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Research on children and their understanding of fractions is
 

limited. Mathematics educators and curriculum writers have placed
 

emphasis on the learning of rules for operations on fractions. This
 

project is designed to provide an overview of the current research
 

available. The literature review will provide valuable information
 

regarding the design of instruction in the area of fractions.
 

The need to find answers to problems not involving whole
 

numbers led man to invent fractional numbers. The word fraction is
 

derived from a Latin word meaning "broken," suggesting that
 

fractions deal with parts, or pieces of wholes. Fractions have two
 

meanings: equal parts (partitioning) and ratio (comparison by
 

division). Also there are two kinds of fractions: common fractions
 

and decimal-fractions. Decimal fractions and common fractions are
 

based on the same ideas and differ only in notation. Although
 
%
 

children in their everyday concerns think more in terms of common
 

fractions than of decimals, they cannot avoid meeting decimal
 

fractions in their daily living, since decimals are such an
 

integral part of the science and industry of our civilization.
 

However, for purposes of this project, common fractions and their
 

understanding for children will be the thrust.
 

Methods for finding conmon denominators, reducing fractions to
 

lowest terms, cross multiplying, and so on, come in endless strings
 

of rules and procedures. Typically students search for rules in
 



order to find one they think will work. For children with weak
 

grasps of these concepts, the rules become mysterious, confusing,
 

and frustrating. Some students have a group of isolated,
 

inflexible, specific rules that are not synthesized and which allow
 

for very little transfer.
 

Currently, it is believed that teaching children to understand
 

arithmetic is more effective than merely encouraging them to
 

memorize specific arithmetic combinations and relationships.
 

Learning is achieved if it is retained over a period of time beyond
 

the concluding day of the training period.
 

This project is specifically designed to address the need for
 

certain stated subconcepts as being prerequisite to others.
 

Unfortunately, fractions do not represent a simple extension of
 

familiar skills. Since the application of fraction skills depends
 

on an understanding of fractional numbers, initial instruction in
 

the concepts and conventions characterizing fractions is critical.
 

The purpose of this project is to fill two general needs.
 

First, it will examine the information gleaned from the research on
 

helping children understand fractions. The information will provide
 

important insights into the development of a child's ability to
 

develop a fractional concept and learn to compute with fractional
 

numbers. The research will provide a basis for teaching fractions
 

that will provide the most success.
 

Second, this project will formulate a skill hierarchy based on
 



the information derived from the literature, designed to see the
 

interrelationship among various fraction skills. Methods,
 

procedures, and activities to help children form a better foundation
 

in the meaning of fractions rather than more work with rules and
 

procedures for computation will be provided. The anphasis needs to
 

shift from the learning of rules for operations on fractions to the
 

unveiling of a conceptual basis for fractions (14, 21, 23).
 

Although the language of fractions is spoken daily by most
 

children, their concepts of fractional values may be cloudy or
 

distorted. Presenting fractions to children in a meaningful manner
 

has always been a difficult and challenging task for the teacher.
 

Many fractional ideas and operations are complex and frequently have
 

to be demonstrated and explained to some children in many ways. The
 

highly creative teacher is constantly searching for activities and
 

frames of reference into which mathanatics can be projected.
 

As with other areas of mathematics, educational games and
 

activities will help maintain students' interest in fractions and
 

offer practice and reinforcement opportunities. The activities
 

suggested can be modified or redesigned to accommodate a particular
 

need a child may have. A creative teacher will devise some of
 

his/her own games and activities as well as incorporating the
 

suggested activities or commercially made games. There are many
 

commercially produced games dealing with fractions available.
 

The information offered in this project is intended to suggest
 



only basic methods of presentation. The suggestions can be modified
 

to suit individual needs.
 



LITERATURE REVIEW
 

Researchers and educators have recognized the problem of
 

children's understanding of fractions for many years. Educational
 

researchers have investigated the possible causes and have tried to
 

develop successful programs for the teaching of fraction concepts.
 

While research has been conducted to show that operations are more
 

difficult when applied to fractions than when applied to whole
 

numbers (28), research on teaching fraction operations is difficult
 

to interpret. More carefully controlled research is needed to sort
 

out the relative importance of particular strategies (29). The
 

increased attention and need for research on children's acquisition
 

of rational number concepts is shown in results from national
 

assessments. Behr et al.(1) indicated that in a recent national
 

assessment, 30% of the nation's 13 year-olds added the numerators
 

and denominators to find the sum of 1/2 and 1/3. They suggest that
 

these national assessments demonstrate that more insight into
 

children's thinking about rational number concepts is needed.
 

Peck and Jencks (21) state that the difficulties children have
 

with fractions are conceptual. Children appear to be going through
 

the motions of operations of fractions but they have not been
 

exposed to the kinds of experiences that could provide them with
 

necessary understandings. They suggest that mathematics educators
 

and curriculum writers need to shift emphasis from the learning of
 



 

rules for operations on fractions to the unveiling of a conceptual'
 

basis for fractions. In their study with sixth grade children, it 

. ■ . ■ ■ \ 
was found that when they were given physical materials, and asked to \ 

/
,f 

make their own decisions, nearly all of them were able to / 

conceptualize and make logical predictions. However, when it came 


to assessing the children's understanding of fractions, the children j
 
were confused. About 55^5 of the students interviewed were unable t^
 

/

show that they possessed a meaningful concept of fractions. About
 

35% of the students appeared to have a correct concept of fractions.
 

At the time of entering school, many children have already ^
 

acquired some ideas of fractional parts. They may have used \
 

expressions such as "half a glass of milk,""half an apple," and
 

"half an hour." Children have many uses for fractions in daily
 

life. At an early age they learn to break a candy bar into halves.
 

They see pies or cakes cut into fourths, fifths, or sixths.
 

Gradually, through experience and guidance, they understand that
 

fractions are needed for measurement and to make possible the
 

division of any two whole numbers.
 

Presumably, older children are better able to understand \
 

fractions than younger children. However, there is no reason for
 

delaying the teaching of fractions. The reason for difficulty is
 

that common fractions are too frequently taught in terms of
 

operations on the symbols. Rules for operations are stressed before
 

children have adequate conceptual understanding anchored in'
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perceptual experience (20). Presenting fractions to children in a \
 

meaningful manner has always been a difficult and challenging task /
 
/
 

for the teacher. Many fractional ideas and operations are complex/
/
 

and frequently have to be demonstrated and explained in many ways.
 

Often times pupils become quite expert at the manipulation of^
 

fractions and yet have little understanding of their meaning or of \
 

the operations used in combining them. Several researchers (IM, 17,
 
\
 

V,
 

23) agree that it is relatively easy to teach children to manipulate /
 
/
 

fractions as numerals so that they arrive at a correct answer but /
 
/
 

have little or no understanding of the ideas behind the /
 

manipulation. There needs to be extensive use of concrete teaching!
 

materials that permit the child to actually see and feel fractional'
 

divisions and ratios. Young children should have some experience
 

dividing objects into fractional parts.
 

The foundation for meaningful and efficient computation of
 

fractions should be laid slowly and thoroughly. Children should not
 

be rushed into the use of the symbolism of fractions. They should
 

be permitted to have a great many first-hand contacts with a variety
 

of everyday materials in concrete situations involving fractions and
 

fractional parts. Informal experience with fraction expressions
 

builds toward understanding, but misconceptions may also be acquired
 

through these unplanned and incidental experiences.
 

Children should be encouraged to utilize concrete models
 

representing complicated rational operations until adequate
 



conceptual understanding has been developed. Symbolic manipulation
 

should take on deeper meaning as a result(1). The concrete media
 

is important in building clear conceptual constructs. Behr et al.
 

(1)found that strategies used by children suggest that they base
 

their thinking on a mental image of their experience with
 

manipulative aids.
 

The literature (1, 14, 17) indicates that the printed textbook
 

and teacher's manual are still the primary bases for most arithmetic
 

instruction. There are two main areas of concern regarding the way
 

fractions are taught in basal programs. They are (a) lack of
 

adequate practice for students to develop mastery and(b)lack of
 

structured teaching (23). Typically in grade one through three
 

books, only one to three weeks are devoted to fraction skills.
 

Minimal review is presented on fraction skills after the fraction
 

unit is presented. Because of this minimal review, it is highly
 

likely that many students will not retain fraction-related skills
 

taught in these earlier grades. In intermediate grades, the
 

critical fraction analysis skills taught in early grades are briefly
 

reviewed prior to teaching new skills. The amount of practice
 

provided in the programs must be significantly supplemented if the
 

students are to develop mastery (29).
 

Researchers (1, 18) feel that more instructional time is
 

required to develop an understanding in the area of fractions.
 

There is a need for careful spiraling of concepts through several
 



grades. The concepts and experiences with different kinds of
 

fractional parts need to be developed continually during each school
 

year. Many of the textbooks wait until almost the end of the book
 

to deal with fractions and then only one chapter, or at the most
 

two, is devoted to working with fractions.
 

Research has been conducted to show that operations are more
 

difficult when applied to fractions than when applied to whole
 

numbers (28). Research on teaching fraction operations is difficult
 

to interpret. For example. Miller (17) compared a traditional
 

approach to teaching the multiplication of fractions with an
 

experimental program in which students worked from automated devices
 

that provided immediate feedback to the students. Although students
 

in the experimental groups answered significantly more problems on a
 

post-test, the F ratio of 7.60 exceeded the critical ratio of 3.93,
 

the reason for the difference is difficult to determine. Possibly
 

immediate feedback accounted for the difference, but other aspects
 

of the treatment could have been responsible. Miller felt that
 

there were positive findings regarding the superiority of the
 

experimental approach versus the traditional approach.
 

A wide variety of methods for teaching arithmetic are in use
 \
 
\
 

today. Teachers tend to use whatever method seems most efficient to \
 

them. Teachers are usually satisfied with the method used when /./
 

/
measurable learning takes place. The type of learning that takes
 

place may be of little concern. Tests generally measure learning
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requiring ccmputational ability but do not measure the extent of the
 

child's understanding of the process.
 

Invariably, division of a fraction by a fraction has been
 

taught through presentation of the rule invert the divisor and
 

multiply. Then drill is used for reinforcement. Krich (14) feels
 

that there needs to be sharp delineation between methods stressing
 

meaningful teaching and those stressing mechanical methods of
 

teaching (drill).
 

Krich's (14) study of two methods for teaching the process of
 

division of a fraction by a fraction concluded that when arithmetic
 

is taught meaningfully, children can and do retain the material.
 

The two methods he used were: (1) the meaningful method, which
 

allowed children the opporutnity to understand the arithmetic
 

processes used in dividing a fraction by a fraction and (2) the
 

mechanical method or rote learning, where the child was given a rule
 

(invert the divisor and multiply) to use when dividing and then was
 

presented with drill material.
 

The most commonly used semi-concrete models for fractions in
 

elementary school textbooks are geometric regions, sets, and the
 

number line. According to a study by Larson (15) it is more
 

difficult for students to associate a proper fraction with a point
 

on a number line than associating a proper fraction with a part-


whole or part-group model. When responding to test items where the
 

number line was of length 2, 15 to 25^ of the sample chose fractions
 

11
 



that indicated that they considered the whole number line the unit
 

and not just the segment from 0 to 1. For example, 25% of the
 

students selected 2/12 as the correct response when the number line
 

was of length two and each segment was separated into six equivalent
 

line segments. Results of the study indicated that some students do
 

not have a very flexible concept of equivalent fractions. The data
 

collected suggested that many students do not associate the name 1/3
 

with a point indicated by 2/6 on a number line. Perhaps some
 

students have a group of isolated, inflexible, specific rules that
 

are not synthesized and which allow for very little transfer.
 

Behr et al. (1) found in their study with children's
 

understanding of equivalent fractions that most children did not
 

show evidence of being aware that both the numerator and the
 

denominator must be considered when judging the equivalence of two
 

fractions. These researchers also found that the performance of the
 

children was dominated by their knowledge of the ordering of whole
 

numbers.
 

In agreement with Piaget, Pothier and Sawada (23)found that
 

young children master halves and fourths prior to thirds. It was
 

found that in attempts to partition rectangular and circular regions
 

into thirds and fifths, the dominance of the halving algorithm was
 

evidenced. It seemed that many children were incapable of deviating
 

from onploying a halving line as the initial cut.
 

The young child, even though frequently hearing expressions
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such as "Break it in half" and "Here's half," does not know the
 
\
 

meaning of half in a number sense, and the necessary characteristics /
 
/
 

of evenness and one of two parts are not understood. The concept of /
 

■ ■ ■ ■ /rational number is rote learning at this stage (18).
 

There are certain stated subconcepts which are prerequisite to
 

others. Novillis(8)came to this conclusion using a hierarchy of
 

selected subconcepts which she developed based on Gagne's (7)
 

procedure for developing a hierarchy. She constructed The Fraction
 

Concept Test with all items at the knowledge or comprehension level.
 

It was necessary for a student to attain a score at the 75% level of
 

accuracy in order to attain criterion on each subtest. If a student
 

attained criterion on a subtest, then it was assumed that he/she had
 

acquired the related subconcept.
 

The hierarchy was constructed on the premise that students'
 

familiarity with part-group and part-whole models in various
 

situations developed in a similar sequence. The results supported
 

this pronise. The author developed two ratios to analyze the data
 

(based on the work of Gagne and Walbessen). Ratio 1 was at the 0.75
 

level. Ratio 2 was computed only when Ratio 1 was at the 0.75 level
 

(it reached the 0.90 level). Ratio 2 was defined as an adequate
 

test of the hypothesis (18).
 

The results of students' scores on some of the subtests lead to
 

the inference that the instances of the fraction concept that
 

students are exposed to in elementary school are not of sufficient
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variety to encourage generalization of the fraction concept.
 

Another inference Novillis made was that students do not come into
 

contact with an adequate number of negative instances of the
 

fraction concept. An example of this would be a problem similar to
 

the following; "If two rectangular regions have been separated into
 

five parts such that in one case the parts are congruent and in the
 

other case the parts are neither congruent nor equal in area, and in
 

each case one of the parts is shaded, then many students associate
 

the fraction 1/5 with each of these regions and indicate that 1/5 of
 

each region is shaded (18).
 

When teaching any mathematical process, it is sound psychology
 

to bring into the explanation previous learnings a child has had,
 

provided they are germane to the process. Many students have no
 

idea how the symbols of mathematics relate to their previous
 

experience.
 

A knowledge of common fractions is important. A wide variety \
 

of occupations depends on a knowledge of ccxnmon fractions. Anyone /
 

who omits or fails to teach fundamental ideas of common fractions is /
/
 

/

guilty of blocking students* development, curtailing career /
 

/
 

opportunitites, and limiting career choices (20). /
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FRACTIONS: A SKILL HIERARCHY
 

Following the ideas presented by researchers (1, 14, 18), it
 

can be said that in the area of fractions a skill hierarachy to show
 

the interrelationship among various fractions skills and that
 

certain subconcepts are prerequisite to others is basic and
 

essential. A sequence for teaching fractions must be arranged so
 

that all component skills for an advanced problem type have been
 

presented before the advanced problon type is presented. The writer
 

of this project has developed a skill hierarchy designed to help the
 

reader see the interrelationship among various fraction skills. The
 

skills appearing at the beginning of the sequence chart (see Fig. 1)
 

lay the foundation for a conceptual understanding of fractions.
 

Motivation comes from the real world. Children do not have
 

out-of-classroom experience for what they are doing in school
 

mathematics. It is important that we make fractions relevant to
 

everyday life.
 

Textbooks do not place enough emphasis on the learning of
 

fractions. Concepts need to be slowly introduced throughout the
 

textbook and reviewed continually. This is better than throwing the
 

concept at the children for a matter of ten pages or less. A
 

careful spiraling of the fraction concept through the grades is
 

essential (1). We, as teachers, can help students with this by
 

making fractions an ongoing process throughout the year in our
 

classrooms.
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FIGURE 1. SKILL HIERARCHT
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Analyzing Part-Whole and Part-Group Parts
 

Students need to begin their study of fractions by
 

discriminating between the number of parts in each whole unit and
 

the number of whole units. Lola May (16) feels that beginning
 

around first grade, students should work with whole units divided
 

into many different numbers of congruent parts. She says it is
 

important to plan the exercises so that pupils learn first to notice
 

the total number of congruent parts.
 

A concrete model that can be used to show fractional parts of a
 

whole is food cut into pieces. A group of students is given an
 

apple, a pizza, or sane other easily partitioned food and asked to
 

divide it so that all students involved are satisfied with their
 

share.
 

A concrete model for showing students the part-group concept is
 

to give groups of students counters and have the students divide the
 

counters into piles for the number of students in the group.
 

Another example suggested by Clark and Eads(3) is to use sixteen
 

boys in the classroom. Questions to be asked are: If half of the
 

boys go to the library, how many boys will go? Or replace half with
 

one-fourth or one-eighth. Another example is: Jerry guessed five
 

of the ten words correctly. What part of the words did he guess
 

correctly? The richer the first hand experiences children have with
 

people and things, the more children will feel the need to
 

understand and use fractions.
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At the representational stage for analyzing part-whole and
 

part-group fractions, the teacher places circles (or other geometric
 

shapes) on the board and divides each into an equal number of parts.
 

The teacher tells the students that each circle or group of circles
 

(depending on whether part-whole or part-group fractions are being
 

emphasized)is called a whole and then leads the students through
 

determining how many parts in each whole. Reys et al.(24)feels
 

that a variety of shapes should be used so that children do not
 

think that a fraction is always a "part of a pie." The rectangle is
 

probably the easiest for children to draw and partition.
 

Underlying the idea of part-whole is the meaning of part and of
 

whole. The whole is whatever is specified as the unit. The part
 

must be an "equal" part and students must learn to partition the
 

whole into equal parts. It is imperative that students first learn
 

to notice the total number of congruent parts.
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1-1. 	To help children learn about fractional parts, cut some strips
 

of paper, each a fractional part of a foot. Fold into uniform
 

size but with its designation on the outside, and place in a
 

pocket chart. Children may be instructed to arrange fractions
 

in order of size. If they cannot decide between 2/3 and 3/^
 

for example, they can unfold strips and conpare lengths.
 

1-2. Half a Rod (5).
 

Purpose; to provide practice in using Cuisenaire rods to show one-


half of even whole numbers less than 12.
 

Number of Players: 1 or more.
 

Materials: 	Cuisenaire rods.
 

Procedure: 	Tell players that, at a signal, they are to show all
 

rods or combinations of rods that measure one-half the
 

length of some other rod, e.g., red is one-half the
 

length of purple; green and white are one-half the
 

length of brown. Sane rods such as black, will have no
 

half-length combinations.
 

Variation: Do the same with one-third or one-fourth the length of
 

rods up to orange and yellow.
 

Give rods number values (one for white, two for red, three for
 

green, etc.) and ask players to record on paper all natural numbers
 

or combinations of natural numbers which equal one-half or one-third
 

of the number (1/2 of 10 = 4 + 1 = 3 + 2= 1 +4, etc.).
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1-3. Geoboard Fractions (27).
 

Purpose: to provide practice in using geoboards to show one-iialf.
 

Materials: 	Geoboards, rubber bands of different colors.
 

Procedure: 	The teacher puts a rubber band of one color around the
 

outside edge of each geoboard. Each student is asked to
 

divide his geoboard in half with a different-colored
 

rubber band. The board may be divided in half in a
 

variety of ways. Students should be asked to find as
 

many different ways as they can. Encourage them to
 

define some criterion for "halfness" that all of these
 

representations have in common.
 
I
 

This activity can be repeated with one-fourth or one-eighth.
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Writing Wunerlcal Fractions to Represent Diagrams
 

After the raeahing of the symbol is taught then the symbol is
 

introduced. May (16) suggests that when beginning to introduce the
 

symbol for fractional numbers, one ask the group of students how
 

they would write 1 out of 2, or what we usually call one-half. She
 

feels that many creative answers will be received and that it is
 

important to give pupils credit for all these efforts. Then tell
 

them that man invented a way of writing fractional numbers many
 

years ago. We all have to use the method because people all over
 

the world understand this method of writing fractional numbers.
 

Students learn that the bottom number of a fraction tells how
 

many parts in each whole while the top number of a fraction
 

represents how many parts are special.
 

1 Number of special parts
 

2 Number of congruent parts altogether
 

At this point students can learn the terms numerator and
 

denominator. Students can be told that the line in the symnbol can
 

be read as "of the," indicating the division of a unit into
 

congruent parts.
 

A couple of guidelines are important for an appropriate example
 

selection for this skilj. First, the niinber of parts in each whole
 

unit, the number of whole units, and the number of special parts
 

should vary from example to example. Second, the examples should
 

include a mixture of proper and improper fractions. Examples should
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include some fractions that equal less than a whole unit:
 

2
 1
 

3 4
 

some examples that equal more than one unit:
 

■'̂ ssismsi 5 ^ 5 
Biisaaeri 2 4 

and a fatf examples that equal one unit: 

2 
2 

Special attention should be given to examples containing a 

series of units that are not divided: 

3 

1 

These diagrams will need special e:cplanation. The teacher should 

point out that if a whole is not divided into parts, students should 

write a 1 on the bottom. The 1 tells that there is only one part in 

23 



the whole unit. Examples which yield 1 as a denominator should not
 

be introduced when fractions are initially presented but can be
 

introduced about a week later. Thereafter, about 1 in every 10
 

diagrams should be an example with 1 as a denominator. These
 

examples are important since they present a conceptual base of
 

exercises in which students convert a whole number to a fraction
 

(e.g. 8 = 8/1).
 

When students have learned to accurately fill in the numerals
 

to represent a fraction, they can learn the simple procedure of
 

translating numerical fractions into diagrams. For 3/4, the teacher
 

would say "Touch the bottom number. What does it tell you?...Draw
 

four parts in each whole...Touch the top number...What does it tell
 

you?...Shade in three parts."
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2-1. Fract Match (12).
 

Purpose: to provide practice matching numeral fractions to
 

diagrams.
 

Number of Players: 2-5.
 

Materials: Prepare a set of three-by-five-inch cards that contains
 

numerals for common fractions - 1/2, 1/4, 2/3, 5/6, 7/8
 

- and any others with which children are working. Make
 

another set of cards that contains pictures of sets,
 

regions, and line segments separated into parts to
 

represent the common fractions. There should be more
 

than one picture for each fraction card. Make a key so
 

players can check answers during the game.
 

Procedure:
 

1. 	The dealer shuffles the fraction cards and puts them face
 

down. He shuffles the picture cards and deals all of them.
 

Each player puts his picture cards face down in a pile.
 

2. 	The dealer turns over the top fraction card.
 

3. 	At the dealer's signal each player turns over his top card.
 

If any one or more of the picture cards match the fraction
 

card, the players say "Fract Match." The first player to
 

say it gets all the picture cards that have been turned up.
 

4. 	Play continues with the dealer turning fraction cards and
 

players turning picture cards until all picture cards have
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been played. (When players turn over their last picture
 

cards without making a match with the top fraction card,
 

each one shuffles his remaining picture cards and puts them
 

face down again so they can continue to play.)
 

5. The winner is the player who collects the most cards.
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Equivalent Fractions
 

To find an equivalent fraction, the teacher wants the
 

generalization that both the numerator and denominator may be
 

multiplied (or divided) by the same number. A paper-folding model,
 

symbolically describing what is happening should be used as a first
 

step in this process.
 

Picture A Picture B
 

• ^
 

.V
3 6
U
 

"T ■"5;
 

-
 7 t^'j
 
n? i "6 5^*
 

'•J 1
 

* i>
 fJ- A
 

2«f ;
 
....
 

Make a model of 3/4 by folding a piece of paper (picture A);
 

then fold it in half the other way (picture B). Establish that
 

3/4 r 6/8. Now, look at what happened when the paper was folded in
 

half. IWice as many equal parts (or 2x4)were created and twice
 

as many shaded parts (or 2x3). This can be written as:
 

2x3 3x2 6
 
or
 

2x4 4x2 8
 

After more examples, the students should make the generalization
 

that both the numerator and denominator may be multiplied by the
 

same nunber and the resulting fraction is equivalent.
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Conversely, one could begin with picture B and describe how to
 

get to picture A. In picture B, we began with 8 equal parts and
 

grouped them by 2, or 8 ^ 2.; This also groups the number of parts
 

under consideration by 2, or 6 ̂  2. Thus,
 

6 6 2 2 3
 

8 8^2 4
 

Again, this type of example should lead to the generalization that
 

the numerator and denominator may be divided by the same number.
 

A basic rule to be reviewed at this point is the property of
 

one. Ask students what the fraction 2/2 means. The students should
 

say it means that some whole unit has been divided into two
 

congruent parts and that both parts are being considered. Thus
 

their answer should be that another number for 2/2 would be onq
 

whole unit or the number 1. After several questions like this,
 

pupils should begin to see that when any number is divided by
 

itself, it stands for the whole number 1.
 

Once the students have made the generalization that both the
 

numerator and denominator may be multiplied or divided by the same
 

number, then the students are ready to move to problons such as: 


2 4
 

3 "12 6'~3
 

In the first example, the students need to think, "What is 3
 

multiplied by to get 12?" Once they have established it is 4, they
 

should write: 

2x4 

3 X 4 

8 

12 
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In the second example, they should realize that 6 was divided by 2
 

to obtain 3 so 1;hat 4 would also have to be divided by 2, or
 

.4 T 2 2
 

-6^ 2 3
 

The first example is the type of thinking one needs in finding
 

a common denominator; the second, the type needed in simplifying
 

many problons.
 

May (16) believes that teachers should try an intermediate
 

stage of adding like numbers to show equivalent fractions before
 

they get to the stage where students are asked to multiply both the
 

numerator and the denominator by the same number. May says that
 

many pupils for the first time will understand why they can multiply
 

by the same number without changing the value of the number.
 

The addition stage that May is suggesting has students trying
 

to discover a pattern with equivalent fractions. After a pattern
 

has been found, one-half can be presented in another way. Is one-


half equal to seven divided by seven plus seven? (Yes, it is.)
 

21 7 Now pupils can fill in missing numbers in similar problems:
 

1 = 1 By filling in the numbers the pupils

2 15+ ' 2 17+17
 

are seeing that one-half means two of some number in the denominator
 

and one of the same number in the numerator. This leads to the next
 

stage. If 5 = ̂ =1 then does i = ? The answer is
 
yes because7+7 means 2x7 and 7 means 7 x 1. Using this method
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to name equivalent fractions of 2/3 would look like this;
 

5+5 2x5 10
 

2/3 =
 
5+5+5 3 X 5 15
 

To find an equivalent fraction, we want the generalization that both
 

the numerator and denominator may be multiplied (or divided) by the,
 

same number.
 

Lola May (16) suggests the test of cross multiplying to prove
 

whether fractions are equal. Cross multiplying involves using the
 

numerator of the fraction on the left and multiplying it by the
 

denominator of the fraction on the right; then multiply the
 

denominator of the fraction on the left by the numerator of the
 

fraction on the right. If the cross multiplications are equal, then
 

the fractions are equal.
 
9
 

a
 
3x8 = 4x6 2x9^7x3(fractions are
 

not equal)
 

This test for equality, suggests May, can also be used for
 

inequality. Is 2/5 equal to, greater than, or less than 3/8?
 

2x8= 16
 

2/5 > 3/8 5x3 = 15
 
16 > 15
 

Some students will want to know why this technique works, so
 

now you can go back to equivalent fractions. Find the fraction in
 

the 40 family that names the same number as 2/5. Find the fraction
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in the 40 family that names the same number as 3/8.
 

2/5 X 8/8 =16/40 3/8 x 5/5 = 15/40 16/40 > 15/40
 

Thus cross multiplication is a short way of canparing fractions
 

without having to find equivalent fractions each time.
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Activities
 

3-1. Fraction Equivalence Devices (5).
 

a. 	Make a frame from a piece of plywood on whioh narrow
 

strips of wood are nailed or glued. Now make strips of
 

stiff paper of a size to fit between the wooden strips.
 

Mark each strip into fractional parts and cut the parts so
 

that children can place them into position on the board
 

and make their own comparisons.
 

I —r-


JL
 

xjzs:
 
i \ i \ i \ i
 

b. 	Fractional parts of circles cut so that pupils can
 

manipulate them are useful. If a small piece of coarse
 

sandpaper (or felt) is glued to the back, the pieces will
 

cling to a flannel board.
 

3-2. Equivalent Rummy (5).
 

Purpose; to provide practice in recognizing equivalent
 

fractions.
 

Number of Players: 2 to 4.
 

Materials: A pack of cards each marked with a fraction. For
 

each number, there must be three cards each with
 

the number shown in a different form, as, 1/2,
 

2/4, 6/12. There should be 18 to 20 such sets.
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Procedure: Players draw for dealer; largest number indicates
 

dealer. Deal five cards to each player. Place
 

balance of deck face down with top card turned up.
 

Player to left of dealer begins. He/she may take
 

either the turned up card or the top card from the
 

"blind" deck. If he/she has three cards showing
 

equivalent fractions, he/she lays them before
 

him/her. When he/she has finished, he/she
 

discards one card face up. Play then proceeds to
 

the left. When one player has no cards, the game
 

ends and the one with the most sets wins.
 

3-3. Fracto (27).
 

Purpose: to provide practice in naming equivalent fractions.
 

Number of Players: Snail groups.
 

Materials: A 3 x 3 playing mat with 9 calls for each player,
 

containing the notation for frequently used
 

fractions; some call cards, containing different
 

names for the fractional numbers on the playing
 

mats; and discs.
 

Procedure: The game is played like Bingo. A caller is
 

chosen, and holds up a card from the call pile.
 

Any player with an equivalent fraction covers the
 

corresponding call (or calls) with a disc. The
 

first player to obtain three discs in a row
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(vertically, horizontally, or diagonally) is the
 

winner.
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Mixed Mimbers and Lnproper Fractions
 

Through models you can lead naturally into mixed numbers and
 

improper fractions.
 

Picture A
 

I
 

m IK
 

V ^ jSf
 

Picture B
 

•) r
 
/
 

The most natural description of picture A is 2 1/4. Drawing in the
 

fourths as in picture B helps us see the improper fraction
 

representation of nine-fourths.
 

After becoming familiar with both improper fractions and mixed
 

numbers, students need to be able to change from one form to the
 

other without the use of models. However, familiarity with the
 

models should help in the process.
 

Reducing a Fraction to Its Simpleat Terms
 

Reducing fractions using a greatest common factor strategy
 

would be presented during late fourth grade. Students are taught to
 

reduce a fraction to its simplest terms by pulling out the greatest
 

comnon factor of the numerator and denominator.
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Prggkill
 

Teaching students to find the greatest common factor of two
 

numbers is the critical preskill for reducing fractions. The
 

greatest canmon factor of two numbers is the largest number that can
 

be multiplied by whole numbers to end with two target numbers. For
 

example, the greatest common factor of 12 and 18 is 6. Six can be
 

multiplied by whole numbers to end with 12 and 18.
 

The first step in teaching students to find the greatest corranon
 

factor of two numbers is to teach them to determine all possible
 

factors for a given number. For example, the numbers 1, 2, 3, 4, 6,
 

and 12 are all factors of 12, since they can all be multiplied by
 

another whole number to end with 12. The teacher defines the
 

phrase, greatest common factor, as the largest number which is a
 

factor of both target numbers. The teacher then leads the students
 

through finding the greatest common factor. First the teacher asks
 

students what the largest factor of the smaller target number is
 

and if that factor is also a factor of the other target number. For
 

example, assuming that 8 and 20 are the target numbers, the teacher
 

asks what the largest factor of 8 is. The students reply, "8 is the
 

largest factor of 8." The teacher then asks, "Is 8 a factor of 20?"
 

Since the answer is no, the teacher asks the students to tell
 

him/her the next largest factor of 8. "What is the next biggest
 

factor of 8?" After the students answer 4, the teacher asks,"Is 4
 

a factor of 20?...So, 4 is the greatest common factor of 8 and 20"
 

(29).
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Reducing Fractions
 

The format for reducing fractions would be introduced when
 

students are able to determine the greatest common factor of two
 

target numbers. The teacher writes a fraction on the board with an
 

equal sign next to it. Next to the equal sign are parentheses and a
 

fraction bar for the reduced fraction:
 

12
 

T6 = ( )
 
The fraction in which the numerator and denominator are the greatest
 

common factor of the two target numbers will be written inside the
 

parentheses. For example, the greatest common factor of 12 and 16 is
 

4. Thus, the fraction in the parentheses will be 4/4, which equals
 

1. The teacher then asks, "12 equals 4 times what number?" The
 

answer is 3, which is the numerator of the reduced fraction. The
 

teacher then asks, "16 equals 4 times what number?" The answer is 4,
 

which is the dencxninator of the reduced fraction. Since multiplying
 

by 1 does not change the value of the fraction, 4/4 can be crossed
 

out. Crossing out the fraction equal to 1 leaves the reduced
 

fraction:
 

12 ^ ^^1 3
 
16 \^/ 4
 

There are three selection guidelines for exercises on reducing
 

fractions. At first both the numerator and denominator should be
 

below 25. Second, a third of the fractions should have the greatest
 

common factor as the numerator. Third, about a third of the
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fractions should already be expressed in their simplest terms.
 

Including several fractions already expressed in their simplest
 

terms provides the students with the knowledge that not all
 

fractions need to be reduced (29).
 

Adding and Subtracting Fractions with Like Denominators
 

Now students are ready to leam to add and subtract fractional
 

numbers. May (16) suggests that after the middle of the second
 

grade most pupils can begin to learn to add and subtract like
 

fractions. She feels that adding and subtracting fractional numbers
 

is based on adding and subtracting whole numbers. In adding and
 

subtracting whole numbers students learned that in our number system
 

only like units can be added or subtracted. In fractional numbers
 

the denominators play the same role as place value of the digits.
 

Only like fractions can be added or subtracted. Like fractions are
 

fractions with the same denominator. The denoninator indicates the
 

unit being used and the units are added and subtracted with the
 

numbers in the numerator.
 

The first activities in helping children understand the
 

addition and subtraction of common fractions need to be concrete.
 

Each student can use a rectangular piece of paper divided into four
 

congruent parts, first by folding, and then by cutting along the
 

folds. The parts need to each be labeled one-fourth. Now pupils
 

are asked to place two-fourths on their desk, and then place another
 

one-fourth on the desk beside the two-fourths. How many fourths in
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all? Then write on the chalkboard:
 

2 1 2 3 2 . 1 2 3
 
4 4 4 4 4 " 8
 

Which of these equations reflects the activity just performed?
 

Point out that the parts are all fourths and the sura is in fourths.
 

Never add the denominators, because they indicate the unit being
 

used. Adding the denominators changes the unit.
 

Children gain in their understanding of fractions when they are
 

taught through physical operations on concrete media.
 

Similar activities on the number line should be practiced.
 

This is a more abstract exercise than using the geometric shapes.
 

With the number line, pupils will apply what they learned in adding
 

whole numbers to the addition of fractional numbers. On the number
 

line only the points 0 and 1 should be labeled to begin. Pupils
 

should divide the unit into seven congruent parts and label each of
 

the parts.
 

3 . 2^5
 
7 7 7
 

Subtraction of like fractions also should begin with concrete
 

experiences. The next stage is the more abstract method of seeing
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the subtraction of fractional numbers on a number line.
 

V—I 1 1 1 ( I ^1 1—i 5^
 
0 1 2 3 4 5 6 7 8 9
 
^ 9 9 9 9 9 9 9 9 9
 

9 9
 

When assigning practice exercises in subtracting and adding
 

like fractions, May feels that some problems should be set in
 

vertical form and some in horizontal form. In doing the exercises,
 

SOTie of the fractions will represent numbers larger than one. This
 

means that the numerator will be larger than the denominator. In
 

some cases pupils might be asked to write their answers as mixed
 

numerals when the number is greater than one, and as a whole number
 

when the numerator is a multiple of the denominator.
 

Thus, instead of beginning with a symbolic sentence such as 2/3
 

+ 1/4, the teacher should begin with joining and separating
 

situations. The problem needs to be solved using the pictorial
 

model; then a sentence will be written to describe the situation.
 

The purposes of this procedure are (1) to help children see that
 

adding and subtracting of fractions solves problems similar to those
 

with whole numbers, (2)to give them an idea of what a reasonable
 

answer will be, and (3) to help them see why a "common denominator"
 

is necessary when adding or subtracting (29).
 

Adding and subtracting like denominators should not take long
 

if the foundation of fractions has been built.
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story Pmh1«^5^
 

The basic guideline in introducing fraction story problems is
 

that a new type of problon should be integrated into story problem
 

exercises as soon as the students can accurately compute problems of
 

that type. Story problems involving adding and subtracting
 

fractions with like denominators should be introduced after students
 

work such problems independently. Story problems with unlike
 

denominators should be introduced only after students have mastered
 

the strategy for adding/subtracting that type of problem. Story
 

problems need variety in the types used, e.g., classification,
 

action, canparison.
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Activities
 

4-1. 	Arithmetic Race (5).
 

Purpose: to provide practice in problem solving.
 

Number of Players: 4 or more.
 

Materials: 	Problem solving sheets of paper for each team;
 

items should be either identical or similar in
 

difficulty. There should be as many problems as
 

there are players on each team.
 

Procedure: 	Divide players into as many relay teams as
 

desired; arrange pupils in rows or designate order
 

if children are at tables. Distribute papers face
 

down, one to the first player of each team. At a
 

signal each works the first problem and then
 

passes the paper on to the second player who must
 

check the work of the first one; if the second
 

player is satisfied that it is correct, he then
 

works the second one. The third player checks the
 

work of the one preceding him and then works the
 

third problem and so on. The last player returns
 

the sheet to the first player for checking. The
 

team 	first completing all problems correctly is
 

the winner.
 

4-2. Eraser Relay (5).
 

Purpose: to provide practice in problem solving.
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Number of Players: 2 or more.
 

Materials: Chalk erasers and chalkboards; cards with problem
 

solving situations.
 

Procedure: 	Divide players into two or more teams depending on
 

the size of the group. Shuffle cards and divide
 

them into as many stacks as there are teams; place
 

face down at the end of the room opposite the
 

chalkboard. At a signal, the first player of each
 

team places an eraser on his head and goes to a
 

given stack of cards, draws the top one, and
 

proceeds to the chalkboard where he must do the
 

problem; he then writes the answer in a designated
 

place, erases his work, lays his card in the
 

chalktray, and gives his eraser to the next player
 

on the team. If a player's eraser falls from his
 

head, he must pick it up and replace it before
 

proceeding. Play continues until all have had a
 

turn. Answers are checked and the team which has
 

most correct answers is the winner; in case of a
 

tie, the team finishing first wins.
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Adding and Subtracting Mixed Numbers with Like Denominators
 

Adding and subtracting mixed numbers in which the fractions
 

have like denominators can be introduced when students can read and
 

write mixed numbers and can add and subtract fractions with like
 

denominators. The child must be able to see why it is best to add
 

the fractions first and then the whole numbers. A skill that
 

students will use at this step is changing answers like 7 17/12 to 8
 

5/12. While children may have encountered this when changing from
 

improper fractions to mixed numbers, usually they have concentrated
 

on changing an improper fraction such as 25/8 to a mixed number.
 

They have not changed a mixed number whose fraction part is an
 

improper fraction to another mixed number.
 

On the other hand, subtracting is often more difficult, partly
 

because they have not changed a mixed nianber to another mixed number
 

and also because they lack understanding of regrouping.
 

6 i = 5 H
 

4 4
 
■2 - = 2 — 8 ^ 8 

7
3 

8 
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Children must understand in regrouping 6 3/8 to 5 11/8 that 1 is
 

8/8, and 6 is 5 + 1 or 5 + 8/8. Hence, 6 3/8 is 5 + 8/8 + 3/8 or 5
 

11/8.
 

sm
 

iW;
 

6 wholes plus 3/8
 

r<
 

5 wholes plus 8/8 plus 3/8 = 5 11/8
 

A difficult probl^ type involving mixed numbers is:
 

■ • 8 . , - • ■ ■
 

2
 

. ,■-3
 
4
 

It is a subtraction problem involving renaming. The student must 

rewrite the 8 aS 7 and 4/4 to work the problem. Prior to 

introducing such a problon, the teacher would present an exercise in 

which the student must rewrite a whole number as a whole number and 

a fraction equivalent to 1 (e.g. 6 + 5 + 4/4). In leading students 

through this preskill exercise, the teacher points out that they 

have to take one whole away from the original whole number and 
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rewrite that one whole as a fraction. Once this preskill is taught,
 

students should have little difficulty with problems that involve
 

renaming.
 

Adding and Subtracting Fractions with Unlike Denominators
 

Adding and subtracting fractions with unlike denominators is
 

usually introduced during fourth grade.
 

Preskill
 

Before adding and subtracting fractions with unlike
 

denominators is introduced, students must master finding the least
 

common multiple of two numbers. The least common multiple of two
 

numbers is the smallest number that has both numbers as factors.
 

For example, the least common multiple (LCM) of the numbers 6 and 8
 

is 24 since 24 is the smallest number that has both 6 and 8 as
 

factors. Likewise, the LCM of 6 and 9 is 18 since 18 is the
 

smallest number that has 6 and 9 as factors.
 

The teacher writes count-by series of two numbers on the board
 

so that students can visually find the lowest common multiple. An
 

example for finding the least common multiple of 3 and 5 would be:
 

3 6 9 12 15 18
 

5 10 15 20 25 30
 

Children will see that the smallest multiple common to 3 and 5 is
 

15. Thus the least ccxnmon multiple of 3 and 5 is 15.
 

Unlike Denominators
 

May (16) suggests that when teaching the addition of unlike
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fractional numbers, the teacher should write a problem such as 5/8 +
 

1/12 on the chalkboard. Then ask, "Can you add these two numbers
 

with the names they now have?" In the discussion following this
 

question. May says that it is important to point out that only
 

fractional numbers with like denominators can be added. Teachers
 

should be careful to avoid saying that they cannot add the numbers
 

5/8 and 1/12. This would be a false statement, for the numbers can
 

be added but the difficulty is that the fractions need other names
 

before the adding can be done.
 

According to May, a mistake that many teachers make in
 

introducing the unit on adding unlike fractions is to start with
 

problems that are so easy, that students can find the least common
 

denominator by inspection. This gives the students the false
 

impression that all least common denominators should be found in
 

this way. May presents an alternative method of adding and
 

subtracting unlike fractional numbers. She says that it can be
 

taught to students in the middle grades who have difficulty in
 

finding the least ccmimon denominator. The main prerequisite of this
 

method is being able to add whole numbers.
 

Practice is needed in making display fractions before the
 

alternative method can be taught. A display fraction is where you
 

are given a fraction and you write it several times. There are
 

always as many numbers in the numerator as there are in the
 

p 94-9
denominator. An example of this would be: ̂  . When
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students can complete problems like these, they are ready to learn
 

the new method of adding and subtracting unlike fractional numbers.
 

It is important that students be involved in doing each step.
 

Therefore, students should write down each step on their paper. The
 

model is established by doing the work (16).
 

In the alternative method for adding and subtracting unlike
 

fractional numbers, the example I will use is to add 3/4 and 2/3.
 

The first step is to write the denominator of each fraction. Next,
 

the student will "give to the poor." A 3 is less than a 4, so a 3
 

is added to the denominator. Now 4 is less than 3 + 3, so you give
 

to the poor.
 

Step 1 Step 2
 

3 =. 3
 

1 =3 +2 ^ ^ 3 " S+5
 

A 4 is added to the denominator. Now 3 + 3 is less than 4 + 4, so
 

you give to the poor again. This time add another 3 to the
 

denominator.
 

Step 3 Step 4
 

3 ^ 3
 
4 4+4" 4 4+4
 

+2 ^ +2 ^
 
3 3+3 3 3+3+3
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Now 3 + 3 + 3 is greater than 4 + 4, so a 4 is added to the poor.
 

The denominator 4 + 4 + 4 is greater than 3+ 3 + 3, so another 3 is
 

added to the poor. Now the son of each denominator is the same.
 

Step 5 7 = ttttt
 
^ 4 4+4+4 Ii
 

+2
 

3 3+3+3
 

Step 6 I
 
4+4+4
 

+2
 

3 3+3+3+3
 

Now stop and make display fractions. "Every bottom has to have a
 

top and every top has to have a bottom. NO TOPLESS BOTTOMS ALLOWED"
 

(16, p. 226).
 

3 3+3+3 q


Step 7 I = Step 8
 

4-L
+2 _ 2+2+2+2 12
 
3 3+3+3+3
 

Next add the numerators and the denominators. The last step is to
 

add the like fractions.
 

According to May, the method always works and the common
 

denominator is always the least common denominator. After
 

practicing the method for several days the students will find they
 

can add and subtract unlike fractional nunbers. They have a method
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that works for them and they are successful.
 

The main idea to be developed when adding or subtracting
 

fractions with unlike denominators is that we cannot add or subtract
 

them symbolically without first changing them to like denominators
 

(29).
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Activities
 

5-1. Eraser Bowl (5).
 

Purpose: to provide practice in the addition of fractional
 

numbers.
 

Number of Players: Pairs, small teams.
 

Materials: 	A bowling alley marked out on the floor, with a 1

meter circle or oval near one end; and nine
 

chalkboard erasers, with fractional numerals
 

written on six of them.
 

3
 

3
:2
 

iP
 

Procedure: 	Divide the group into two or more teams; place the
 

six numbered erasers in the circle. The first
 

player on one team is allowed three attempts at
 

knocking the erasers outside of the circle, using
 

an unmarked eraser. The total of the numbers
 

named on the erasers that are knocked out of the
 

circle is that player's score. The erasers are
 

51
 



then put back and play goes to the first player on
 

the next team. At the end of play, each team
 

totals its scores to see which team has the most
 
□□□□□□□□□□ 

points.
 

□□□□
5-2. Common Fraction Addition (12).
 

□□□□□□□□□□ 

Purpose: to name the sum of two fractional numbers smaller
□□□□□□ 
□□□O 

than 1.
 

□□
 
Number of Players: 2 □□□□□o
 

Materials: Make a game	□□□□□□□oboard 22" x 28". Use photo corners 
o□ 

□□□o 
□□□□□□□□ 

□□□□□□□o 3ia£ 
a□□□ 

/?££?
 

□□□□□□□ Q % D	 □□ 
o 

□o 

V * V V ̂  V V/3 /3 ^ /i- /a 
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where the small squares are in the diagram. The
 

photo corners will hold the sentence cards. Make
 

two identical sets of sentence cards, one on red
 

and the other on blue pieces of 2" x 4 1/2"
 

tagboard, which indicate addition of common
 

fractions. A die is needed. Make a key so
 

players can check answers as they play.
 

Procedure:
 

1. 	Each player has a set of sentence cards.
 

2. 	The first player rolls the die. The nimber he rolls
 

tells how many sentence cards he can put on the game
 

board. He selects any of his cards and puts them up
 

on his side of the board next to the appropriate sum.
 

3. 	An opponent may challenge any play. If a player has
 

made an incorrect play, the challenger gets to play as
 

many of his cards as the other player had left to
 

play. If a challenger is wrong, the player gets to
 

play as many extra cards as the number he had left to
 

play.
 

4. 	Play continues with players alternating turns until
 

one player is rid of his cards.
 

5. 	The winner is the player who is rid of his cards
 

first.
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5-3. Add to Make One (9).
 

Purpose: to name the sum of two fractional numbers smaller
 

than 1.
 

Number of Players: 2 to 4.
 

Materials: A pair of dice - one red and one green - and paper
 

and pencil for recording scores.
 

Procedure:
 

1. 	The player who has been chosen leader rolls the dice.
 

The red die names a numerator while the green die
 

names a denominator.
 

2. 	The first player names the fraction indicated by the
 

dice. Then he names another fraction that can be
 

added to it to give a sum of 1. If he is correct, he
 

scores one point.
 

3. 	Play continues with each player taking his turns in
 

order.
 

4. 	The winner is the player who has the most points after
 

a given number of rounds have been played or a given
 

period of time has passed.
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Adding and Subtracting Mixed Numerals with Unlike Denominators
 

Children must be able to see why it is best to add and subtract
 

the fractions first and then the whole nunbers. Then the students
 

would follow the procedures presented for working with fractions
 

with unlike denominators. This would then be integrated with their
 

previous knowledge of adding and subtracting mixed numbers.
 

Activities
 

6-1. Canned Fractions (3).
 

Purpose: to provide practice in adding mixed numbers.
 

Number of Players: 1 to 10.
 

Materials: 	Five low cans, such as.size 1/2 flat, nailed to a
 

board, each 	with a paper taped to it showing a
 

fraction numeral, as 4 1/2, 9 4/6, 3 3/4,74/8, 5
 

1/3. Three 	small bean bags.
 

Procedure: 	Place board with cans on the floor and mark a line
 

ten feet away. Players stand behind line and take
 

three tosses each turn, aiming to get a bean bag
 

into a can. When each has had three turns, he
 

must total his own score. The player with the
 

highest total wins. From time to time, vary the
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fractions on the cans to give practice as needed.
 

6-2.	 Croquet.
 

Purpose: to provide practice in subtracting mixed numbers.
 

Number of Players: 2 to 10.
 

Materials: Tagboard circles to represent balls with mixed
 

numbers less than 10 written on them. Tagboard
 

with a course drawn on it.
 

3 1^
 

II
 
1^
 

2 C?
 
15
 

Start • Stop
 

Procedure: Each student selects a ball. The student must
 

then subtract the number on the ball from the
 

whole numbers on the wickets to go through them.
 

Give a penalty stroke for each error. The student
 

who reaches stop with the fewest penalties wins.
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tfaltlDlving Fractions
 

The algorithm for raultipllcation of fractions is one of the
 

simplest: multiply numerators to find the numerator, multiply
 

denominators to find the denominator. This method of teaching the
 

algorithm does not provide background into why it works or when to
 

use it. Sure, it can be taught in minutes, to be forgotten in
 

seconds.
 

There are three types of multiplication problems. The first
 

type involves multiplying two proper fractions. The second type
 

involves multiplying a fraction and a whole number. (This type
 

occurs often in story problems.) The third type of problon involves
 

multiplying one or more mixed numbers.
 

In beginning to solve the first type of fraction multiplication
 

problon involving multiplying two proper fractions, the teacher can
 

draw a picture as shown below.
 

<-6
 

1pS
 IX S H 
4
 ■— ' 1 ifC'i 4 246 
I I f 

This model will need to be developed slowly. After doing this, find 

out whether any children can see a shorter way to find the product. 

Make a list of multiplication exercises and products (do not reduce 

the answers). See if the children notice the pattern (multiply the 
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numerators, multiply the denominators). You can refer to the
 

picture to see why this works.
 

The second type of fraction multiplication problem, a fraction
 

times a whole number, is important because it has many real-life
 

applications. Fraction times whole number problems can be
 

introduced when students have mastered multiplying proper fractions
 

and converting an improper fraction to a mixed number.
 

Picture demonstrations of what takes place when multiplying a
 

fraction by a whole number would look like this:
 

2/3 X 12 =
 

1111 1111 1111
 

The teacher explains that the bottom number tells how many groups to
 

form and the top number tells how many groups are used. After
 

drawing 12 lines in three groups, the teacher circles two groups:
 

(jrPj) (JTTi) 1111
 

The lines within the circles are counted and we get 8; 2/3 x 12 =
 

8. The format to follow this picture demonstration would be:
 

2
 

— X 12
 

' 3
 

Students make the whole number into a fraction.
 

2 12
 

3 * 1
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Students multiply the numerator and the dencrainator.
 

2 12 24
 

3 1
'3
 

Students convert the product into a whole number or mixed number.
 

2 12 24
 

3 1'3"
 

Any whole number may be converted to a fraction by putting it over a
 

denaninator of 1.
 

The third type of fraction multiplication involving problems
 

with a mixed number are an important component skill for advanced
 

map reading. For example, if 1 inch equals 50 miles, how many miles
 

will 3 1/2 inches equal?
 

50 X 31/2 = 175
 

The students convert a mixed number into an improper fraction
 

before working the problan.
 

51/2 X 3 2/4
 

11/2 X 14/4
 

11/2 X 14/4 = 154/8
 
19 2/8


154/8 = 8J 154 = 19 1/4
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7-1.	 Tic-Tac-Toe.
 

Purpose: to practice multiplying with fractions or mixed
 

numbers.
 

Number of Players: 2, or 2 teams.
 

Materials: Chalkboard, 3 x 5 cards on which problems have
 

been written.
 

Procedure: Draw a Tic-Tac-Toe grid on the board. Tape a
 

problon card, face down, to each space.
 

□ D □ 

a a CD 
i_... 	 1 

□ o a 
The first student chooses where he/she would like to try placing 

his/her X or 0, then attempts to do so by correctly answering the 

problem written on the card corresponding to the chosen space. 

Students take turns in order. The winner is the first student (or 

team) to place three X's or three O's in a horizontal, vertical, or 

diagonal line. One point is awarded for each correct answer and 1 

point for making Tic-Tac-Toe. 

7-2. Flash Card Baseball. 

Purpose: to practice multiplication of fractions. 
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Number of Players: 2 teams each with the same number of
 

players.
 

Materials: Index cards on which problems have been written,
 

chalkboard.
 

Procedure: 	The index cards are sorted into four piles. A
 

baseball diamond is drawn on the chalkboard.
 

Students then decide whether they want to try for
 

a single, double, triple, or hcxner. The "single"
 

pile consists of easy problems; the "double" pile,
 

average problems; the "triple" pile, difficult
 

problems; and the "homer" pile consists of
 

problems which represent an extension of what
 

children have studied up to the present time. An
 

incorrect answer is an out. There are no balls or
 

strikes. One point is scored for each run.
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Reciprocal Property
 

Two numbers whose product is 1 are each the reciprocal of the
 

other. Two thirds is the reciprocal of three halves and three
 

halves is the reciprocal of two thirds. The inverses are numbers
 

that make the product 1. It is important for students to understand
 

this reciprocal property because it is used to explain division of
 

fractional numbers. In providing exercises to practice finding the
 

reciprocal, all kinds of numbers should be included, such as whole
 

numbers, fractional numbers, and decimals.
 

4/3 X ? = 1 . ? X .6 = 1 4 2/3 X ? = 1 ? x 8 = 1
 

When a number is written in mixed form, such as 4 2/3, students must
 

think of the number in fractional form in order to name the
 

reciprocal.
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Dividing Fractions
 

Models showing division situations get rather complicated. One
 

model will be shown here. However, if you are presenting the
 

division algorithm to children who are not ready for a symbolic
 

treatment, then you should find other models for other situations.
 
A--

Division of fractions is a highly complex operation. Much time
\
 

U
 

and extensive visual teaching aids may be necessary with most
 

children before they understand the meaning behind it.
 

"Suppose you have 3/4 of a rectangular pizza and you want to
 

share it equally among 5 people. How much of the pizza would each
 

person receivefn
 

Divide among 5 people.
^Each person's share.
 
» .1. '"-i 

3/4 of a 
V-r 
(fli. 

> An « 

r r . 
H 1 

pizza 4 
t ~ 1 

fV . L : 

..Wi 
iii'fui 

Each person would get 3 out of 20 pieces, or 3/4 ^ 5 ~ 3/20. It is
 

hoped that the students will recognize this as the same picture we
 

used to show 1/5 x 3/4 or 3/4 x 1/5. This begins to develop the
 

rule that 3/4 - 5 = 3/4 x 1/5.
 

The division of fractions using the inversion method is based
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on the property of multiplication, the property of one, and the 

reciprocal property.j The first step is to remove"l:hl~denominator -

X / = 
= 

14 

15 or 

14 

15 

= X = 

V 
The next step is to rename the denominator as 1. Any whole number 

can be written with a denominator of 1 without changing the number. 

The reciprocal of five sevenths is seven fifths, so multiply by 

\ 
\ 

\ 
\ 
\ 

seven fifths to rename the dencwiinator 1. Then the numerator must 

be multiplied by seven fifths because of the property of one. Now 

multiply and the answer is 14/15. 

Now when we tell students that to divide two fractions, you 

must invert the divisor and multiply, the "rule" has meaning because 

invert means using the reciprocal property. 

Activities 

8-1. Flash Card Basketball. 

Purpose: to provide practice in dividing with fractions. 

Number of Players: Classrocm of students. 

Materials: Chalkboard, index cards with division of fraction 

problons. 

Procedure: Divide the class into teams. The teams take turns 

answering problems from index cards. Score two 

points for each correct answer. (This is similar 

to scoring a basket.) If a student gives an 
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incorrect answer, the opposite team gets a foul
 

shot(worth one point if it is made) before their
 

turn. The team with the most points wins
 

(determine amount of time to be used ahead of
 

time).
 

8-2. 	Stop the Magician.
 

Purpose: to provide practice in division of fractions.
 

Number of Players: 2 or 3 teams.
 

Materials: Chalkboard, 3x5 cards on which appropriate
 

problems have been written.
 

Procedure: Start with a stick person.
 

Alternating teams and rotating among players, the magician (teacher
 

or student) shows the problem to be solved. For each error, erase a
 

part of the body (hand, foot, etc.) of the stick person. The object
 

of the game is to stop the magician from making the stick person
 

invisible. (Each team has its own picture.) After all the problems
 

are answered, the team with the most complete stick person wins.
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story ProbipHis - MiiitlDllcatlon and Division
 

Multiplication and division story problans can be introduced
 

when students can solve the respective problem types.
 

Multiplication story problems with fractions usually involve
 

figuring out what a fractional part of a specified group equals.
 

Here is a typical problem:
 

There are 20 children in our class; 3/^ of the children are
 

girls. How many girls are in the class? Students would be taught
 

that in this problem can be translated to times. The problem of
 

3/4 of 12 would be converted to 3/4 x 12 and worked.
 

The most common type of division story problem involves
 

dividing a fraction by a whole number. Here is an example of this
 

type of problem:
 

John has 3/4 pound of candy. He wants to divide the candy
 

equally among 3 friends. How much candy should he give to each
 

friend?
 

Structured teacher demonstrations are particularly important
 

when introducing fractional strategies. This explicit teaching is
 

very important if lower-performing students are to succeed. The
 

amount of practice provided in commercial programs (state adopted
 

textbooks) must be significantly supplanented if the students are to
 

develop mastery. Teachers must not go on to a new skill until
 

students have developed accuracy in its preskills.
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Commercial games that reinforce understanding of fractional
 

numbers and ways they are represented:
 

One
 

Recognizing Fractional Parts
 

Creative Publications
 

P. 0. Box 10328
 

Palo Alto, CA 94303
 

IMDUT - a Game of Fractions
 

IMOUT Arithmetic Drill Games
 

706 Williamson Building
 

Cleveland, Ohio 44114
 

Fractions Are As Easy As Pie
 

Marie's Educational Materials
 

P. 0. Box 694
 

Sunnyvale, CA 94086
 

Frac Pac
 

A. R. Davis and Co.
 

P. 0. Box 24424
 

San Jose, CA 95154
 

Information about Cuisenaire rods may be obatined fran:
 

Cuisenaire Company of America, Inc.
 

12 Church Street
 

New Rochelle, New York 10805
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