
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2016

CoyoteLab - Linux Containers for Educational Use CoyoteLab - Linux Containers for Educational Use

Michael D. Korcha
California State University - San Bernardino, korcham@coyote.csusb.edu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Computer and Systems Architecture Commons, and the Other Computer Engineering

Commons

Recommended Citation Recommended Citation
Korcha, Michael D., "CoyoteLab - Linux Containers for Educational Use" (2016). Electronic Theses,
Projects, and Dissertations. 424.
https://scholarworks.lib.csusb.edu/etd/424

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/80294049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/424?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

COYOTELAB - LINUX CONTAINERS FOR

EDUCATIONAL USE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Michael Dennis Korcha

December 2016

COYOTELAB - LINUX CONTAINERS FOR

EDUCATIONAL USE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Michael Dennis Korcha

December 2016

Approved by:

David Turner, Advisor, Computer Science Date

Ernesto Gomez

Kerstin Voigt

© 2016 Michael Dennis Korcha

ABSTRACT

CoyoteLab is an exploration in the use of Linux container technology as a means to

simplify the way students in computing fields access and complete laboratory work in

their educational career. This project provides two main benefits: creating a simple

way for students to log in and access their coursework without anything more than

their web browser, and providing course instructors a way to verify that assigned

work is completed successfully. Thanks to advances in container technology and the

advent of WebSockets, this becomes a middle layer between a WebSocket opened

up on the clients browser and the SSH daemon running in the users container on a

remote server.

iii

ACKNOWLEDGEMENTS

Thanks to my mom, sister, and grandparents for their constant encouragement

through my studies. Thanks to Erica, Ammar, and Devin for keeping me sane during

my pursuit of this degree. Thanks to the amazing faculty for their support, guidance,

and help during this project and through my academic career at CSUSB.

A special thanks to the authors of open source systems, as without you, my project

and many others would fall short of the mark.

iv

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . iv

List of Figures . vii

1. Introduction . 1

1.1 Overview . 1

1.2 Purpose . 1

1.3 Project Scope . 2

1.4 Defintions, Acronyms, and Abbreviations 2

2. Tools and Environment . 6

2.1 Software . 6

2.1.1 Python . 6

2.1.2 Nginx . 7

2.1.3 PostgreSQL . 7

2.1.4 Redis . 7

2.1.5 LXD . 8

2.2 Libraries . 8

2.2.1 Flask . 8

2.2.2 gevent . 8

2.2.3 SQLAlchemy . 9

v

2.2.4 WTForms . 9

2.2.5 pylxd . 9

2.2.6 wssh . 9

3. Software Overview . 10

3.1 Student Interface . 10

3.2 Instructor Interface . 12

3.3 Workspace . 14

4. System Architecture . 16

4.1 Application . 16

4.2 Database . 17

4.3 LXD Container System . 18

4.4 File System Layout . 19

5. Implementation . 21

5.1 Database Layout . 21

5.2 Access Control . 27

5.3 Container Control . 32

5.4 SSH-WebSocket Bridge . 35

6. Conclusion . 40

6.1 Future Work . 40

References . 42

vi

LIST OF FIGURES

2.1 Interaction between application and services 6

3.1 Student’s view upon login . 10

3.2 Student’s view of course details . 11

3.3 Instructor’s view upon login . 12

3.4 Instructor’s student management interface 13

3.5 Workspace view . 14

4.1 Basic outline of system interactions 16

4.2 Application to database interactions 17

4.3 Application to container system interactions 18

4.4 Host disk partition layout . 19

4.5 Visual outline of copy-on-write files 19

5.1 Database table structure and relationships 22

5.2 Course object attributes and methods 23

5.3 Code for password getting and setting 24

5.4 User object attributes and methods 25

5.5 Machine object attributes and methods 26

5.6 Code for check if a user has a role . 27

5.7 Code for before-request permission check 28

5.8 Code for adding a role to a user . 28

5.9 Code for retrieving a course for an instructor 29

vii

5.10 Code for retrieving a course for a student 30

5.11 Code for retrieving a student with access to a specific course 31

5.12 Code for view where an instuctor can access a student’s or their own
information with appropriate permission 31

5.13 Code for establishing a trusted LXD connection 32

5.14 Code for creating a container . 33

5.15 Code for retrieving a container . 34

5.16 Code for bridging an SSH connection and a WebSocket (via wssh) [12] 35

5.17 Code for forwarding packets from the WebSocket to the SSH server
(via wssh) [12] . 36

5.18 Code for forwarding packets from the SSH server to the WebSocket
(via wssh) [12] . 37

5.19 Code for running and connecting to the container 38

viii

1. INTRODUCTION

1.1 Overview

CoyoteLab is an exploration of the use of Linux container technology as a means

to simplify the way students in technical fields access and complete assignments in

their educational career. It is a web application providing educational institutions

the ability to assign students to a course, and giving each their own container for that

course that is accessible to the student and their instructor. In this way, it provides

benefits both to the student who has to complete coursework and to the instructor

by providing an easy way to run their assignments in a common environment.

1.2 Purpose

CoyoteLab was inspired from watching several years of undergraduate entry-level

computer science courses. In each course, there would be several students who would

bring their own machines, running an environment vastly different from that of the

labs or what their instructor was expecting. For example, these students would be

running the Windows operating system using the Visual C++ compiler, when the lab

machines were running Scientific Linux and using the GNU C++ compiler. As these

students did not want to install an additional operating system, they would spend

several hours trying to create an environment that would ultimately not behave as

needed for their lab work.

CoyoteLab solves this problem by being a web-based system accessible from any

1

device that has an Internet connection and a web browser supporting WebSocket

technology. Once logged in, a student has access to a fully-featured Linux container,

which works just as any lab machine would, and can be further configured to their

liking. All software used on it is the same as that on the lab machines, and remains

consistent with the environments of their instructors and classmates. This saves the

students time from having to set up an environment that may not work in the same

way as is expected for their assigned work.

An added benefit is that a students instructor gets full access to the students

container as well. If a student decides they want to use something non-standard, and

the instructor cant get their code to work, they are able to connect to the students

container and see how the environment differs and verify that the project does indeed

work. This saves the instructor time and frustration of not getting a project working,

and may prevent a student from getting lower marks on their assignments.

1.3 Project Scope

Students are able to view the classes they are enrolled in that use the system, view

information about the courses, and access their files and a personal workspace from

a web browser. Students can install software to the workspace, restart it, and reset

it.

Instructors can create courses in the system, add students to their courses, and

access a workspace of their own or one of the workspaces of their students. Instructors

have full access to a student’s workspace, except for the ability to reset it.

1.4 Defintions, Acronyms, and Abbreviations

• bit mask: A technique to modify or retrieve specific bits of a piece of data,

typically using bitwise AND and bitwise OR operators.

2

• bcrypt: A password hashing function based on the Blowfish encryption cipher

which can be adapted by increasing computation time.

• Btrfs: A file system created by Oracle Corporation based on the copy-on-write

principle, which enables features such as snapshots.

• cgroups: A Linux kernel feature responsible for limiting resources for processes.

• container: Technique to run multiple isolated Linux systems using a single kernel,

utilizing the cgroups feature to isolate resources.

• copy-on-write: A method to share a mutable resource without consuming addi-

tional resources until the shared resource needs to be modified.

• daemon: Software that runs in the background instead of under direct control

of the user.

• ext4: A file system used in the Linux kernel, which is used as the default on

many Linux-based operating systems.

• file system: A system that controls how data is stored and represented on a disk

drive.

• Flask: A web framework written in the Python programming language.

• foreign key: A database field that identifies a row from another database table.

• gevent: A coroutine-based library for Python for networking.

• hashing: The use of a mathematical cryptography algorithm to map data to a a

string of fixed size, designed to be infeasible to reverse.

• HTTP: Hypertext Transfer Protocol - the protocol used to deliver web sites to

a user’s web browser.

3

• Linux: An open source operating system kernel which provides core system

functionalty such as device drivers and file systems.

• LXC: Linux Containers - a project that develops Linux container technology to

have isolated Linux systems on one kernel using various kernel-level features.

• LXD: A daemon providing an API to perform various system operations on a

Linux container.

• migrations: A way to control and version a database schema, to improve au-

tomation of database operations and improve consistency between deployments.

• Nginx: Software that provides a web server and reverse proxy to serve content

over a network.

• paramiko: A Python library providing an implementation of the SSH protocol.

• PostgreSQL: A relational database management system that emphasises stan-

dards compliance.

• pylxd: A library that provides access to the LXD REST API without manually

constructing requests to the LXD daemon.

• Python: A high-level, general purpose programming language.

• Redis: Software which provides an in-memory data store mapping keys to values

of various data types.

• REST API: Representational State Tranfer Application Programming Interface

- an interoperable way to manipulate resources using a representation of the data

in the form of HTTP requests.

• reverse proxy: A server that retrieves resources for a client from a server.

4

• session: A way to store user data between pages to denote the state of the

application. This is typically accomplished using web cookies stored in the users

browser.

• SQL: Structured Query Language - a language designed for accessing and ma-

nipulating data in a relational database.

• SQLAlchemy: A Python SQL toolkit that also contains an object-relational

mapper to provide an abstraction around standard database operations.

• SSH: Secure Shell - a network protocol used to securely access and operate

services over a network.

• UTF-8: A standard for character encoding that provides points for all characters

defined in the Unicode standard.

• virtual machine: An emulation of a computer system that provides the func-

tionality of a physical system, usually implemented with software and improved

with hardware enhancements.

• web framework: Software or libraries used to assist in the development of web

applications.

• WebSocket: A protocol that provides network communication over a TCP con-

nection from a web browser.

• wssh: A Python library providing a bridge between a WebSocket and a server

using the SSH protocol.

• WTForms: A Python library that assists in the creation and validation of web

forms.

• ZIP: An archive data format that compresses files without loss of data.

5

2. TOOLS AND ENVIRONMENT

2.1 Software

Fig. 2.1: Interaction between application and services

Several open source software projects are used in the development implementation of

CoyoteLab. Some of these components can be replaced with others due to implemen-

tation features. Tools such as text editors and database management software are

not included, as they are not within the scope of the project.

2.1.1 Python

Python is the programming language used in this project. It was chosen due to

familiarity, ease of use with database systems, and the libraries available that made

the project much simpler to implement.

6

The Python application runs a gevent server with several threads to handle in-

coming traffic and return responses to the requests. These responses are generated

using sofware written with the Flask web framework, along with a handful of other

libraries, to provide functionality the application requires.

2.1.2 Nginx

In front of the Python application is the Nginx reverse proxy server, which is used

to serve dynamic content over HTTP [5]. Nginx could be replaced with another

similar system, such as the Apache web server, with additional configuration. In

some configurations, a proxy server is not required, as the gevent server used in the

Python application fully supports the HTTP protocol.

2.1.3 PostgreSQL

PostgreSQL is the database system in use, which was chosen because of it’s full UTF-

8 compatibility, built-in safety checks and improved query optimizer compared to

other database systems [1]. The Python application uses the database to store user

information, course information, and container references.

PostgreSQL could be replaced in this system with another relational database sys-

tem, thanks to the SQLAlchemy library used in the Python application and database

migrations created with the project. Because of this, a simple change to the con-

nection string in the application configuration allows use of other database systems

[7].

2.1.4 Redis

Redis is a key-value store system that is used to store session information and tempo-

rary data in a fast in-memory store. This session data is accessed in the application,

7

with information from the cookie on the user’s web browser, to store information

relating to the current session.

2.1.5 LXD

LXD is a daemon which provides LXC functionality either locally on the host machine

or over a network from another machine [3]. This functionality includes starting,

stopping, restarting, and destroying Linux containers. For this project, LXD’s API

is configured to accept local connections to interact with containers.

2.2 Libraries

Several libraries are used to ease the development of this project.

2.2.1 Flask

The Flask web framework is used to define web application routes that respond to the

given request parameters. By design, it doesn’t include form processing or database

handlers, as it’s meant to be as light as possible while providing core web request

handling functionality [2]. These features are provided by other libraries used in this

project.

2.2.2 gevent

The gevent library provides a Python networking library to provide a high perfor-

mance implementation of networking threads [10]. It was chosen for it’s built-in

support of WebSockets and ease of implentation with Flask applications.

8

2.2.3 SQLAlchemy

SQLAlchemy is a library that interfaces with SQL databases to query data from it

and create data models from different tables in the database. By it’s design, a change

in the configuration will allow one to change database systems almost seamlessly [7].

When combined with the Alembic database migration system from the same author,

one can bring up a new database with minimal effort.

2.2.4 WTForms

WTForms provides an API to create, validate, and process web forms with ease. Each

form is declared in a class, with each field having a validator attached that is run

when the form is validated [8]. Almost all input processing in this project is handled

using WTForms.

2.2.5 pylxd

The pylxd library is a wrapper around LXD’s REST API which allows one to cre-

ate, start, stop, destroy, and otherwise interact and manage the containers used in

the application. It allows use synchronously or asynchronously, meaning it can run

operations without blocking the execution of other functions, if desired.

2.2.6 wssh

The wssh library simplifies the bridging of an SSH connection to a WebSocket for

the user to access in their browser. It does this by connecting a WebSocket to the

paramiko library, providing an SSH implementation in Python, and passing data sent

over the WebSocket into this library to be sent to the container.

9

3. SOFTWARE OVERVIEW

This application provides a class with Linux containers in their web browser to com-

plete course work. Each user gets a container for each course they are involved with,

either as a student or as an instructor. The course instructor is able to access the

containers of each of the students in the courses they are the instructor of.

The software provides three primary interfaces: the student interfaces, the instruc-

tor interfaces, and the workspace interface used by both students and instructors.

3.1 Student Interface

Fig. 3.1: Student’s view upon login

10

On login, the student sees a screen which lists all of the courses they are a part of.

This listing does not include courses that they have been dropped from. For each

of these courses, they are presented a link to see more course information, a link

to download the files from the workspace for that course, and a link to access their

workspace for that course.

The download link initiates a download of a ZIP archive containing all of the files

from the user’s directory. The course information link will take the user to a screen

displaying more information about the course. The workspace link will take the user

to their workspace specifically for that course.

Fig. 3.2: Student’s view of course details

The course information screen shows information provided by the instructor about

the course. This information includes a link to contact the instructor via email, a

link to visit the course webpage, a description of the course, and the duration of the

course.

When clicked, the link to contact the instructor will open the user’s email software

to compose an email to the instructor. The course webpage link will open the course

webpage provided by the instructor in a new window. If the instructor does not

11

provide a course webpage, the link will not appear.

3.2 Instructor Interface

Fig. 3.3: Instructor’s view upon login

On login, the instructor sees a screen with all of the courses they are the instructor

of. For each course, the instructor is able to edit the course information, view the

students in the course, and go to a workspace for their course. This workspace is

separate from student workspaces to provide an environment for the instructors to

teach with, if desired.

12

Fig. 3.4: Instructor’s student management interface

In the students view, the instructor can drop or email any student in their course.

They also have access to download their files from the container and access the stu-

dent’s workspace.

When a student is dropped from a course, they are no longer able to access their

container or information about the course. However, the instructor is able to re-add

them, as the link changes when a student is dropped to do so.

The download files link behaves exactly as it does for students, but for a selected

student instead of the currently logged in user. It initiates a download of a ZIP

archive containing the selected student’s files from their container. The workspace

link will take the instructor to the student’s workspace.

13

3.3 Workspace

Fig. 3.5: Workspace view

When the workspace is loaded, the WebSocket connects to the web server to attempt

to connect to the appropriate container. If a container doesn’t exist, it will be created.

Otherwise, the existing one is started. The container is then connected to the web-

based terminal emulator, where it can be interacted with by the end user.

When the page is closed, the socket times out, or the connection is closed, the

container is shut down to free resources on the server.

The workspace features three buttons to control the container. The top button

refreshes the page, which will reboot the container. The second button is a shortcut

14

to download files from the container. The final button on the bottom will reset the

container back to the state of the course’s base image. An alert is shown when it’s

clicked to confirm that the user intends to perform this action, as it’s irreversible.

Instructors cannot reset a student’s workspace, only their own.

15

4. SYSTEM ARCHITECTURE

Fig. 4.1: Basic outline of system interactions

The system is built up using a custom file system layout and three different key

services: the application, the database, and the LXD container system.

4.1 Application

The application is built with the Python programming language and uses the Python

interpreter to run [6]. The application is built with the Flask web framework, using

gevent for network thread handling. Some additional libraries are used to add form

validation, database interaction, and container control.

16

4.2 Database

Fig. 4.2: Application to database interactions

The database is a core requirement of this project, as it is the central store for user

and course information, and holds a table to keep track of container information. It is

directly accessible to the application. Users are able to submit data to the application,

which stores it in the database, and retrieve data from the application, fetching it

from the database for the user.

The database interactivity is provided by the SQLAlchemy library, which allows

for most relational database systems to be used interchangeably (with the help of

migrations) [7]. For this project, the PostgreSQL database system was chosen.

17

4.3 LXD Container System

Fig. 4.3: Application to container system interactions

The LXD daemon is a system for managing Linux containers over a REST API,

providing operations similar to those for full virtual machines [3]. The difference

is that containers share a running Linux kernel with the hosting machine, rather

than running their own kernel, and don’t have any hardware emulation. As a result,

containers start, stop, and are created much faster.

Containers are run out of directories that mock a root file system, and are isolated

using cgroups and user namespaces (a kernel mechanism that isolates security-related

identifiers such as file systems and users). From the container host, a container

appears as it’s own process with it’s own subprocesses running in a specific directory.

From within the container, it appears as it’s own machine, with the directory it’s

installed in appearing as the root directory.

18

4.4 File System Layout

Fig. 4.4: Host disk partition layout

The host machine has two different file systems set up on it. One of them is for the

main operations of the host machine, such as running the application and database,

which runs on the default ext4 Linux file system. The other is dedicated exclusively

for LXD container storage, running on Btrfs.

Fig. 4.5: Visual outline of copy-on-write files

Btrfs was chosen for container storage because it is a copy-on-write file system.

19

When a file is copied in a copy-on-write system, the newly created file redirects to the

original file instead making a true copy. This only becomes it’s own file when changes

are made and saved to disk [9]. This saves disk space, as there is no need to keep

several copies of identical files when unedited copies are made. This saves several

gigabytes of disk space, as a container will typically be a few gigabytes of duplicate

files otherwise.

20

5. IMPLEMENTATION

5.1 Database Layout

The database schema consists of four tables, each representing a specific data object

of the application.

21

Fig. 5.1: Database table structure and relationships

22

Field Description

id The auto-generated ID of the course

name The name of the course

webpage The URL to the course webpage

description The course description

instructor id The ID of the user who is the instructor of the course

start date The date the course starts

end date The date the course ends

base machine id The ID of the container which student machines will be

cloned from

Fig. 5.2: Course object attributes and methods

A Course is an object that describes course that is run by an instructor, which

multiple students can be enrolled in. It is owned by a User (the course instructor), and

can have multiple Users as students, via the Enrollment table. It also has a Machine

object, which defines which container the initial container for the course will be based

on. There are also fields for additional data: the webpage, course description, start

date, and end date.

23

@hybrid_property

def password(self):

’’’

Returns the password hash field

’’’

return self._password

@password.setter

def password(self, value):

’’’

Sets the password to the hash of the provided value

’’’

from ..util.auth import pwhash

self._password = pwhash(value)

Fig. 5.3: Code for password getting and setting

24

Field Description

id The auto-generated ID of the user

username The user’s login name

temporary pw Flag determining if the current password is temporary

email The user’s email address

name The user’s name

roles The user’s assigned roles

password The user’s hashed password

has role(int) Returns if the user has the specified role

add role(int) Adds the specified role to the user

active in(Course) Returns if the user is currently enrolled in the given

course

Fig. 5.4: User object attributes and methods

The User is a model of a user and it’s attributes. There are two interesting fields

of importance: the password field and the roles field. When added, the password is

hashed using the bcrypt hashing algorithm, so that user passwords are not actually

stored, and instead compared to a value representing it. The roles field is a bit field

used instead of a separate role system in another table, due to the limited number

of roles and simplicity of the system. The currently available roles are the roles of

student and instructor.

25

Field Description

id The auto-generated ID of the container

name The name of the container in LXD

base machine id The ID of the container which the referencing container

originates from

last active The date that the container was last used

user id The user who is the owner of the container

get or create(User, Course) Gets or creates a container for the specified user/course

combination and returns it

get(User, Course) Returns the container for the given user/course combination

delete(User, Course) Deletes the container for the given user/course combination

Fig. 5.5: Machine object attributes and methods

A Machine is a description of a container in LXD. The name field corresponds

with the name of the container it’s meant to reference which is handled by the LXD

system. It has a relation to another Machine object, which is the base machine object

which represents the container that it originated from. Each Machine is owned by a

User.

The Enrollment object allows for a many-to-many relationship between User and

Course objects. This relationship allows a User to be a member of multiple courses,

and multiple courses to have multiple users enrolled. The enabled field determines

if the user is actually enrolled - if it’s set, the user is currently enrolled, otherwise

the user has been dropped. This is set instead of deleting enrollment information, so

if a student were to be re-added, their data would not be lost. This relationship is

designed in this way so that a student can be part of multiple courses, with multiple

instructors, and require only a single account for their academic career.

26

5.2 Access Control

Each user has one or more roles defined in the role field. The role field is a simple

integer, with specific bits of the integer set up to either grant or deny a specific role.

There are two roles defined: instructor and student. Checking a role is done by using

a bit mask. This mask is put across the user’s role using a bitwise AND operation,

and if the result is not 0 then the user has the given role.

To verify appropriate access to resources protected to only certain roles, this is

done before any other processing is done. In this application, it’s done along certain

application endpoints. A helper method called has role was created on the User object

to simplify the code.

def has_role(self, role):

’’’

Checks if the user has a role

’’’

return bool(self.roles & role)

Fig. 5.6: Code for check if a user has a role

As an example, for instructor interfaces, the role is checked for the authenticated

user before any interface is allowed to load. If they don’t have the appropriate roles,

they are redirected away.

27

@blueprint.before_request

def filter():

’’’

Verify that the user has permission to be here

’’’

if not authenticated() or not session_user().has_role(ROLE_INSTRUCTOR):

return redirect(url_for(’auth.login’))

Fig. 5.7: Code for before-request permission check

Adding a role is similar to checking a role, just using a different operation. Instead

of using the mask as a way to check using the bitwise AND operation, the bitwise

OR operation is used to add the appropriate bit to the integer (see above figure).

Another helper method was added to the user object to facilitate this.

def add_role(self, role):

’’’

Adds a role to a user

’’’

if self.roles:

self.roles |= role

else:

self.roles = role

Fig. 5.8: Code for adding a role to a user

Other access controls need to be in place for course-related interfaces, to ensure

that only members of a course (either instructor or student) have access to the course

material and workspace. A function was written for each endpoint that has course-

28

related material, which retrieves the course with the given user parameters, and

returns a page not found error to those not involved with the course.

def get_course(course_id):

’’’

Returns a course from the given course_id if the course is taught by the

currently authenticated user. Otherwise, the application will display a 404

error

’’’

course = Course.query.filter_by(id=course_id, instructor=session_user())\

.first()

if course is None:

abort(404)

return course

Fig. 5.9: Code for retrieving a course for an instructor

29

def get_course(course_id):

’’’

Returns a course from the given course ID if the student is enrolled in it,

otherwise will abort

’’’

course = Course.query.get(course_id)

user = session_user()

if course is None or not course in user.enrolled or not \

user.active_in(course):

abort(404)

return course

Fig. 5.10: Code for retrieving a course for a student

In the workspaces, additional logic is required for instructors accessing their stu-

dent’s workspaces. The endpoints accept an optional student parameter, correspond-

ing to the student whose workspace is being accessed. In this case, we first perform

the check for course accessibility for the instructor. Afterwards, when retrieving the

workspace, we check if the user is the instructor, and if not, pull in the student’s

information to load the workspace. By checking if the user is the instructor of the

course first, we can be sure that the user has access to the workspaces already without

adding a redundant check

30

def get_student(course, student_id):

’’’

Returns the student if the instructor can access this student’s work

’’’

student = User.query.get(student_id)

if student is None or course.instructor != session_user() or \

not student.active_in(course):

abort(404)

return student

Fig. 5.11: Code for retrieving a student with access to a specific course

@blueprint.route(’/<course_id>’)

@blueprint.route(’/<course_id>/<student_id>’)

def workspace(course_id, student_id=None):

’’’

The main workspace view

’’’

course = get_course(course_id)

student = get_student(course, student_id) if student_id else None

return render_template(’workspace.jinja’, course=course, user=student)

Fig. 5.12: Code for view where an instuctor can access a student’s or their own information with appropriate

permission

31

5.3 Container Control

Container control is provided by the pylxd library, which uses the LXD REST API.

In order to manage containers with the library, the LXD service first requires that

anything using it authenticate itself to be trusted by the system.

def lxd_client():

’’’

Returns an LXD client object to interact with containers. Returns None if

a trusted connection cannot be established

’’’

client = LXD(endpoint=current_app.config[’LXD_ADDRESS’],

cert=(os.path.join(os.getcwd(), ’cert.crt’),

os.path.join(os.getcwd(), ’cert.key’)),

verify=False)

client.authenticate(current_app.config[’LXD_TRUST_PASSWORD’])

return client if client.trusted else None

Fig. 5.13: Code for establishing a trusted LXD connection

Once authenticated, containers can be accessed and modified using the provided

client functions. Utility methods were created on the Machine object in order to

create machines that don’t yet exist, or get a reference to the container if it does.

32

@staticmethod

def get_or_create(user, course):

’’’

Creates a new container for the given user/course combination and

returns a tuple of the form (lxd_container, model)

’’’

if not user.active_in(course) and course.instructor != user:

return None

from ..util.lxd import lxd_client

lxd = lxd_client()

...

container = lxd.containers.create({

’name’: name,

’source’: {

’type’: ’copy’,

’source’: course.base_machine.name

},

’config’: {

’limits.cpu’: current_app.config[’LXD_LIMIT_CPU’],

’limits.memory’: current_app.config[’LXD_LIMIT_MEMORY’]

}}, wait=True)

...

return container, machine

Fig. 5.14: Code for creating a container

33

@staticmethod

def get(user, course):

’’’

Gets a container/model pair for the given user/course combination. or

None if it doesn’t exist

’’’

if not user.active_in(course) and course.instructor != user:

return None

from ..util.lxd import lxd_client

lxd = lxd_client()

name = current_app.config[’USER_CONTAINER_NAME’]\

.format(course_id=course.id, user_id=user.id)

try:

container = lxd.containers.get(name)

return container, Machine.query.filter_by(name=name).first()

except LXDAPIException:

return None

Fig. 5.15: Code for retrieving a container

Once a container is retrieved, pylxd makes it trivial to manage container state.

This is done using the start and stop methods of the LXD container object, which

are used in the SSH-WebSocket bridge.

34

5.4 SSH-WebSocket Bridge

def _bridge(self, channel):

""" Full-duplex bridge between a websocket and a SSH channel """

channel.setblocking(False)

channel.settimeout(0.0)

self._tasks = [

gevent.spawn(self._forward_inbound, channel),

gevent.spawn(self._forward_outbound, channel)

]

gevent.joinall(self._tasks)

Fig. 5.16: Code for bridging an SSH connection and a WebSocket (via wssh) [12]

The SSH-WebSocket bridging functionality is provided by a library called wssh using

it’s bridge function. This function takes the WebSocket on connection, passes the data

to another library called paramiko, which handles passing SSH messages between the

application and the SSH daemon running in the container. This bridge creates two

threads - one for forwarding inbound traffic and one for forwarding outbound traffic.

35

def _forward_inbound(self, channel):

""" Forward inbound traffic (websockets -> ssh) """

try:

while True:

data = self._websocket.receive()

if not data:

return

data = json.loads(str(data))

if ’resize’ in data:

channel.resize_pty(

data[’resize’].get(’width’, 80),

data[’resize’].get(’height’, 24))

if ’data’ in data:

channel.send(data[’data’])

finally:

self.close()

Fig. 5.17: Code for forwarding packets from the WebSocket to the SSH server (via wssh) [12]

When inbound traffic to the container comes in, the thread passes the data coming

from the WebSocket to the SSH daemon. The data received comes in a JSON format.

36

def _forward_outbound(self, channel):

""" Forward outbound traffic (ssh -> websockets) """

try:

while True:

wait_read(channel.fileno())

data = channel.recv(1024)

if not len(data):

return

self._websocket.send(json.dumps({’data’: data}))

finally:

self.close()

Fig. 5.18: Code for forwarding packets from the SSH server to the WebSocket (via wssh) [12]

When the SSH daemon sends to the client, the outbound thread formats the data

in a JSON format and sends it back to the WebSocket. In the browser, this response

is decoded and the result handled by the web terminal.

37

start the machine if need be and wait for the network to come online,

then get the address to connect to

container.start(wait=True)

while len(container.state().network[’eth0’][’addresses’]) < 2:

time.sleep(1)

for addr in container.state().network[’eth0’][’addresses’]:

if addr[’family’] == ’inet’:

address = addr[’address’]

...

bridge = WSSHBridge(request.environ[’wsgi.websocket’])

try:

bridge.open(hostname=address, username=’coyote’, password=’coyote’)

except:

request.environ[’wsgi.websocket’].close()

container.stop()

return str()

bridge.shell()

request.environ[’wsgi.websocket’].close()

once it’s closed, we want to stop the machine to get back the resources

container.stop()

Fig. 5.19: Code for running and connecting to the container

38

The workspace socket brings this all together, by first creating or grabbing the

container that will be used, starting it, and waiting for the network to start. Once

it’s ready, the bridge is made to the SSH daemon in the container. As soon as the

socket connection is terminated, the container is shut down to free system resources.

39

6. CONCLUSION

This project aims to provide an easy way for instructors and students to work on

class assignments in their computing courses. It provides an easy way for a student

to log in and get to a container, that can then be accessed by their instructor. This

makes it easier for both parties as a common set of tools can be used, which keeps

discrepancies in results to a minimum, while also saving time for both parties by

removing the need to set up and install a machine of their own.

6.1 Future Work

Several improvements could be made to make this project work in a more general

case to allow for more courses to be able to use it.

• A VNC client could be installed to a container, and a VNC JavaScript imple-

mentation could be used for graphical programs.

• A system could be put in place for an instructor to make a more tailored base

container for their particular course needs. Additionally, more base container

options could be added, such as CentOS or OpenSUSE, instead of just Ubuntu,

as other Linux operating systems provide different packages and security features.

• Mechanisms could be implemented for users to have multiple containers, to do

parallel programming work. This could extend to use the libvirt software, which

can manage both LXD containers and virtual machines, to use VM-assigned

hardware for GPU work.

40

• A grouping system could be created to allow multiple users to share a common

container for team project work.

The potential for this projects continuation is great, and can provide many im-

provements to the way computing is taught.

41

REFERENCES

[1] Anand Chitipothu. Ten reasons why you should prefer postgresql to mysql.

Presented at Root Conf 2015. [Online]. Viewed 2016 November. Avail-

able: http://www.slideshare.net/anandology/ten-reasons-to-prefer-postgresql-

to-mysql.

[2] Flask Documentation. (undated). [Online]. Viewed 2016 November. Available:

http://flask.pocoo.org/docs/0.11/.

[3] LXD Official Documentation. (undated). [Online]. Viewed 2016 November. Avail-

able: https://help.ubuntu.com/lts/serverguide/lxd.html.

[4] MDN WebSockets Documentation. (undated). [Online]. Viewed

2016 October. Available: https://developer.mozilla.org/en-

US/docs/Web/API/WebSocketsAPI.

[5] Nginx Documentation. (undated). [Online]. Viewed 2016 October. Available:

https://nginx.org/en/docs/.

[6] Python Documentation. (undated). [Online]. Viewed 2016 November. Available:

https://docs.python.org/2/.

[7] SQLAlchemy Documentation. (undated). [Online]. Viewed 2016 October. Avail-

able: http://docs.sqlalchemy.org/en/latest/index.html.

[8] WTForms Documentation. (undated). [Online]. Viewed 2016 October. Available:

http://dev.mysql.com/doc/refman/5.5/en/.

42

[9] Neeta Garimella. Understanding and exploiting snapshot technology for data

protection, part 1: Snapshot technology overview. [Online]. Viewed 2016

October. Available: https://www.ibm.com/developerworks/tivoli/library/t-

snaptsm1/index.html.

[10] gevent Documentation. (undated). [Online]. Viewed 2016 October. Available:

http://www.gevent.org/contents.html.

[11] PostgreSQL 9.6 Maunal. (undated). [Online]. Viewed 2016 November. Available:

https://www.postgresql.org/docs/9.6/static/index.html.

[12] wssh GitHub Repository. (undated). [Online]. Viewed 2016 October. Available:

https://github.com/aluzzardi/wssh/.

43

	CoyoteLab - Linux Containers for Educational Use
	Recommended Citation

	tmp.1479356319.pdf.8IKDm

