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ABSTRACT
 

A technique was developed to make permanent preparations of
 

Tribolium chromosomes. After dissection testes are hypo­

tonically treated with Simmons citrate, fixed in 3:1 methanol
 

and glacial acetic acid, and are spread along the surface of
 

a slide that has been covered with fixative. Utilizing this
 

technique eight species of Tribolium representing three
 

species-groups were chromosomally examihed. In the castaneum
 

species-group T. castaneum and T. freemani have 2N =20
 

chromosomes and a 9 + Xy^ meioformula. T. audax and T.
 

madens have 2N = 20 chromosomes and supernumeraries; four are
 

seen in T. audax and ten in T. madens. The meioformula of T.
 

audax is 9 + Xyp. + BIX l + BI 1. and T. madens is 9 + Xy^ +
 

BIT 3 + BI 2. Tn the confusum soecies-qroup T. confusum, T.
 

destructor, and T. anaphe have 2N = 18 chromosomesiT.
 

confusum has an 8 + neo-XY meioformula while T. deStructor
 

and T. anaphe have nine bivalents with no heteromorphic sex
 

chromosomes identified. T. brevicornis, of the brevicornis
 

species-group had 2N = 18 and nine bivalents during metaphase
 

I. No heteromorphic sex bivalent was identified. Measurements
 

of meiotic chromosomes irevealed significant differences in
 

size intraspecifically and interspecifically.
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INTRODUCl'ION
 

Tribolium flour beetles are important pests of stored
 

grains and cereai products. Siitiilar beetles have been
 

associated with huma.ns for as long ^̂ a seeds have been stored
 

to prevent starvation. Records from Shakespeare's day show
 

that on the long vpyages of Elizabethan mariners, food stores
 

were liable to be damaged by "stored product" beetles,
 

generally known as weevils (Crowson, 1981).
 

Not all associations of beetles and man are negative;
 

examples from some of the most priMtive recent human tribes
 

suggest that beetle larvae may have been a significant
 

element in the diets of many paleolithic peoples (Crowson,
 

1981). In addition to this, the use of Tribolium as material
 

for diverse laboratory and experimental investigations is
 

long established. Flour beetles are readily available and
 

culturable, and Tribolium is utilized widely by many
 

■researchers today. 

The genus Tribolium contains over thirty species, and is 

a member of the order Coleoptera. This order contains the 

beetles and weevils and consists of four suborders 1) 

Adephaga, 2) Archostemata, 3) Myxophaga and 4) Polyphaga. 

Goleoptera would have to be considered the most suceSsful of 

insect orders if the number of representative species is 

sigriificant. There have been over 300,000 species of beetles 

described, making up over 25% of all cataloged insects. Over 

1000 new species of Coleoptera are described each year 



(Sokbloff, 1972). in regards to the abnhdance of Coieopteran
 

species, Crowson (1981) quotes T.H. Huxley "that one thing we
 

know about a divine Creator, supposing ono to exist, is that
 

he has a particular interest in Coleoptera", this remark is
 

true even today.
 

The suborder Polyphaga contains 150^^ 170 families of
 

beetles. The genus Tribolium belongs to the Tenebrionidae
 

(Crowson, 1981). Members of Tenebrionidae are versatile.
 

Adults and larvae can be found in diverse habitats (with the
 

exception of aquatic ones) including, rotten wood, the
 

undersides of logs or rocks, and even in the arid deserts of
 

Africa and the American southwest. They feed on decaying
 

vegetable matter, animal waste products, seeds, cereals,
 

fungi and living plants. Included in Tenebrionidae is the
 

subfamily, Tenebrioninae, and the tribe Ulomini, which
 

contains the genus Tribolium/ and the other tenebrionid flour
 

beetles that constitute the important pests of stored
 

products (Sokoloff, 1972). In 1948 Hinton examined the
 

relationships of these beetles and grouped the thirty species
 

of Tribolium into five species-groups (Figure 1). These
 

species-groups are associated with geographical regions and
 

are included in Table 2.
 

Chromosomal studies of beetles have been undertaken but
 

are difficult because of the small size of the cells;
 

cytologically their chromosomes are more difficult to work
 

with compared to those of many other insect orders. (Smith,
 



1952b; Crowson, 1981; Camacho, 1982; Garber, 1972). In the
 

absence of "giant chromosomes", and of true salivary glands,
 

cytogenetic studies in beetles must rely on other tissues as
 

a source of chromosomes. Cell divisions of non-germinal
 

tissues are rare in adult beetles, being limited primarily to
 

regeneration of the mid-gut epithelium, and blood or
 

hypodermal cells in the process of wound healing (Crowson,
 

1981). This limits the choice of tissues suitable for
 

cytogenetic investigations.
 

The target tissue chosen for cytogenetic study of
 

tenebrionid beetles must provide a source of rapidly dividing
 

cells to improve the chances of finding sufficient metaphase
 

chromosomes. Metaphase chromosomes are desirable because it
 

is during this stage that the chromatin is most highly
 

condensed and comparisons of chromosomes are easiest to make.
 

The final divisions in gametogenesis in most beetles takes
 

place during, and usually early in, adult life. However, the
 

long adult lives of Tribolium involve more than one pejriod of
 

reproductive activity making these tissues an excellent
 

source of rapidly dividing cells.
 

Spermatogonial tissues are preferred over oogonial
 

tissues for two reasons. First, by examining spermatogonial
 
,1
 

tissues at metaphase I it may be possible to determine the
 

condition of the X and Y chromosowes and any pairing
 

associations that have occurred. Secondly, because
 

spermatogenesis continues throughout the reproductive life of
 



male Tribolium beetles these tissues almost always contain
 

actively dividing cells. Division of nongerminal tissue is
 

rare in Coleopterans, therefore most cytogenetic
 

investigations have focused on the meiotic stages of
 

reproductive tissues. Spermatogenesis is a more rapid process
 

than oogehesis providing more metaphase cells and thus making
 

testes the best choice for chromosomal studies. The choice of
 

Spermatogonial tissue determines that most observations will
 

focus on meiotic cells.
 

An interesting attribute of beetles is that a definite
 

chromosome complement of their ancestral form can be
 

postulated with a high degree of probability. This form
 

persists in a considerable percentage of the recent species
 

(Smith, 1952b; Crowson, 1981; Juan and Petitpierre, 1988).
 

Four of the eight species involved in this study were
 

cytologioally examined by S.G. Smith in 1952 (Figure 3). The
 

four species were T. castaneum, T. confusuni, T. madens, and
 

T. destructor. In addition to his work on Tribolium beetles.
 

Smith did extensive analyses within the order Coleoptera. Of
 

the approximately 25,000 species of Coleoptera in North
 

America representing about 150 families. Smith has reported
 

on at least 191 species from 66 families. Based on the
 

results of these studies. Smith (1952b) concluded that the
 

primitive number of chromosomes for Coleoptera consists of
 

nine pairs of autosomes, an X approximately the size of the
 

autosomes, and a minute Y. During metaphase I the sex
 



chrompsomes are V-shaped and are cohnepted at two terminal
 

points in a parachute-like formation. This association is
 

denoted, Xys> and was observed by Smith in mbst members of the
 

superfamily, Tenebroihoijdea. According to Smith (1953)
 

members of the order, Coleoptera usually display metacehtric
 

or acrocentric centromeres. His observations are supported by
 

the more recent findings of Growson (1981), and Juan and
 

Petitpierre (1988). Smith's cytological examinations of the
 

genus Tribolium determined that T. castaneum and T. madens
 

are consistent with the primitive conditiort. Both species
 

have nine pairs of autosomes and display the Xy^ association
 

of the sex chromosomes, in addition to this T. madens
 

possesses five small supernumeraries whose origins and
 

function are still unknown.
 

Smith (1952b) denotes the supernumeraries as either BIX
 

or BI. "B" refers to B-chromosomes, but he does not elaborate
 

as to the meaning of II or I. It is apparent that the super
 

numeraries of T. madens are of tw distinct morphological
 

types. Three of them are metacentric and consequently have
 

two lobes. The two remaining supernumeraries are telodentric
 

and therefore single-lobed. Bipartite, metacentric super
 

numeraries will be denoted as BII and single-lobed ones as BI
 

in this study.
 

White (1954) suggests that supernumeraries, originated
 

not from the disintegration of autosomes but from fusions or
 

fragmentations of them. These supernumeraries are referred to
 



as B-chromosomes or accessory chroinosoiries, and are comprised
 

primarily of heterochromatin.Whert this condition occurs, it
 

is not always consistent throughout the population (White,
 

1954; Blackwood, 1956; Catcheside, 1956; Swarison, 1967). Many
 

types of superhumeraries have been descritjed in insects and
 

other groups of animals (White, 1976; Ostergren, 1947; Lewis,
 

1957). Cohsiderable differences exist in the morphology and
 

behavior of these supernumeraries at mitosis and meiosis.
 

The presence or absence of supernumeraries doesn't seem
 

to affect phenotypic expression of the organism (Catcheside,
 

1956). The presence of supernumeraries probably has some
 

effect on viability or fertility or in other ways too subtle
 

to notice (Growson, 1967; GrbsSon, 1948; Waddington, 1957).
 

In addition to the supernumeraries described in T.
 

madens. Smith (1952b) observed other exceptions to the usual
 

number of chromosomes observed in most Coleopterans. Some
 

species have fewer chromosomes, a cphditibh he regards as
 

derived from the earlier one. He hypothesized that this
 

situation resulted from the translocation of the sex
 

chromosomes to a pair of autosomes, and refers to this larger
 

bomplex as the neo-X and neo-Y. In spermatbgonial metaphase
 

preparations of T. cpnfusum Smith observed that the neo-X is
 

often J-shaped and larger than any pthef member of the
 

CPmplemeht, and the neo^^
 

telocentric. The location of the centromere in the neo-Y of
 

T. confusum supports Smith's hypothesis as to its origins. It
 



is generally accepted that acrocentrlc or telocentric
 

chromosomes are more recent than metacentric chromosomes in
 

the phylogeny of a species indicating the development of the
 

neo-Y occurred rather recently. (Wfhite, 1954).
 

The staining reactipns of the neo-X and nep'-Y offer
 

further support of Smith's hypothesis. When stained with
 

FeUlgenfuchsin the primitive X, as seen in T. castaneum,
 

exhibits both euchromatih and heterochromatin. The neo-X
 

observed in T. confusum and T. destructor show similar
 

staining activity, but both are larger than the primitive X.
 

This indicates that the neo-X consists of more functional
 

genes than does the primitive one.
 

During metaphase I, the neo-X and neo-Y form a
 

heteromorphic pair, the neo-XY. When stained with Feulgen
 

fuchsin, Smith observed that the XY bivalent in T. confusum
 

had three major components; the differential arm of the X
 

that was positively heteropycnotic at pachytene but could not
 

be distinguished from the autosomes at metaphase; the pairing
 

arm of the X that was euchromatic at pachytene and metaphase;
 

and the Y chromosome which was indistinguishable from
 

euchromatin at pachytene but was negatively heteropycnotic at
 

metaphase.
 

Smith feels that the lack of heteropycnosis in T.
 

confusum's neo-Y indicates that the chromosome is genetically
 

inert. He hypothesizes that T. confusum represents ah
 

intermediate form and that this situation occurred at the
 



 

expense of the euchromatin of the autosome involved in the
 

trans1ocation. The neo-Y observed in T. destructor 1acks this
 

heteropycnotic section so smith suggests that T. destructor
 

must have evolved from T. confusum, and that the genes that
 

were lost were probably inert at that time.
 

The neo-XY or a similar condition was also observed in
 

T. brevicornis and T. anaphe by Moore and Sokoloff (1982).
 

They observed a diploid number of 18 chromosomes in both
 

species. These chromosomes were of similar size during
 

spermatogonial metaphase, but a structure resembling the
 

neo-XY observed in T. confusum by Smith (1952b) was seen in a
 

metaphase I preparation in T. brevicornis (Figure 4).
 

After studying over 24 American species of Coleoptera,
 

Crowson (1981) also concluded that the basic complement
 

consists of nine pairs of autosomes, a fairly large X and a
 

small y which associates with the X in meiosis to form the
 

XyE> bivalent. This type of X-y association occurs in some
 

other primitive insect types, and is suspected to have been a
 

feature of the ancestors of Goleoptera at the beginning of
 

the Permian period. ' •
 

Given this basic number of nine pairs of autosomes and a
 

sex bivalent, Crowson feels that the chromosomes of beetles
 

demonstrate the principle that with a reasonably small
 

starting number of chromosomes, increases in number are
 

considerably more frequent than decreases throughout the
 

course of evolutionary history. Some exceptions to this
 

• " 8 ; y/' .
 



theory are demonstrated by the findings qf Juan and
 

Petitpierre (1988) and within the genus Tribolium.
 

Juan and Petitpierre (1988) studied twenty species of
 

Mediterranean tenebrionids and reported diploid numbers of 18
 

and 20 chromosomes. Although most of the species that were
 

examined had 9 + Xyss meioformulas, soroe with 8 + Xy^ and one
 

species with a 9 + Xy meioformula were reported. The
 

reduction in chromosome number in the species with an 8 + XyK>
 

meioformulas is due to the loss Of a pair of autosomes, and
 

is similar to the situation observed in some TribOlinim
 

species.
 

Virkki (1974) postulates that the Xyp condition
 

displayed by many Coleopteran species may have arisen from Xy
 

or XY ancestors. In Coleoptera the Xy^ association is
 

believed to have involved a nucleolus. According to Virkki,
 

this association was responsible for the formation of the xy^
 

complex. In Xy or XY types the persistence of this nucleolar
 

association makes possible a reversion to the Xyii
 

association.
 

Crowson (1981) hypothesises that prior to the Xy^
 

condition the original sex-determining pair consisted of an X
 

the size of an autosome and a small y, but no nucleolus. He
 

feels that the most significant difference in the development
 

of this trait was the absence or presence of a nucleolus in
 

association with the y-chrqmosome in meiosis.In situations
 

where the nucleolus was lost, the only possible kind of sex
 

http:meiosis.In


bivalent whiqh could develop was an XY situation which was
 

pbserved and described by Smith (1952b) as the neo"'X -and nep-


Y. This new sex bivalent relies pn a pairihg segment of the
 

autosomes to which they have translocated to, for the
 

association of the sex chrompspmes.
 

The present study invPlved the development of a
 

technigue tp karyptype Trlbolium beetles. Once established,
 

the procedure was applied to the eight species of Tribolium
 

beetres available at the California State University
 

Tribolium Stock Center. Utilizing the
 

chromosomes ot each of the eight species of Tribolium was
 

chromosomally examined. The diploid number of chromosomes for
 

each species, the number of autosomeP, and the cOnditipn of
 

the sex chromosomes during metaphase I was determined. These
 

results were then compared to thpse obtained by Smith
 

(1952b), and Moore and Sokoloff (1982).
 

In her studies of Blattella, Dr. Mary H.Ross (1986)
 

noted the difficulty in determining the centrpmere location
 

utilizing current cytogehetic technigues. She did however
 

note pronounced differences in chromosome length when
 

comparing the autosomes of Blatella to each other. Juan and
 

Petitpierre (1988) also utilized the measurement and
 

analysis PfchrbmosPme length in their study pf teneb
 

beetles. They determined that the differences in chrompsome
 

10
 



length were significant enough to distinguish one species
 

from another based oh that characteristic. The length of
 

Tribolium chromosomes will be examined in this study.
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MATERIALS AND METHODS
 

The following technique provides a simple method of
 

producing permanent preparations of Tribolium chromosomes*
 

The prdcess requires less than two hours to complete, and
 

aftdr stainingr the slides are ready for immediate
 

ohservatipn. The tissue is completely fixed and dried and the
 

slides last for an indefinite period of time allowing for
 

examination at a later date.
 

The insects used in this study were the eight species of
 

Tribolium available at the Tribolium Stock Center at
 

California State University, San Bernardino. These beetles
 

represent 3 species-groups and are listed in Table 1. .
 

Table 1 The eight species of Tribblium included
 
in this study. 

Species—group Species included in tbis study 

1. Breyicornis Tribolium brevicornis 

2. ConfuSum Tribolium cdnfusum 
Tribolium anaphe 
Tribolium destructor 

3. castaneum Tribolium castaneum
 
Tribolium madens
 

Tribolium audax
 
Tribolium freemani
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Testes were removed from adult males by microdlssection
 

in a drop of Insect Ringers solution. The tissiae was
 

transfered to a hypotonic solution of sodium citrate where
 

it Should remain for 20 minutes. This process results in
 

swelling of the chromosomes, making them easier to observe.
 

The tissue was fixed for a minimum of one hour in a
 

mixture of 3 parts absolute methanol;and 1 part glacial
 

acetic acid (Baragafto, 1978; Brown, 1972; Jones, 1962).
 

Before using, microscope slides were thoroughly cleaned with
 

methanol. After cleaning, several drops of fixative were
 

applied to one end of the slide, a^i*^ it Was tilted so that
 

the solution spread evenly across the surface.
 

Two of three testes were placed at one end of the slide
 

(Figure 1-a). A second slide was aligned over the first at a
 

90 degree angle (Figure 1-b), and gentle pressure applied to
 

spread the tissue. The top slide held at at a 45 degree
 

angle above the bottom slide was turned and lifted (Figure 1­

c). The top slide was then dragged over the bottom one to
 

spfead the material evenly across the surface (Figure 1-d).
 

The prepafdtion was allowed to air dry and it was then
 

Stained with 10% Giemsa for 20 minutes. The slide was then
 

rinsed, air dried and observed under oil immersion.
 

A Nikon phase-contrast microscope was used to study the
 

chromosomes. Photographs were taken using a green filter with
 

a Nikon 35mm camera. Technical Pan 2415 film was employed
 

with printing on high contrast paper.
 



Chromqsoiae itieasurements were made with an occular
 

micrometer. For each of the eight species included in this
 

study the chromosomes from six metaphase I cells were
 

measured. The results of these measurements were analyzed
 

with the Tukey test. Significance was detei^M'iried at the 5%
 

level.;./
 

Using this method I was able to examine the chromosomes of
 

eight species of Tribolium flour beetles. Although no other
 

insect groups have been examined using this technique it
 

should provide a suitable means for other cytogenetic
 

investigations.
 

REAGENTS
 

1. Sodium citrate hypotonic soiutipn - 1% solution in
 

distilled HaO.
 

2. Insect Ringers solution - To 100 ml distilled HaO add:
 

0.65g NaCl, 0.042g RCl, and O.025g CaCla.
 

3. Fixative - 3 parts absolute methanol to 1 part glacial
 

acetic acid. Prepare fresh daily.
 

4. Giemsa stain - 10% Harleco Giemsa.
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(c) (d)
 

Figure 1. Preparation of slides, (a) Place several
 
testes at one end of the slide, (b) Place a second
 
slide over the first at a 90 degree angle, apply
 
gentle pressure to spread the tissue, (c) Turn and
 
lift the top slide, (d) Drag the top slide across
 
the bottom one to spread the tissue evenly across
 
the surface.
 

15
 



RESULTS :
 

Chromosomes were obseryed at sperraatogOnial metaphase and
 

metaphase I (Figures 5-20). Table 3 lists the species
 

surveyed and the number of mitotic and meiotic cells that
 

were examined. The chrontospmes of six metaphase I cells were
 

measured for each pf the eight Species involved in this study
 

and are recorded in Tables 4-11. The chrbmosomes of the eight
 

species were compared ihtraspecificaliy and interspecificaily
 

using Tukey's analysis. These results are recorded in Tables
 

■'12-27. ' 

CASTANEUM SPECIES-GROUP
 

Four members of the castaneum species-group were examined,
 

T. castaneum, T. freemani, T. madens, and T. audax. All four
 

species have 2N = 20 chromosomes and Xypmeioformulas, but
 

the karyotypes of T. audax and T. madens contain additional
 

supernumerary members. The bivalents of all four species are
 

rather uniform in size, and metacentric centromeres are
 

T. castaneum and T. freemanl both have 2N = 20
 

chromosomes. The chromosomes bf T. castaneum at
 

spermatogonial metaphase are all bipartite, and most are
 

metacentrics. The most conspicubus exception is the small y­

bhromosome (Figure 5)-T. freemani's mitbtic metaphase
 

chromosomes are also primarily metacentric, but several
 

quadripartite members were identified. The y-chromosomes is
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again the smallest member of the complement (Figure 7).
 

T. audax and T. madens also have 2N = 20 chromosomes but
 

their karyotypes contain additional supernumerary
 

chromosomes. During mitotic metaphase the karyotype of T.
 

audax contained four supernumerary elements. Two of these are
 

bipartite metacentrics while the other two elements are
 

telocentric (Figure 9). The supernumeraries are somewhat
 

smaller than the autosomes but not obviously so, this makes
 

it difficult to distinguish them from each other duririg
 

mitotic metaphase. Ten superhumeraries are present in
 

spermatogonial metaphase karyotypes of T. madens, six
 

bipartite metacentrics, two acrocentrics and two telocentrics
 

(Figure 11). As was the case with T. audax, there was a small
 

difference in size between the autosomes and the
 

supernumeraries;
 

Meiotic preparations of T. castaneum and T. freemani were
 

similar (Figures 6 and 8). Both species have pre- dpminately
 

metacentric autosOmes and the sex chromosomes associate in
 

the parachute formation. T. castaneum metaphase I cells
 

exhibited a 9 + Xyp meioformula with metacentric autosomes
 

averaging from 2.0 - 3.83 microns in length. The Xy^ sex
 

bivalent ayeraged 1.42 microns (table 8). Measurements of T.
 

freemani metaphase I autosomes average from 1.04 - 3.0
 

microns in length, most of these having metacentric
 

centromeres. The sex chromosomes are associated
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in an Xy^ bivalent arid averaged slightly less than one micron
 

long (Table 5).
 

Metaphase I preparations of T. audax contain two
 

supernumeraries in addition to the 9 + XyE> chromosomes
 

(Figure 10). One of these is bipartite and metacentric, and
 

the other is sroall and telocentric. Autosomes average 1.92 ­

3.58 microns in length, the supernumeraries average 1.00 and
 

1.08, and the Xy)p was 1.0 micron long (Table 10). The
 

supernumeraries are easier to distinguish from the autosomes
 

in meiotic metaphase than they are in mitotic metaphase.
 

T, madens displayed five supernumeraries during meiotic
 

metaphase (Figure 12). Three are metacentric and the
 

remaining two are small and probably telocehtric, all are
 

conspicuously smaller than the autosomes. The autosomes
 

average from 1.5 - 4125 microns in length, the super
 

numeraries ranged from 0.875 - 1.13, and the Xy^ bivalent
 

averaged 0.79 microns (Table 11).
 

CONFUSUM SPECIE
 

The three members of the confusum species-group that were
 

examined include T. confusum, T. destructory and T. anaphe.
 

All three species have 2N = 18 chromosomes but some variation
 

in their meioformulas was observed.
 

DUring spermatogpnial metaphase T. confusum karyotypes
 

consist of 16 autosomes/ most of these are metacentric and
 

all are bipartite. The X is metacentric, bipartite and is
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larger than the autosomes. The y is a large telocentric
 

chromosome, approximately the same size as some of the
 

autosomes (Figure 13).
 

Karyotypes of T. destructor contain 16 metacentfic,
 

iaipartite chrombsomes, a large submetacentric X, and ay that
 

is aiightly smaller than the large arm of the X (Figuire 15).
 

T. anaphe karyotypes (Figure 17) are similar to these except
 

that the X-chromosome is quadripartite and the y-chrbmosome
 

is not as large as the one observed in T. confusum.
 

Metaphase I preparations of T. destructor often display'
 

a conspicubusly large, submetacfentric autosome (Figure 16).
 

The reroainihg chrombSomes are metacentric or acrocentric, and
 

all bf them are bipartite. It was not possible to distinguish
 

the Xy complex from the other bivaients based on morphology
 

or differences in staining chairacteristics.
 

T. anaphe^s meibtic cells lack the large autosome that was
 

evident in T. destructor. Metacentric, submetacentric and
 

telbcentric, bipartite chrombsomes make up the complement
 

(Figure 18). Spfflie mbtaphase ^̂^^I karybtypes cbntain a bivalent
 

that resembled the XYs> association. This structure is not
 

apparent in all of the cells that were examined.
 

BREVICORNIS SPECIES-GROUP
 

Only one member, T. brevicornis of this species-group was
 

availably for this study. Spermatbqohial metaphase karyotypes
 

contain 18 members (figure 19). Most bf the chr-ombsomes are
 

metacentric and bipartite althbugh some qnadripartite
 



bivalents were identified. It is difficult to distinguish the
 

X-chroinosome from the autosomes due to the similarities in
 

morphology and staining. The y-chromosome is large,
 

approximately the-size of the autosomes.
 

During metaphase I(. nine metacentric, bipartite
 

chromosomes were observed (Figure 20). The chromosomes are
 

uniform in size and it is hot possible to distinguish a
 

heteromorphic sex:bivalent. These resuits agree with those
 

reported by MOore and Sokoloff (1982).
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DISCUSSION
 

The eight species of Triboliuin investigated in this study
 

are Gonsistent with the other tenebrionids that have been
 

previously examined (Smith, 1952b; Moore and Sokoloff, 1982;
 

and Juan and Petitpierre, 1988). Diploid numbers of 18 and 20
 

chromosomes and three meioformulas, 9 + XyE>, 8 + neo-XY, and
 

9 autosomes with no heteromorphic sex pair identified.
 

CASTANEUM SPECIES-GROUP
 

Tribolium castaneum
 

Examination of Tribolium castaneum spermatogonial
 

metaphase chromosomes revealed metacentric centromeres in
 

most of the autosomes, with some acrocentric and telocentric
 

members identified. Almost all of the autosomes are
 

bipartite. The X is metacentric, bipartite, and approximately
 

the size of the autosomes, while the y is small and
 

telocentric. These results are the same as those obtained by
 

Smith (1952b) in his study of the cytogenetic characteristics
 

of T. castaneum (Figure 3).
 

Metaphase I chromosomes of T. castaneum are predom
 

inantly metacentric. When comparing the chromosomes to each
 

other significant differences in length were observed between
 

all members except 4 and 5, and 7 and 8. The Xy^, bivalent is
 

significantly smaller than autosome number 9. The X stains
 

darkly and the y appears as a thin loop attached to the X at
 

terminal ends.
 

21
 



Tribolium freeman!
 

Although the mitotic autosomes of T. freeman! are s!m!lar
 

!n s!ze, some morpholog!cal d!fferences were noted.
 

Var!at!ons !nclude the pos!t!on of the centromere and the
 

number of arms per chromosome. Most of the autosomes are
 

metacentr!c, although submetacentr!c and acrocentrlc members
 

were observed. Both bipartite and quadripartite chromosomes
 

were Identified. The X-chromosome Is blocky, bipartite, and
 

has a submetacentrlc centromere, while the the y Is small and
 

acrocentrlc. This Is the first time that T. freeman! has
 

been cytologlcally examined.
 

Most of the melotlc metaphase chromosomes are metacentrlc
 

and difficult to distinguish based on morphology. Tukey's
 

analysis of chromosome length showed that there are no
 

significant differences between most of the autosomes (Table
 

21). There was not a significant difference In length between
 

the Xys> bivalent and chromosome number 9 but differences In
 

morphology allow a distinction to be made. The Xy^ consists
 

of a relatively large, dark staining X and a small, closely
 

associated y.
 

Tribolium audax
 

Dlplold cells of T. audax contain 2N = 20 chromosomes
 

and four supernumeraries. Most members of the complement are
 

metacentrlc, except for the small, acrocentrlc y. Two of the
 

supernumeraries are metacentrlc, and are denoted BII 1 and
 

BII2, and the two others are telocentrlc and are denoted BI 1
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and Bl 2. The supernumeraries are not much smaller than the
 

autosomes and therefore are difficult to distinguish from
 

them by size during spermatogonial metaphase. T. audax has
 

been previously examined by Shaw (Sokoloff, 1972) who
 

observed nine autosome pairs, plus three pairs of
 

supernumeraries, plus Xy^.
 

T. audax's meioformula consists of nine autosomes, the
 

Xyp bivalent and two supernumeraries, denoted BII 1 and BI 1.
 

One of the supernumeraries is metacentric and the other is
 

telocentric. There are no significant differences between the
 

autosomes when comparing one member to the adjacent
 

autosomes. This was also true when comparing the Xy^ bivalent
 

to the autosomes and the supernumeraries. The supernumeraries
 

are significantly different in size from the autosomes.
 

However, it is not possible to distingnish between
 

supernumeraries by size.
 

Tribolium madens
 

Spermatogonia1 metaphase karyotypes consist of 19 + y and
 

ten supernumerary chromosomes. The autosomes are similar in
 

size, and most are bipartite with metacentric centre- meres.
 

Six of the supernumeraries are metacentric, and are denoted
 

BII 1, BII 2 and BII 3, while the other four are telocentric
 

and are denoted, BI 1 and BI 2.
 

Metaphase I preparations of Tribolium madens consisted
 

of the 9 + XyE> meioformula and five supernumerary members in
 

eleven of the cells examined. Three of these supernumeraries
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are metacentrlc and the other two are acrocentric. The
 

remaining cells each contained three supernumeraries.
 

It is not possible to discriminate between autosomal
 

members based on their lengths. In addition to this, neither
 

the Xyp nor the supernumeraries can be distinguished from the
 

autosomes by size. Individual supernumeraries can however be
 

identified by the position of their centromere.
 

When comparing the chromosomes of these four members of
 

the the castaneum species-group it is apparent that some
 

differences between them do exist. During spermatogonial
 

metaphase the chromosomes of both T. castaneum and T.
 

freemani are J)rimarily metacentrics. Tukey's analysis
 

determined that there are sufficient differences in
 

chromosome lengths to distinguish between the two species.
 

They can also be distinguished by morphological differences.
 

Quadripartite chromosomes are seen in T. freemani but only
 

bipartite chromosomes were identified in T. castaneum.
 

The presence of supernumerary chromosomes in T. audax
 

and T. madens makes their distinction from each other and the
 

other species in this study quite simple. Tukey's analysis of
 

the autosomes of these two species did not show significant
 

differences to distinguish between based on the size of their
 

chromosomes.
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CONFUSUM SPECIES-GROUP
 

Trifaolium confusum
 

T. confusum has a diploid number of 18 chromosomes, 16 + X
 

+ Y. Most of the autosomes are metacentric but some
 

acrocentrics were identified. During spermatogonial metaphase
 

a neo-X and a neo-Y were observed. The neo-X is metacentric
 

and larger than the autosomes and the neo-Y is acrocentric
 

and similar to the autosomes in size. These results
 

correspond with those obtained by Smith in his 1952 study of
 

Tribolium.
 

During metaphase I, eight autosomal chromosomes and a
 

large neo-XY sex bivalent were observed (Figure 14). The
 

autosomes average 2.25 - 3.75 microns in length and the neo-


XY averages 4.08 microns long. Most of the autosomes are
 

metacentric and bipartite, the remainder being acrocentric or
 

telocentric. The differences in chromosome length that were
 

observed are not sufficient to distinguish between adjacent
 

members. Although the neo-XY is the largest member of the
 

complement it is not significantly larger than the autosomes.
 

Tribolium destructor
 

The T. destructor diploid compliment includes 16
 

autosomes, an X and a Y chromosome. Although not as large as
 

the neo-X and neo-Y of T. confusum, the sex chromosomes of T.
 

destructor are larger than those observed in the castaneum
 

species-group. The X-chromosome is slightly larger than the
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autosomes but the Y is similar to them in size. Most of the
 

autosomes are metacentric and bipartite, although some
 

submetacentric and telocentric members were observed. This
 

makes it difficult to distinguish the sex bivalents from the
 

other chromosomes during mitosis. This situation was also
 

observed in T. destructor by Smith.
 

Metaphase I cells of T. destructor have eight autosomal
 

members and a neo-XY sex bivalent. T. destructor's neo-XY is
 

smaller than the complex observed in T. confusum. The
 

autosomes average from 1.17 - 3.0 micron in length and the
 

neo-XY averages 3.5 microns. It is not possible to
 

distinguish between most of the autosomes by size.
 

Tribolium anaphe
 

Diploid preparations of T. anaphe were consistent with the
 

other members of the confusum species-group examined, having
 

18 chromosomes. T. anaphe's sex chromosomes and autosomes
 

are similar in size, indicating perhaps, that a loss of
 

heteropycnotic material has occurred.
 

Metaphase I cells contain 9 chromosomes. The XY is
 

slightly larger than the autosomes and is composed of two,
 

unequal portions: the autosome and translocated X, and the
 

relatively large Y. The autosomes average from 1.04 - 2.42
 

microns in length and the neo-XY averages 2.75 microns long.
 

These differences are not sufficient to differentiate between
 

adjacent autosomes or between the sex bivalent and the
 

autosomes.
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When comparing chromosome lengths of these three species
 

to each other Tukey's analysis showed sufficient differences
 

to distinguish between T. confusum and T. anaphe or T.
 

destructor» It is not possible to differentiate between T.
 

anaphe and T. destructor by the size of their chromosomes.
 

Significant differences exist between the neo-XY in T.
 

confusum and the XY sex bivalents of T. anaphe and T.
 

destructor. This supports Smith's theory (1952b) concerning
 

loss of heterochromatin in T. destructor's sex complex, a
 

structure that he feels was derived from the older neo-XY. A
 

similar situation has obviously occurred in T. anaphe, as
 

indicated by the lack of a heteromorphic sex bivalent.
 

BREVICORNIS SPECIES-GROUP
 

One member of the brevicornis species-group was examined
 

in this project, Tribolium brevicornis
 

(Figures 19 and 20). Spermatogonia1 metaphase preparations
 

contained a diploid number of 18 chromosomes. These
 

chromosomes are similar in size, and a heteromorphic sex pair
 

was not observed.
 

Metaphase I cells contain nine chromosomes, most
 

displaying metacentric centromeres. The chromosomes are
 

similar in size with their lengths ranging from 2.17 - 3.58
 

microns. The differences in chromosome length is not
 

sufficient to distinguish the autosomes from each other or
 

the sex chromosome complex from the autosomes.
 

When chromosomes 1-9 were compared among the eight species
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a significant difference was seen in all but chromosome
 

number four. For this reason Tukey's analysis was applied to
 

all of the chromosomes with the exception of number four.
 

This characteristic of Tribolium allows the eight species
 

involved in this study to be distinguished from each other
 

based on the size of their chromosomes.
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Figure 2 Phylogenetic diagram Illustrating relations of
 
species-groups of tribolium to each other,
 
(adapted from Sokoloff 1972).
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Figure 3
 

Chromosomes of Tribolium at metaphase. (After Sokoloff,
 
1972).
 

(a) T. castaneum, spermatoqonial metaphase (19 + y).
 

(b) T. castaneum, metaphase I (9AA + Xy^).
 

(c) T. confusum, spermatogonial metaphase (16 + X + Y).
 

(d) T. confusum, oogonial metaphase (16 + X + X).
 

(e) T. confusum, the eight autosomal bivalents at pachytene
 
showing centric blocks of heterochromatin and neo-XY
 
attached to the nucleolus.
 

(f) T. destructor, spermatogonial metaphase (16 + X + Y).
 

(g) T. destructor, metaphase I (8AA + neo-XY).
 

(h) T. madens, metaphase I (9AA + Xy^ + 3BII + 2BI).
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Figure 4
 

Chromosomes of Tribolium brevicornis and Tribolium anaphe
 
After Moore and Sokoloff, 1982.­

(a); ' Side of first meiotic metaphase in a ceii frow^^^
 
the testes of T. brevicornis showing bipartite
 
chromosomes.
 

(b) 	 Side view of first meiotic metaphase in a cell from
 
the testes of T. brevicornis, showing quadripartite
 
chromosomes.
 

(c) 	 Polar view of spermatogonial mitosis in the testes of
 
T. anaphe.
 

32
 



(a)
 

(b;
 

(c)
 

33
 



Figure 5
 

Spermatogonial metaphase and karyotype of
 
Tribolium castaneum, 19 + y. 2,100X.
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Figure 6
 

(a) - (b). Metaphase I of Tribelium castaneum with
 
9 + Xyp, showing the Xy^ arrowed. 3,500X.
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Figure 7
 

Spermatogonial metaphase and karyotype of
 
Tribolium freemani, 19 + y. 3,650X.
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Figure 8
 

(a) - (b). Metaphase I of Tribolium freemani with
 
9 + Xy^, showing the Xy^ arrowed. 4,000X.
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Figure 9
 

Speriaatogonial metaphase and karyotype of
 
Tribolium audax, 19 + y + BII 2 + BI 2. 3,050X,
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Figure 10
 

(a) -- (b). Metaphase I of Tribolium audax with
 
9 + Xyp + BII 1 + BI 1, silowing the Xyp,
 
arrowed. 2f800X.
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■ Figure 11 

Spermatogonial metaphcise and karyotype of 
Triboliura laadens, 19 + y !■ ■ BII 3 + BI 2. ^3f050X. 
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Figure 12
 

(a), Metaphase I of Triboliuin madens with
 
9 + Xy^ + BII 3 + BI 2, showing the Xyp
 
arrowed. 3,075X.
 

48
 



#
 

#

*
 

49
 



Figure 13
 

Spermatogonial metaphase and karyotype of
 
Tribolium confusuffl/ 16 + X + Y» 2,95OX.
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Figure 14
 

(a) - (b). Metaphase I of Tribolium confusum with
 
8 + neo-XY, showing the neo-XY arrowed.
 
3,350X.
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Figure 15
 

Spermatogonial metaphase and karyotype of
 
Tribolium destructor, 16 + x + Y. 2,850X.
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Figure 16
 

(a) - (t>). Metaphase I of Tribolium destructor with
 
9 bivalents, no heteromorphic sex chromosome
 
identified. 3,400X.
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Figure 17
 

Spermatogpnial itietaphase and karyotype of
 
Tribolium anaphe, 15 + X + Y. 4,375X.
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Figure 18
 

(a) - (b). Metaphase I of Triboliuro anaphe with
 
9 bivalents, no heteromorphic sex! chromosoine
 
identified. 4,200X.
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Figure 19 j
 

Spermatogonial metaphase and karyotype bf
 
TriboliuiR brevicornis, 17 + y. 3,20OX. 
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Figure 20
 

(a) - (b). Metaphase I of Tribolium brevicornis with
 
9 bivaients, no heteromorphic sex. chromosome
 
identified. 3,200X.
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1?able 2, The Five Species-Groups of Tribolium
 
And Their Geographical Origin.
 
(From Sokoloff 1972)
 

Species-group and species
 

1. brevicornis species-group
 
T. brevicornis
 
T. linsleyi Hinton
 

1­
T.
 

T. carinatum dubium Hinton
 
T. uezumii Nakane
 

2. confusum species-group
 
T> anephe Hinton
 
T. confusum Duval
 

T. destructor Uyttenb
 

T. semicostata (Gebien)
 
(= T. qiqanteum Hinton)
 
T. downesi Hinton
 

T. beccarii Gridelli
 

(- T. downesi?)
 
T. semele Hinton
 

T* sulmo Hinton
 
T. indicum
 

T. indicuro f. seres Hinton
 
T. indicum f. ares Hinton
 
T. thusa Hinton
 

alcine species-group
 
T. alcine Hinton
 

T. quadricollis (Fairmaire)
 
T= T. doIon Hinton)
 
T. ceto Hinton
 

castaneum species-group
 
T. castaneum (Herbst)
 
T. madens (Charp.)
 
T. audax Halsted
 

f. freemani Hinton
 
T. cylindricum Hinton
 
T. politum Hinton
 
T.. waterhousei Hinton
 
T. parki Hinton
 
T. apiculum Neboiss
 

5. myrmecophilum species-group
 
T. myrmecophilum Lea
 
T. antennatum Hinton
 

Country or Region of Origin
 

California
 
Mexico
 
Western N America
 

Honshu Japan
 

Africa
 

Africa in|origin, now
 
widespread
 
Africa in origin, now in
 
Europe and N. America
 
Africa !
 

Africa
 

Africa
 
Africa
 
Africa ,
 
Africa and India
 
Africa
 

India !
 
Africa
 

i
 
Madagascar
 

n
 

*Nearly Cosmopolitan'
 
N. America
 
Kashmir
 

Malay Peninsula
 
Doerian Islands
 
Australia
 

Larat Island
 

Australia !
 

Australia
 
Australia
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Table 3. Ghromosoinally sampled species of Tribolium,
 
including chromosome number and meioformula.
 

Cells counted: Chromosome Meioformula
 

Species Mitoses 


T. castaneum 22
 

T. freeman! 12
 

T. madens 14
 

T. audax 12
 

T. confusum 2
 

T. anaphe 11
 

T. destructor
 

T. brevicornis
 

Meioses
 

17
 

18
 

16
 

19
 

25
 

16
 

18
 

26
 

number
 

20
 

20
 

30
 

24
 

18
 

18
 

18
 

18
 

+ Xyp
 

+ Xyp
 

+ Xys
 
(BII 3 + B1 2)
 

+ X
 
1 + I
(BIl 1"+ BI 1)
 

8 + neo-XY
 

9, with no
 
heteromorphic
 
sex chromosome
 

identified.
 

9, with no
 
heteromorphic
 
sdx chromosome
 
idlentified.
 

9, with no
 
heteromorphic
 
sex chromosome
 

identified.
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Table 4. Measurements* of chromosomes, Tribolium destructor
 

Cell Number Standard
 

1 2 3 4 5 6 Mean- Deviation
 

c 1 3.5 2.5 3.5 4.0 oo4.0 3.5 3.50± 0.548
oo 
h •• 

r 2 3.5
 2.5 2.5 3.0 3.0 3.5 3i 0.447
 
o 1
 

i
 
m
 3 3.0 2.5 2.5 3.0 3.0 3.5 2.33t 0.516
 
o
 

!
 
s 4 2.5 1.5 2.0 1.5 2.0 2.5 ■2i 0.447 

Io 

m 5 2.5 1.5 2.0 1.5 1.5 1.5 li.7510.418 
e 

6 2.0 1.5 1.5 1.5 1.5 1.5 1.5 t 0.214 

7 1.5 1.5 1.5 1.5 1.5 1.5 1.0 i 0.204 

8 1.5 1.5 1.5 1.5 1.5 1.5 1.,0 ± 0.214 

9 1.5 1.0 1.0 1.0 1.0 1.0 1io - 0.204 

* Measurements in microns. 
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Table 5. Measurements* of chromosomes, Tribolium freeman!.
 
Chromosome number 10 is the Xy^. ]
 

Cell Number Standard
 

1 2 3 4 5 6 Mean 1 Deviation
 

C 1 2.5 3.0 2.5 3.5 3.0 3.5 3.171 0.577
 
h
 

r 2 2.5 2.5 2.5 3.0 2.5 3.5 3.00 ± 0.500
 

m 3 2.5 2.0 2.0 2.5 2.0 2.5 2.33 - 0.289
 

O
 

s 4 2.0 2.0 2.0 2.0 2.0 2.0 2.0O 1 0.000
 
o
 

m 5 1.5 2.0 1.5 2.0 2.0 2.0 1.83+ 0.289
 

e
 

6 1.0 2.0 1.5 2.0 2.0 2.0 1.83 - 0.289
 

7 1.0 1.0 1.0 2.0 2.0 2.0 1.67 1- 0.577
 

8 1.0 1.0 1.0 2.0 2.0 1.5 1.50 ± 0.500
 

9 1.0 1.0 1.0 1.0 .75 1.5 1.67 i 0.289
 

10 .75 1.0 .75 1.0 .75 1.0 0.917i0.144
 

* Measurements in microns.
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Table 6. Measulrements* of Ghromosomee, Triboliuiti anaphe,
 

Cell Nuitiber Standard 
2 3 4 5 6 Meant Deviation 

C 1 2.0 3.0 3.0 3.0 3.5 2.0 2.75
± 

0.612 

h 

r 2 1.5 3.0 ^.5 2.5 3.0 2.0 2.42 i 0.584 
o 

m ,3:,.: 1.5 2,5 3.0 2.5 3.0 2.0 2.42 
+ 
0.584 

o 

s 4; " 1-5 2.5 2.5 2.5 2.5 2.0 2.25 
+ 

0.419 

o 

m 5 .-■ ■ ■d;. 5' ' 2.0 2.0 2.0 2.5 1.5 1.92 ± p.376 
e 

6 IvO ji.5"; 2.0 1.5 2.0 1.5 1.58 t 0.376 

7 1.0 1.5 2.0 1.5 2.0 1.0 1.50 ± 0 .447 

8 .75 1.5 1.5 1.5 1.5 1.0 1.29 0.332 

9 .75 .75 ■ 1.5 1.0 1.5 .75 1.04 + 0.368 

* Measurements in microns. 
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Table 7. Measurements* of chromosomes, Tribolium brevicornis
 

Cell Number Standard 

1 2 3 4 5 6 Mean -t Deviation 

c 1 3.5 3.5 3.0 3.0 4.5 4.0 3.581 0.584 
h 

r 2 3.5 3.0 3.5 4.0 3.0 3.5 3.42± 0.376 

o 

3 3.0 3.5 3.0 3.0 3.0 3.0 3.081 0.204 
o 

s 4 3.0 3.0 3.0 3.0 3.0 3.0 3.00 t 0.000 

o 

m 5 3.0 3.0 3.0 3.0 3.0 3.0 3.00 i 0.000 
e 

6 2.5 3.0 3.0 3.0 2.5 2.5 2.75± 0.274 

7 2.5 2.5 2.5 2.5 2.5 2.5 2.50 1 0.000 
•'v; 

8 2.5 2.5 2.0 2.5 2.5 2.5 2.421 0.204 

9 2.0 2.5 2.0 2.5 2.0 2.0 2.17 ± 0.258 

* Measurements in microns. 
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Table 8. Measurements* of chromosomes, Tribolium castaneum.
 
Chromosome number 10 is the Xy^.
 

Cell Number Standard
 

1 2 3 4 5 6 Mean! Deviation
 

c 1 4.0 4.0 3.5 4.0 4.0 3.5 3.83 t 0.258
 

h
 

r 2 3.5 3.5 3.0 4.0 4.0 3.0 3.501 0.447
 

o
 

m 3 3.5 3.0 3.0 3.5 3.0 3.0 3.171 0.258
 

o
 

s 4 3.0 3.0 3.0 3.0 2.5 3.0 2.92 ± 0,204
 
o
 

m 5 3.0 3.0 3.0 2.5 2.5 3.0 2.83i 0.258
 
e
 

6 2.5 3.0 2.5 2.5 2.5 2.5 2.58 i 0.204
 

7 2.5 2.5 2.5 2.0 2.0 2.5 2.33 ± 0.258
 

8 2.0 2.0 2.5 2.0 2.0 ?.5 2.17 ± 0.258
 

9 2.0 2.0 2.0 2.0 2.0 2.0 1.92 10.204
 

10 1.5 1.0 1.0 2.0 1.5 1.5 1.421 0.376
 

* Measurements in microns.
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Table 9. Measurements* of chromosomes, Tribolium confusum.
 
Chromosome number 1 is the neo-XY.
 

Cell Number Standard
 

3 4 5 Meani Deviation
 

C 1 4.0 4.5 4.0 4.0 3.5 4.5 4.08 t 0.376
 

h
 

r 2 3.5 4.0 3.5 4.0 3.5 4.0 3.75i 0.274
 

o
 

m 3 3.0 4.0 3.5 3.5 3.5 4.0 3.58± 0.376
 
o
 

s 4 3.0 4.0 3.0 3.0 3.0 3.0 3.17± 0.408
 
o
 

m 5 3.0 3.0 3.0 3.0 3.0 3.0 3.00i 0.000
 
e
 

6 3.0 3.0 3.0 3.0 2.5 3.0 2.92i 0.204
 

7 2.5 3.0 3.0 2.5 2.5 2.5 2.67 ± 0.258
 

8 3.0 3.0 2.5 2.0 2.5 2.5 2.58 i 0.376
 

9 2.5 2.5 2.5 2.0 2.0 2.0 2.25± 0.273
 

* Measurements in microns.
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Table 10. Measurements* of chromosomes, Tiribolium audax.
 
Chromosome number 10 is the Xyp. I
 

Cell Number Standard
 

2 3 4 5 6 Mean- Deviation
 

C 1 3.5 3.0 4.0 3.5 3.5 4.0 3.58 t 0.376
 
h
 

r 2 3.0 3.0 3.0 3.5 3.0 3.5 3.17 i 0.258
 
o
 

m 3 2.5 3.0 2.5 3.0 3.0 3.5 2.92 ± 0.376
 
o
 

s 2.5 2.5 2.5 2.5 2.5 3.0 2.58 0.204
 

o
 

m 5 2.5 2.5 2.0 2.5 2.5 2.5 2.42- 0.214
 

e
 

6 2,0 2.5 2.0 2.0 2.5 2.5 2.25 t 0.274
 

7 2.0 2.5 2.0 2.0 2.5 2.5 2.25 i 0.274
 

8 2.0 2.0 2.0 2-0 2.0 2.0 2.00 i 0.000
 

9 2.0 1.5 2.0 2.0 2.0 2.0 1.92 ± 0.204
 

10 1.5 1.5 1.5 1.5 1.5 1.5 1.50 t 0.000
 

11 1.0 1.0 1.5 1.0 1.0 1.0 1.08 - 0.204
 

12 1.0 1.0 1.0 1.0 1.0 1.0 l.Opi 0,000
 

Measurements in microns.
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Table 11. Measurements* of chromosomes, Tribolium madens.
 

Cell Number 

2 3 4 5 6 
Standard 

Meant Deviation 

C 
h 

r 
o 

m 
O 

s 
o 

m 
e 

1 

2 

3 

4 

5 

6 

. 4.0 

4.5 

3.0 

2.5 

3.5 

2.0 

4.0 

4.0 

2.5 

3.0 

2.0 

2.0 

4.5 

4.5 

2.5 

2.5 

2.5 

2.5 

4.5 

4.0 

3.0 

2.5 

2.5 

2.5 

4.5 

4.0 

4.0 

2.5 

2.5 

2.5 

4.0 

4.0 

3.0 

3.0 

2.5 

2.5 

4.25± 0.274 

4.171 0.258 

3.751 0.683 

2.671 0.274 

2.581 0.516 

2.3310.274 

7 2.5 2.0 2.0 2.0 2.0 2.0 2.0810.204 

8 2.0 2.0 2.0 2.5 2.0 2.0 2.08-0.258 

9 1.5 2.0 2.5 1.5 1.5 1.5 1.75+0.258 

10 1.5 1.5 2.0 1.5 1.0 1.5 1.5010.000 

11 1.5 1.0 1.5 1.0 .75 1.0 1.131 0.258 

12 .75 1.0 1.5 1.0 1.0 .75 1.0010.137 

13 .75 1.0 1.0 1.0 .75 1.0 0.92± 0.102 

14 .75 .75 1.0 1.0 .75 1.0 0.881 0.129 

15 .75 .75 1.0 .75 .75 .75 0.791 0.102 

* Measurements in microns. 
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TABLE 12. ANOVA, chromosoines 1-9, eight species of Tribolium.
 

■ I 

Chromosome f value Significant
 
difference
 

1 7.33 

2 11.90 

3 7.15 

4 1.72 

5 16.70 

6 2.77 

7 14.75 

8 -16.33 

9 37.95 

fo = 2.25 

Yes
 

Yes
 

Yes
 

No
 

Yes
 

Yes
 

Yes
 

Yes
 

Yes
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Table 13. Interspecific comparison of chromosome #1.
 
Tukey's analysis*. I ;
 

Species compared q value Significant 
i difference 

T. madens vs. T. anaphe 8.02 * 

T. madens vs. T. freemani 6.68 * 

T. madens vs. T. destructor 4.01 No 

T. madens vs. T. brevicornis 3.58 No 

T. madens vs. T. audax 3.58 No 

T. madens vs. T. castaneum 2.25 No 

T. madens vs. T. confusum 0.91 No 

T. confusum vs. T. anaphe 7.11 * 

T, confusum vs. T. freemani 5.78 * 

T. confusum vs. T. destructor 3.10 No 

T. confusum vs. T. brevicornis 2.67 No 

T. confusum vs. T. audax 2.67 No 

T. confusum vs. T. castaneum 1.34 No 

T. castaneum vs. T. anaphe 5.78 * 

T. castaneum vs. T. freemani 4.44 No 

T. castaneum vs. T. destructor 1.76 No 

T. castaneum vs. T. brevicornis 1.34 No 

T. castaneum vs. T. audax 1.34 No 
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Table 13. cont. Chromosome #1. Tukey's analysis*,
 

Species compared 


T. brevicornis + T. audax 


T. brevicornis vs. T. anaphe 


T. brevicornis + T. audax 


T. brevicornis va. t. freemani 


T. brevicornis + T. audax 


T. brevicornis vs. T. destructor 


T. destructor vs. T. anaphe 


T. destructor vs. T. freemani 


T. freemani vs. T. anaphe 


qc:= 4.52
 

* Indicates a significant difference.
 

q value Significant 
difference 

4.44 No 

4.44 No 

3.10 No 

3.10 No 

0.43 No 

0.43 No 

4.01 No 

2.67 No 

1.34 No 
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Table 14. Interspecific comparison of chromosome #2.
 
Tukey's analysis*.
 

Species compared 


T. madens vs. T. anaphe 


T. madens vs. T. freemani 


T. madens vs. T. destructor 


T. madens vs. T. audax 


T. madens vs. T. brevicornis 


T. madens vs. T. castaneum 


T. madens vs. T. confusum 


T. confusum vs. T anaphe 


T. confusum vs. T. freemani 


T. confusum vs. T. destructor 


T. confusum vs. T. audax 


T. confusum vs. T. brevicornis 


T. confusum vs. T. castaneum 


T. castaneum vs. T. anaphe 


T. castaneum vs. T. freemani 


T. castaneum vs. T. destructor 


T. castaneum vs. T. audax 


T. castaneum vs. T. brevicornis 


T. brevicornis vs. T. anaphe 


T. brevicornis vs. T. freemani 


q value 


69.23 


55.77 


46.15 


38.46 


30.77 


26.92 


17.31 


51.92 


38.46 


28.85 


21.15 


13.46 


9.62 


42.30 


28.85 


19.23 


11.54 


3.84 


38.46 


25.00 


Significant
 
difference
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

*
 

No
 

*
 

*
 

T. brevicornis vs. T. destructor 15.38 | *
 

T. brevicornis vs. T. audax 7.69 *
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Table 14. cont. Chromosome #2. Tukey's analysis*.
 

Species compared q value 


T. audax vs. T. anaphe 30.77
 

T. audax vs. T. freemani 17.31
 

T. audax vs. T. destructor 7.69
 

T. destructor vs. T. anaphe 23.08
 

T. destructor vs. T. freemani 9.61 


T. freemani vs. T. destructor -9.61 


* Indicates a significant difference 

■qc. = 4 .52 

Significant
 
V difference"'
 

*
 

*
 

■ ■'I 
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Table 15. Interspecific comparison of chromosome #3.
 
Tukey's analysis*. 

Species compared q value Significant 
difference 

T. confusum vs. T. freemani 8.21 * 

T. confusum vs. T. destructor 7.72 * 

T. confusum vs. T. anaphe 8.27 * 

T. confusum vs. T. audax 4.07 No 

T. confusum vs. T. brevicornis 3.09 No 

T. confusum vs. T. castaneum 2.53 No 

T. confusum vs. T. madens 2.53 No 

T. madens vs. T. freemani 8.20 * 

T. madens vs. T. destructor 5.19 * 

T. madens vs. T. anaphe 4.63 * 

T. madens vs. T. audax 1.54 No 

T. madens vs. T. brevicornis 0.80 No 

T. madens vs. T. castaneum 0,00 No 

T. castaneum vs. T. freemani 5.68 * 

T. castaneum vs. T. destructor 5.19 •k 

T. castaneum vs• T. anaphe 4.63 k 

T. castaneum vs. T. audax 1.54 NO 

T. castaneum vs. T. brevicornis 0.56 No 

T. brevicornis vs. T. freemani 5.12 k 

T. brevicornis ' vs. T. destructor 4.63 k 
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Table 15. cont. Chrombsome #3. Tukey's analysis*.
 

Species coitipared q value 


T. brevicornis vs. T. anaphe 4.07
 

T. brevicornis vs. T. audax 0.99
 

T. audax vs. T. freemani 4.14
 

T. audax vs. T. destructor 3.64
 

T. audax vs. T. anaphe 3.09
 

T. anaphe vs. T. freemani 1.05
 

T. anaphe vs. T. destructor 0.56
 

T. destructor vs. T. freemani 0.49
 

* Indicates a significant difference.
 

qc = 4.52
 

Significant
 
difference
 

No
 

No
 

No
 

No
 

No
 

No
 

No
 

No
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Table 16. Interspecific comparison of chromosome #5.
 
Tukey's analysis*. 


Species compared 


T. breyicornis vs» T. destructor 


T. brevicornis vs. T. freemani 


T. brevicornis vs. T. anaphe 


T. brevicornis vs. T. audax 


T. brevicornis vs. T. madens 


T. brevicornis vs. T. castaneum 


T. castaneum vs. T. destructor 


T. castaneum vs. T. freemani 


T. castaneum vs. T. anaphe 


T. castaneum vs. T. audax 


T. castaneum vs. T. madens 


T. madens vs. T. destructor 


T. madens vs. T. freemani 


T. madens vs. T. anaphe 


T. madens vs. T. audax 


T. audax vs. T. destructor 


T. audax vs. T. freemani 


T. audax vs. T. anaphe 


T. anaphe vs. T. destructor 


T. anaphe vs. T. freemani 


!
 

q value 


9.69 


9.07^^^ ^ ^ ^
 

8.37 


4.50 ; 


2.56 


1.32 


8.37 ; 


7.75 ; 


7.05 


3.18 ; 


1.24 


7.13 


6.50 


5.81 


1.94 


5.19 


4.57 


3.88 


1.32 


0.53 


Significant
 
difference
 

*
 

*
 

NO
 

No
 

No
 

*
 

*
 

*
 

No
 

No
 

*
 

*
 

*
 

No
 

; *
 

*
 

No
 

No
 

No
 

83
 



 

Table 16. cont. Chromosome #5. Tukey's analysis*.
 

Species compared 


T. freemani vs. T. destructor 


T. confusum vs. T. destructor 


T. confusum vs. T. freemani 


T. confusum vs. T. anaphe 


T. confusum vs. T. audax 


T. confusum vs. T» madens 


T. confusum vs. T. castaneum 


* Indicates a significant difference­

qcj = 4.52
 

q yalue Significant 
I difference 

0.62 No 

9.69 * 

9.07 j * 

8.37 * 

4.50 No 

2.56 No 

1.32 No 
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Table 17. Interspecific comparison of chromosome #6.
 
Tukey's analysis*.
 

Species compared
 

T. confusum vs. T. destructor
 

T. confusum vs. T. anaphe
 

T. confusum vs. T. freemani
 

T. confusum vs. T. audax
 

T. confusum vs. T. madens
 

T. confusum vs. T. castaneum
 

T. confusum vs. T. brevicornis
 

T. brevicornis vs. T. destructor
 

T. brevicornis vs. T. anaphe
 

T. brevicornis vs. T. freemani
 

T. brevicornis vs. T. audax
 

T. brevicornis vs. T. madens
 

T. brevicornis vs. T. castaneum
 

T. castaneum vs. T. destructor
 

T. castaneum vs. T. anaphe
 

T. castaneum vs. T. freemani
 

T. castaneum vs. T. audax
 

q value
 

11.35
 

11.35
 

9.92
 

5.68
 

5.68
 

2.88
 

1.44
 

9.92
 

9.92
 

8.47
 

4.24
 

4.24
 

1.44
 

8.47
 

8.47
 

7.03
 

2.79
 

Significant
 
difference
 

*
 

*
 

*
 

*
 

*
 

No
 

No
 

*
 

*
 

*
 

No
 

No
 

No
 

*
 

*
 

*
 

NO
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Table 17. cont. Chromosome #6. Tukey's analysis*.
 

Significaht
 
difference
 

*
 

*
 

*
 

*
 

: 	*
 

No
 

No
 

No
 

No
 

Specieis compared 


T. castaneum vs. T. madens 


T. audax vs. T. destructor 


T. audax VS. T. anaphe 


T. madens vs. T. destructor 


T. madens vs. T. anaphe 


T. audax vs. T. freemani 


T. madens vs. T. freemani 


T. freemani vs. T. destructor 


T. freemani vs. T. anaphe 


q value 


2.79 


5.68 


5.68 


5.68 


5.68 


4.24 


4.24 


1.44 


1.44 


* Indicates a significant difference, 

go - 4.52 ■ 
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Table 18. Interspecific Comparison of cbromosome #7.
 
Tukey's analysis*.
 

Species compared 


T. confusum vs. T. destructor 


T. confusum vs. T. freemani 


T. confusum VS. T. anaphe 


T. confusum vs. T. madens 


T. confusum vs. T. audax 


T. confusum vs. T. castaneum 


T. castaneum vs. T. destructor 


T. castaneum vs. T. freemani 


T. castaneum vs. T. anaphe 


T. castaneum vs. T. madens 


T. castaneum vs. T. audax 


T. audax vs. T. destructor 


T. audax vs. T. freemani 


T. audax vs. T. anaphe 


T. audax vs. T. madens 


T. madens vs. T. destructor 


T. madens vs. T. freemani 


T. madens vs. T. anaphe 


T. anaphe vs. T. destructor 


T. anaphe vs. T. freemani 


q value 


9.76 


9.14 


9.14 


4.60 


3.28 


2.66 


7.11 


6.48 


6.48 


1.95 


0.63 


6.48 


5.86 


5.86 


6.02 


5.16 


4.53 


4.53 


0.63 


0.00 


Significant
 
difference
 

*
 

*
 

: *
 

*
 

No
 

; No
 

*
 

j 	 *
 

*
 

No
 

No
 

i*
 

*
 

i*
 

*
 

*
 

;*
 

*
 

No
 

No
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Table 18. cont. Chromosome #7. Tukey's analysis*.
 

Species compared q value jSignificant
 
^difference
 

T. brevicornis vs. T. destructor 8.44 , * 

T. brevicornis vs. T. freemani 7.81 * 

T. brevicornis vs. T. anaphe 7.81 * 

T. brevicornis vs. T. madens 3.28 No 

T. brevicornis VS. T. audax 1.95 No 

T. brevicornis vs. T. castaneum 1.33 ; No 

T. brevicprnis vs. T. confusum 1.33 No 

* Indicates a significant difference, 

qc = 4.52 
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Table i9. InterspeGific cpmpatisoh of chrbxliosome #8.
 
Tukey's analysis*.
 

Species coittpared 


T. cbnfusuia vs. T. anaphe 


T. confusum vs. T. destructor 


T. confusum vs. T. freemani 


T. confusum vs. T. audax 


T. confusum vs. T. madens 


T. confusum vs. T. castaneum 


T. confusum vs. T. brevicornis 


T. brevicornis vs. T. anaphe 


T. brevicornis vs. T. destructor 


T. brevicornis vs. T. freemani 


T. brevicornis vs. T. audax 


T. brevicornis vs. T. castaneum 


T. brevicornis vs. T. madens 


T. madens vs. T. anaphe 


T. madens vs. T. destructor 


T. madens vs. T. freemani 


T. madens vs. T. audax 


T. castaneum vs. T. anaphe 


T. castaneum vs. T. destructor 


T. castaneum vs. T. freemani 


10.57 


9.51 


9.51 


4.75 


3.36 


3.36 


1.31 


9.26 


8.20 


8.20 


3.44 


2.05 


2.05 


7.21 


6.15 


6.15 


1.39 


7.21 


6.15 


6.15 


q value ISignifleant
 
difference
 

I*
 

;*
 

*
 

*
 

No
 

No
 

No
 

*
 

|*
 

*
 

No
 

No
 

No
 

*
 

*
 

*
 

No
 

^
 

*
 

*
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Table 19. cont. Chromosome #8. Tukey's analysis*.
 

Species compared 


T. castaneum vs. TV audax 


T. audax vs. T. anaphe 


T. audax vs. T♦ destructor 

T. audax vs. T. freemani 

T^ destructor vs. T. anaphe 

T. freemani vs. T. anaphe 

q yalde iSignificant
 
difference
 

1.39 No
 

5.82 i *
 

4.75 * 

4.75 * 

1.07 TNo 

1.07 No 

* Indicates a significant difference. 

q<= := 4.52 . ■ 
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Table 20. Interspecific comparison* of chromosome #9.
 
Tukey's analysis*. 


Species compared 


T. confusum vs. T. freemani 


T. confusum vs. T. anaphe 


T. confusum vs. T. destructor 


T. confusum vs. T. madens 


T. confusum vs. T. audax 


T. confusum vs. T. castaneum 


T. confusum vs. T. brevicornis 


T. brevicornis vs. T. freemani 


T. /brevicornis vs. T. anaphe 


T. brevicornis vs. T. destructor 


T. brevicornis vs. T. madens 


T. brevicornis vs. T. audax 


T. brevicornis vs. T. castaneum 


T. audax vs. T. freemani 


T. audax vs. T. destructor 


T. audax vs. T. madens 


T. castaneum vs. T. freemani 


T. castaneum vs. T. anaphe 


T. castaneum vs. T. destructor 


T. castaneum vs. T. madens 


i
 

q value Significant
 
difference
 

14.94 * 

14.94 * 

14.44 * 

7.16 * 

4.07 No 

4.07 No 

0.99 No 

13.95 * 

13.95 * 

13.45 * 

6.17 * 

3.09 No 

3.09 No 

10.86 * 

10.37 * 

3.09 No 

10.86 * 

10.86 * 

10.37 * 

3.09 No 
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Table 20. cont. Chromosome #9. Tukey's analysis*
 

Species compared q value ! 	Significant 
difference- ■ 

T. madens vs. T. freemani 7.78 ! 	*
 

T. madens vs. T. anaphe 	 7.78 | *
 

T. madens vs. T. destructor 7.28 : 	 *
 

T. destructor vs. T. freemani 0.49 i 	 No
 

T. destructor vs. T. anaphe 0.49 j 	No
 

* Indicates a significant difference. i 

q<= =;.'4>52-' ■ _ ■ i 
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Table 21. Intraspecific comparison of chrbmbsomes,
 
Tribolium destructor. Tukey/s analysis*.
 

Chromosomes compared q value Sigriifleant
 
! difference
 

1 VS. 9 16,92 * 

1 VS. B ■ ■ - 14.55 * 

1 VS. 7 14.55 * 

1 VS. 6 13.43 * 

1 ■ , *1 vs. ■ 5 ■ ■ ■ ■; 12.24 . . 
1 VS. ■■4-- ■■■. 10.49 * 

1 vs. 3- 8.18 \ ' * 
1 VS. 2 . 3.49 No 
2 vs. 9 13.43 * 

2 VS. 8 11.04 * 

2 vs. 7 11.04 ' * 

2 VS. 6 9.93 • i ■■ *
 
2 VS. ■ ' 5 ■ . ■ . 8.74
 
2 VS. • 4.- 6.99 ■ * 

2 VS. ■ 3■ 4,68 *
 

3 VS. 9 8.74 ■ *
 

3 vs. 8 ■ ■ ■ ■ ■ ■ *6.36 
3 vs. 7 6.36 
3 ys. 6 5.24 *. . 
3 VS. - ■ 5 4.08 No 
3 VS. 4, ;■ . ■ ■ ■ 2.31 No 
4 vs. 9 6.43 1 > ■ * '■ 
4 vs. 8 ■ 4.06 No 
4 vs. 7 4.06 No 
4 VS. ■ 6 2.92 i No 
4 vs. 5 1.75 • No 
5 VS. ■ 9 4.68 * 

5 vs. 8 2.31 No 
5 VS. 7 2.31 No 
5 vs. 1.19 No 
6 vs. .9. ' ■ _ 3.49 1 No 
6 VS. 8' . ■ ; 1.12 No 
6 VS 7 1.12 : No 

* Indicates a significant difference. 

go. =■„ 4.64. ■ , ■ , ' 

93 



  

 

  

 

  

 
 

  

  

  
 

 

 
 

  
   

   
  

  
  

 
 
 

Table 22. Intraspecific coiaparison of chromosoraes,
 
Tribolium freeinani. Tukey's arialysis*.
 

Chroniosomes compared q value Significant
 
difference
 

1 VS. 9 14.85 .. . * 

1 vs. 8 11.97 .. 1 " ' * 
1 vs. 7 11.36 * 

1 VS. 6 ■ ■ ^ 9.47 : ■ * 

1 VS. 5 8.86 * 

1 vs. 4 . . 8.18 * 

1 vs. 3 ■ 5.68 1 * 

1 vs. 2; 1.89 i No 

2 vs. 9 12.95 * 

2 vs. 8 10.07 * 

2 vs. 7 9.47 * 

2 vs. 6 7.58 * ■ ^ 

2 vs. 5 ■ 6.97 " * 

2 vs. 4 6.29 * 

2 vs. 3 3.79 No 

3 vs. 9 ■ ■ 9.17 * 

3 vs. 8 6.29 ■ : * 

3 vs. 7 ■ 5.68 . ' , ■ * 

3 vs. 6 3.79 No 

3 vs. 5 ■■ 3.18 No 

3 vs. 4 ■■ ■■ ■ 2.50 No 

4 vs. 9 6.67 i , . , * 
4 vs. 8 ; 3.79 No 

4 vs. 7 3.18 No 

4 vs. 6 ■ ■ ■ , : 1.29 ! No 
4 vs. 5 - ■ 0.68 No 

5 vs. 9 5.99 ■ ■ ' ' *■ 
5 Vs. 8 3.11 No 

5 vs. 7 2.50 i No 
5 
6 

vs. 

vs. 

6 
9 . 

0.60 
5.38 ; 1f , No* 

6 vs. 8 , : 2.50 ; No 
6 vs. 7 , •• . , 1.89 1 No 
7 vs. 9 ■: i ■>-3:.48­ i No 
7 vs. 8 ■ ■ 0.61 i No 
8 vs. 9 .■ ■■ ■ 2.88 i No 
9 vs. 10 0.91 ^ No 
8 vs. 10 3.79 : No 
7 vs. 10 4.39 ! No 

* Indicates a significartt diffepehce. 
q<= = 4.64 

■ ■ ■■ ■,94' ■ ■ ■ 



Table 23. Intraspecific comparison of chromosomes,
 
Tribolium anaphe. Tukey's analysis*.
 

Chromosomes compared q value Significant 
difference 

1 vs. 9 9.05 * 

1 vs. 8 7.72 * 

1 vs. 7 6.61 * 

1 vs. 6 6.19 * 

1 vs. 5 4.39 No 

1 vs. 4 2.64 No 

1 vs. 3 1.75 No 

1 vs. 2 1.75 No 

2,3 vs'• 9 7.30 * 

2,3 vs'• 8 5.98 * 

2,3 vs• 7 4.87 * 

2,3 vs 6 4.44 No 

2,3 vs• 5 2.65 No 
2,3 vs'• 4 0.89 No 

4 vs. 9 6.40 * 

4 vs. 8 5.08 * 

4 vs. 7 3.97 No 

4 vs. 6 3.54 No 

4 vs. 5 1.75 No 

5 vs. 9 4.66 * 

5 vs. 8 3.33 No 

5 vs. 7 2.22 No 

5 vs. 6 1.79 No 

6 vs. 9 2.86 No 

6 vs. 8 1.53 No 

6 vs. 7 0.42 No 

7 vs. 9 2.43 No 

7 VS. 8 1.11 No 

8 vs. 9 1.32 No 

* Indicates a significant difference. 

qc= = 4.64 
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Table 24. Intraspecific comparison of chromosomes,
 
Triboliuiti brevicornis. Tukey's analysis*.
 

■ ■ ■ ■ i . : V ■ _ , , 

Chromosomes compared q value Significant 
difference 

1 vs. 9 10.93 * 

1 vs. 8 8.99 * ■ 

1 vs. 7 8.37 ^ * . 
1 vs. 6 6.43 * : 

1 vs. 5,4 4.49 No 

T vs. 3 3.88 No 

1 vs. 2 1.39 No 

2 vs. 9 9.53 
, ^ •! 

[ 

2 vs. 8 7.59 * 1 

2 vs. 7 6.98 ; ■*J ■■ ■ 
2 vs. 6 5.04 ■, * 
2 vs. 5,4 3.10 No 
2 vs. 3 2.48 No 
3 vs. 9 7.05 * 

3 vs. 8 5.12 * ' ' 
3 vs. 7 4.49 No 

3 vs. 6 2.56 No 
3 vs. 5,4 0.62 No 
4,5 vsi. 9 6.43 * 

4,5 VS. 8 4.49 No 
4,5 VS!. 7 3.88 No 
4,5 VS. 6 1.94 No 
6 VS. 9 4.49 No 
6 VS. 8 2.56 No 

6 VS. 7 1.94 No 
7 VS. 9 2.56 No 

7 VS. 8 0.62 No 
8 VS. 9 1.94 No 

* Indicates a Significarit difference. 

= 4.64 
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Table 25. Intraspecific comparison of chromosoittes,
 
Tribolium castaneum. Tukey's analysis*.
 

Chromosomes compared q value 	 Significant
 
difference
 

1 VS. 9 36.73	 *
 

1 VS. 8 31.92	 *
 

1 vs. 7 28.85	 * 1
 

1 VS. 6 24.04	 *:
 

1 vs. 5	 19.23
 ■ * ■ 

1 vs. 4	 17.50
 *
 

1 VS. 3 12.69
 *
 

1 vs. 2 6.35	 *:
 

2 vs. 9 30.38 *
 

2 vs. 8 25.58 *
 

2 vs. 7 22.50 *
 

2 vs. 6 17.69 *
 

2 vs. 5 12.88 *;
 

2 vs. 4 11.16 *
 

2 vs. 3 6.35 *
 

3 vs. 9 24.04 *
 

3 vs. 8 19.23 * :
 

3 vs. 7 16.15
 *
 

3 vs. 6 11.34	 *
 

3 vs. 5 6.53	 * ^
 

3 vs. 4	 4.81
 *
 

4 vs. 9 19.23 *
 

4 vs. 8 14.42
 *
 

4 vs. 7 11.35 *
 

4 vs. 6 6.54 *
 

4 vs. 5 1.73 NO
 

5 vs. 9 17.50 *
 

5 vs. 8 12.69 *
 

5 vs. 7 9.62 * :
 

5 vs. 6 4.81 *
 

6 vs. 9 12.69 *
 

6 vs. 8 7.88
 *
 

6 vs. 7 4.81 * 

7 vs. 9 7.88 *■ ; 

7 vs. 8 3.08	 No 
8 vs. 9 4.81 * 

9 vs. 10 9.62 * , 

* Indicates a significant difference. 

q<= = 4 .64 
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Table 26. Tntraspecific coiiiparison of chromosomes,
 
Trlbolium confusum. Tukey's analysis*.
 

Chromosomes compared q value
 
difference
 

1 vs. 9 ■■ - ^ 14.64 , ,, *1 

1 VS. 8 ■ 12.00 *1 

1 ;^yS' 7 11.28 

1 vs. 9.28 

1 vs. 5 8.64 •' ■ ■ ■ 'v. I 

1 vs. ..4. . 7.28 

T vs. 3 4.00 No 

1 vs. 2 2.64 Nb 

2 vs. 12.00 ]• 

2 vs. 8 9.36 

2 vs. . 7 ■ ■ 8.64 

2 vs. 6 6.64 ■ ;;*i" 
2 vs. :,5: ■': •■■ ■ ■ ■■■ 6.00 ■*i ; 

2 vs. 4 " ■ 4.64 No 

2 vs. 3 1.36 No 

3 vs. 9 10.64 / ■ ■ ■■*!■ 
8 vs. 8 8.00 

3 vs. 7 ; ■ 7.28 

3 vs. 5.28 *i 
3 vs. ■ '5: 4.64 No 

3 vs. 4 3.28 No 

4 vs. 9 7.36 . *r 
4 vs. 8 4.72 , ■ ■*■: 

4 vs. 7 4.00 NjO 
4 vs. 2.00 Np 
4 vs. 5 ■ ■ ■/. ■ : ■ 1.36 No 

5 vs. 9 3.36 No 

5 vs. 8 v) 3.36 Nb 

5 vs. 7 2.64 Nb 

5 vs. 6 0.64 No 

6 vs. 9 5.36 - *1 , 
6; vs. 8 2 .72 No 
6 vs. 2.00 Nb 
7 vs. - 3.36 No 
I:- vs. 8 ■ 0.72 No 

8 vs. 9 2.64 Np 

* Indicates a significant dif ference. 

:qcs; ='^-:4'.-64. • 
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Table 27. Intraspecific ebmparis of chromosomes,
 
TriboTium audax. Tukey^s abaiysis*•
 

Chromosomes q value SignifiGant
 
difference
 

1 vs. 9
 

1 vs. 8
 

1 vs. 7,6
 
1 vs. 5
 

1 vs. 4
 

1 vs. 3
 

1 vs. 2
 

2 vs. 9
 

2 vs. 8
 

2 VS. 7,6
 
2 VS. 5
 

2 VS. 4
 

2 VS. 3
 

3 VS. 9
 

3 VS. 8
 

3 VS. 7,6
 
3 VS. 5
 

3 VS. 4
 

4 VS. 9
 

4 VS. 8
 

4 VS. 7,6
 
4 VS. 5
 

5 VS. 9
 

5 VS. 8
 

5 VS. 7,6
 
6,7 VS. 9
 
6,7 VS. 8
 
8 vs. 9
 

5 VS. 10
 

6,7 vs. 10
 
8 vs. 10
 

9 VS. 10
 

9 VS. 11
 

10 vs. 11
 

11 vs. 12
 

9 VS. 12
 

10 VS. 12
 

*Indicates a 

- 4.64 

17.00
 

14.36
 

12.09
 

10.55
 

9.09
 

6.00
 

3.45
 

11.73
 

10.90
 

8.64
 

7.09
 

5.64
 

2.55
 

9.18
 

8.36
 

6.18
 

4.55
 

3.09
 

6.09
 

5.27
 

3.00
 

1.45
 

4.64
 

3.82
 

1.55
 

3.09
 

2.27
 

0.82
 

8.36
 

6.82
 

4.55
 

3.73
 

7.55
 

3.82
 

0.73
 

8.27
 

4.55
 

significant difference. 

:*K: ■ 
'[
 

:
 

■ 

*
 

■ * 

No 

■ * 

•k\
 

■ ■ .j ' 

.*;■ : 
No 

■M' . 
* 

No 

No 
;*i ; 
* ■ ■ ■ 

No
 
No
 
No
 
No
 
No
 
No
 
No
 
No
 

. *i .
 
*!
 
No 
No 
*1 ': 

No 
No 
■*! ■ 
No 
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Table 28. Intraspecific comparison of chromosomes,
 
Tribolium madens. Tukey's analysis*.
 

Chromosomes compared q value Significant
 
difference
 

1 vs. 9 7.35 * 

1 vs. 8,7 6.18 * 

1 vs. 6 5.70 * 

1 vs. 5 ' 4.50 No 

1 vs. 4 4.27 No 

1 vs. ■3' - " 3.08 No 

1 vs. 2 0.23 No 

2 vs. 9 7.12 - . *i 

2 vs. 8,7 5.95 * 

2 vs. 6 5.47 * 

2 vs. 5 4.27 No 

2 vs. 4 4.05 No 

2 vs. 3 2.85 No 

3 VS. 9 4.27 No 

3 vs. 8,7 3.11 Nb 

3 VS. 6 2.62 No 
3 vs. 5 1.42 No 

3 vs. 4 1.19 No 

4 VS. 9 3.08 NO 

4 vs. 8,7 1.91 No 

4 vs. 6 1.42 No 

4 vs. 5 0.23 No 

5 vs. 9 2.85 No 

5 vs. 8,7 1.28 No 

5 vs. 6 1.89 No 

6 VS. 9 1.65 No 

6 vs. 8,7 0.48 NO 

7,8 vs. 9 1.17 NO 

9 vs. 10 0.48 No 

9 vs. 11 4.21 No 

10 vs. 11 3.36 NO 

9 vs. 12 1.91 NO 

10 vs. 12 1.42 No 

11 vs. 12 0.37 No 

12 vs. 13 0.23 Nb 

11 VS. 13 0.59 Nb 

10 vs. 13 1.65 No 

12 vs. 14 0.34 No 

11 vs. 14 0.71 No 

12 vs. 15 0.59 No 

13 vs. 15 0.37 No 

14 vs. 15 0.26 No 

* Indicates a significant difference. 
q<= = 4.64 
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