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Abstract

In this thesis, we will study bio-mathematics. We will introduce di↵erential equations,

biological applications, and simulations with emphasis in molecular events. One of

the first courses of action is to introduce and construct a mathematical model of our

biological element. The biological element of study is the Hepatitis C virus. The idea

in creating a mathematical model is to approach the biological element in small steps.

We will first introduce a block (schematic) diagram of the element, create di↵erential

equations that define the diagram, convert the dimensional equations to non-dimensional

equations, reduce the number of parameters, identify the important parameters, and

analyze the results. These results will tell us which variables must be adjusted to

prevent the Hepatitis C virus from becoming chronic.
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Introduction

Mathematical models are useful when there is reason to believe that emergent

properties constitute the system. These qualitative features are earmarked when policy

changes must be reached. The decision to change policy may involve both qualitative

and quantitative analysis that are used to predict behavior under certain conditions or

decide which parameters enhance the spread of disease, and hence, which public actions

should be taken to counter the e↵ect of that disease. These qualitative features may also

be used to calculate the number of vaccines required to eradicate the disease or, at least,

get it under control. An example of this type of mathematical model is presented in

the article by Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte and Carlos Castillo-

Chavez entitled, “Multiple Outbreaks for the Same Pandemic: Local Transportation

and Social Distancing Explain the Di↵erent “Waves” of A-H1N1PDM Cases Observed

in Mexico during 2009”. As we look closely at the steps to formulate a mathematical

model, based on the material from the book, ”A Primer on Mathematical Models in

Biology” written by Lee A. Segel and Leah Edelstein-Keshet, we may reference this

article.



2

Chapter 1

Background of a Mathematical

Model in Biology

1.1 Introduction of a Model

As Segal and Edelstein-Keshet (2013) states, ”A model can be described as

a caricature of a real system”. A good caricature captures the essence of the system

and neglects the detail of the system. Establishing this essence from the complexity

of the system is the key to forming an informative mathematical model. A descriptive

mathematical model is the simplest type, such as experimental observations that can

be approximated to a straight line or a sum of exponential functions. A computer sim-

ulation is another type of model that increases the level of detail and brings faithfulness

to the underlying model. There are three distinct reasons for using simulations. Firstly,

simulations help the investigator get an initial “feel” for the behavior of a model be-

fore spending valuable time in the details of the analysis. Secondly, simulations help

the investigator make accurate quantitative predictions. Thirdly, simulations help the

investigator explore advanced versions of models that are not very easy to analytically

track. The ability to pick a model type is an important step. A model can be viewed

as a lie since details can be neglected and possible important features distorted to give

rise to the essential aspects of the model. We must keep in mind that an initially wrong

model should not be rejected, and an initially right model should not be accepted. As

Picasso says of art, we must think of in a model, ”a lie that helps us see the truth”.
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[SEK13]

1.1.1 Schematic Diagram

In model building, a crucial first step is conception of a verbal model or a

schematic diagram. The thoughts describing the underlying mechanism and/or the

words used to describe the relationship between parts of a system maintain a focus

on the choice of experiments to be used. From this step, formulating a mathematical

model is easier. The best process for this step is to amass an accurate depiction of the

relevant background. We need to ask ourselves what the essential ingredients in the em-

bodiment of the phenomenon under investigation are. We need to list the “unknowns”

or dependent variables and their relationship to one another. The main independent

variable in almost all biological investigations is time. The next step is to determine if

the phenomenon is regarded as probabilisitic or deterministic. If deterministic, we use

di↵erential equations and regard continuous changes as discrete. The hardest step in

formulating a mathematical model is to produce a proper set of equations. The most

important aid for this step is bookkeeping. The process of bookkeeping keeps track

of some quantity while others remain invariant. In biological problems, this process is

di�cult and often requires more di�cult steps to be taken. [SEK13]

1.1.2 Solving Formulated Equations

After equations are formulated, we must solve them. Most often a combina-

tion of numeric, geometric, and analytic approaches are utilized for this task. Software

programs such as MAPLE, MATLAB, Mathematica, and XPP are used to approximate

numerical solutions for a number of representative parameter values. These numerical

solutions can be used in preliminary simulations to show that a developed theory can

explain appropriate sets of data. Analytical results are often required when trying to

determine if the represented parameter sets agree with the desired result or if they are

made to agree with the desired result. [SEK13]
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1.1.3 Qualitative Results

Quantitative and qualitative results are two types of conclusions found when

the model equations are manipulated. The qualitative conclusions are useful in the

identification of solutions after a long period of time, called attractors. The attractor

solutions are typically a steady state or periodic oscillation over time. These types of

solutions often lead to a “rule of thumb” such as the time a�liated with a chemical

reaction, t ⇡ 1/k, where k is the rate constant at which a substance A breaks down to

substance B. [SEK13]

It is possible to find qualitative conclusions without prior knowledge of the

magnitude of present parameters. However, when models start to become complex it is

useful to obtain rough magnitude estimates for those various parameters. Such estimates

can be researched from prior literature or developed from general intuition. The most

desirable way to obtain these estimates is when the values of all parameters can be

determined from experiments other than the current experiment in question. Then the

current experiment can be used to verify or disprove the validity of our model. Altering a

large number of parameters to fit a variety of di↵erent experimental results is di�cult.

This is true because models are, typically, nonlinear and changing one parameter to

“fix-up” a deficiency can make the previously obtained results inconclusive. [SEK13]

1.1.4 Robustness and Analysis

Although the development of specific experimental predictions is important,

the concepts that the conclusions produce are advantageous in designing new experi-

ments for further analysis. Therefore, the robustness of the model can be even more

important than the agreement with the specific experiment. The principal conclusions

of the model must be maintained whether details of the model are amended or not.

Once a model is constructed, one must analyze the results and find the key

features hidden that yield the major conclusions. These conclusions may not be recep-

tive to experimental tests, but are still valuable in developing concepts. Models should

be considered guides to acquiring experimental information. For a complex system, no
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single model is appropriate and di↵erent questions require di↵erent models. [SEK13]

1.2 Biochemical Kinetics

In this next section, we will write the governing di↵erential equations of bio-

chemical kinetics by considering several examples of chemical dynamics and presenting

several principles that can be used to simplify these equations. After these principles

are applied, we will see the utility of these simplifications and show how simulations can

complement the analysis of a mathematical model.

1.2.1 Kinetic Scheme

Before we begin, let us take a look at the meaning of a kinetic scheme. A

kinetic scheme is the conventional description of a molecule shifting between two states,

A and B, where A and B represent the concentrations (number per unit volume) of two

molecular configurations. Shown as

A

k1 //
B

k�1

oo (2.1)

where k1 and k�1 are the rate coe�cients. The rate constant, k1, times a small time

interval, �t, is defined as the probability that a molecule in state A shifts to state

B and stays in state B. Similarly, if �t is su�ciently small, then k�1�t is a good

approximation to the probability that a molecule initially in state B changes to state

A and remains in state A. We observe that our definitions imply that k1, k�1 have

units of 1/time and thus, their reciprocals are characteristic time scales. The time step

should be smaller than the characteristic time for the transition between states. Then

�t ⌧ 1/k1 and �t ⌧ 1/k�1. We will follow the Markov properties for the shift of a

molecule between two configurations. They are:

(M1) Transitions between states are random.

(M2) The probability that a transition occurs during some time interval does not de-

pend on the history of events preceding the time in question.
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(M3) If environmental conditions are fixed then the overall characteristics of the tran-

sitions that occur in some time interval, do not depend on the time at which the obser-

vations are made. [SEK13]

1.2.2 Di↵erential Equations

Now, let us derive di↵erential equations for the change in time of concentrations

A and B. If there are A molecules per unit volume, the expected decrease in the number

of these molecules during �t is:

decrease in A molecules = total number of A molecules ⇥ fraction that becomes B

= A⇥ (k1�t)

Thus the following equation describes the expected change in the number of

A molecules during the time interval (t, t+�t):

A(t+�t)�A(t) = �A(t) · k1�t+B(t) · (k�1)�t.

Dividing by �t, taking the limit as �t ! 0, and using the definition of derivatives leads

to:

(2.2a)
dA

dt

= �k1A+ k�1B and
dB

dt

= k1A� k�1B. (2.2b)

This gives us two di↵erential equations describing the kinetic scheme of A

and B. However, before we move forward, we need to complete the mathematical

translation by prescribing the initial state of the system at time t = 0. Let A(0) = A0

and B(0) = B0, then the di↵erential equations and the initial conditions make up the

model. We can simplify this model by using the conservation law, A(t) + B(t) = M ,

noting that M is a constant since the molecules only shift between conformations and

do not degrade over such a short period of time. Thus, M = A0+B0, the total number

of molecules at t = 0. Using this conservation law at time t we can solve for B(t) and

substitute into (2.2a). In doing so, we get

dA

dt

= �k1A+ k1(M �A),
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which leads to
dA

dt

= �(k1 + k�1)A+ k�1M.

Now, solving for A requires a review of first order di↵erential equations. Con-

sider a more general version of dA

dt

= �k1A, such as

dx

dt

= k(t)x,

with initial condition x(0) = x0. This equation is called a First-Order Di↵erential

Equation, ODE, since the highest derivative in the equation is the first derivative. The

general solution is

x(t) = Cexp(K(t))t, where C is a constant and K(t) =

Z
t

0
k(s)ds.

This solution is derived as follows:

dx

dt

= k(t)x ) dx

x

= k(t)dt.

Upon integrating over the interval 0  x  t, x0  x(s)  x(t), we obtain:

ln(u)|x(t)
x(0) = ln(x(t))� ln(x(0)) = ln(x)� ln(x0) = ln(

x

x0
) =

Z
t

0
k(s)ds.

Exponentiation of both sides yields the solution

x(t) = x0exp

Z
t

0
k(s)ds

�
.

In the case that k(t) is constant, say k(t) = r, we evaluate the integral and obtain

x(t) = x0exp

Z
t

0
r

�
= x0exp(rt).

Therefore, it can be shown that all solutions of dx

dt

= k(t)x are special cases of

x(t) = x0expK(t)t for certain values of x0. Thus, the solution for dA

dt

= �(k1+k�1)A+

k�1M with initial condition A0 is
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A(t) = Cexp


�(k1 + k�1)t

�
+

k�1M

k1 + k�1
.

In the above, C = A0 �A1 and A1 = k�1M

k1+k�1
.

Substituting, we have

A(t) = A1 � (A1 �A0)e
�(k1+k�1)t

.

Similarly,

B(t) = M �A(t) = (M �A1) + (A1 �A0)e
�(k1+k�1)t

.

Notice as t ! 1, A(t) approaches k�1M

(k1+k�1)
and B(t) approaches k1M

(k1+k�1)
.

At steady state,

dA

dt

= �k1A+ k�1B = 0 and
dB

dt

= k1A� k�1B = 0,

which occurs when the concentrations of A and B are constant. Here the rate of con-

version of A to B should exactly balance the rate of conversion of B to A. Thus,

k1A = k�1B. The time it takes for A and B to reach their steady states is the time

scale (k1 + k�1)�1. [SEK13]

1.2.3 Deterministic versus Stochastic Approaches to Solving Problems

Now, we will consider deterministic versus stochastic approaches to solving

problems related to biochemical kinetics. A basic assumption of our model is a proba-

bilistic transition between the two states. Using Newton’s laws one can derive a deter-

ministic problem, in which, its solution describes the gross motion of molecules. Models

of this kind have already been developed and form a basis for numerical simulations

that give information about large molecule dynamics. [SEK13]

Our equation (2.1) describing the expected change in the number ofAmolecules
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during time interval (t+�t) is:

A(t+�t)�A(t) = �A(t) · (k1�t) +B(t) · (k�1�t), (2.3)

which describes probabilistic assumptions for the change in the expected or average

number of A molecules. Monte Carlo simulations can be used to depict the stochastic

shift between A and B states. Suppose that at time, t, a molecule is in state A. We

know that there is a probability, k1�t, that during the time interval (t, t +�t) it will

shift to the B state. If we select a random number between 0 and 1 and that number

is between 0 and k1�t then the simulation shifts the configuration to B; otherwise the

configuration remains A. Repeating this calculation, one can develop a simulated his-

tory of the states, A and B, of a single molecule during some time interval. This history

can be used to compare simulated data with experiments. There are, also, analytical

methods that will allow conclusions to be drawn if one retains the stochastic character

of (2.1). [SEK13]

We have considered a type of phenomena where an average number of molecules

shift from one state to another. Let’s consider a phenomena where we consider a shift in

a single channel molecule from an open state to a closed state. These channel molecules

are responsible for the electrical conductance through cell membranes. Model (2.3) re-

mains relevant for such situations if A and B are interpreted as the probability that

a single channel is, respectively, open and closed. Single channel recordings yield in-

formation not only on mean values of A(t) and B(t), but also on standard deviations

and other statistical measures. The following graph, Figure 1.1, shows observation of a

single channel shifting from its open to closed states. [SEK13]
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Figure 1.1: Channel Shifting from Open to Closed States. [SEK13]

The derivative of A(t) in this case is either zero or infinite. This charac-

terization of the derivative remains true no matter how many channels are observed.

However, if many channels are monitored the jumps between states become less notice-

able, as shown in the following graph, Figure 1.2, then a true jumpy curve can be well

approximated by a smooth curve. This smooth curve will have a well-behaved deriva-

tive, and it is this curve that we seek when we solve for A(t) in our di↵erential equation

formulation of kinetics. [SEK13]

Figure 1.2: Channel Shifting Approximated by a Smooth Curve. [SEK13]
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Now, let’s consider reactions where two molecules have to collide in order to

form some product. These reactions are based on the Law of Mass Action which states:

In a reaction involving the interaction of two types of molecules, the rate of reaction is

proportional to the concentrations of the two reactants. [SEK13]

The reaction A+B

k1 //
P

k�1

oo is such a reaction where the rate of the forward

reaction would be k1[A] · [B] (square braces denote concentrations). To obtain this law,

it is assumed that the molecules are far enough apart to assume they move indepen-

dently and, thus, their concentrations are low. [SEK13]

Let us look at a ”dimerization” reaction in which two A molecules reversibly

combine to form a complex C. The kinetic scheme looks like this:

A+A

k1 //
C

k�1

oo .

The reaction equations are:

dA

dt

= �2k1A
2 + 2k�1C and

dC

dt

= k1A
2 � k�1C. (2.4)

Initial conditions at t = 0, are A = A0 and C = 0 where A0 represents the

concentrations of A at t = 0. Combining the di↵erential equations in (2.4) we have

dA

dt

+ 2
dC

dt

= 0 or
d

dt

(A+ 2C).

In this case A + 2C is equal to a constant and, thus, equal to A0. Again, we

consider the molecules to be in free form. Therefore, the molecules are either of form

A (per unit volume) or form 2C (per unit volume). The recording of complex values of

C and given parameters k�1, k1, and A0 leads to a great number of possible graphs to

evaluate. Thus, a reformulation called ”non-dimensionalizing” is required to reduce the

number of parameters. This will be discussed later. [SEK13]

The following biochemical model is used as a component of many models in

molecular and cellular biology. It is central to the study of enzyme-mediated reactions
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in biochemistry. The kinetic scheme of this model is:

E + S

k1 //
C

k�1

oo �!
k2

E + P. (2.5)

Here E is the concentration of an enzyme that catalyzes the transformation

of the substrate, S (concentration), of the reaction into the product, P . This is ac-

complished by means of an intermediate enzyme substrate complex (concentration C)

where the enzyme and complex are bound together. Based on the Law of Mass Action

and pervious examples, the di↵erential equations for this kinetic scheme are:

dE

dt

= �k1ES + k�1C + k2C, (2.6a)

dS

dt

= �k1ES + k�1C, (2.6b)

dC

dt

= k1ES � k�1C � k2C, (2.6c)

dP

dt

= k2C. (2.6d)

The initial conditions at t = 0 are: E(0) = E0, S(0) = S0, C(0) = C0 =

0, P (0) = P0 = 0. There are two conservation statements produced from these di↵eren-

tial equations and initial conditions. They are:

E(t) + C(t) = E0 and S(t) + C(t) + P (t) = S0.

These statements indicate that, in both free and bound forms, the total amount

of enzyme, and the total amount of reactant in the substrate, complex, and product

forms is constant. Substituting E = E0 �C into the di↵erential equations gives us two

di↵erential equations with two unknowns:

dS

dt

= �k1(E0 � C)S + k�1C, and

dC

dt

= k1(E0 � C)S � (k�1 + k2)C.

It is often the case that the enzyme-substrate complexes form rapidly, and,
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thus, the number of complexes are roughly constant. Therefore, dC

dt

⇡ 0. This assump-

tion is called a quasi-steady state approximation. We can then solve for C in terms of

S and E0 to obtain:

C ⇡ E0S

k

m

+ S

, where k

m

=
k�1 + k2

k1
.

Substituting C and k

m

into the di↵erential equation of the product we get:

dP

dt

=
V

max

S

k

m

+ S

where V

max

= k2E0. (2.7)

This equation is defined as the reaction velocity approximating the rate at

which substrate is used up and product is formed. It is known as Michaelis-Menten

kinetics. [SEK13]

1.2.4 Polymerization Reactions

Now, let us consider polymerization reactions, in which identical subunits

(monomers) form polymers that can grow in size. The Law of Mass Action will still

apply for these reactions. The first polymerization reaction we will look at involves

simple aggregation. When monomers grow anywhere on the polymer it is described as

a simple aggregation polymerization reaction. The following Figure 1.3, shows a simple

aggregation with k

f

the rate of binding and � the rate of disassembly and turnover of

the polymer.
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Figure 1.3: Simple Aggregation.[SEK13]

We define the following variables:

c(t) denotes the number of monomer subunits in the volume at time t.

F (t) denotes the amount of polymer (in number of monomer equivalents) at time t.

A(t) denotes the total amount of material (in number of monomer equivalents) at time

t.

We assume the rate of growth is a product of c and F , with rate constant

k

f

> 0 and the rate of disassembly or turnover is linearly proportional to the amount of

polymer, with rate constant �. The di↵erential equations are then consistent with the

other models we have looked at thus far and are:

dc

dt

= �k

f

cF + �F, (2.8a)

dF

dt

= k

f

cF � �F. (2.8b)

Notice the first terms in these equations describe the association of a monomer

and a polymer based on mass action. The last terms are the polymer turnover at rate

�. The total amount A is conserved and for physical relevance, we must have c  A and
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F  A. Substituting F = A� c into (2.8a) we get:

dc

dt

= k

f

(A� c)(
�

k

f

� c) (2.8c),

where �

k

f

is defined as the critical concentration of monomers, c
crit

. The right-hand side

of this equation forms a quadratic equation and its graph is shown in Figure 1.4 below.

Figure 1.4: Quadratic Equation dC/dt. [SEK13]

The arrows on this plot indicate values of c for which c would increase (dC
dt

> 0:

arrows point to the right) versus places where c would decrease (dC
dt

< 0: arrows point

to the left). We, also, observe stagnate points at which there is no flow. These stagnate

points are steady states. The case A < c

crit

is shown in Figure 1.5 (below).

Figure 1.5: Steady State of Equation dc/dt. [SEK13]
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Since c  A, part of the state space is blocked and is represented by the “gray

zones”. The diagram summarizes the qualitative behavior of the model. Notice, also,

that a nontrivial level of polymer occurs only if A > c

crit

and that steady state occurs

when dc

dt

= 0. Thus, the amount of monomer left in solution is either c

crit

= �

k

f

or A.

Therefore, the amount of polymer, F , at steady state is equal to zero. [SEK13]

Now, we will look at polymers with growth only at their tips (end of their

filaments) as shown in Figure 1.6.

Figure 1.6: Polymer Growth at Their Tips. [SEK13]

In this case, we define n as the number of filament tips at which polymerization

can occur. We consider this number to be constant, and that breakage and branching

do not occur. Thus, the model is:

dc

dt

= �k

f

cn+ �F, (2.9a)

dF

dt

= k

f

cn� �F. (2.9b)

Here, monomer addition occurs at a rate proportional to n. As before, conser-

vation holds and replacing F with (A� c) into (2.9a) leads to:

dc

dt

= �A� c(k
f

n+ �).
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In this case, there is only one steady state with monomer level

c =
�A

k

f

n+ �

⌘ �A where � =
�

k

f

n+ �

.

In addition, the factor � satisfies � < 1 since n, k

f

> 0. That means that this

steady state exists in all cases, unlike the previous situation where up to two steady

states were possible. Since the number of tips, n, is constant, the steady state levels of

monomer and polymer are proportional to each other, so that adding monomer to the

solution will increase both forms. We also see that the growth of the polymer is linear.

Thus dF

dt

⌘ constant. Figure 1.7 distinguishes the di↵erences of (a) the case of a simple

aggregation for monomer concentration C

crit

 A, where no polymerization occurs and

(b) the case of growth only at filament tips. [SEK13]

Figure 1.7: Di↵erences of Polymerization Growth. [SEK13]



18

All the modeling techniques discussed above have illustrated ways of describ-

ing rates of simple chemical reactions. These modeling techniques provide a means for

reaching reasonable approximations and for providing estimates for behavior under var-

ious situations. At this point, we can see and appreciate the usefulness of mathematical

modeling in a biological environment. [SEK13]

1.3 Non-Dimensionalization and Scaling

Now, we will look at non-dimensionalization and scaling. We can check the

consistency of model equations by reformulating a model in terms of dimensionless quan-

tities. This reformulation will ensure that all terms have the same set of units in an

algebraic or di↵erential equation. Non-dimensionalizing a model reduces the number of

free parameters and reveals a smaller set of qualities that govern the dynamics. Deter-

mining larger or smaller magnitudes helps approximate solutions when using asymptotic

analysis techniques. We will show that dimensionless variables can be selected in a va-

riety of ways using the concept of scaling. We will use several of the kinetics problems

previously discussed to show this procedure. [SEK13]

1.3.1 Kinetic Scheme

Let us consider the kinetic scheme A

k1 //
B

k�1

oo and the derived equation

dA

dt

= �(k1 + k�1)A+ k�1M, A(0) = A0 and M = A0 +B0. (2.10)

Remembering rate constants k1 and k�1 have dimensions of 1/time, both dA

dt

and (k1 + k�1)A must have the same dimensions, concentration/time. For definiteness,

let us define a dimensionless time, t⇤, by

t

⇤ =
t

1/k�1
, i.e. t

⇤ = k�1t. (2.11)

Note: *’s will denote variables carrying no dimensions. The natural way to non-
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dimensionalize A is via its initial concentration. Thus, we define a dimensionalized

concentration

a

⇤ ⌘ A

A0
. (2.12)

Using the chain rule and adopting (2.11) and (2.12) we obtain

dA

dt

=
d(A0a

⇤)

dt

= A0
da

⇤

dt

= A0
da

⇤

dt

⇤ · dt
⇤

dt

= A0
da

⇤

dt

⇤ k�1. (2.13a)

or by direct substitution

dA

dt

=
d(A0a

⇤)

d(t⇤/k�1)
= k�1A0

da

⇤

dt

⇤ . (2.13b)

Therefore,

k�1A0
da

⇤

dt

⇤ = �((k1 + k�1)A0)a
⇤ + k�1M.

Now dividing both sides of the equation by A0k�1 we arrive at

da

⇤

dt

⇤ = �[(k1 + k�1)(
A0

A0k�1
)]a⇤ +

k�1M

A0k�1
,

which simplifies to

da

⇤

dt

⇤ = �[
(k1 + k�1)

k�1
]a⇤ +

M

A0
= �[

k1

k�1
+ 1]a⇤ +

M

A0
.

We can define two dimensionless parameters,

" ⌘ k�1

k1
, ✓ ⌘ M

A0
=

A0 +B0

A0
.

Then the resulting dimensionless equation is

da

⇤

dt

⇤ = �1

"

a

⇤ + ✓ � a

⇤
. (2.14)

Furthermore, the initial condition A(0) = A0 leads to a

⇤(0) = A(0)/A0 = 1.
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Thus dropping the *’s, the new version of the model is

da

dt

= �1

"

a+ ✓ � a, a(0) = 1.

where " and ✓ are dimensionless parameters. Clearly, non-dimensionalizing and scaling

the original problem decreased the four dimensional parameter model to a two non-

dimensional parameter model. [SEK13]

1.3.2 Dimerization Model

Now, recall the dimerization model,

dA

dt

= �2k1A
2 + 2k�1C, (2.15a)

dC

dt

= k1A
2 � k�1C. (2.15b)

at t = 0, A = A0, and C = 0 with kinetic scheme A+A

k1 //
C

k�1

oo .

Similar to the previous example, we define the dimensionless time and concen-

tration variables as follows:

t

⇤ =
t

1/k�1
= k�1t a

⇤ =
A

A0
, c

⇤ =
C

A0
.

Therefore,

t =
t

⇤

k�1
, A = A0a

⇤
, C = A0c

⇤
, (2.16)

and the initial conditions can be written as t

⇤ = 0, a

⇤ = 1, and c

⇤ = 0.

Substituting (2.16) into (2.15a) and simplifying, we get

dA

dt

=
d(A0a

⇤)

d(t⇤/k�1)
= �2k1(A0a

⇤)2 + 2k�1(A0c
⇤).

This leads to



21

k�1A0
da

⇤

dt

⇤ = �2k1A
2
0(a

⇤)2 + 2k�1A0c
⇤
.

Then simplifying, we get

da

⇤

dt

⇤ = �2✓(a⇤)2 + 2c⇤ with ✓ ⌘ k1A0

k�1
.

Similarly, substitution of (2.16) into (2.15b) yields

dc

⇤

dt

⇤ = ✓(a⇤)2 � c

⇤
.

Dropping the *’s, the new dimerization model becomes

da

dt

= �2✓a2 + 2c, a(0) = 1 (2.17a)

dc

dt

= ✓a

2 � c, c(0) = 0. (2.17b)

Note ✓ = k1A0
k�1

is dimensionless since the concentrations, denoted [ ], of A0, k1, and k�1

are [A0] = L

�3
, [k�1] = T

�1, and [k1] = L

3
T

�1. The dimensions of [k1] are L

3
T

�1 be-

cause the dimensions of k1A2 and k�1C in equation (2.15) must be the same. Therefore,

[k1] = L

3
T

�1 and ✓ is dimensionless.[SEK13]

We observe from the new model that the dimensionless complex concentration

c depends only on the single dimensionless parameter ✓. Therefore, the variable com-

bination C/A0 is not a general function of the parameters k�1, k1, A0 and time t but

rather a function only of the combinations (k1A0)/k�1 and k�1t. Thus, all the data

concerning dimerization can, in principle, be presented on a single graph of c ⌘ C/A0

as a function of t⇤ ⌘ k�1t for a number of di↵erent values of ✓ ⌘ (k1A0)/k�1. See Figure

1.8 below. [SEK13]
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Figure 1.8: Dimerization Data (C ⌘ C/A

o

). [SEK13]

1.3.3 Polymerization by Monomer Aggregation

Lastly, let us create a dimensionless model for polymerization by monomer

aggregation. Recall equation (2.8c) in the form

dc

dt

= (�k

f

c+ �)F = (�k

f

c+ �)(A� c). (2.18)

Rescale time by (1/�) and rescale concentration by the total amount A (both

of which are constant). This means substitute t = t

⇤
/� and c = c

⇤
A into equation

(2.18), then using substitution as before,

d(c⇤A)

dt

⇤
/�

= A�

dc

⇤

dt

⇤ = (�k

f

c

⇤
A+ �)(A� c

⇤
A).

Simplifying and multiplying both sides by the constant (1/A�) leads to

dc

⇤

dt

⇤ =
1

A�

(�k

f

c

⇤
A+ �)(A� c

⇤
A) = (�

k

f

A

�

c

⇤ + 1)(1� c

⇤).

Dropping the *’s we arrive at

dc

dt

= (1� ↵c)(1� c) where ↵ =
A

(�/k
f

)
,

which is the ratio of total amount A to critical concentration c

crit

= �/k

f

and dimen-

sionless. Thus, the inherent structure of the model depends only on the grouping of

parameters in ↵. [SEK13]
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The new equations developed in these examples are written in their simplest

form, containing only dimensionless variables and parameters, and were obtained with-

out solving any equations. The number of dimensionless parameters is generally smaller

than the original number of parameters which makes theoretical manipulations easier.

Thus, conclusions developed from the reduction in parameters can be of great impor-

tance for experimental or numerical work. This minimizes the amount of experimen-

tation that is necessary to describe the possible variation of the results for di↵erent

parameters values. [SEK13]

1.4 Geometric and Qualitative Methods to First-order Dif-

ferential Equations

Now, we will apply qualitative and geometric methods to first-order di↵erential

equations, where the goal is to construct sketches of the solutions that do not require as

much technical work. We will introduce the role of parameter sensitivity and illustrate

some transitions, called bifurcations, that take place as a parameter is varied.

1.4.1 Stability of Steady States

To begin, let us first understand the stability of steady states of a first-order

di↵erential equation. Consider the general di↵erential equation

dx

dt

= f(x), (2.19)

with a steady state value x = x

ss

. It follows that

dx

ss

dt

= 0, f(x
ss

) = 0. (2.20)

Let x(t) = x

ss

+ x

p

, where x

p

= x

p

(t) is a small-time dependent quantity,

called a perturbation, of the steady state. When x

p

(t) decreases with time, we see that

x(t) returns to the steady state value and we say that the steady state, x
ss

, is locally
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stable. When x

p

(t) increases with time, we see that x(t) moves away from the steady

state value and we say the steady state, x
ss

, is locally unstable. [SEK13]

To see what truly happens, let us substitute x(t) = x

ss

+x

p

into the di↵erential

equation (2.19) as follows,

d[x
ss

+ x

p

]

dt

= f(x
ss

+ x

p

).

When we simplify the LHS using the additive property of derivatives and the

RHS by using the Taylor series approximation since x

p

is small, we get

d[x
ss

+ x

p

]

dt

=
dx

ss

dt

+
dx

p

dt

⇡ f(x
ss

) + x

p

f

0
(x

ss

) +
x

2
p

2
f

00
(x

ss

) + h.o.t.,

where h.o.t stands for “higher-order terms”. Using the steady state equations of (2.20),

we can eliminate some of the terms from each side of the equation to obtain

dx

p

dt

⇡ x

p

f

0
(x

ss

) +
x

2
p

2
f

00
(x

ss

) + h.o.t..

In addition, the magnitude of terms that are quadratic or of higher power in

small perturbations are very small since, as the powers increase, the magnitude of the

quantities decrease. Thus, x2
p

⇡ 0 and x

3
p

⇡ 0. Therefore, we obtain the following linear

equation governing the perturbations:

dx

p

dt

⇡ f

0
(x

ss

)x
p

,

where f

0
(x

ss

) is a constant of negative, positive, or zero value. Denoting f

0
(x

ss

) by �,

we have
dx

p

dt

⇡ �x

p

,

which has the general solution

x(t) = Cexp(�t).

Thus, the linear stability condition is:
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� = f

0
(x

ss

) > 0 ) exponentially growing perturbations, then x

ss

is unstable.

� = f

0
(x

ss

) < 0 ) exponentially decaying perturbations, then x

ss

is stable.

� = f

0
(x

ss

) = 0 ) no conclusion, since higher-order terms are needed to determine

local behavior near the steady state. [SEK13]

For reasons of analogy to higher-order systems of di↵erential equations, the

quantity � = f

0
(x

ss

) is called an eigenvalue of the ODE at the given steady state. It

is seen that there is only one eigenvalue, whose value is a real number, at any steady

state of a single first-order ODE. In such cases, the eigenvalue can be interpreted as a

rate of growth (if positive) or rate of decay (if negative) of small deviations from the

steady state. We can restate the stability results verbally by saying that for a single

ODE, stability (or instability) of a steady state is equivalent to finding the eigenvalue

is negative (positive). A zero eigenvalue is neutral and is usually a sign that some tran-

sition in stability is at hand. [SEK13]

Now, let us consider an example where there are three steady states

dx

dt

= c(x� 1

3
x

3) ⌘ f(x), c > 0 constant. (2.21)

Solving for the steady states (dx
dt

= f(x) = 0), we find that there are three such points,

one at x = 0 and the others at x = +
p
3 and x = �

p
3. These are the intersections of

the cubic curve with the x-axis in Figure 1.9a below.
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Figure 1.9: (a) Steady-State Points. (b) Steady-State Flow. [SEK13]

We surmise the direction of flow from the sign of f(x), and use that sketch

to conclude that x = 0 is unstable while both x = �
p
3 and x = +

p
3 are stable. In

Figure 1.9b, we show numerically computed solutions to this equation with a variety

of initial conditions. We see that all positive initial conditions converge to the steady

state at x = +
p
3 ⇡ 1.73, whereas those with negative initial conditions converge to

x = �
p
3 ⇡ �1.73. Thus, as seen, the outcome depends on the initial conditions and is

an example of bistable kinetics. Figure 1.10 is an abbreviated way of representing the

solutions to our equation and is a sketch of the flow along the x-axis called a “phase

line”. [SEK13]

Figure 1.10: Phase-Line. [SEK13]

1.4.2 Bifurcations

Now, let us look at the same di↵erential equation, but introduce a new param-

eter and explore some of the behavioral transitions (bifurcations) as that parameter is

varied.
dx

dt

= c(x� 1

3
x

3 +A) ⌘ f(x), (2.22)
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where A is some additive positive or negative constant. We can set c = 1, without loss

of generality since time can be rescaled.

Now, look at Figure 1.11a below.

Figure 1.11: (a) Curve Shift. (b) Flow of Shift Curve. [SEK13]

As we know, A shifts the curve up when A > 0 and down when A < 0. As

seen on Figure 1.11b, when A changes, so do the positions and number of intersection

points of the cubic and x-axis. The black dots indicate stability while the white dots

indicate instability. [SEK13]

There are large values of A in both the positive and negative directions beyond

which two steady states coalesce and disappear. At each of these values the graph of

f(x) is tangent to the x-axis and is shown below in Figure 1.12. This type of change

in qualitative behavior is called a bifurcation and A is called a bifurcation parameter.

[SEK13]
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Figure 1.12: Change in Quality Behavior of Bifurcation Parameter. [SEK13]

The behavior of an entire system can be summarized by assembling a bifur-

cation diagram with the number and relative position of its steady states (or more

complicated attractors) along the y-axis and the variation of the bifurcation parameter

along the x-axis. Figure 1.13 represents the bifurcation diagram of equation (2.20).

[SEK13]

Figure 1.13: Bifurcation of Equation 2.20. [SEK13]

Figure 1.13a simply rotates Figure 1.11b and removes the arrows giving a clear

view of the steady states along the y-axis while Figure 1.13b is the true bifurcation di-

agram where the dotted line represents the unstable state (white dots). Because the

bifurcation curve appears to fold over itself, it is known as a fold bifurcation and has
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two bifurcation points: one at a positive point and one at a negative point. [SEK13]

The existence of two stable states in a di↵erential equation model is often

described by the term bistability. This behavior occurs in many biological situations.

Bistability is accompanied by the following hysteresis. [SEK13]

Figure 1.14: Hysteresis of Two Stable States. [SEK13]

Let the parameter A start as the negative steady state value. As A gradually

increases we remain at steady state, but the value of that steady state disappears and a

rapid transition to the positive steady state value takes place. Now, if we let the value

A decrease back to lower values, the elevated state moves left along the upper branch

until the negative bifurcation value of A is reached. This type of hysteresis is often

used as an experimental hallmark of multiple stable states and bistability in a biological

system. [SEK13]

To generalize, let us consider the single di↵erential equation

dx

dt

= f

r

(x),

where f depends on one parameter “r’ that takes the role of the “bifurcation param-

eter”. First consider the condition f

r

(x) = 0. This simply restricts our attention to

steady states of the ODE.
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As r varies, the relation f

r

(x) = 0 corresponds to a set of curves in the rx

plane (the bifurcation plot) that are smooth functions of r except at special points

where f

0
r

(x) = 0. A mathematical result states that these special points are the only

places where branches of steady states can come together (bifurcate). A point in the rx

plane satisfying both f

r

(x) = 0 and f

0
r

(x) = 0 is a bifurcation point, and the value of

the parameter r at such a point is the bifurcation value. The conditions for bifurcation

are hence

f

r

(x) = 0, f

0
r

(x) = 0, at x = x

ss

, r = r0.

Geometrically, these conditions indicate that the function f

r

(x) intersects the

x-axis and is tangent at that point. Analytically, these conditions imply that at the

steady state x = x

ss

there is a zero eigenvalue. [SEK13]

1.5 Mathematical Model of a Notable Biological Problem

Now, we will use the tools we have developed to construct, analyze, and inter-

pret a mathematical model of a notable biological problem. As a case study, we take

the spread of an infection in a population of initially healthy individuals. Using di-

mensional analysis, qualitative methods, and ideas of bifurcations, we will consider how

parameters a↵ect the behavior of the model and what this implies biologically. [SEK13]

1.5.1 Derivation of Model

First, we will derive a model for the spread of infection. Assume any individual

is equally likely to come into contact with any other individual and subdivide the popu-

lation into two classes: those that are healthy, but susceptible to the disease, and those

that are infected and able to spread the disease through contact. Figure 1.15 illustrates

a view of the process that is closed (the population neither increases nor decreases).

[SEK13]
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Figure 1.15: “Closed” Process for Speed of Infection. [SEK13]

The “reaction scheme” for this illustrated view is:

S + I �! 2I, I �! S. (2.23)

To simplify, we will also assume that infected individuals recover at a constant

rate and become susceptible again with no immune period. Let us define S(t) = the

number of susceptible people and I(t) = the number of infected people in the popula-

tion. The spread of infection requires contact between healthy and sick individuals, as

indicated in the reaction scheme (2.23), the rate at which this type of contact occurs

can be approximately represented by the Law of Mass Action. Thus, the rate of in-

crease of infected individuals would be proportional to the product SI. Let us call the

proportionality constant �. Since the rate of recovery of a sick individual is assumed to

be constant, the overall rate of “flow” out of class I and into class S is proportional to

I. Let us denote the rate by µ. [SEK13] Then the equations are:

dS

dt

= µI � �SI, (2.24a)

dI

dt

= �SI � µI. (2.24b)

Note the flow into one class is identical with flow out of the other class. Therefore, the

total population, N(t) = S(t) + I(t), is conserved as shown:

dN

dt

=
dS

dt

+
dI

dt

= µI � �SI + �SI � µI = 0.

Therefore, N is a constant. By conservation, we can eliminate I(t) from the equations

and substitute I(t) = N�S(t). SinceN is constant, if we find S(t), then this relationship
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provides I(t). Thus, it su�ces to keep only one equation. We will keep equation (2.24a),

rewritten as
dS

dt

= µ(N � S)� �S(N � S), (2.25)

together with I(t) = N � S(t). The model is thus reduced to a single ODE in S(t).

Equivalently, we could choose to eliminate S rather than I. This would lead to

dI

dt

= �(N � I)I � µI. (2.26)

1.5.2 Dimensional Analysis and Scaling

Next, we will apply dimensional analysis to the model to reduce the number

of parameters and make the model dimensionless. Let us measure time in units of days,

then the left-hand sides of Equations (2.24a) and (2.24b) have dimensions of [number

of people] / [time]. Therefore, µ must have units of 1/time and � should have units

of per person per unit time. Since µ has units of 1/time, it follows that 1/µ carries

units of time. This time unit is a typical time associated with recovery from infection.

Let x⇤(t) be defined as the fraction of the population in the infected class and y

⇤(t) be

defined as the fraction of the total population in the susceptible class. [SEK13]

It is convenient to define dimensionless variables:

y

⇤ =
S

N

, x

⇤ =
I

N

, t

⇤ =
t

1/µ
= µt.

Since S(t) + I(t) = N = constant, it follows that

S

N

+
I

N

= y

⇤ + x

⇤ =
N

N

= 1.

Rewriting the relationships obtained in a form that can be used to substitute

directly into the model equations of (2.24), namely, S = y

⇤
N, I = x

⇤
N, t = t

⇤
/µ yields

d(y⇤N)

d(t⇤/µ)
= µx

⇤
N � �(y⇤N)(x⇤N), (2.27a)

d(x⇤N)

d(t⇤/µ)
= �(y⇤N)(x⇤N)� µx

⇤
N. (2.27b)
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Canceling the constant common factors of N and µ from both sides we arrive

at
dy

⇤

dt

⇤ = x

⇤ � (
�N

µ

)x⇤y⇤, (2.28a)

dx

⇤

dt

⇤ = (
�N

µ

)x⇤y⇤ � x

⇤
. (2.28b)

Note (�N
µ

) is the single remaining ratio of parameters that we will denote as

R

o

. R

o

is an important quantity since its parameter combination governs qualitative

behavior. Rewriting the equations in terms of R
o

and dropping the stars leads to

dy

dt

= x�R

o

xy, (2.29a)

dx

dt

= R

o

xy � x. (2.29b)

Let us illustrate the process of scaling from the perspective of the reduced

model (2.26) where conservation, y⇤ + x

⇤ = 1, was used. Substitutions of I = x

⇤
N and

t = t

⇤
/µ into this model leads to

d(x⇤N)

d(t⇤/µ)
= �(N � x

⇤
N)x⇤N � µx

⇤
N. (2.30)

Canceling factors N and µ from both sides and dropping the stars leads to

dx

dt

= (
�N

µ

)(1� x)x� x, (2.31)

which together with y = 1�x, completely specifies the problem. The same dimensionless

parameter ratio R

o

= �N

µ

is seen here. We can rewrite (2.31) as

dx

dt

= R

o

(1� x)x� x.

Considering the fact that 1/µ is a typical recovery time, when there is a single

infected person, I ⇡ 1, and the population of susceptibles is S ⇡ N , then the number

of new infections per unit time is �N ⇥ 1 = �N . Now, 1/µ is the typical time that the

infected person is ill and can spread the disease. Thus, the total number of new infec-

tions stemming from this single infected individual is �N

µ

⌘ R

o

. The development of
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the model is complete. Our next task is to analyze and understand its behavior. [SEK13]

Let us write a single ODE for the infected fraction of the population in several

suggestive forms, namely

dx

dt

= R

o

(1� x)x� x = x(R
o

y � 1) = x[(R
o

� 1)�R

o

x]. (2.32)

1.5.3 Steady State

Then the steady states of the model are

0 = x[(R
o

� 1)�R

o

x], (2.33)

either x = 0 and then (by conservation) y = 1. This corresponds to a population

that has no infected individuals, I(t) = 0, S(t) = N . We will refer to this as

the disease-free equilibrium. A second possibility is that x[(R
o

� 1) � R

o

x] = 0 so

x = (R
o

� 1)/R
o

= 1� (1/R
o

). Using conservation once more, we find that in this case

y = 1/R
o

. This steady state has some proportion of the population in the infected class,

and is denoted the disease endemic state. However, we observe that this steady state

is biologically feasible only if x > 0, which means that R
o

> 1. When this steady state

exists (which implies that it is positive), we say that the disease can become endemic,

which means that it can take hold of some constant fraction of the population. [SEK13]

To summarize,

Disease free: x

o

= 0, y
o

= 1, Disease endemic: x1 = 1� 1

R

o

, y1 =
1

R

o

. (2.34)

To convert these findings to results for the unit-carrying variables, we multiply

each quantity by N , so that S = yN, I = xN , and thus

Disease free: I

o

= Nx

o

= 0, S
o

= N, y

o

= N, (2.35a)

Disease endemic: I1 = Nx, = N(1� 1

R

o

), S1 = Ny1 = N

1

R

o

. (2.35b)

This result is summarized in the following Threshold Theorem:
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Theorem 2. In a simple SI disease-dynamics model, the disease can become endemic

only if R
o

> 1, where R

o

is the reproductive number of the disease, and R

o

= �N

µ

.

[SEK13]

1.5.4 Qualitative Techniques - Behavior of the Model

We now apply qualitative techniques to understanding the behavior of the

model. We will use the ODE for the infected fraction of the population (2.32) but

written in a more convenient form

dx

dt

= R

o

x[(1� 1

R

o

)� x] ⌘ f(x) (2.36)

Note that the expression (1� 1
R

o

) is one of the steady state values obtained in

(2.34), a constant. Figure 1.16 shows the flow diagram for the RHS of f(x) in (2.36).

Figure 1.16: Flow Diagram for Equation 2.36. [SEK13]

We see that in the case R

o

> 1, the disease will progress towards the endemic

steady state, x = 1� ( 1
R

o

), and in the case R
o

< 1, the only steady state is at x
o

= 0, so

the disease is eradicated. Stable steady states (black dots) have arrows directed towards

them, and unstable steady states (open dots) have arrows directed away from them. The

simulation of this model is shown below in Figure 1.15. It confirms our results that all

initial conditions with x > 0 eventually approach the endemic steady state.



36

Figure 1.17: Simulation of Model for Equation 2.36. [SEK13]

Now, we will confirm the linear stability of those steady states. Let us recall

that for an equation of the form dx

dt

= f(x), a steady state x

ss

(satisfying f(x) = 0) is

stable whenever f
0
(x

ss

) < 0, and unstable when f

0
(x

ss

) > 0.

For the problem at hand, we have

f(x) = xR

o

[(1� 1

R

o

)� x] = R

o

[x(1� 1

R

o

)� x

2].

Hence,

f

0
(x) = R

o

[(1� 1

R

o

)� 2x].

Thus, for the disease-free steady state, x
o

= 0, we have

f

0
(x) = f

0
(0) = R

o

[(1� 1

R

o

)] = R

o

� 1 > 0 when R

o

> 1.

This means that the disease-free state is unstable when R

o

> 1 (and stable

otherwise). Similarly, for the disease-endemic steady state, x
ss

= x1 = 1� 1
R

o

, so

f

0
(x1) = R

o

[(1� 1

R

o

)� 2(1� 1

R

o

)] = �R

o

(1� 1

R

o

) = 1�R

o

.

Thus, the disease-endemic steady state is stable only when R

o

> 1. [SEK13]

We now develop an explicit relationship between the size of the parameter, R
o

,

and the steady state level in a one-parameter bifurcation diagram.
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We have two steady states. One of these, x
o

= 0, does not depend on R

o

. The

second appears when R

o

= 1 and is then x1 = 1� ( 1
R

o

). As R
o

! 1, this second steady

state will approach 1 as shown in the following Figure 1.18.

Figure 1.18: Bifurcation of Model for Equation 2.36. [SEK13]

The solid line corresponds to the stable steady state and the dotted line to the

unstable steady state. This type of bifurcation is a transcritical bifurcation, in that,

for most values of R
o

there are two steady states, but for R

o

= 1 these steady states

merge and exchange stability, whereas with the “fold” bifurcation they merged and dis-

appeared. [SEK13]

The analysis, simulation, and bifurcation plot show that the outcome of the

infection depends on a single parameter R
o

= �N

µ

, and that there is a transition in the

qualitative behavior at R

o

= 1. Below R

o

= 1, the disease cannot “reproduce” itself

fast enough to be sustained and consequently disappears after some transient. Above

R

o

= 1, this “reproductive number” implies that each infected person infects more than

one uninfected person, on average, and the disease becomes endemic. [SEK13]
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Chapter 2

Practical Applications

The following applications are to test our understanding of everything we have

learned thus far. We have taken these applications directly from the book, ”A Primer

on Mathematical Models in Biology” by Lee A. Segel and Leah Edelstein-Keshet pages

111-114.

2.1 Application 1 - Total Population

a) Show that eliminating the susceptible variable from the system of equations gives

rise to equation 2.26.

b) Simplify that equation and find its dimensionless version using the same procedure

as shown in the examples.

ANSWER:

a) Total population is N(t) = S(t) � I(t). Therefore, S(t) = N � I(t) (N is constant)

and substituting this equation into dI

dt

= �SI � µI gives dI

dt

= �(N � I)I � µI.

b) Time will be measured in units of days with dS

dt

and dI

dt

having dimensions of the

number of people/time, then µ has units of 1
time

and � has units per person per unit

time. Defining x

⇤(t) as the fraction of the population in the infected class and defining

y

⇤(t) as the fraction of the population in the susceptible class, we define dimensionless

variables

y

⇤ =
S

N

, x

⇤ =
I

N

, t

⇤ = µt.
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Since S(t) + I(t) = N = constant, it follows

S

N

+
I

N

= y

⇤ + x

⇤ =
N

N

= 1.

Now, substituting, S = y

⇤
N, I = x

⇤
N, t = t

⇤

µ

into (2.24a) and (2.24b) we get

d(y⇤N)

d(t⇤/µ)
= µx

⇤
N � �(y⇤N)(x⇤N),

d(x⇤N)

d(t⇤/µ)
= �(y⇤N)(x⇤N)� µx

⇤
N.

Dividing both sides by N and µ leads to

dy

⇤

dt

⇤ = x

⇤ � (
�N

µ

)x⇤y⇤,

dx

⇤

dt

⇤ = (
�N

µ

)x⇤y⇤ � x

⇤
.

Rewriting the equations with R

o

⌘ (�N
µ

) and dropping the stars, we get

dy

dt

= x�R

o

xy,

dx

dt

= R

o

xy � x.

Using y

⇤ + x

⇤ = 1 and substituting I = x

⇤
N and t = t

⇤
/µ into

dI

dt

= �(N � I)I � µI,

gives

d(x⇤N)

d(t⇤/µ)
= �(N � x

⇤
N)x⇤N � µx

⇤
N,

leading to
dx

dt

= (
�N

µ

)(1� x)x� x.

Then, we divide by µ and N with R

o

⌘ (�N
µ

) to get
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dx

dt

= R

o

(1� x)x� x.

Using y

⇤ + x

⇤ = 1 and substituting S = y

⇤
N and t = t

⇤
/µ into

dS

dt

= µ(N � S)� �S(N � S),

gives

d(y⇤N)

d(t⇤/µ)
= µ(N � y

⇤
N)� �(y⇤N)(N � y

⇤
N),

leading to
dy

dt

= (1� y)� �N

µ

y(1� y).

Then, we divide by µ and N with R

o

⌘ (�N
µ

) to get

dy

dt

= (1� y)�R

o

y(1� y).

2.2 Application 2 - Find Steady-State

Find steady states corresponding to the endemic disease in the SI model in

terms of the original, dimension - carrying variables (rather than the dimensionless vari-

ables x, y). [SEK13]

ANSWER:

We do not have to redo the work - merely “convert” back from dimensionless

to unit-carrying variables. The disease endemic non-dimensioned steady state is:

x1 = 1� 1

R

o

, y1 =
1

R

o

.

To convert to dimension-carrying variables, we multiply each quantity by N :

Nx1 = N � N

R

o

, Ny1 =
N

R

o

.
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substituting �N/µ for R
o

Nx1 = I1 = N � µN

�N

, Ny1 = S1 =
µN

�N

.

Thus, the steady state of the original, dimension-carrying variables is

I1 = N � µ

�

, S1 =
µ

�

.

2.3 Application 3 - Endemic Intervention

Suppose an emergent disease threatens to become endemic. Based on the anal-

ysis in this chapter, explain what interventions might be used to suppress it. Use R

o

or parameters of the model to explain how various interventions a↵ect the dynamics.

[SEK13]

ANSWER:

R

o

= �N

µ

, where �N is the number of new infections per unit time and 1
µ

is

the typical time that the infected person is ill and can spread the disease.

From the stability analysis, we know that the steady states are at R
o

= 0 and

R

o

= 1. If we maintain the value of R
o

between 0 and 1, then the disease cannot sustain

itself and, thus, will not spread. To keep R

o

between 0 and 1, the value of �N must

remain less than µ. Therefore, we want 1/µ to decrease by using a variety of medical

care or a pattern of medical care that can decrease the time an infected person is ill and

can spread the disease.

Also, we want the number of new infections per unit time to decrease. Thus,

isolating the infected patients, decreasing the amount of time an infected person is in

contact with an uninfected person (by awareness of symptoms and fast action), and

communicating with the public to learn the facts of the disease and avoid infection are

critical.
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2.4 Application 4 - Disease Outbreak Prediction

A United Nations report about a recent disaster in a third-world country pre-

dicted that as refugees crowd into relief centers, disease outbreaks might occur. Does

the model support this assertion? Why or why not? [SEK13]

ANSWER:

Yes, the model does support this assertion. As discussed in Application 3, R
o

= �N

µ

,

and, therefore, to keep disease from becoming endemic �N must remain small. Since

�N is the number of new infections per unit time, increasing the potential of exposure

by bringing a large number of people to relief centers increases the rate of possible

infection by mass action. Since the rate of mass action is proportional to the product

SI and,thus, �, this would increase �N .

2.5 Application 5 - Vaccination

Vaccination is sometimes e↵ective at preventing epidemics. Here we will sup-

pose that vaccinating a fraction p of the population is equivalent to protecting pN

people from being either susceptible or infected. This e↵ectively reduces the size of the

population that can ”participate” in the disease dynamics. Determine the fraction p

that would have to be vaccinated in each case to prevent an endemic disease. [SEK13]

a) Smallpox, for which R

o

⇡ 5.

b) Polio, for which R

o

⇡ 6.

c) Measles, for which R

o

⇡ 12.

ANSWER:

a) R

o

= �N

µ

is the total number of new infections from a single infected person. The

steady state Disease Endemic is

x1 = 1� 1

R

o

, y1 =
1

R

o

,

with x representing the fraction of the population in the infected class. Thus, with

R

o

⇡ 5 we get

x1 = 1� 1

5
= 1� .2 = .8, y1 =

1

5
= .2.
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Therefore, to prevent a smallpox endemic, we need to prevent the population

from getting to the steady state of x1 = .8, so the fraction of the population that needs

to be vaccinated is p = .2 or at least 20 percent.

b) With R

o

⇡ 6 the steady state Disease Endemic is

x1 = 1� 1

6
= 1� .16667 = .83334, y1 =

1

6
= .16667.

Therefore, to prevent a Polio endemic, we need to prevent the population from getting

to the steady state of x1 = .83334, so the fraction of the population that needs to be

vaccinated is p = .16667 or at least 16.67 percent.

c) With R

o

⇡ 12 the steady state Disease Endemic is

x1 = 1� 1

12
= 1� .08334 = .91667, y1 =

1

5
= .08334.

Therefore, to prevent a Measles endemic, we need to prevent the population

from getting to the steady state of x1 = .91667, so the fraction of the population that

needs to be vaccinated is p = .08334 or at least 8.34 percent.

2.6 Application 6 - Separation of Variables

Use separation of variables to find an analytical solution to Equation 2.36 with

initial condition x(0) = x

o

, where 0 < x < 1 � 1
R

o

. It is advisable to first recast the

equation by defining the constant

� = (1� 1

R

o

),

to obtain
dx

dt

= R

o

x[� � x], 0 < x < �.

Compare your solution to the results described in this chapter. [SEK13]
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ANSWER: Equation 2.36 is

dx

dt

= R

o

x[(1� 1

R

o

)� x] ⌘ f(x).

Substituting � = (1� 1
R

o

), we get

dx

dt

= R

o

x(� � x).

To integrate, we will use partial fraction decomposition. Thus, we have the partial

fraction equation as
1

R

o

x(� � x)
=

A

R

o

x

+
B

� � x

.

Dividing both sides by R

o

x(� � x) leads to

1 = A(� � x) +BR

o

x.

Letting x = 0, we can solve for A as follows

1 = A�,

A =
1

�

.

Therefore, our equation becomes

1 =
� � x

�

+BR

o

x.

Letting x = 1, we can solve for B as follows

1 =
� � 1

�

+BR

o

,

B =
1� ��1

�

R

o

=

���+1
�

R

o

=
1

�R

o

.

Therefore, our original equation becomes

1

R

o

x(� � x)
=

1

�R

o

x

+
1

�R

o

(� � x)
.
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Our integration will then be

Z
1

R

o

x(� � x)
dx =

Z
1

�R

o

x

dx+

Z
1

�R

o

(� � x)
dx =

Z
dt,

which is
1

�R

o

lnx� 1

�R

o

ln(� � x) + C = t,where C is a constant.

Since x and (�� x) represent numbers of people, they are positive and can be

written without absolute value bars. Multiplying this equation by �R

o

we get

lnx� ln(� � x) + �R

o

C = �R

o

t.

Now, using the properties of logarithms and raising each term to the value of

e, we get
xe

�R

o

C

(� � x)
= e

�R

o

t

.

Solving for x gives us

x = x(t) =
�e

�R

o

t

e

�R

o

C + e

�R

o

t

,

with x(0) = x

o

, we can find x

o

as

x

o

=
�e

0

e

�R

o

C + e

0
=

�

e

�R

o

C + 1
.

Thus,

e

�R

o

C =
� � x

o

x

o

,

and finally, we obtain the analytical solution to equation 2.36 as

x(t) =
�x

o

e

�R

o

t

� � x

o

+ x

o

e

�R

o

t

.

2.7 Application 7 - Susceptible/Infected Pool Model

Suppose that the population has births at rate b to the susceptible pool and

mortality at rate � from the infected pool as shown in the schematic diagram of Figure

2.1. [SEK13]
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a) Write down the modified equations of the model.

b) Determine if conservation holds in this case.

c) Determine a dimensionless form of the model using the same kind of method as em-

ployed for the example in this chapter.

d) Write an XPP file to simulate this model and plot some of its solutions.

ANSWER:

S(t)
� //

OO

b

I(t)
µ

oo

�

✏✏
Birth Death

Figure 2.1: Schematic Diagram of the Population with Births and Mortality Rates

a) Modified equations of the model are:

dS

dt

= µI � �SI + bS,

dI

dt

= �SI � µI � �I.

b) Conservation: Total population is N(t) = S(t) + I(t).

Thus
dN

dt

=
dS

dt

+
dI

dt

= µI � �SI + bS + �SI � µI � �I = bS � �I,

which is not equal to zero. Therefore, N is not constant and conservation does not hold.

c) The dimension of dI

dt

and dS

dt

is still [number of people] / [time], µ still has units of

1/time, and �, b, � have units of per person per time. Defining x

⇤(t) and y

⇤(t) as before,

the dimensionless variables are

y

⇤ =
S

N

, x

⇤ =
I

N

, t

⇤ = µt.
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Thus,

S = Ny

⇤
, I = Nx

⇤
, t =

t

⇤

µ

.

Substituting these into a) we get

d(y⇤N)

d(t⇤/µ)
= µx

⇤
N � �(y⇤N)(x⇤N) + b(y⇤N),

d(x⇤N)

d(t⇤/µ)
= �(y⇤N)(x⇤N)� µx

⇤
N � �(x⇤N).

Multiplying each term by 1
Nµ

we get

dy

⇤

dt

⇤ = x

⇤ � (
�N

µ

)x⇤y⇤ +
b

µ

y

⇤
,

dx

⇤

dt

⇤ = (
�N

µ

)x⇤y⇤ � x

⇤ � �

µ

x

⇤
.

Removing the stars, we have the dimensionless form of the equations. They are

dy

dt

= x� (
�N

µ

)xy +
b

µ

y,

dx

dt

= (
�N

µ

)xy � x� �

µ

x.

d) XPP File, ”disease.ode’:

S

0 = mu ⇤ I � beta ⇤ S ⇤ I + b ⇤ S
I

0 = �mu ⇤ I + beta ⇤ S ⇤ I � delta ⇤ I
par mu = 0.1, beta = 0.2, b = 0.05, delta = 0.05

init S = 1, I = 0

@ xp = S, yp = I, xlo = 0, xhi = 2, ylo = �0.2, yhi = 1.2

done

A simulation of this model with some of its solutions is:
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Figure 2.2: XPP Simulation with Curve a) S=0.2,I=0.8 Curve b) S=0.5,I=0.5 Curve
c) S=0.8,I=0.2 Curve d) S=1,I=0

2.8 Application 8 - Kermack and Mckendrick Epidemic

Consider the simple model for an epidemic due to Kermack and Mckendrick

[76] discussed in Brauer and Castillo-Chavez [15]:

dS

dt

= ��SI,

dI

dt

= �SI � µI,

dR

dt

= µI.

Here R(t) denotes a removed (either immune or dead) class of individuals. [SEK13]

a) Interpret the equations and sketch a schematic diagram for this model.

b) Explain why the model can be studied as a 2-variable model; which variable is not

coupled to the other two.

c) Consider the “trick” of dividing dI

dt

by dS

dt

. Then

dI/dt

dS/dt

⌘ dI

dS

=
�SI � µI

��SI

.
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Simplify this equation to obtain an ODE for I as a function of S. Show that you can

integrate this to obtain the solution curve

I(S) = �S +
µ

�

ln(S) +K1, where K is constant.

ANSWER:

a)

S(t)
� //

I(t)
µ //

R(t)

Figure 2.3: Schematic Diagram of Simple Model for an Epidemic due to Kermack and
Mckendrick

Flows inward to the block contribute positively to the rate of change, whereas flows

outward contribute negatively.

The equation dS/dt = ��SI is the rate of change when a susceptible individual

becomes infected.

The equation dR/dt = �µI is the rate of change when an infected individual becomes

immune or dies.

The equation dI/dt = �SI � µI is the rate of change between dS/dt and dR/dt.

b) Since dR/dt is made up of immune or dead individuals, they can no longer be in the

susceptible or infected classes, nor move back and forth between the two classes. Thus,

dR/dt is not coupled to the other two.

c)
dI/dt

dS/dt

⌘ dI

dS

=
�SI

��SI

+
µI

�SI

= �1 +
µ

�S

.

=>

dI

dS

= �1 +
µ

�S

.

Integrating Z
dI =

Z
�1dS +

Z
µ

�S

dS,

we get

=> I(S) = �S +
µ

�

ln(S) +K where K is constant.
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2.9 Application 9 - Creutz-Jakob Disease

Creutz-Jakob and similar prion diseases may result from misfolded protein that

“infects” native protein by causing it, too, to misfold, such diseases (also known as “mad

cow disease”) lead to severe brain damage and death. Consider the schematic diagram

below. Assume that the misfolding, like an infection, takes place when the native and

misfolded protein come into contact. [SEK13]

a) Propose a model for this process based on the schematic diagram.

b) Reduce the model to a dimensionless formulation. What parameter (grouping) would

determine whether prions are maintained or cleared from the body?

c) Simulate the model and explore conditions under which the disease is resolved versus

grows continually.

ANSWER:

a)

Native Protein C(t)
� //

OO

�

Misfolded Protein P (t)
⌫

oo

�

✏✏
New cell Dead cell

Figure 2.4: Schematic Diagram of the Contact between Native and Misfiled Protein

Again, flow outward is negative and flow inward is positive. We will assume

the laws of mass action apply. Thus, we have

dC

dt

= ⌫P � �CP + �C,

dP

dt

= �CP � ⌫P � �P.

Let us assume that the protein population consists of only the Native and

Misfolded proteins. Then � is the rate of new Native protein production, � is the rate

of protein death, and � is the rate of mass action between Native protein and Misfolded
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protein.

Similar to Application 7, the dimension of dC/dt and dP/dt is still [number

of protein cells]/[time]. The dimension of ⌫ is units of 1/time, and �,�, � have units of

per protein per time. Defining x

⇤(t) and y

⇤(t) as before, the dimensionless variables are

y

⇤ =
C

M

, x

⇤ =
P

M

, t

⇤ = µt where M = C(t) + P (t).

Thus,

C = My

⇤
, P = Mx

⇤
, t =

t

⇤

⌫

.

Substituting these into a) we get

d(y⇤M)

d(t⇤/⌫)
= ⌫x

⇤
M � �(y⇤M)(x⇤M) + �(y⇤M),

d(x⇤M)

d(t⇤/⌫)
= �(y⇤M)(x⇤M)� ⌫x

⇤
M � �(x⇤M).

Multiplying each term by 1
M⌫

we get

dy

⇤

dt

⇤ = x

⇤ � (
�M

⌫

)x⇤y⇤ +
I

⌫

y

⇤
,

dx

⇤

dt

⇤ = (
�M

⌫

)x⇤y⇤ � x

⇤ � �

⌫

x

⇤
.

Removing the stars, we have the dimensionless form of the equations. They are

dy

dt

= x� (
�M

⌫

)xy +
�

⌫

y,

dx

dt

= (
�M

⌫

)xy � x� �

⌫

x.

The parameter (grouping) that would determine whether prion’s are maintained or

cleared from the body is R1 = (�M)/⌫.

c) XPP File, “diseases.ode”, to simulate the model:

C

0 = nu ⇤ P � phi ⇤ C ⇤ P + lambda ⇤ C
P

0 = �nu ⇤ P + phi ⇤ C ⇤ P � gamma ⇤ P
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par nu = 0.1, phi = 0.2, b = 0.05, gamma = 0.05

init C = 1, P = 0

@ xp = C, yp = P , xlo = 0, xhi = 2, ylo = �0.2, yhi = 1.2

done

The simulation of the model and disease conditions is:

Figure 2.5: XPP Simulation with Curve a) C=0.2,P=0.8 Curve b) C=0.5,P=0.5 Curve
c) C=0.8,P=0.2 Curve d) C=1,P=0

As you can see from curves a and b in the graph, when a high number of

native protein is infected with the misfolded protein the disease will resolve itself. This

occurs because most of the native population will already be infected. However, as seen

with curve c, when the number of infected native protein is low the disease will grow

continuously to infect as many native proteins as possible.

2.10 Application 10 - Transcritical Bifurcation

a) Redraw f(x) versus x as in Figure 1.16 with R0 = 1/2, and with R0 = 2 on the same

set of axes. Show that Equation 2.34 has a transcritical bifurcation at x
ss

= x1.

b) Use XPP Auto to redraw Figure 1.18 for �0.2  x  0.7 to confirm the presence of
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a transcritical bifurcation.

c) A student says “since the steady state x1 ceases to exist, this must be a fold bifurca-

tion”. Explain the fallacy. [SEK13]

ANSWER:

a) For a transcritical bifurcation:

1) f(x) undergoes transitions as r varies.

2) There are two steady states.

3) For r = 0 these graphs of f(x) merge and exchange stability.

From the graphs seen below, it is clear that Equation 2.34 has a transcritical bifurcation

at x
ss

= x1.

Figure 2.6: f(x) versus x with R

o

= 1/2 and with R

o

= 2 on the Same Set of Axes

b)
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Figure 2.7: Transcritical Bifurcation with �0.2  x  0.7

c) The steady state x1 does not cease to exist it shifts based on the value of R0.
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Chapter 3

Case Study: Hepatitis C Virus

Now that we have completed a number of exercises, we have a good under-

standing of how a mathematical model can be created and manipulated to interpret a

biological event. Let’s put this knowledge to use by creating a mathematical model for

the well known Hepatitis C virus. Hepatitis C is one of six major recognizable viral

types that cause infection of the liver. The three most common of these types are Hep-

atitis A, Hepatitis B, and Hepatitis C. Hepatitis A virus survives in fecal matter and

is primarily transmitted through sexual contact. The Hepatitis A virus causes only a

short span of infection and, therefore, does not become chronic. People with Hepatitis

A improve without treatment. The Hepatitis B virus is spread similarly to HIV, but is

100 times more infectious because the virus can survive outside the host for many days.

Hepatitis B can become chronic in approximately 6 percent of infected individuals and

causes extensive damage to the liver. However, Hepatitis B symptoms are more severe

and treatment is successful early. Hepatitis C is a bloodborne pathogen and is trans-

mitted primarily by exposure to blood through the skin, such as through Intravenous

Drug Use (IDU), by long-term hemodialysis, or by healthcare workers after possible

exposure to Hepatitis C positive blood. There is no vaccine for Hepatitis C. However,

a combination of harm reduction strategies such as the provision of new needles and

syringes, the treatment of substance abuse, and the following of infection control guide-

lines in healthcare are becoming a successful prevention campaign due to the growth of

community planning groups. [AC09]
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3.1 Hepatitis C Background

3.1.1 Genotype

Hepatitis C is a small, enveloped, single-stranded, positive-sense RNA virus

that enters the cells of the liver and replicates its RNA strand in them. There are

seven major genotypes of the Hepatiits C virus. The genotypes are divided into several

subtypes. In the US, about 70 percent of the cases are cause by genotype 1 and 20

percent by genotype 2. The incubation period for the Hepatitis C virus ranges from

14-168 days with an average of 28-48 days. A combination of tests is required to diag-

nose Hepatitis C. The initial test is the Hepatitis antibody enzyme immunoassay test

which indicates either past or present infection. If the Hepatitis antibody enzyme test

is positive, a Polymerase Chain Reaction (PCR) test is given. This test detects the

presence of the Hepatitis C virus in the blood and, thus, is used to diagnose chronic

Hepatitis C infection. [HSAH98]

3.1.2 Hepatitis C Virus Progression

The initial symptoms of Hepatitis C are typically misinterpreted and often

disappear after a few weeks. This initial stage of the condition is known as Acute

Hepatitis C. During the acute infection period, the body’s immune system is at work

trying to kill the Hepatitis C infected cells. In 15 to 25 percent of the cases, the body

is successful and the individuals do not su↵er further infections. They are considered

“cured” or “dormant” if they remain infection free for 6 months. For the other 75-85

percent, the infections continue and the accumulation of scar tissue resulting from these

infections eventually prevents the liver from functioning properly. In approximately 15

percent of these cases, a person develops cirrhosis, necrosis, and, then, cancer. Five

percent die. This stage of the Hepatitis C progression is known as Chronic Hepatitis

C and is defined as infection with the Hepatitis C virus recurring for more than six

months based on the presence of the Hepatitis C single-stranded RNA in the blood.

Chronic infections are commonly asymptomatic during the first two decades and, thus,

are consistently discovered following the investigation of elevated liver enzyme levels or

during a routine screening of high-risk individuals. There is no cure for Hepatitis C, but

a proper medication regime can stop the virus from replicating itself. [HSAH98] [AC09]



57

3.1.3 Treatment

The primary goal of treatment is to achieve a Sustained Viral Response (SVR),

which is defined as undetectable Hepatitis C virus in the blood 6 months after the end

of treatment. Prior to 2011, treatments consisted of a combination of pegylated in-

terfon alpha and ribavirin for a period of 24-48 weeks depending on the Hepatitis C

virus genotype. This combination provided SVR “cure” rates between 70-80 percent for

patients with genotype 2 and 3 and 45-70 percent for patients with genotype 1 and 4.

After 2011, treatments of a combination of sofosbuvir with ribavirin and interfon have

proved to be approximately 90 percent e↵ective in patients with genotype 1,4,5, and 6

and treatments of sofosbuvir with only ribavirin have proved to be approximately 70-95

percent e↵ective in patients with genotype 2 and 3. [HSAH98]

An estimated 4 million Americans (1.8 percent of all Americans) have been

infected with the Hepatitis C virus. Based upon national data, in 2012, an estimated

600,000 Californians are currently infected with Hepatitis C and 5,000 Californians are

newly infected each year. [HSAH98]

3.2 Hepatitis C Virus Model, Equations, and Analysis

3.2.1 Block Diagram of Hepatitis C Virus Progression

The schematic (Block) diagram for the Hepatitis C virus progression is as follows

[HVCACC11]:
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!

µ

�

�

✓

↵

⇢

N(t)

L(t)

C(t)

A(t)S(t) D(t)

Figure 3.1: Schematic Diagram - Hepatitis C Virus Progression.

We define:

S(t) = the number of Susceptible people

A(t) = the number of Acute infected people

C(t) = the number of Chronic infected people

D(t) = the number of Dormant infected people

L(t) = the number of infected people with Liver disease

N(t) = the number of infected people with Necrosis of the Liver

� = the rate increase of infected people due to IVDA (intravenous drug abuse)

� = the rate increase of chronic infected people due the bodies inability to kill the active

hepatitis C cells

✓ = the rate increase of acute infected people with sustained viral response (6months)

⇢ = the rate increase of hepatitis C dormant people due to medication, diet, and alcohol
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abstinence

↵ = the rate increase of people with unsustained response (6 months)

µ = the rate increase of extended chronic hepatitis C infected people

! = the rate increase of people with extended liver disease

Then the equations are:

dS

dt

= ��SA,

dA

dt

= �SA� ✓A� �A,

dD

dt

= ✓A+ ⇢C � ↵D,

dC

dt

= �A+ ↵D � ⇢C � µC,

dL

dt

= µC � !L,

dN

dt

= !L.

In this case, the total conserved population is dM

dt

= dS

dt

+ dA

dt

+ dD

dt

+ dC

dt

+ dL

dt

+ dN

dt

=

��SA+ �SA� ✓A� �A+ ✓A+ ⇢C �↵D+ �A+↵D� ⇢C � µC + µC � !L+ !L = 0.

3.2.2 Simplified Model of Hepatitis C Virus

To simplify the model into a set of ordinary di↵erential equations that we have

discussed so far, we will consider only the relationship between the Dormant infected

individuals and the Chronic infected individuals. Again, once an individual is infected

with the Hepatitis C virus, the virus will always be present. Therefore, the infected pop-

ulation, I(t), will either have chronic Hepatitis C infections, C(t), for the next couple

of decades or they will be considered “cured” (virus is dormant) by a Sustained Viral

Response (SVR) as described above. Thus, we have the following schematic (block)

diagram and di↵erential equations:
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C(t)
⇢ //

D(t)
↵

oo

Figure 3.2: Schematic Diagram of Chronic and Dormant Hepititis C Infected Individuals

dC

dt

= ↵D � ⇢C,

dD

dt

= ⇢C � ↵D,

with I(t) = D(t) + C(t) thus,

dI

dt

=
dD

dt

+
dC

dt

= +⇢C � ↵D + ↵D � ⇢C = 0,

so conservation is preserved and I is constant.

Therefore, substituting I(t) = D(t) + C(t) into the equations gives us

dC

dt

= ↵(I � C)� ⇢C, (1)

dD

dt

= ⇢(I �D)� ↵D, (2)

dC

dt

and dD

dt

have dimensions of (number of people) / (time) and ⇢ and ↵ have units of

1 / (time) (days�1).

Defining x

⇤(t) as the fraction of the number of infected in the Chronic stage

and y

⇤(t) as the fraction of the number of infected in the Dormant stage.

We define dimensionless variables

x

⇤ =
C

I

, y

⇤ =
D

I

, t

⇤ =
t

1
⇢

= ⇢t.

Since, C(t) +D(t) = I = constant, it follows that C/I +D/I = x

⇤ + y

⇤ = I/I = 1.
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Substituting, C = x

⇤
I, D = y

⇤
I, t = t

⇤
/⇢ into (1) and (2) we have

d(x⇤I)

d(t⇤/⇢)
= ↵(I � x

⇤
I)� ⇢x

⇤
I,

d(y⇤I)

d(t⇤/⇢)
= ⇢(I � y

⇤
I)� ↵y

⇤
I.

Dividing both equations by I and ⇢, we get

dx

⇤

dt

⇤ =
↵

⇢

(1� x

⇤)� x

⇤
,

dy

⇤

dt

⇤ = 1� y

⇤ � ↵

⇢

y

⇤ = 1� y

⇤(1 +
↵

⇢

).

Dropping the stars, we have
dx

dt

=
↵

⇢

(1� x)� x,

dy

dt

= 1� y(1 +
↵

⇢

).

Now, we will find the value of x at steady-state dx/dt = 0. Solving for x
ss

, we

obtain
dx

dt

=
↵

⇢

(1� x)� x = 0,

=>

↵

⇢

� ↵

⇢

x� x = 0,

=>

↵

⇢

� x(
↵

⇢

+ 1) = 0,

=> x =
↵

⇢

↵

⇢

+ 1
=

↵

↵+ ⇢

,

=> x

ss

=
↵

↵+ ⇢

.

To convert back to unit-carrying variables, we multiply by I, so that C = xI,

then

C =
↵

↵+ ⇢

I.

Thus, if x = ↵/(↵+ ⇢) is reached, the virus returns to an active state and the

patient becomes chronic. Notice, this steady state is feasible only if x > 0 which means
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that ↵

⇢

> 0. Therefore, ↵

⇢

must be positive for the virus to progress to the chronic state.

Figure 3.3 below shows the sketch of d(x)
d(t) = ↵

⇢

� x(↵
⇢

+ 1) ⌘ f(x). As seen, f(x) is

a straight line with arrows showing the direction of change of x(t) from various initial

values.

Figure 3.3: Sketch of f(x) vs. x ↵ = .64, ⇢ = .36.

The model simulations shown in Figure 3.4, 3.5, and 3.6 below are plots of x(t)

versus t for various initial conditions. The first and second simulations show the fraction

of the infected population that are in the chronic stage of Hepatitis C before 2011 with

and without the influence of diet and alcohol abstinence. In this case, the available medi-

cations consisted of only the combination of Pegylated Interfon Alpha and Ribavirin. As

you can see, there is a significant decrease of chronic infected individuals when diet and

alcohol abstinence are maintained. The third simulation shows the fraction of the in-

fected population that are in the chronic stage of Hepatitis C currently. In this case, the

available medications consist of a combination of Sofosbuvir with Ribavirin and Interfon.

The values of ↵ and ⇢ used in these three simulations were calculated from the percent-

age of infected individuals that will become chronic, the percentage of chronic infected

individuals with Hepatitis C genotype 1 and 2, and the percentage of chronic infected in-

dividuals that respond to medication with and without proper diet and abstinence from

alcohol. Therefore, Simulation 1, before 2011 and without diet and alcohol abstinence,
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⇢ = .70(.80).45+ .20(.80).70 = .36 and ↵ = .64. Simulation 2, before 2011 and with diet

and alcohol abstinence, ⇢ = .70(.80).50 + .20(.80).80 = .41 and ↵ = .59. Simulation 3

after 2011 and without diet and alcohol abstinence, ⇢ = .70(.80).90 + .20(.80).70 = .62

and ↵ = .38. The di↵erence between the first two fractions of infected individuals in

Simulation 1 and Simulation 2 can be shown to fluctuate depending on the number of

chronic infected individuals who follow the guidelines of diet and alcohol abstinence.

Because of this, over the last decade, healthcare professionals and community planning

groups are increasing the availability and amount of education programs given to chronic

infected individuals on the importance of diet and alcohol abstinence. The di↵erence

between the two fractions of infected individuals in Simulation 1 and Simulation 3 is di-

rectly proportional to the advancement in medications available to Hepatitis C infected

individuals. As you can see, the advanced treatment has greatly decreased the fraction

of the population with known chronic Hepatitis C.

Figure 3.4: Simulation 1 (Infection rates prior to 2011 without Diet and AA) ↵ =
.64, ⇢ = .36.



64

Figure 3.5: Simulation 2 (Infection rates prior to 2011 with Diet and AA) ↵ = .59, ⇢ =
.41.

Figure 3.6: Simulation 3 (Infection rates after 2011 without Diet and AA) ↵ = .38, ⇢ =
.62.
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3.2.3 Future Studies-The Next Step

Remember, we kept the model and equations limited to a simple, single or-

dinary di↵erential equation for the purpose of remaining within the boundaries of the

material reviewed in this paper. The next step would be to apply one more variable to

the model and increase the complexity to a system of two first-order di↵erential equa-

tions. In doing so, we would use Phase Plan methods to study these systems, generally,

written as:
dx

dt

= f(x, y),

dy

dt

= g(x, y).

To show an example of a system of two first-order di↵erential equations, let us

add a variable to the simple Hepatitis C schematic (block) diagram:

�

↵

⇢

S(t) I(t) C(t)

Figure 3.7: Schematic Diagram - Susceptible, Dormant, and Infected Hepitits C
Individuals

Let I(t) will represent the combination of A(t) and D(t), the total population

of infected individuals that are not chronic. The di↵erential equations for this model

are:
dS

dt

= ��SI � �SC,

dI

dt

= �SI � ↵I + ⇢C + �SC,

dC

dt

= ↵I � ⇢C.

Total population is conserved:

dN

dt

=
dS

dt

+
dI

dt

+
dC

dt

= ��SI � �SC + �SI � ↵I + ⇢C + �SC + ↵I � ⇢C = 0.
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Therefore, N is constant and S = N � I�C. Substituting this equation for all S in the

di↵erential equations, we get:

dS

dt

= ��(N � I � C)I � �(N � I � C)C,

dI

dt

= �(N � I � C)I � ↵I + ⇢C + �(N � I � C)C,

dC

dt

= ↵I � ⇢C.

which is a system of equations with two unknowns, namely, I and C.

From here, solutions to these di↵erential equations are found by graphing an

xy plane (phase plane) which shows all trajectories of the solutions through every point.

Steady-states are then found by finding the intersection of the x and y nullcline curves

of dx

dt

= 0 and dy

dt

= 0.
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