactly k spikes. In the strong
case we underline the subscript k, thus writing Nk(Π) for denoting the respective set
of numbers computed by Π.

Two subsets of (some of) these sets are also of interest:

• Taking only halting computations; this makes sense only for Nk(Π), k ≥ 2, and for
Nall(Π) – the respective subsets are denoted by Nh

k (Π) and Nh
all(Π), respectively.

• Considering alternately the intervals: if st(γ) = 〈t1, t2, . . .〉, then

Na(γ) = {n | n = t2k − t2k−1, for k ≥ 1}.
This means that every second interval is “ignored”, we take the first one, we skip
the second interval, we take the third, we skip the fourth interval, and so on. This
is a useful strategy for computing outputs, because each “ignored” interval can
be used for performing “auxiliary checks”. This strategy can be used for all types
of sets, hence we get Na

k (Π), Na
ω(Π), Na

all(Π), as subsets of Nk(Π), Nω(Π), Nall(Π),
respectively.

Finally, we can combine the halting restriction with the alternate selection of intervals,
obtaining the sets Nha

α (Π), for all α ∈ {ω, all} ∪ {k | k ≥ 2}, as well as Nha
k (Π), for

k ≥ 2.

8

5 Three Examples

Before investigating the sets defined above, we will consider some examples.
The first example is rather simple – it is the system Π1 presented in a pictorial way

in Figure 1.
As already introduced in [4], we will represent SN P systems as graphs, whose nodes

represent neurons, and edges represent synapses. Then in each node we specify all rules
as well as the current number of spikes in the neuron represented by this node. We also
attach an outgoing arrow to the output neuron. Moreover, we will use the following
simplification in specifying the firing rules of a neuron. if a firing rule is of the form
E/ac → a; d where L(E) = {ac}, then we write this rule in the form ac → a; d.

With this convention, our first example is given in Figure 1.

'

&

$

%

'

&

$

%

-

¾
-

1 2

a

a → a; 0

a

a → a; 0

Figure 1: A simple SN P system with an infinite spike train

Thus, there are two identical neurons, each one firing and spiking at each moment
of time and sending the spike to the other neuron, thus “reloading” each other con-
tinuously. Moreover, each time that neuron 2 sends a spike to neuron 1, it also emits
a spike to the environment. Therefore, the functioning of the system is deterministic,
only one spike train is produced.

Thus,

ST (Π1) = {〈1, 2, 3, 4, . . .〉},
Nβ

α (Π1) = {1}, for all α ∈ {ω, all} ∪ {k | k ≥ 2},
and either β = a or β is omitted,

Nβ
α (Π1) = ∅, for all α ∈ {ω, all} ∪ {k | k ≥ 2}, and β ∈ {h, ha}.

The pair of neurons from Figure 1 will be used as a “sub-system” in many of the
systems given in this paper, as a step by step supplier of spikes to other neurons. We
use them already in the following example, given in Figure 2, and formally defined as
follows:

Π2 = (O, σ1, σ2, σ3, σ4, σ5, syn, i0),

O = {a},
σ1 = (1, {a → a; 0}),
σ2 = (1, {a → a; 0, a → a; 1}),
σ3 = (0, {a → a; 0, a2 → λ}),
σ4 = (1, {a → a; 0}),

9

σ5 = (1, {a → a; 0}),
syn = {(1, 2), (2, 1), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5), (5, 4)},

i0 = 4.

'

&

$

%

'

&

$

%
'

&

$

%

'

&

$

%

'

&

$

%

³³³³1

XXXXy

S
S

S
Sw

¢
¢

¢¢®
©©©©©*

HHHHHj

6

?

-

1
a

a → a; 0

2
a

a → a; 0

a → a; 1

3

a → a; 0

a2 → λ

4
a

a → a; 0

5
a

a → a; 0

Figure 2: A non-deterministic SN P system with an infinite spike train

This system contains two “modules” consisting of pairs of neurons which sustain
each other: neurons 4 and 5 are exactly as the two neurons from Π1, while neurons 1
and 2 behave like the two neurons from Π1 as long as neuron 2 fires by means of the
first rule, a → a; 0 (thus, this neuron behaves non-deterministically, and it is the only
non-deterministic neuron in Π2). Let us analyze the functioning of Π2 beginning with
the output. As long as (the output) neuron 4 contains exactly one spike, it fires and
sends out a spike. This happens already in the initial moment, hence all spike trains
begin with a sequence of 1’s. The spiking of neurons 4, 5 halt only when they get
spikes from neuron 3. In turn, neuron 3 spikes only if it contains only one spike, but
as long as both neurons 1 and 2 send a spike to neuron 3, it will contain two spikes
and use the forgetting rule a2 → λ. Neurons 1 and 2 send two spikes to neuron 3 as
long as both of them use the rule a → a; 0.

However, at any moment, starting with the first step, already neuron 2 can use the
rule a → a; 1. When this happens, then at this step neuron 2 sends no spike to neurons
1 and 3, and moreover it gets blocked. But then none of neurons 1 and 2 will spike
in the next moment, while neuron 3 has only one spike and so it will fire. In the next
step, neuron 3 uses the rule a → a; 0, and so it sends a spike to each of neurons 4 and 5.
From now on these two neurons are idle, because they do not have rules for more than
one spike. Thus, neuron 4 does not emit spikes anymore, and the spike train continues
to infinity with 0’s.

Note that the internal functioning of Π2 does not stop after neurons 4, 5 get blocked:
the spike of neuron 2, produced by the rule a → a; 1, will be sent in the next step to
both neurons 1 and 3, and both these neurons fire again; neuron 1 sends spikes to both

10

neurons 2 and 3, which also fire, and the process continues forever, sending spikes to
neurons 4 and 5, which never fire again.

Even if neuron 2 fires in the first step by using the rule a → a; 1, neurons 4 and
5 are blocked only from step 3 on, hence all spike trains start with at least two 1’s.
Consequently,

ST (Π2) = {〈1, 2, 3, . . . , k〉 | k ≥ 2}.
Note that a spike emitted by a neuron can branch into two or more spikes, if there

are several synapses leading out of the neuron: the number of branched spikes equals
the number of outgoing synapses. Such a branching is present in Π2 for neurons 1, 2,
3 (also for neuron 4 we have a branching where one spike is emitted as an output).

Let us also consider now the SN P system Π3 given in Figure 3.

'

&

$

%

Â

Á

¿

À

'

&

$

%
6

À

Á

A
A
A
A
A
A
AAUA

A
A

A
AAK

@
@

@R

À

¾

1
a3

a4 → a; 0
a2 → a; 0

a → λ

2

a → a; 0

a → a; 1

3

a → a; 0

6

a
a → a; 0

a2 → λ

¾

½

»

¼¾

½

»

¼

@
@

@
@

@
@

@R

@
@@R

©©©©¼
¾

4

5

a → a; 0

a → a; 0

a3 → λ

'

&

$

%

Figure 3: An SN P system computing an arithmetical progression

In the initial configuration there are spikes in neurons 1 and 6 (neuron 6 is the output
neuron). Neuron 1 cannot use any rule, while neuron 6 fires and spikes immediately.
Its spike exits the system and it also reaches neuron 1, which now can fire using the
rule a4 → a; 0. The spike of neuron 1 reaches both neurons 2 and 3.

If neuron 2 uses the rule a → a; 0, then neuron 6 does not fire again, because it has
to forget the two spikes (from neurons 2 and 3), but neuron 1 fires and spikes again.
The spike of neuron 3 is also sent to neurons 4 and 5, which pass the spikes to neuron
6, which forgets them. The process is repeated an even number of steps.

11

If neuron 2 uses instead the rule a → a; 1, then in the next step neuron 1 receives
only one spike, from neuron 3, and forgets it. In turn, neuron 6 fires, using the spike
received from neuron 3; besides the spike sent out, it also sends a spike to neuron 1. In
the next step, also the spike of neuron 2 reaches neurons 1 and 6, but neuron 6 receives
at the same time the two spikes from neurons 4 and 5. This means that now neuron
1 has two spikes, and neuron 6 has three (it also gets two spikes from neurons 4 and
5). While neuron 1 fires and spikes, neuron 6 forgets its two spikes. This means that
the process can be repeated, starting with the spike of neuron 1, which happens in the
next step after neuron 6 spikes. But this is exactly as in the initial configuration.

It is easy to see that exactly 2i + 1 steps, for some i ≥ 1, elapse between two
consecutive spikes of neuron 6. Thus, all computations γ of Π3 last forever and
Nβ

α (Π3) = {1 + 2i | i ≥ 1}, for all α ∈ {ω, all} ∪ {k | k ≥ 2}, and for β either
missing or equal to a (not for halting cases).

Table 1: A computation of the system from Figure 3

Neuron 1 2 3 4 5 6 env
initial a3 — — — — a
Step 1 — — — — — a → a; 0 spike

a3a6 — — — — —
Step 2 a4 → a; 0 — — — — —

— a1 a1 — — —
Step 3 — a → a; 0 a → a; 0 — — —

a2a3 — — a3 a3 a2a3

Step 4 a2 → a; 0 — — a → a; 0 a → a; 0 a2 → λ
— a1 a1 — — a4a5

Step 5 — a → a; 1 a → a; 0 — — a2 → λ
a3 — — a3 a3 a3

Step 6 a → λ sends spike — a → a; 0 a → a; 0 a → a; 0 spike
a2a6 — — — — a2a4a5

Step 7 a2 → a; 0 — — — — a3 → λ
— a1 a1 — — —

Step 8 — a → a; 1 a → a; 0 — — —
a3 — — a3 a3 a3

Step 9 a → λ sends spike — a → a; 0 a → a; 0 a → a; 0 spike
a2a6 — — — — a2a4a5

Step 10 a2 → a; 0 — — — — a3 → λ
— a1 a1 — — —

Because the work of the system Π3 is rather intricate to follow, we also provide a step
by step analysis of a possible computation in Table 1. Ten steps are considered here,
with spikes sent out in steps 1, 6, and 9 (hence in-between the three spikes we compute
numbers 5 and 3, respectively). In each row of the table, we give for each neuron the
used rule and below it the spikes present in that neuron after completing the step, with

12

recently received spikes having subscripts which indicate the origin of those spikes; if no
rule is used, or no spike remains, then we use a dash. Note that the configuration of the
system is the same at the end of steps 2, 7, 10, hence immediately after spiking, which
confirms the observation made above about the possibility of iterating indefinitely this
behavior of Π3.

We will return to this example in Section 7.

6 Universality Results in the General Case

As expected (in view of [4]), also when we consider sets Nβ
α (Π), defined in Section 4,

we obtain characterizations of Turing computability.
In Table 2 we synthesize all the results we know about the families of sets Nβ

α (Π)
(“univ” means “universality”, with the indication of the theorem where the respective
case is settled, and a line stands for a case which does not make sense). The notations
for the respective families are as follows: Spikβ

αPm(rulek, consp, forgq) is the family of
sets Nβ

α (Π), for all systems Π with at most m neurons, each neuron having at most k
rules, each of the spiking rules consuming at most p spikes, and each forgetting rule
removing at most q spikes; then, α ∈ {all, ω} ∪ {k, k | k ≥ 2}, and β either omitted
or belonging to the set {h, a, ha}. As usual, a parameter m, k, p, q is replaced with
∗ if it is not bounded. Note that in Table 2 we do not give the specific parameters
m, k, p, q for families of the form Spikβ

αPm(rulek, consp, forgq), but these parameters
can be found in the statements of the appropriate theorems.

Table 2: Results known about families Spikβ
αPm(rulek, consp, forgq)

β arbitrary halting alternate halting & alternate
α
2 univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1]
2 univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1]
k univ [Th. 6.4] univ [Th. 6.5] univ [Th. 6.4] univ [Th. 6.3]
k univ [Th. 6.6] univ [Th. 6.5] univ [Th. 6.6] univ [Th. 6.3]
ω univ [Th. 6.4] —– univ [Th. 6.2] —–
all univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1] univ [Th. 6.1]

Several of the results mentioned in Table 2 are a direct consequence of the univer-
sality result from [4], of the proof of this result in [4], and of the previous definitions.

Indeed, in the notation of the present paper, the universality result from [4] is
written in the following form:

Theorem 6.1 Spikβ
2 P∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3, and

either β = h or β is omitted.

Then, in the proof of this equality from [4] one constructs an SN P system Π which
simulates a register machine M ; the computations of Π either never halt (when they

13

correspond to non-halting computations in M), or spike exactly twice, and then halt.
This means that for Π we have

N2(Π) = N2(Π) = Nβ
2 (Π) = Nβ

2 (Π), for all β ∈ {h, a, ha}.

This fills in the first two lines from the table (that is why we mention Theorem 6.1 as
the source of these results).

Since for the system Π constructed in the proof from [4] we have Nω(Π) = Na
ω(Π) =

∅, the arguments above also imply the last row of Table 2.

Let us now consider the two universality results mentioned in the ω line. The
simplest case is that of the alternate sets of numbers.

Theorem 6.2 Spika
ωP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3.

Proof. This is again a consequence of the proof of Theorem 6.1 from [4]. Take the
system Π constructed there for simulating a register machine M (its work starts from
the neuron labeled by l0, the initial label of M , and it ends with the output neuron, i0,
spiking twice, at an interval of length n for some n ∈ N(M)). We add two new neurons
with labels c1, c2 as indicated in Figure 4. They have no spikes at the beginning and
contain the rule a2 → a; 0. Each of these neurons receives the spikes emitted by neuron
i0 and sends spikes to the neuron l0. When i0 spikes first time, the new neurons do not
fire, they keep the spike until i0 spikes again. At that moment (the computation in Π
halts, and) both c1 and c2 spike, and this fires again the initial neuron of Π. In this
way, another computation of M is simulated.

º

¹

·

¸

º

¹

·

¸

'

&

$

%

º

¹

·

¸

'

&

$

%

¤
¤
¤
¤²

©©©©©©©©¼ Z
Z

Z
Z

Z
Z

Z
Z

ZZ}

B
B

B
B

B
B

BBM
-

Π
l0

a2 → a; 0
a → λ

i0

c1

a2 → a; 0

c2

a2 → a; 0

Figure 4: The idea of the construction from the proof of Theorem 6.2

Let Π′ be this new system. Of course, if a computation in the register machine
M does not halt, then the computation in Π′ does not halt, but it spikes only a finite
number of times, hence does not contributes to Na

ω(Π′). However, there is a computa-
tion in Π′ where we always “guess correctly” and we always start a new computation
in M which halts – maybe we start again and again the same computation. Hence it
suffices to have N(M) non-empty, and it is not necessary that N(M) is infinite. For

14

such a computation γ, st(γ) is infinite and the alternate distances between spikes give
exactly the set N(M) = Nh

2 (Π), that is, Na
ω(Π′) = N(M).

The observation that the new neurons have rules of the complexity required by the
parameters in the statement of the theorem completes the proof. 2

The previous construction can be supplemented with a module which can stop the
computation after a given number of spikes, thus also covering the cases Nha

α (Π) for
α ∈ {k, k | k ≥ 2}.
Theorem 6.3 Spikha

α P∗(ruleh, consp, forgq) = NRE for all h ≥ 2, p ≥ max(3, k),
q ≥ 3, and α ∈ {k, k | k ≥ 2}.
Proof. As in the previous proof, we start again from the system Π constructed in the
proof of Theorem 6.1 from [4], making the observation that the output neuron of Π
has only the rule a → a; 0. Now, the idea is to collect the spikes sent from this neuron
in a new neuron, d1, counting to k; when k spikes are collected, this neuron will fire,
its spike will be multiplied by the three neighboring neurons, d2, d3, d4, which spike
and send their spikes to neurons c1, c2, which are used as in Figure 4 to restart the
work of Π; moreover, d2 and d3 send spikes also to the output neuron of Π. In this
way, neurons c1, c2, and i0 can never use again a rule, because they collected too many
spikes insides, which means that Π halts after sending out k spikes. The suggested
construction is illustrated in Figure 5.

º

¹

·

¸

º

¹

·

¸

º

¹

·

¸
º

¹

·

¸

'

&

$

%

º

¹

·

¸

'

&

$

%

¾

½

»

¼

º

¹

·

¸

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡ª¤

¤
¤
¤
¤
¤
¤º 6

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢¢®

¾

PPPPPPPPPPi

@
@

@
@

@
@

@I
¶

¶
¶

¶
¶

¶¶/

©©©©©©©©¼

XXXXXXy

A
A
A
A
A
A
A
A
A
A
A
AAU

-

Q
Q

Q
Q

Q
QQk

¾

´
´

´
´

´
´́+

¤
¤
¤
¤
¤
¤
¤
¤º 6

l0

a2 → a; 0

a → λ
a → a; 0

i0
Π

c1

a2 → a; 0

c2

a2 → a; 0

d1

ak → a; 0

d2

a → a; 0

a → a; 0

d3

d4

a → a; 0

Figure 5: The idea of the construction from the proof of Theorem 6.3

It is instructive to note that the fact that neuron i0 gets “flooded” three steps after
the kth spike does not cause problems for the system, because also Π needs at least

15

three steps before spiking again: one step when i0 fires and sends the spikes to c1, c2,
one step when c1 and c2 spike and send their spikes to neuron l0, and one step when
neuron l0 spikes, restarting the work of Π (we also have l0 6= i0). 2

The above construction does not work for the halting non-alternating case, which
we will discuss later.

We give now a technical lemma which will be useful in settling three more cases
from Table 2.

Lemma 6.1 Let Π be an SN P system such that each computation γ of Π has st(γ)
either empty or st(γ) = 〈t, t + n〉. There is an SN P system Π′ with the following
properties:

1. for each computation γ of Π with st(γ) = 〈t, t + n〉, there is a computation γ′ of
Π′ such that st(γ′) = 〈t, t + (n + 1), t + 2(n + 1), . . .〉;

2. each computation γ′ of Π′ either never spikes, or has st(γ′) = 〈t, t + (n + 1), t +
2(n + 1), . . .〉 for 〈t, t + n〉 being the spike train of a computation of Π.

Proof. We will sketch (somewhat informally) the construction behind the proof – it
is illustrated in Figure 6. To the given system Π with the output neuron i0, we add
13 further neurons, grouped in three modules of four neurons each, as well as a new
output neuron, out. The three modules, indicated by dashed boxes in Figure 6, work
as follows.

The module Initialize loads 2n+1 spikes in neuron m1, provided that the system Π
spikes at times t and t+n, for some n ≥ 1. This happens in the following way. All new
neurons are empty at the beginning. When the system Π spikes first time (moment t), a
spike arrives in each of the neurons c1, c2, c3. Then c1 and c2 fire and spike immediately;
their spikes are sent both to neuron m1 and to each other. Therefore, in the next step,
both c2 and c3 spike again, and the process is repeated as long as Π does not spike for
the second time.

Neuron c1 keeps the first spike until Π spikes again – this happens at the moment
t + n. Simultaneously, c2 and c3 spike, hence in the next step they have to use the
forgetting rule a2 → λ, because both of them contain two spikes. At the same time,
neuron c1 fires for the first (and the only) time. This means that altogether neuron m1

receives 2n + 1 spikes.
During all this processing, neuron m1 contains an even number of spikes, except for

the last moment, when it gets an odd number of spikes. When neuron m1 receives a
spike from c1, also c4 receives a spike at the same step.

This initiates the module Move m1 to m′
1. This module moves the contents of

neuron m1 into neuron m′
1, and in the final step of this moving process it sends a spike

to the output neuron out. This causes system Π′ to spike, and also initiates the module
Move m′

1 to m1.
This whole process is carried out in the following way. At some moment, both

neuron m1 and neuron c4 spike. This means that both neurons m2,m3 get two spikes
each. They fire and spike, which results in sending two spikes to neuron m′

1, as well

16

'

&

$

%

¾

½

»

¼

'

&

$

%

'

&

$

%

¾

½

»

¼

¾

½

»

¼

@
@

@R

¶
¶

¶/

©©©©©©©©©¼

¶
¶¶/

'

&

$

%
'

&

$

%'

&

$

%
'

&

$

%

?

C
C
C
C
C
C
C
C
C
C
CW

¶¶/

¤
¤
¤
¤
¤
¤
¤
¤
¤² Á

À

?
A
A
AU

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

PPPPPPPPPPPPPq

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

©©©©©©©©©©©©©*

½
½

½
½

½
½

½
½

½
½

½
½

½
½

½
½

½>

Á

Á

À

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤º

QQk

C
C
C
C
CCO

´
´

´
´

´
´

´
´

´́+

½
½

½
½

½
½

½
½

½
½

½
½

½
½=

Z
Z

Z
Z

Z
Z

Z
Z

Z} Q
Q

Q
Q

Qk

Â

Á

¿

À

@
@

@R
¾ ¾

C
C
C
C
C
C
C
CCW

½
½

½
½

½
½

½
½

½
½=

¢
¢

¢
¢

¢
¢

¢¢®

Π
i0

Initialize
c1

c2 c3c4

a2 → a; 0

a → a; 0

a → a; 0

a2 → λ

-

¾
a → a; 0

a2 → λ

m1

a(aa)+/a2 → a; 0

a3 → a; 0

m2

a2 → a; 0

a → λ

m3

a2 → a; 0

a → a; 0

m4

a → a; 0

a2 → λ

out

a → a; 0

m′
4

a → a; 0

a2 → λ m′
3

a2 → a; 0

a → a; 0

a2 → a; 0

a → λ

m′
2

m′
1

a(aa)+/a2 → a; 0

a3 → a; 0

Move m1 to m′
1

Move m′
1 to m1

Figure 6: The idea of the proof of Lemma 6.1

as in sending one spike to each other. This happens simultaneously with the firing of
neuron m1 – which fires as long as at least three spikes are inside (note that after each
use of the rule a(aa)+/a2 → a; 0 the number of spikes in neuron m1 remains odd, hence
the rule can be used again). The process is repeated, and in each step the contents of
m1 decreases by 2 and that of neuron m′

1 increases by two.
When the contents of neuron m1 is exhausted, hence the rule a3 → a; 0 is used, two

more spikes are sent to neuron m′
1, but in the next step only neuron m3 fires (both

17

m2 and m3 contain one spike, and m2 has to forget it). In this way, neuron m′
1 gets

2n + 1 spikes, and this happens exactly at the moment when also neuron m4 is ready
to spike: as long as both m2 and m3 spike, neuron m4 forgets the two spikes it receives,
but when only m3 spikes, neuron m4 fires. The spike of m4 reaches both the output
neuron out – hence the system spikes, and the neurons m′

2,m
′
3 of the module Move m′

1

to m1.

The task of this module is analogous to that of the module Move m1 to m′
1: the

contents of m′
1 is moved to neuron m1 and at the end a spike is sent to the output

neuron.
Note that in the same way as neuron c4 has sent spikes to m2 and m3 when initiating

the module Move m1 to m′
1, now m4 sends spikes to neurons m′

2,m
′
3, thus initiating

the module Move m′
1 to m1. Similarly, on completion of the task of this module, its

neuron m′
4 sends spikes to neurons m2,m3, triggering again the module Move m1 to

m′
1.
The computation in Π′ never stops, and between any two consecutive spikes we

have n + 1 steps: in n steps we use the rules of either m1 or of m′
1, hence both m2 and

m3, or m′
2 and m′

3, respectively, are fired (thus 2n spikes are moved), and one further
step is necessary for sending the last spike from m3 or m′

3, to m′
1 or m1, respectively.

It should be clear from the above explanations that each computation γ of Π, with
st(Π) = 〈t, t + n〉, is “prolonged” to an infinite computation in Π′, spiking repeatedly,
and, conversely, each computation in Π′ corresponds to a computation in Π in the way
stated in the lemma. 2

This lemma can be used to obtain again universality results for the cases we consider
as consequences of Theorem 6.1 (the case of Spika

ωP∗(. . .) is covered again):

Theorem 6.4 Spikβ
αP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3, and

for α ∈ {ω} ∪ {k | k ≥ 3}, β = a or β is omitted.

Proof. Let Q ∈ NRE be an arbitrary set and let Q′ = {n − 1 | n ∈ Q}; clearly,
also Q ∈ NRE. According to Theorem 6.1 there is an SN P system Π such that
Nh

2 (Π) = Q′. Applying Lemma 6.1 to Π we get a system Π′ as in the statement of

Lemma 6.1. Clearly, Nω(Π′) = Nk(Π
′) = {n + 1 | n ∈ Nh

2 (Π)} = Q−{1} for all k ≥ 2.

If 1 /∈ Q, then we have Q = Q−{1} ∈ Spikβ
αP∗(rulek, consp, forgq) with k, p, q and

α, β as in the theorem, and we are done.
If 1 ∈ Q, then we also consider the system Π1 from Figure 1, for which we

have Nω(Π1) = Nk(Π1) = {1}. Now, we just observe that the families of the form
Spikβ

αP∗(rulek, consp, forgq) are closed under union: the proof of the corresponding
result from [4] (carried out there for Spikh

2P∗(rulek, consp, forgq)) is valid also in our
cases. Then, we perform the union construction from [4] for Π′ and Π1, obtaining a
system Π′′ which computes exactly Q, both as Nω(Π′′) and as Nk(Π

′′), and in both
cases also for the alternating mode.

Thus, the theorem holds. 2

We can now combine the constructions from the proofs of Theorem 6.3 and of
Lemma 6.1: a “flooding” module, like the one composed of neurons d1, d2, d3, d4 in

18

Figure 5, is added to the construction from Figure 6, sending three spikes to neurons
m4,m

′
4, and out. In this way, both “triggering” neurons m4 and m′

4 get blocked after
k spikes, hence the system halts. Consequently, we also obtain the following result,
which completes the result from Theorem 6.3:

Theorem 6.5 Spikh
αP∗(ruleh, consp, forgq) = NRE for all h ≥ 2, p ≥ max(3, k),

q ≥ 3, and α ∈ {k, k | k ≥ 2}.

Somewhat conversely to Lemma 6.1, the following auxiliary result ensures the pas-
sage from infinite spike trains to trains of a specified length.

Lemma 6.2 Given an SN P system Π we can construct an SN P system Πk such that:

1. for each computation γ of Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k, there is a com-
putation γ′ of Π′ such that st(γ′) = 〈t1 + 2, t2 + 2, . . . , tj + 2〉;

2. for each computation γ of Π with st(γ) = 〈t1, t2, . . . , tk, . . .〉, there is a computa-
tion γ′ of Π′ such that st(γ′) = 〈t1 + 2, t2 + 2, . . . , tk + 2〉;

3. each computation γ′ of Π′ either (i) never spikes, or (ii) has st(γ′) = 〈t1+2, t2+2,
. . . ,tj + 2〉 for some computation γ in Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k, or
(iii) has st(γ′) = 〈t1 + 2, t2 + 2, . . . , tk + 2〉 for some computation γ in Π with
st(γ) = 〈t1, t2, . . . , tk, . . .〉.

Proof. For a given k ≥ 1 and an SN P system Π, we construct the SN P system Π′ in
the way indicated in Figure 7. The spikes of i0, the output neuron of Π, are sent to
both new neurons c1 and c2. While c1 fires and spikes immediately, thus just delaying
by two steps the moments when Π spikes, neuron c2 accumulates the spikes until it
collects k+1 spikes. Then c2 starts to fire, hence in the new output neuron, out, we get
two spikes at each moment that Π spikes, which means that the neuron out forgets all
spikes beginning with the (k + 1)th spike. Thus, if the computation in Π had a spike
train of less than k spikes, then all these spikes are sent out, but if there are more than
k spikes, then they are truncated to the first k ones. 2

Theorem 6.6 Spikβ
kP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3, and

for β = a or β is omitted.

Proof. This is a direct consequence of Lemma 6.1, Lemma 6.2, and of Theorem 6.1.
Indeed, take a system Π such that Nh

2 (Π) is a given set from NRE. We apply Lemma
6.1 to this system as well as the possible completion by union as in the proof of Theorem
6.4 obtaining a system Π′ whose computations just repeat spiking at identical intervals.
Now, to Π′ we apply the construction from Lemma 6.2, obtaining a system Π′′ with all
spike trains truncated at exactly k spikes (this is the case, because the spike trains of
Π′ are all infinite). Then, it is clear that in both the arbitrary and the alternate modes
we compute the same set of numbers. 2

19

'

&

$

%

º

¹

·

¸

º

¹

·

¸

'

&

$

%

º

¹

·

¸
¡

¡
¡ª

@
@@R

@
@

@R

¡
¡¡ª

¾

Π

i0

c1 c2

out

a → a; 0 ak+1/a → a; 0

a → a; 0

a2 → λ

Figure 7: The idea of the proof of Lemma 6.2

The construction from the proof of Lemma 6.2 does not stop the functioning of
Π′, but only the emission of spikes, hence we do not get the universality also for the
halting cases (alternating or not). In turn, the construction from the proof of Lemma
6.1 simply prolongs the computation indefinitely. It is for this reason that in the halting
case we had to use a different technique, viz., the one from the proofs of Theorems 6.3
and 6.5.

In some sense, the above proofs for the ω cases based on Lemma 6.1 are not “fair”,
because although the computations are infinite, the intervals between consecutive spikes
are identical, each computation contributes only one number to the computed set. This
motivates the following notions of fairness (we call this “coherence”):

• A system Π is said to be strongly ω-coherent if for all computations γ1, γ2 in Π
we have N(γ1) = N(γ2), where for any computation γ with st(γ) = 〈t1, t2, . . .〉
, N(γ) = {ti − ti−1 | i ≥ 2}. (Note that this does not mean that the two
computations have the same spike trains, but only that the sets of intervals
between consecutive spikes are the same.)

• A system Π is said to be weakly ω-coherent if there is a computation γ in Π such
that N(γ) = Nall(Π) (that is, there is a computation which provides all numbers
which all other computations can provide).

Of course, the strong coherence implies the weak coherence: in a strongly ω-coherent
system all computations fulfill the property of weak coherence.

The proofs above do not take care of these properties; extending the results in Table
2 to weakly and strongly coherent systems remains an open problem.

20

7 Spike Trains in the Case of Bounded Systems

We will investigate now only sets of numbers which can be computed by computations
with a bounded number of spikes in any neuron. Thus, we will consider families
Spikβ

αPm(rulek, consq, forgp, bounds), which correspond to families Spikβ
αPm(rulek,

consq, forgp), with the additional restriction that for an SN P system Π we consider
sets of numbers of the form Nα(Π, s), resulting from computations where each neuron
can contain at most s spikes (if a computation reaches a configuration where a neuron
has more that s spikes, then this computation aborts and provides no result) – such
computations are called s-bounded.

The following characterization of semilinear sets of numbers was proved in [4]:

Theorem 7.1 NREG = Spikβ
2 P∗(rulek, consq, forgp, bounds), for all k ≥ 3, q ≥ 3,

p ≥ 3, and s ≥ 3, with β = h or β is omitted.

The proof of the inclusion Spikβ
2 P∗(rulek, consq, forgp, bounds) ⊆ NREG in [4],

can be extended in a direct way to a proof for the inclusion Spikβ
αP∗(rule∗, cons∗,

forg∗, bound∗) ⊆ NREG for all α and β as considered here.
Unfortunately, we cannot use the technique from the previous section in or-

der to extend the proof of the converse inclusion, NREG ⊆ Spikβ
2 P∗(rulek, consq,

forgp, bounds), from the case α = 2, β = h to other cases, because the proof of Lemma
6.1 introduces an unbounded number of spikes in the neurons. However, the steps used
in [4] for proving this inclusion (for α = 2 and β = h) can be modified, for cases k, k,
and ω, also for the alternating definition of the computed set, so a result as that in
Theorem 7.1 is true also for other cases than those covered by the theorem.

Let us consider now each of these steps.
By Lemma 8.2 from [4], singleton sets {n}, n ≥ 1, are in Spikh

2P1(rule2,
cons1, forg0, bound1). Now, Lemma 6.1 applies, growing the number of spikes to
2n + 1, hence to a bounded amount. Therefore, singleton sets are in the family
Spikβ

αP14(rule2, cons3, forg2, bound2n+1).
Lemma 8.3 from [4] proves that each arithmetical progression {ni | i ≥ 1} with

n ≥ 3 is in Spikh
2Pn+2(rule3, cons3, forg2, bound3). The computation of the SN P

system Π used in the proof in [4] halts after the second spiking, but this can be avoided
by replacing the rule a2 → λ from neuron 1 of Π with the rule a2 → a; 0. In this way,
after any spike the system is “re-initialized” and will spike again after a number of
steps of the form ni for some i ≥ 1. Thus, each arithmetical progression of the above
form belongs to all our families Spikβ

αPm(rulek, consq, forgp, bounds) with β /∈ {h, ha}.
However, the passage from “pure” arithmetical progressions, of the form {ni |

i ≥ 1}, to arbitrary progressions, of the form {r + ni | i ≥ 1}, for some r ≥ 1, is
based in [4] on a lemma saying that to the elements of a set Q ∈ Spikh

2Pm(rulek,
consp, forgq, bounds) we can add a constant r, thus obtaining the set {j + r | j ∈ Q}
which belongs to the same family. We do not see how to extend this lemma also to
systems with infinite spike trains – therefore we will prove directly that all arithmetical
progressions are in our new families.

21

This has been already shown for a particular case (r = 1, not covered by the next
lemma), in the example from Figure 3. The construction from this example can be
generalized in order to obtain the following result.

Lemma 7.1 Each arithmetical progression of the form {r + 2i | i ≥ 1}, r ≥ 2, is in
Spikβ

αPr+4(rule2, cons2, forg3, bound3), for all α ∈ {ω, all} ∪ {k | k ≥ 2} and either
β = a or β omitted.

Proof. For a given r as in the statement of the lemma, we consider the SN P system
from Figure 8.

'

&

$

%

¾

½

»

¼¾

½

»

¼

¾

½

»

¼

º

¹

·

¸

º

¹

·

¸

'

&

$

%£
£

£
£

£
£

£
£° £

£
£
£
£
£
££± B

B
B
B
B
B
B
B
BN

¾

B
B

B
B

B
B

B
B

BBM

A
A
A
A
AU

¢
¢

¢
¢

¢¢®

¾

´
´

´
´

´
´́3

6

6

¡
¡µ

@@I

Q
QQk

1

2
3

6

a2 → a; 0

a → λ

a → a; 0

a → a; 1 a → a; 0

a
a → a; 0

a2 → λ

a → a; 0

c1

. . .

cr−2

a → a; 0

a → a; 0 a → a; 0

c′r−1cr−1

¾

½

»

¼

¾

½

»

¼

J
J

J
JĴ

B
B
B
B
B
B
B
BBN

³³³³³³)

XXXXy

a → a; 0

a → a; 0

4

5

'

&

$

%
a3 → λ

Figure 8: An SA P system computing {r + 2i | i ≥ 1}

This system function in a way similar to the SN P system from Figure 3, with
one important difference: neuron 1 is “loaded” with two spikes only r steps after the
spiking of neuron 6. Therefore, the distance between any two consecutive spikes which
exit the system is of the form r + 2i, i ≥ 1. The computation never stops. 2

A similar assertion is valid for arithmetical progressions with the step greater than
2.

Lemma 7.2 Each arithmetical progression of the form {r + ni | i ≥ 1}, r ≥ 1, n ≥ 3,
is in Spikβ

αPn+r+2(rule3, cons3, forg4, bound3), for all α ∈ {ω, all} ∪ {k | k ≥ 2} and
β = a or β is omitted.

22

'

&

$

%

¾

½

»

¼¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

'

&

$

%

HHHHHHHHHj

?

?

£
£

££°

@
@

@
@

@
@

@@

?

A
A
A
A
A
A
A
AAU¾

½

»

¼
¾¾¾

Á

A
A

A
A

AK

¤
¤
¤
¤
¤
¤
¤
¤
¤º

¡¡µ

out

¾

a3

a3 → a; 0

a2 → a; 0

a → λ

a → a; 0

d1

dr

. . .

a → a; 0

1

a3

a → a; 0

a2 → λ

a4 → λ
2

a → a; 0. . .

n− 2

a → a; 0

a → a; 0

n− 1

n

a → a; ; 0
'

&

$

%

¡
¡

¡
¡

¡
¡¡µ

0

a → a; 0

a → a; 1

Figure 9: An SA P system computing {r + ni | i ≥ 1}, for n ≥ 3

Proof. Let n, r be as in the statement of the lemma, and consider the SN P system Π
from Figure 9.

The functioning of Π is somewhat similar to the functioning of the SN P system
from Figure 8, with the output neuron “loading” neuron 1 after r time units, and
with the cycle through neurons 1, 2, . . . , n − 2, n − 1, n repeated an arbitrary number
of times, ensuring in this way that the distance between any two consecutive spikes is
of the form r + ni, for some i ≥ 1. 2

Lemma 8.4 (for each SN P system Π there is an equivalent SN P system Π′ con-
taining initially only one spike inside one of its neurons) and Lemma 8.5 (all families
of numbers computed by systems with at least two rules, two consumed or used spikes,
as well as with at least two spikes contained in the neurons, are closed under union)
from [4] are true also for our cases (with the same proofs as in [4]).

Using this “union lemma”, we ensure that all semilinear sets belong to families of
the form Spikβ

αP∗(rulek, consp, forgq, bound∗) with small values of parameters k, p, q,
but not for the case when we consider computations which halt after spiking. For
instance, Lemma 6.2 ensures only that the system does not send out more than k
spikes, but the computation can continue forever. However, this can be fixed in the
case of bounded computations for any initial SN P system, not only for a particular
one, as was the case in the proof of Theorem 6.5:

23

Lemma 7.3 Given a system Π and a threshold s on the number of spikes in any
neuron, we can construct a system Πk such that:

1. for each s-bounded computation γ of Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k, there is
a halting 2s-bounded computation γ′ of Π′ such that st(γ′) = 〈t1+2, t2+2, . . . , tj+
2〉;

2. for each s-bounded computation γ of Π with st(γ) = 〈t1, t2, . . . , tk, . . .〉, there is a
halting 2s-bounded computation γ′ of Π′ such that st(γ′) = 〈t1+2, t2+2, . . . , tk+2〉;

3. each computation γ′ of Π′ either (i) never spikes, or (ii) st(γ′) = 〈t1 + 2, t2 +
2, . . . , tj + 2〉 for some computation γ in Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k,
or (iii) st(γ′) = 〈t1 + 2, t2 + 2, . . . , tk + 2〉 for some computation γ in Π with
st(γ) = 〈t1, t2, . . . , tk, . . .〉.

Proof. For a given k ≥ 1 and an SN P system Π we construct the system Π′ as follows
(without loss of generality, we may assume that all rules of Π are of the form aj → x,
for some j ≤ s, because only such rules can be useful in computations – hence we can
discard all rules dealing with more than s spikes, also keeping from the languages of
regular expressions only the strings of length at most s).

– We add the neurons with the labels out (the output neuron of Π′) and
1, 2, . . . , s, s + 1, where all of them are empty in the beginning.

– Neuron out contains the rule a → a; 0, and each neuron i ∈ {1, 2, . . . , s + 1}
contains the rule ak/a → a; 0.

– We add the following synapses:
(i0, out) and (i0, i), 1 ≤ i ≤ s + 1,
(i, l) for all 1 ≤ i ≤ s + 1, for l = out, and for all l which are labels of neurons
in Π.

– To each neuron of Π as well as to the neuron out we add the rules
as+i → λ, for all 1 ≤ i ≤ s + 1.

The so constructed system Π′ functions exactly as Π, except that after spiking k
times all neurons of Π as well as the neuron out are “flooded” by s + 1 spikes, and,
irrespectively of the number of spikes contained in each neuron (from 0 to at most s),
they have to forget all of them. Note that the rules as+i → λ cannot be used before
spiking k times, and that no initial rule of Π can be used in the presence of more than
s + 1 spikes. Clearly, the system Π′ halts after k spikes. 2

Using this lemma, results about the sets Nk(Π) can be transferred to the sets Nk(Π)
– in case that computations are bounded.

Combining all the results from this section, we can state the following characteri-
zation of semilinear sets of numbers.

Theorem 7.2 NREG = Spikβ
αP∗(rule∗, consq, forgp, bound∗), for all q ≥ 3, p ≥ 3,

and for all α ∈ {ω, all} ∪ {k, k | k ≥ 2}, and β ∈ {h, a, ha} or β is omitted.

24

This time we cannot bound the number of rules, because of the proof of Lemma
7.3, neither give a precise upper bound on the number of spikes present in neurons,
because of the way that singleton sets are computed.

8 Further Possibilities; Research Topics

Although we have settled here all questions about the sets of numbers we have consid-
ered (universality as in Table 2, characterizations of semilinear sets of numbers as in
Theorem 7.2), a lot of further ideas remain to be examined, even if we confine ourselves
to this framework, of the computability of sets of numbers.

We start with a possible change in the basic definition which can be easily handled:
instead of (or together with) considering a time interval between firing and spiking
(hence a delay in emitting the spike), it is also natural to consider a delay in trans-
mitting a spike along a synapse. This can be easily formalized, by associating natural
numbers to synapses, and assuming that a spike reaches the destination after the spec-
ified number of steps. However, this does not bring anything new, because this feature
can be captured by usual systems, without delay on synapses, by considering interme-
diate neurons: if from neuron i to neuron j we have to spend k time units, then we add
k − 1 intermediate neurons, each one with the single rule a → a; 0, thus only sending
the spike ahead, and taking one time unit for that.

Not so clear is the way to address other issues. Let us start with the general research
topic of considering graphs of restricted forms. Which is the power of SN P systems
with the synapses graph being, e.g., acyclic, or being “almost a tree”, in the sense that
the neurons can be arranged in the nodes of a tree and we only allow non-tree synapses
among neurons placed in the same level of the tree, not at different distances from the
root. Then, what about imposing bounds on the in-degree and/or the out-degree of
the graph? In many of the examples and the proofs from the previous sections we deal
with systems with a rather reduced in- or out-degree, but still the problem remains
whether we can bound by 2 these degrees (without losing the computing power of that
type of systems).

Then, we have a series of precise technical open problems of a clear interest: Can
the forgetting rules be avoided? Can the delay in spiking be avoided (hence working
only with rules of the form E/ar → a; 0)? Note that the forgetting rules provide ways of
“cleaning” the neurons without spiking, while the delay between firing and spiking not
only keeps “hidden” a spike, but also keeps closed a neuron, thus making all spikes sent
to this neuron disappear. At least for the problem about forgetting rules we expect a
negative answer: without such rules we cannot reach Turing completeness. Then, what
restrictions can be imposed on the regular expressions from the firing rules, without
losing the computing power?

Forgetting rules can probably be avoided if we provide possibilities to close synapses,
in a dynamical way, so that the spike of a neuron will not go to a “wrong” place; how
to include this feature in our systems remains to be investigated. In general, the idea of
a dynamical synapse structure and, possibly, also of having a dynamical population of
neurons (to create, destroy, or only activate/deactivate neurons) looks rather attractive

25

and well motivated from a neurobiological point of view.
Both with mathematical–computational and biological motivations we can consider

other variations of the model: producing several spikes at the same time (hence using
rules of the form E/ac → aq; d), considering also “anti-spikes” (besides a, to also have
ā, which, sent to any neuron, will “annihilate” one local a, as if using a rule aā → λ,
which however does not count as a rule used by the neuron, that is, a usual spiking
or forgetting rule should be used at the same time if the remaining spikes allow it),
allowing also self-synapses (one-neuron systems can then work forever: take a unique
neuron, with a initially inside, and the rule a → a; 0; if we have a feed-back synapse,
then we compute the infinite spike train 〈1, 2, 3, . . .〉).

The range of possible developments is really unlimited – and still we have not
mentioned here any problem related to infinite sequences, the subject of the companion
paper [9], where such research topics can be found.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular
Biology of the Cell, 4th ed. Garland Science, New York, 2002.

[2] J.L. Balcázar, J. Dı́az, J. Gabarró: Structural Complexity. Springer-Verlag, Berlin,
1995.

[3] W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

[4] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Submitted, 2005
(also available at [11]).

[5] W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

[6] W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.

[7] M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ, 1967.

[8] Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.

[9] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking
neural P systems. Submitted, 2005.

[10] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.
Springer-Verlag, Berlin, 1997.

[11] The P Systems Web Page: http://psystems.disco.unimib.it.

26

